GROUP SCHEMES OF PERIOD 2
VICTOR ABRASHKIN

ABSTRACT. We give an explicit construction of the antiequivalence
of the category of finite flat commutative group schemes of period
2 defined over a valuation ring of a 2-adic field with algebraically
closed residue field. This result extends the earlier author’s ap-
proach to group schemes of period p > 2 from Proceedings LMS,
101, 2010, 207-259.

INTRODUCTION

0.1. Basic notation. Everywhere in the paper k is algebraically closed
field of characteristic 2, Ky is the fraction field of the ring of Witt vec-
tors W (k) and [K : Ko] = e € N. Let Oy = Ok, be the valuation ring
of Ky, m — a fixed uniformiser in Ky, K = Ky(r), where 72 = mp, and
O = Og. We set S = kl[[t]] where ¢ is a variable. Let 0 : S — S be
such that o(s) = s*, s € S. Denote by kg0 : S/t* — 0/20 the rings
isomorphism such that ksolr = id and kgo : t mod t** — 7 mod 2.

For a natural number u, ¢ denotes always a vector of length u with
coordinates from the set {0, 1} and (i) denotes the sum of these coor-
dinates.

0.2. Categories of group schemes. Let R be a local ring of char-
acteristic 0 with residue field k. Denote by Grg the category of finite
flat commutative group schemes G over R such that 2idg = 0.

Recall that G = SpecA(G), where A(G) is a flat R-algebra of finite
rank |G| and the structure of group scheme on G is given via the R-
algebra morphisms eg : A(G) — O (counit) and Ag : A(G) —
A(G) ®@r A(G) (coaddition) satisfying standard axioms.

Denote by Gré% and Griz“ the full subcategories in Grp of etale
and, resp., multiplicative group schemes. Then any G € Grg has the
maximal etale quotient 7¢ : G — G* and the maximal multiplicative
subobject i™ult . Gmult G,

Because k is algebraically closed any etale object in Grg is a product
of finitely many copies of the constant etale group scheme of order
2, (Z/2)o = SpecMap(Z/2, R). Similarly, any multiplicative group
scheme in Grg is a product of finitely many copies of the constant
multiplicative group scheme of order 2, ps = SpecR|[Z/2].
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Introduce the category Gry as follows. Its objects are the objects
from Grg and for any G, Gy € Grg,

HomGr*R(Gl, Gy) = HomGrR(Gh G2)/R(G1,G2)
where R(G1, G3) consists of the morphisms

-et ,L'mult
Gl I Git L G?Qnult N
whith arbitrary f € Homg,, (G$, G5™'*). Note that Homg,,((Z/2)r, pto.r)
has only one non-trivial element given by the embedding of R-algebras

R[Z/2] = RO+ R1 — Map(Z/2,R) = R® R
such that 0 — (1,1) and 1 — (1,—1).

0.3. Categories of filtered modules. Let MFg be the category of
the triples (M°, M, p1) such that M* C MY are S-modules and ¢, :
M!' — M?° is a o-linear morphism of S-modules. The morphisms in
MFg are compatible morphisms of S-modules commuting with .

Denote by MF§ the full subcategory in MFg consisting of the triples
(MO, M*, 1) such that

e MY is a free S-module of finite rank;

o M D teMY;

o o (M")S = M°.

The full subcategory of etale filtered modules MFZJet in MF§ consists
of (M° M', ¢;) such that M' = t*M°. One can see easily that any
M = (M° M o)) € MF§ has a unique maximal etale subobject
i M = (MO e MO ) — M. Suppose ¢y : MY — MO is
such that @g(m) := @1 (t*m) for any m € M°. Then M := M ®gk
is the maximal k-submodule of M := M° ®g k such that ¢, induces
an invertible o-linear automorphism on A%¢. Notice that ¢ can be
included into the following short exact sequence

0 — M M Mle

where M'e¢ = (MOloe phlee o)) € MFG and M%e¢ .= MO%¢ @4 k can
be naturally indentified with the maximal k-submodule in M such that
o induces its nilpotent endomorphism. Any etale filtered module is a
direct sum of finitely many copies of 8¢ := (Sm, St®m, ;) € MFg’d,
where @1 (t*m) = m.

The full subcategory of multiplicative filtered modules MF§™* in
MF¢ consists of (M°, M, 1) such that M' = M°. Any M € MF§
has a unique maximal multiplicative quotient ;™% : M — M™uE,
Introduce the morphism vy : M? — MY as follows: if m € M"' and
pi(m) = n € M° then t)y(n ® 1) = m ® 1. One can verify that
1y is a well-defined o~ !-linear morphism of k-modules and MOt .=
MO™it &« I can be identified with the maximal k-submodule in M°
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such that 1)y z0.mue is invertible. Note that ;7! can be included into

the following short exact sequence in the category MF¢,
0 — M — M pmit

where M* = (M%* MY o)) € MF§ and M%* = M% ®g k is
the maximal k-submodule such that vy« is nilpotent. Any mul-
tiplicative filtered module is a direct sum of finitely many copies of
Smult .= (Sn, Sn, 1) € MEG™, where ¢,(n) = n.

Introduce the category MFS" as follows. Its objects are the objects
of MF§ and for any M, My € MFg,

Homyrpe (M1, Mz) = Homyre (M, M3)/ R(M1, Ms)
where R(M, My) consists of the morphisms of MF§ of the form

jmult It f " jet
My — M — MG — M,
with arbitrary f € Homype (M7, M)
Note that Homye (S™, §¢) has only one non-trivial morphism
and it is given by the correspondence n — t2*m.

0.4. Main result. In this paper we prove the following theorem.

Theorem 0.1. There is an antiequivalence of categories
.7:8: : Grp, — MFY

For p > 2, there is an antiequivalence of categories .7-"80 : Gro, —
MF¢. This was proved by C.Breuil [5] and M.Kisin [7, 8] in a more gen-
eral context of all p-group schemes. The proofs are obtained from the
study of p-divisible groups and essentially use the crystalline Dieudonne
theory which is built on a geometrical approach due to the Raynaud
theorem about the existence of embedding of any p-divisible group
into an abelian scheme. This approach has been generalized recently
by W.Kim [6], E.Lau [9] and T.Liu [10] to the case p = 2. (Lau’s result
uses Zink’s theory of displays and windows.)

On the other hand, an explicit and direct construction of the antiequiv-
alence .7-"000 in the case p > 2 was given by the author [4]. The above
theorem extends that construction to the case p = 2. We should no-
tice that this extension is very far from to be straightforward for the
following reasons.

First, when relating group schemes over Oy C O and filtered S-
modules we use the identification of rings S/t** and O/2. But when
working modulo 2 we can’t control quite efficiently all morphisms in
the category Grp, e.g. both the elements of Home,,, ((Z/2)o0, p12,0) co-
incide modulo 20. This explains why we are forced to use the quotient
categories Grp, Grp, and MFG'. On the other hand, the above example
represents essentially the only aspect we are losing in our approach and
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Theorem 0.1 gives essentially complete information about the objects
and morphisms of the category Grog,.

Second, when working with odd prime numbers p > 2 the ideal pO
is provided with nilpotent D P-structure and is considerably smaller
than the maximal DP-ideal in O if e > 1. If p = 2 we have no such
“safety margin” because 20 is already the maximal D P-ideal in O.
The adjustment of methods of [4] to the case p = 2 required a profound
revision of all constructions used in there, especially the proof of the
surjectivity of the functor 980. In particular, so-called Main Lemma
was restated in a more precise form and provided with an essential
elaboration. As a result, all main features of our approach from [4]
were preserved in the case p = 2.

Finally, notice that all applications developed in [4]: a criterion for
the Galois module to come from the Galois module of geometric points
of G € Grg,, the relation between group schemes from Grp, and Falt-
ings’s strict modules in characteristic 2 and an explicit description of
the duality in Grp, can be done along the lines of the approach from
[4] in the case p = 2 as well.

0.5. Brief description of used methods. Let Aug, be the category
of augmented O-algebras. Introduce the equivalence relation R such
that for fi, fo € Homayg,, (B1,Bs), f1 ~ fo iff f1 and f5 coincide modulo

some DP-ideal in B, (cf. Subsection 1.3 for the definition of this ideal).
Denote by Augy, the category whose objects are the objects of Aug,
but the morphisms are the R-equivalence classes of morphisms in Aug,.
In our approach the category Aug,, (resp, Augy,) relates the categories
MF% and Gro (resp., MFS and Grp,).

As first step we associate with M = (M° M' ;) € MF§ a set of
augmented O-algebras Aug,, (M) each of whose members is constructed
after choosing an appropriate special basis for M and a couple of
other choices. One also defines for any A € Aug,, a canonical object
L(A) € MFs and if A € Aug,(M) then we have a natural map g :
M — 1(A) in MFg. Then one observes that the correspondences
A — Aug,(M) and B — «(B) are left-adjoint. This results in the
following property: if N' € MF¢ and B € Aug,(N) then we have
natural identifications

Homype: (M, N) = Hom iz (b (M), exr(N)) C Homaygy (A, B).

This allows us to show that A, as an object of Augy,, is functorial in
M (viewed as an object of MF®*), and that the assignment M — A
is functorial. It also allows us to define a family £4 of Hopf algebra
structures on A whose spectrums are group schemes over O that are
isomorphic in Grj,. (Use the diagonal embedding of M into N' =
M@ M.) In this way we obtain a faithful functor Go : MF§ — Grp,.
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This functor is actually full. To see this, we describe 1y (M) in
terms of the Hopf algebra structure on A, and so we find that it is
an object intrinsically attached to Go(M). So we obtain the following
commutative diagram:

~

HOHlAug*O (.A, B) — HOHIM}‘S(LM (M)v L(B>)

Prop. 1.8

A

Homg,s (Go(N), Go(M)) Hom vz (ta (M), enr(N))

=
Prop. 1.14

HOInMFg* (M 5 N)

These ideas have been applied earlier by the author in [2, 3] to describe
the category Grp,, where O is the valuation ring of a field extension of
Q, with small ramification.

Next, one shows that Go factors through a functor G§ : MFg —
Grp,. This amounts to showing that every group scheme Go(M) de-
scends to one over Oy. To accomplish this one uses tame descent and
induction on rank of M. This goes more or less along the lines of [4].

All that remains to do is to show that ng is essentially surjective.
One again uses tame descent and induction, this time on |Gq| = p®.
This is most difficult part of the paper, where we need essential elabora-
tion of Main Lemma from [4] and where a special role of prime number
p = 2 can be explained in the following way. When applying induction
on s we present G = Gy ®p, O as an extension of a group scheme H of
order p*~! via a group scheme of order p. Then on the level of algebras
A(G) and A(H) of the group schemes G and H, the Kummer theory
provides us with a class of generators 6 such that A(G) = A(H)I[0].
Main Lemma allows us to make a very special choice of § and then via
the Lubin-Tate logarithm [,7(X) = X + X2/p+ X?*/p? + ..., we can
relate G with a group scheme of the form Go(M), M € MFS. This
special choice becomes much more delicate in the case p = 2 because
when p > 2 it was enough to use only the first two terms of the above
expansion of [y but in the case p = 2 we need to take into account
one term more.
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1. CONSTRUCTION OF THE FUNCTOR Gp : MFg — Grp

We use all notation and assumptions from Introduction, in particu-
lar, the definition of the category MF§ and the corresponding proper-
ties of its objects. Remind also that we fixed an identification kg :
S/t?¢S ~ O/20 such that ksoli, = id and kg5o(t mod t*¢) = 7 mod 2.

1.1. pp-lifts. Suppose M = (M° M!, ¢,) € MFg, N = (N° N1 ) €
MFs and 6 € HOH]M}‘S<M,N).

Definition. a) 0 is a o, -lift if (M°) = N° 0(M') = N! and Ker =
Kerf|yn := T b) ¢1-lift 0 is nilpotent if ;|7 is topologically nilpotent,
ie. N, ¢1(T) = 0; c) pi-lift 0 is special if there is a submodule 7" of
T such that T = T" + (T N t** M%) and ¢; induces a topologically
nilpotent endomorphism of 7”.

Proposition 1.1. Suppose for i = 1,2, 6; € Hompnz, (M, N;) are

o1-lifts and h € Hompry(N1,N3). Then the set L(h) of all [ €

Homype, (M1, My) such that Oy0 f = hoby is not empty. If in addition:
a) 0y is nilpotent then L(h) consists only of one element;

b) 0y is special then all elements of L(h) belong to R(Mi, Ms), i.e.

coincide in MF§'.
Proof. We start with the following Lemma.

Lemma 1.2. Suppose L is a finitely generated S-module and ¢ is a
o-linear operator on L. Then the operator id; — ¢ is epimorphic. If,
in addition, @ is topologically nilpotent then idy, — A is bijective.

Proof of Lemma. Part b) is obvious. In order to prove a) notice first
that we can replace L by L/tL and, therefore, assume that L is a finite
dimensional vector space over k. Then there is a decomposition L =
Ly & Lo, where ¢ is invertible on L; and nilpotent on Ls. It remains to
note that L; = Lo®p, k, where Ly is a finite dimensional IF-vector space
such that ¢|;, =id. The existence of Ly is a standard fact of o-linear
algebra: if s = dimy L; and A € M(k) is a matrix of ¢|;, in some k-
basis of Ly then Lo = {(x1,...,x5) € k% | (2f,...,22)A = (z1,...,24)};
the [F)-linear space Ly has dimension s because the corresponding equa-
tions determine an etale algebra of rank p® over algebraically closed field
k. The Lemma is proved. U

Now suppose for i = 1,2, M; = (M?, M}, 1) and N; = (N2, N}, ¢1).
Let a vector m; € (M?)® and a matrix C' € M,(S) be such that the
coordinates of 7m; and m;C form an S-basis of M} and, resp., M7, and
gpl(mlC) =Mmj.

If Ng = (h 9 (91)77_11
such that 6;(ms) =

then ¢1(noC) = fy. Choose a vector my € (M})*
M. Then Mo — 901(77120) = 52 € TQS, where T2 =
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Ker 6. The elements of L(h) correspond to vectors t € Ty such that
ma +t = p1((mg + t)C) or equivalently ¢ — ¢ (tC') = —t,.

By above Lemma such ¢ always exists and, therefore, L(h) # 0. If
0, is nilpotent then such ¢ is unique and part a) is proved.

Now suppose 6, is special. Then Ty = T4+ (To Nt My*“") and @11y is
topologically nilpotent. Clearly, we can assume that Ty N 2T M
T/

Note that Ny = (MY /Ty, M3 /Ty, p1) and 6y appears as the compo-
sition of two natural projections in M Fg

My = NG o= (M Ty, M}/ Thy 1) — N,

Here « is a nilpotent ¢;-lift and, therefore, f € L£(h) is uniquely deter-
mined by a o f € Hompzy (M1, N3).

Suppose for i = 1,2, f; € L(h) and f] = ao f;. Then f; —
f5 € Kerf, C Homes(/\/ll,J\?g) where Ny = (Ng,Nz,gol) N, =
t2e M /152"3+1 and ¢, is o-linear automorphism of N,.

Let My := (122 M>% 122 MO o)), Clearly it is a subobject of MY
in MFG. Then the natural projection .//—\;l_/Q — Ny is a nilpotent ;-
lift and, therefore, f; — fo factors through the embedding .//\>l/2 c Mé
Finally, MVQ is a multiplicative object in MF§ and this implies that
f1 — f2 factors through the natural projection M; —s MU,

The proposition is proved. O

Corollary 1.3. a) If 6 is nilpotent then M is defined uniquely by N
up to a unique isomorphism in the category MFS;

b) If 0 is special then M is defined uniquely by N up to a unique
isomorphism in the category MFS .

1.2. Extension of scalars. Let S' = S[t'], where t? = ¢. If M =
(M° M p1) € MF§ then M ®g 5" := (M°®s S, M' ®s S, p1Q0) €
MF%. (Here o(s) = s? for any s € S'.)

If M = (M, M, g]) € MF% then ¢ (M") = {¢(m) | m € M"}
has a natural structure of S-module and coincides with M? if M’ =
M®gS’. This fact implies easily the following criterion of the existence

of a descent of M’ to S.

Proposition 1.4. If M’ = (M, M", o)) € MF% then the following
two properties are equivalent:

a) M = (M° M', p,) € MFS is such that M' = M ®5 S';

b) z(f M° = gp’)l(M’l), MY = M N MY and o1 = @y|yn then
M= (M ,501 GMF%.
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1.3. The category of augmented O-algebras Aug,. Let Aug, be
the category of augmented O-algebras B = (B, Ig) such that B is a flat
O-algebra of finite rank and Ip is an ideal of B such that O ~ B/Ip
via the natural map o— o-1p, 0 € O.

We shall denote by B the subobject (B, Iget) € Aug,, such that
B is the maximal etale subalgebra of B and Ige: = B N Ip.

With above notation let 1% be the ideal of topologically nilpotent
elements of Ig. Clearly, I%%¢ N Iget = wlge:. Denote by I5(2) the ideal
of all b € Ip such that b* € 2Ip and by I(2)!°° — the ideal of all
b € Ip such that b € 21%¢. Clearly, I5(2) = I(2)"° + 7¢Ipe:.

Let Jp = Ip(2)% 4+ 7°I5(2). Then Jz = Jg + 2, where Jp =
I(2)¢Ip(2)+mI5(2). Notice that Jp is provided with the standard
D P-structure by the map b — —b*/2, b € Jp, and Jp is the maximal
ideal in Jg where this D P-structure is topologically nilpotent.

We shall denote by Augy, the following category. Its objects are the
objects of the category Aug, and for any B;, By € Aug,,

HOIIIAug*O (Bl, BQ) = HomAugO (Bl, Bg)/R,
where R is the following equivalence relation:

if f1, fo € Hompy,, (Bi, B2) then f ~ J2 iff f1 = famod Jp,.

1.4. Families of augmented O-algebras Aug,(M), M € MFg.
Suppose M = (M° M ;) € MF§ and the vector m! = (m},...,m})
is such that its coordinates form an S-basis of M'. One can verify that
m! can be chosen in such way that the following two conditions C'1

and C2 are satisfied:

C1: the non-zero images of all m, 1 < i < u, in M°/tM° are
linearly independent over k;

C2: m' = (mboe temet) where
a) the coordinates of m® form an S-basis of M*" and @, (t*m®) = m*;
b) if Ml = @, (mb¢) then the coordinates of m'“modt form a basis
of M%oc = MOtoe @ |k over k.

Let m® = (m!°¢,m*). Then the coordinates of m° form an S-basis of
M?P°. Denote by U the (n x n)-matrix with coefficients in S such that
m! = m°U. By condition C1, for appropriate S-matrices U; and Us,
we have mb°¢ = m!cU; + me (tU,).

The above chosen data: the vectors m°,m!' and the matrix U €
M, (S) — completely describe the structure of M € MF§. Choose C €
M, (O) such that C'mod 2 = U mod ¢** with respect to the identification
kso. Define the O-algebra A = O[X]/Z4, where X = (X1,...,X,),
Za = Zax NO[X] and Za g is the ideal in K[X] generated by the

0
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coordinates of the vector (—1/2)(XC)® — X. (For any matrix a =
(ai;) we set @ := (aZ)).)

Proposition 1.5. With above notation A is a flat algebra of rank 2"
over O.

Proof. Indeed, it can be deduced from condition C'1 (similarly to Lemma
2.2.2 from [4]) that C® divides the scalar matrix 21, in M,(O). (Note
that C' divides 7¢1,.) This implies that the ideal Z4 is generated by

the coordinates of the vector X —2(X +V)C® ", where V consists
of O-linear combinations of X;X;, 1 < i < j < u. Therefore, there is
an isomorphism of O-modules

(11) A~ @0<i1 ..... iuglOXil Ce X;u
and A is flat over O. O

For the above introduced algebra A, denote by I, the ideal in A
generated by the images of X1,..., X,. Then (A, I4) € Aug,,.

Definition. Denote by Aug, (M) the family of all augmented algebras
(A, 14) € Aug,, obtained via the above procedure for all choices of m!
(which satisfy the conditions C'1 and C2) and the corresponding matrix
C e M,(O).

1.5. The ¢;-lift tpq. Define the functor ¢ : Aug, — MFg via
(B,1p) — (I/Jp,15(2)/ JB, 1)

where (B, Ip) € Augy, Jp was introduced in Subsection 1.3 and ¢; is
induced by the correspondences b +— —b%*/2, b € Ip.

For any M € MF§ and (4, 14) € Augy(M), there is a canonical
morphism ¢ : M — 1(A(M)) in MFg such that m° — X mod .Jy
and m' +— XCmod.J,. Clearly, the image 1,(M) is a subobject of
t(A(M)) in the category MFs.

Proposition 1.6. The map tp : M — tp(M) is a special @;-lift.
Proof. Consider M= M ®y S/t** € MFs. Clearly, the natural pro-
jection M — M is a special p;-lift and ¢4 is the composition of this

projection and a unique Iy € Homp iz, (M, tp(M)).
Let M = (M° M" ;). Then

MO: {E:OZ)A(;z | O01,...,0p GO,)Zi:Ximod2]A}

M= {Zoﬁq |01, .. 00 €0, (Yh,....Y,) = ()?1,...,5(”)0}

where the S-module structure is induced by the given O-module struc-
ture via the identiﬁcgtion kso and oy : M* — M is given via the
correspondence > 0;Y; — > 02X,
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Suppose iap = (88, 0h,). Then

70 = Keri%, = {Zoi)N(i | ZOin’ € JA}
T = KerZ}M = {Zoif/i | ZOiY; € JA}

The proposition will be proved if we show T0 = T, ,(T°) c T°
and 1|5 is nilpotent.

Suppose U = Zoi)?i € T° Then >0, X; € Ja C I4(2) and
S 02XE € 214 Let (GY,...,G) = 2(X + V)(C®)~L, cf. the proof
of Proposition 1.5. Then Y, 0?G} € 214 and due to the isomorphism
(1.1) we can follow the linear terms to obtain that

(1.2) 2(02,...,02)(CN ™= 2(ay, ..., ) € 20"

Clearly, there are o, ...,a!, € O such that all o/* = a; mod 20 and
(1.2) implies that
01,...,04) = (..., )C mod7°.
1 u

Therefore, ). oi)?i is congruent modulo ¢M° to an O-linear combi-
nation of the coordinates of the vector (Yy,...,Y,) = (Xi1,...,X,)C.
In other words, v € Ml, e TO =T

If o = 3 0}Y;, then

©01(0) = Zo?)?i = —02/2 + Zogo;f/i?j € Jamod2I,
4,3

implies 1 (TY) C T°. (Use that J4 is a DP-ideal and I4(2)* C J4.)
Finally, let 99 = © and for n > 0, 0,11 = ¥1(9,). We must prove
that for n > 0, v,, = 0.
Let A’ = O[Yy,...,Y,]. Then A’ is an O-subalgebra in A given by
the equations

(Y2 ..., Y+ (Y,....Y)2C™ ) =0.

Therefore, any element a € A’ can be uniquely presented in the form

a= Z 0y i, (@)Y ... Yo,
1<i1 < <is<u

where all 0;, ;.(a) € O. Set L(a) = 01(a)Y1+---+0,(a)Y,. Notice that
if T4/ is the augmentation ideal of A’ generated by Y;,...,Y, and a € I3,
then all 0;(a) = 0mod ¢ (use that 2C~! = 0 mod 7¢). This means that
if ay,as € Iy and a; = agmod I3, then L(a;) = L(az) mod w1 4.

With above notation let vg = > 0;X; and for all n > 0, v, =
—vfl/Q. Clearly, all v, € J4 and there is an Ny > 0 such that vy, € 214.

For n > 0, set v} = L(v,) and denote by p : A — A/2 the
composition of the natural inclusion A’ into A and the reduction map
A— A)2.

Lemma 1.7. p(v}) = &, mod(r°M?).
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Proof of Lemma. Use induction on n > 0.

Clearly, vy = v§ and p(vg) = 0p.

Suppose p(v’) = ¥, mod(x°M?).

If vi = S 0™Y;, where all o™ € O, then v, = 3 0™Y; + « with
a € I?%,. Therefore,

Vpy1 = —02/2 = Zogn)in mod I3,

(R Z o™? X, mod 71 5

*

and p(v, 1) = e1(p(v})) = ¢1(0n) mod(7°M?). The lemma is proved.
U

Finally, the above lemma implies that vy, € e M and, therefore,

Ungr1 = p1(0n,) € 72¢M° = 0. The proposition is proved.
|

1.6. The maps ©* and ¥*. Suppose B = (B, I5) € Aug, and B =
(B, Iget) is the maximal etale subalgebra in B. Then Jget = 2[get
and +(B%) = (Iget /21 get, €1 get /21 get, 1) € MFg admits a (unique)
special ¢y-lift £(B°) € MFg®,

Introduce m(B%) = (21get /27 get, 21 get 27 I get, 1) € MFg, where
¢y is induced (as usually) by the map a — —a?/2, a € 2Ige:. Clearly,
m(B) admits a (unique) nilpotent py-lift M(B%) € MFZ™" and the
identity morphism on Ige: induces the natural morphism

w(B?) 1 M(B) — £(B)
in the category MF¥.
Suppose M = (M° M, ;) € MF§ and A = (A, 14) € Augy(M).

Introduce the map
© : Homapye, (A, B) — Hompr, (M, (B))

by attaching to F' € Homy,,,, (A, B) the morphism of filtered modules
@(F) = L(F) CLlm.

Proposition 1.8. With the above notation:

a) O is surjective;

b) if either B = S or M™W = () then 0 is bijective;

c) there is a natural strict action of the group Homype (M™ E(B))
on Homayg, (A, B) and the corresponding equivalence relation R co-
incides with the equivalence relation from the definition of Augy, in
Subsection 1.3;

d) © induces the bijection

©" : Homapygy, (A, B) — Hompzs (ta (M), 1(B)).
Proof. Suppose A = (A, I4) € Aug,(M) is given via a special choice

of vectors m° and m! with the coordinates in M° and, resp., M*, and
the matrix C' € M, (O) from Subsection 1.4.
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Lemma 1.9. Suppose b° € I% is such that (—1/2)(b°C)® = b° mod J3.
Let L(1°) be the set of all b € I% such that b= °mod Jg and it holds
(=1/2)(bC)® = bmod Jg. Then

a) L(b°) # 0;

b) if bi,by € L(B®) then T = by — by € J% and (—1/2)(zC)? =
T mod jB.

Proof of Lemma. The vector b = b’ +z € L(B°) iff z € J% and
(—1/2)(zC)? — 2 =1° + (1/2)(1°C)® mod Jp.

Notice that V = (Jg/Jp)" has a natural structure of a finite dimen-
sional vector space over k and the correspondence 7 +— (—1/2)(zC)®
induces a o-linear morphism ¢ : V — V. By Lemma 1.2, ¢ —id :
VYV — V is surjective. This proves part a). Part b) follows easily from
the congruence (b;C)? = (5,0)® + (2C)® mod 2JpI5(2). O

Notice that Hom iz, (epmi(M), o(B)) =
{t°mod Jp | B° € 1%, (—1/2)(0°C)® = b’ mod Jg},
Homaug,, (A, B) = {b € Iy | (—=1/2)(bC)® = b}
= {bmod Jp | b€ I%, (—=1/2)(bC)® = bmod Jz}

and the map © is given via bmod jB — 0% mod Jp.

Therefore, part a) of Proposition 1.8 follows from part a) of above
Lemma. If Z is the vector from part b) of above Lemma then the
correspondence m +— T identifies

HOHIMF@S (M, M(Bet)) = Hom £, (Mmult’ M(Bet))

with Hom gz, (M™ m(B°)). This implies part b) of Proposition 1.8.
With the above notation the correspondence b — b+ Z determines the
action of Homygpe (M™, E(B)) on Homayg, (A, B). One can easily
verify that this action is strict and © induces bijection of the corre-
sponding quotient Homayg, (A, B)/R and Hom iz, (tp (M), o(B)). O

Remark. a) By condition C2, m°® = (m!°, m*") and therefore we have
the appropriate presentation Z = (z'°¢, 2°), where 7 is the vector from
part b) of Lemma 1.9. One can easily see that z¢ = 0. In par-
ticular, the shifts by all above vectors Z determine a strict action of
Hom 7, (M™ 1(B)) on I% mod Jp.

b) One can easily see that if M € MF$™" and B = B¢ then
HomAugo ('A7 B) = Hom/\/(]:s (Mv E(Bet));

Corollary 1.10. If B € Augy(N) with N € MF§ then the above
identification ©* induces a functorial in both arguments embedding

" - Homyrpze (M, N) — Homap g (A, B)
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and the correspondences M — A (and N +— B) induce a faithful
functor U* : MFg" — Augy,.

1.7. Group schemes SpecA, (A,I4) € Augy,(M). Suppose M €
MF§ and A = (A, 14) € Aug,(M) is given via a special choice of vec-
tors mY, m! and matrices U € M,,(S), C € M,(O) under assumptions
C1 and C2 from Subsection 1.4.

We can describe the structures of M & M and A ®o A via the S-
basis m°® @ {0}, {0} & m° for M° & MY, the S-basis m' & {0}, {0} &m?

for M' @ M' and the corresponding matrices ( lg (0] ) € My, (S)
and ( g g > € Ms,(0). (One can easily see that these data sat-

isfy assumptions C'1 and C2 from Subsection 1.4.) Note that A =

O[X]/Za, where the ideal Z, is generated by the coordinates of the

vector ((XC)® +2X)c®™",

AR A= (A®o A, Iy ®0 A+ A®p I4) € Augy(M)

and
Ao A=0X® 1,10 X]|/(Zs®1,1®La).

Let e : A — A/I4 = O be the natural projection and let A% =
U*(v7) € Hompygy (A, A® A), where 7 : M — M @© M is the class
of the diagonal morphism in the category MF¢".

Let £ 4 be the set of all A € Homp,, (A, A ® A) such that:

e Amod R = AY;

e G = SpecA becomes an object of the category Grp when provided
with the counit e and the coaddition A.

Proposition 1.11. a) L4 # 0;

b) If A1, Ay € L4 then the corresponding coalgebra structures on A
are transformed one into another via an automorphism f € Augg,(A)
such that f ~ idy (i.e. f andidy coincide in Augp, ).

Proof. Let X = (X' X°) with respect to the presentation m =
(!¢, me) from condition C2 in Subsection 1.4. For A € L4, set

A(X) = (AX"), AX) =X @1+ 10X +],

where 7 = (7°¢, 7).

Note that 7 does not depend on a choice of A € £4. This implies
that G := SpecA® € Gr§ when provided with the coaddition A® =
Al gt and the counit e = e|4e:. More explicitly, A% = O[X*] with
the equations nX°*? = X mod 21 4e:, where n = —7%¢/2 € O*, and
A(Xd) = X¢ RI+1I® XEtmOdQIAet(gAet.
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Let Gff := G ®0 k = SpecAY{. Remind that the k-module of
symmetric Hochschlld 2-cocycles G$!) consists of symmetric 7 €
IAzt®Azt Such that

sym(

ARid)y+7®@1=10~v+ (id® A)y.
The corresponding k-module of 2-coboundaries equals
Bz(GZt) = {Ad(’y) A 1-1® Y | S IA?} - sym(Get)

We have the following two facts:

e Suppose v € ZZ,, (Gff) and mult : A ® Aff — Af' is the mor-
phism of multiplication. Then v € BQ(Get) < mult(y) = 0.

o If X = (X¢*,..., X)) then the elements 67 (X¢* ... X ) modm,
where s > 2 1 <1 <+ <ig<uqgand 0" =A—-id®1-1®id,
form a k-basis of B*(G§/) and the correspondences 6 (X' ... X)) —
X¢t. .. X¢ determine the k-linear embedding w : B*(G§') — I mod .
Note that for any o € B*(G¢), o? € B*(G¢) and w(a?) = w(a)?

Now notice that A depends only on the residue

ijd jA@A € JX@A mOd jA@A = ZIZet®AEt mOd(27TIAet®Aet)

Let 7= 2a mod 2w seigaer, where a(A) = (&/°°(A), &) € Terg yor-

We have the following properties:

a) A defines a morphism of augmented algebras iff (aC)? 4 & has
all its coordinates in w1 getg get.

b) A determines a structure of commutative group scheme on G =
SpecA iff @ mod wlerg e has all its coordinates in 22, (GF).

c) 2idg = 0 iff @' mod 71 setgae¢ has all its coordinates in B?(GY).

The proof of property a) uses the equations (—1/2)(XC)? = X
for A, property b) is equivalent to the axioms of coassociativity and
cocommutativity for G. As for property c), note that 0 = 2idg(X) =
mult(A(X)) = 2X + mult(j) and, therefore, mult7*® has all its coordi-
nates in J, AwA Or, equivalently, mult(a l"c) = 0mod 71 get.

Now we can ﬁnlsh the proof of Proposition 1.11.
Let Ay € A% be such that

Ap(X) = X @ 14 1 X mod Jama.

This means that a(Ag) = (0,a) and by above properties a)-c), we
have Ag € L 4.

Suppose A € L4 and a(A) = (a'(A),a). Let ¥ = (7'¢,0) € I%.,
be such that §(°°mod ml4et) = @'°mod w1 getgpet. We can assume
that 3¢ = w(0+a'°¢) and, therefore, (7C)? + 7 has all its coordinates
in wlger. Therefore, there is a unique F' € Hompyg, (A, A ® A) such

that F'(X) = X +2ymod Jaga. Clearly, F ~ id4 in Augp,.
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In addition, Ag(F(X)) = Ao(X +27) =
(X' @1+ 1@ X"+ 2A°(51°), Ag(X))
= (XQ@1+10 X" +27"+2(7* ©1+1®75"), A(X"))
= (F® F)(A(X))mod Juga.
Therefore, F'o Ag = Ao (F® F). The Proposition is proved. O

1.8. Functor Go.

Proposition 1.12. There is a functor Go : MFS — Gry, such that
its compositoon with the forgetful functor Gry, — Augy, coincides with
the functor ¥* from Corollary 1.10.

Proof. For 1 = 1,2, let

e M, € MF§ with specially chosen vectors mY, m} satisfying the
conditions C'1, C2 fom Subsection 1.4;

o A, = (A;,14,) be the corresponding augmented O-algebras with
the coalgebra structures uniquely given by the coadditions A; : A; —
A; ® A; such that A; € U*(v7;) (where v7; are the diagonal maps from
M; to M; & M;) and A;(Xl¢) = Xl @1+ 1® X!°*mod Ja,ga,-

Denote the corresponding group schemes SpecA; = G; € Grp.

Suppose f € Homyzg(t(My),(Mz)) = Homyper (My, My) and
F € Hompyg,, (A1, As) is such that F' € U*(f). Then

(F® F)(A1(X1)) = A(F(X1)) € Jayoa,-

Let @ = (@, @) be the vector with the coordinates in I g 4¢ such

that N
(F® F)(A1(X1)) — Ay(F(X1)) = 2amod Ja,ea,-

Note that if ' := F'| 4 then the congruence (F“'® F)(A(X{")) =
Ag(F(X)) mod 245 implies that @ = 0 and F induces a mor-
phism of etale group schemes G§' — G¥'.

Using that F'is a morphism of augmented O-algebras we obtain that
(@C)® + & has all coordinates in 71 getg gt

One can verify easily that amodmlggaer has all coordinates in
Z%,m(GS ® k) and using that for ¢ = 1,2, 2idg, = Ag, o mult we
obtain that & mod /et ¢ has all coordinates in B*(GY @ k).

Let 7 = (7',0) be the vector with coordinates in I4¢ such that
Ymod 7l = w(@mod ml et act). Then

Agt(?}/) = ’7® 1+ 1®’_}/+C_¥m0d7TIA§t®A§t

and (JC)® + 7 has all coordinates in 71 agt- This implies that there
is an I’ € Augy(A;, Az) such that F'(X¢) = F(X{) and F'(X"¢) =
F(X!¢) 4+ 29 mod Ja,e4,. Therefore,

(F'® F')(A1(X1)) = Ag(F'(X1)) mod Jayea,,
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and (F' ® F') o Ay = Ay o I, This proves the existence of F' € W*(f)
such that SpecF’ € Homg,, (G2, G1).

Similarly, one can verify that if F” € W*(f) is such that Spec(F") €
Homg,, (G2, G1) then F' and F” are equivalent in the category Grp,
with the obvious inverse statement. The proposition is proved. O

1.9. Full faithfulness of Go. Suppose N' = (N° N! ;) € MF§ and
Go(N') = SpecB.

1.9.1. Special construction of B. Use the following special case of the
construction of the O-algebra B from Subsection 1.4.

Let ni,...,n. be an S-basis of N! such that there are §i,...,5, € S
and an S-basis ny,...,n, of N° such that for 1 < i < u, n; = §n,.

One can easily see that this choice of 7' = (ni,...,nl) can be made

in such a way that conditions C'1 and C2 from Subsection 1.4. are
satisfied. Also notice that all §; divide ¢°.

Set 1% = ¢;(7') and let the matrices U € M, (S) and Uy € GL,(S)
be such that i! = n°U and 7°Uy = i := (n4,...,n,). Then U = UyUy,
where U; = (8;0;j)1<ij<u is diagonal. Choose Q = (Mi0ij )1<ij<u €
M,(O) and D € GL,(0) such that rgo(U; modt2) = Qmod2 and
kso(Upmodt?¢) = Dmod 2. Then for Y = (Y,...,Y,), the O-algebra
B is the quotient of O[Y] := O[Y3,...,Y,] by the ideal generated by
the coordinates of the vector

((YD?))@) + 257) (DY@

Then in the new coordinates X = (Xy1,...,X,) =YD, B is the quo-
tient of O[X] := O[X1,..., X,] by the ideal generated by the elements

Xz‘Q_niZXjCjia l<i<u,
J

Here C' = (¢;;) = D7, and for all 4, n; = —2/7"*. With this notation,
the counit e : B — O and the coaddition A : B — B ®p B are
uniquely recovered (in the category Gry,)) from the conditions e(X;) = 0
and A(X;) = X; ® 1+ 1® X;mod Jpgp.

Remind that X = (X' X¢) where for uyg = dim, N%°¢ Xlec =
(X1,...,Xy) and X = (X411, .-, Xy). Then condition C2 implies:

o for 1 <4 < ug, Xy, X2 /m; € 1%

o for ug < i< wu,n € O and X; € Iget.

Therefore, the matrix C' = (¢;;) has the following block structure
C = g? C(’)Et ), where Cy € GL,,(0), C? € GLyet(0) with u :=
u — ug, C" = 0mod r. In particular,

(C) if C = (cij) and D = C~* = (d;j) then ¢;; = di; = Omod 7 if
either i <ug < j orj < ug <1.
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Let 07X; = j; € Ipgp, 1 < i < u. The coordinates of the vector

sloc zet sloc __

7= (77", where 7° = (J1, ..., juo) and 7 = (Jugs1, - - -, Ju), appear
as the solutions in Iggp of the system of equations

(13) D jscsi = —iiXi @ Xy — (X1 @ 1+ 1@ 5:.X:) i — 757 /2,

where 1 <7 < wand 7; = —2/n; = 7%

The coordinates of 7°¢ are determined by these equations uniquely
and belong to the ideal Jp. The coordinates of 7'°¢ are unique under
the assumption that ji,...,ju, € Jees C JpeB-

Remark. a) One can easily verify that the above system of equations
when considered modulo any D P-ideal I of B such that I C J, Bep has
a unique solution jmodf under the assumption that for 1 < i < ug,
all Ji € J B®B-

b) The above description of the coalgebra B is related to a very
special choice of S-bases in N° and N'. This choice is sufficient for the
formal construction of the algebras A(M) in Subsection 1.3. But when
proving the full faithfulness of Gp below in Section 3 we need a choice
of appropriate bases which is compatible with extensions in MFg. Such
choice is possible under more general assumptions from Subsection 1.3.

1.9.2. Recovering N'. In the above construction of the O-algebra B,
any a € Ig can be uniquely written as

(1.4) GZZOiXizz:oiX{l...XZ“

3

where (by our general agreement from Introduction) i = (i1,...,1%,)
is a non-zero vector with the coordinates iy,...,7, € {0,1}, and all
coeflicients 0; = 0;(a) belong to O. Similarly, any a € Ipgp can be
uniquely written as an O-linear combination of the elements X% ® 1,
1® X% and X4 @ X

Consider the following property of ideals I C Iz in B (or with the
obvious changes in B® B, B, B® B, etc.).

(1.5) d oXtel & Vi, o)X el

Remark. Suppose I; and I satisfy property (1.5). Then

a) Iy + I satisfies property (1.5);

b) for any monomial 0; X%, 0, X% € I + Iy iff either 0, X* € I; or
OiXZ € ]2.

Proposition 1.13. The ideals Jg and I satisfy property (1.5).
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Proof. Any element of Jp is a sum of “elementary” elements of the

form o; X%10;, X% and m0; X1, where o; X1, 0; X% € Ip(2). Tt will

be sufficient to verify property (1.5) for such elementary elements.
Ifa= 7T6011X11 there is nothing to prove.

Suppose a = 0; X"0;, X* and 4y = (i11, ..., 0u1), I = (f12,. .., %u2).
Use induction on the number v = v(a) of 1 < j < w such that i;; =
Z.jQ - 1

If v(a) = 0 then i; +i, = @ and there is nothing to prove. If v(a) > 1
and, say, i;1 = i;o = 1 use the identity XJ2 = ;-1 Y, XsCsj to Tewrite
a as a sum of elements with smaller v’s and, perhaps, elements of the
form 7¢Ig(2).

The case of the ideal J5 can be considered similarly. U
Proposition 1.14. If iy (N) = (N°, N', 1) then
N° = {amod Jgs | a € Ip,6"(a) € Jpop}

Proof. Suppose a = 3, 0;X* € I and §*a € Jpgp. Note that

5t (a) = Z 0, X% ® X mod Jpgp

1 +ig=1

Then Proposition 1.13 implies that all 0, X% ® X% € Jpgp and, there-
fore, all 0; X% - X%2 € Jp. This means that all non-linear terms amongst
0;X* (i.e. the terms with r(i) =iy + -+ + 14, > 2) belong to Jp. O

Using that the ideals Jg and Jpgp depend functorially on the group
scheme Go(N) (i.e. do not depend on a choice of the special construc-
tion in Subsection 1.9) we obtain the following property.

Corollary 1.15. The functor Go is fully faithful.

Proof. Suppose G = Go(M;), Gs = Go(Ms), My, My € MFY, g €
Homg,, (G1,Gs) and A(g) : Ay — A; is the corresponding morphism
of O-algebras. Then ¢(A(g)) € Hompz,(¢(Az), t(A1)) maps ta,(Ma)
to ta, (M) (use Proposition 1.14) and by Proposition 1.1 can be lifted
uniquely F' € Homypg (M3, My). Clearly, Go(F) = g. O

In Subsection 3 we need the following version of Proposition 1.14.

Let B = B®oO. Denote by J the ideal in B generated by 7, X; ® X,
1 < i < up, and all elements of QIg’Q%B. One can easily prove (use
relation (1.3)) that all ji,...,j,, belong to J and Tjut1,-- ., ju €

27r[B®B cJ.

Proposition 1.16. The ideal J consists of all O-linear combinations
of monomials in B ® B which either belong to 2[%’(53 or are divisible
by one of 1; X; ® X;, where 1 <1 < uyp.
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Proof. Suppose an element a € J is an O-linear combination of the
form
(16)  a=) o(X'@1)+» /(1@X)+> o0;, X1 @ X"

1’ l 11712
Let M(i,b) = 7;(X; ® X;)b, where 1 < i < ug and b is a monomial from
B® B.

Clearly, any M(i,b) can’t contribute to the coefficients of the first
two sums in (1.6). Therefore, their summands belong to 27 ;.

Suppose 0;,;, X't ® X2 ¢ 2I}¢ - and satisfies the following condition
(The proposition is proved if there are no such monomials.):

if Xt @ X% s divisible by X; ® X;, 1 < i < uo, then o
divisible by ;.

Then there is M (i, b) with 1 < iy < g, which contributes to the
coefficient for X @ X% and this contribution divides o; ;, .

If b is not divisible by either X; ® 1 or 1 ® X;, then M(ig,b) =
0X ® X2 and 0o € O is divisible by 7;,. The contradiction. But
otherwise, M (ig,b) € 2Ii%° because 7;, X2 € 2Ij5°. The proposition is
proved. Il

Corollary 1.17. The ideal J satisfies condition (1.5).

i, 1S not

2. FUNCTOR G§,

In this section we prove that any G € Grp from the image of Gp
has a canonical descent to Oy, Gy € Gro,. Therefore, the fully faithful
functor Gp appears as the composition of the fully faithful functor
GS, - MFS — Gy, and the extension of scalars Grg,, — Grp,.

2.1. Uniqueness of descent to O,.

Proposition 2.1. a) Suppose G = SpecA € ImGp, e : A — O s
the counit and Iy = Kere. If there is an (Ao, 14,) € Augy, such that
(Ao, La,) ®0, O = (A, 14) then Gy = SpecAy has a natural structure of
object of the category Gro, such that Gy ®o, O = G.

b) Suppose Gy, Hy € Gro, and G = Gy ®o, O and H = Hy ®¢, O
are in the image of Go. Then the natural map f — f ®p, O induces
identification Homey,, (Go, Ho) = Homgy, (G, H).

Proof. Tt will be sufficient to prove that A(74,) C I4,04,, Where A is
the coaddition on A.

Let Gal(K/Ky) = {id, 7} and A(”) = (7®7)oAor is the conjugate to
A. In other words, if by, ..., b, is an Oy-basis of 14, and for 1 < < u,
A(b) = bi@14+1@bi+ Y, by @by with all oy € O, then A (b;) =
bi@1+1®bi+ Y, T(aw)br @by Using that all 7(ax) = ag mod 210,

we conclude that for any a € T4, A (a) = A(a) mod Jyg. Therefore,
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by results of Subsection 1.7, A = A and all ay € Op. Part a) is
proved.
Part b) follows by similar arguments. O

2.2. Existence of descent to O,.

Proposition 2.2. Suppose G = SpecA € Im G and [, = Ker e, where
e: A — O is the counit. Then there is an (Ay, 14,) € Augy, such
that I, = IAO X0, 0.

Proof. Use induction on the order |G| of G.

2.2.1. The case |G| = 2. Here A = O[X], where X? = ncX with
n € Og, ]2 and ¢ € O*. Clearly, we can take Ag = Oy[c 1 X].

2.2.2. Tame descent. Suppose K| is a tamely ramified extension of K
of degree ¢g. Let 7} be a uniformising element of K}, such that 75 = m.
Let K’ = K{(n'), where 7> = 7). We can assume that 7' = 7. The
field extensions K| /K, and K'/K are Galois, their Galois groups are
cyclic of order ey and can be naturally identified. Denote by O and
O’ the valuation rings of K| and, resp., K.

Lemma 2.3. Let G € Grp and G' = G ®p O' € Gro. Then:
a) G is in the image of Go if and only if G' is in the image of Gor;
b) G admits a descent to Oy if and only if G' admits a descent to Oy.

Proof. The proof is based on an application of the criterion of tamely
ramified descent. In the case of O’-algebras this criterion can be stated
as follows:

e Suppose A" is a flat O'-algebra and T is a generator of Gal(K'/K).
Then the existence of a flat O-algebra A such that A’ = A ®o O is
equivalent to the existence of a T-linear automorphism f of A’ such
that f° =ida and f ®o k = idagg.

Then one can state a similar criterion for objects of MF§® where S’
is a tamely ramified extension of S of degree ey and deduce part a) from
the fact that tame descent data for G' = Go/ (M) induce tame descent
data for M’. Similarly, part b) can be proved from the fact that tamely
ramified descent data for G’ induce tamely ramified descent data for
G} (use the uniqueness of Gf given by Proposition 2.1). Cf. for more
detailed explanation in [4], Proposition 4.3. O

2.2.3. Lubin-Tate formal group law. Consider the formal Lubin-Tate
group law with the logarithm

br(X)=X+X?/24 -+ X¥ /2" + - € Qu[[X]]
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This means that for any 2-adic ring R its topological nilradical m(R) is
provided with the structure of abelian group via the operation [f]+[g] =
[P(f,9)], where f,g € m(R) and for indeterminants X, Y,

P(X,Y) = (1 (X) + Lr(Y) € Zo[[X, Y]]
We have the following simple properties:

o [fl+[g] = [Po(f, 9]+ +[Pu(f, 9)]+. .., where all P, € Zo[X,Y]
and deg P, = 2". In particular, Fp = X +Y, P, = - XY, P, =
- XY (X +Y)%

o —[fl=[-fl+ -1+ + [T+ ;
o 2(f) = [fI+1f] = RFIFI+[=2%]+ - +[-2f*"]+. . .mod 4m(R).

2.2.4. The case |G| > 2. By replacing O by its suitable tamely ramified
extension we can assume that G = Go(M), where M = (M°, M, ¢;) €
MF§ is such that for u > 1:

e thereisan S-basism!,ni,...,nl of M! and an S-basis m,ny, ..., n,

of MY such that ¢1(m') = m and for 1 < i < u, there are 3; € S, 5|t°
such that nj = &, p1(ng) = 3 njuj, where (u;;) € GL,(S);

e there is an § € S, §[t® such that m' = sm + >, a;n;, where for
1 < i < u, the coefficients a; € S and t°5 'oy; = O mod 3;.

The above conditions simply mean that N' = (N° N' ;) € MF§,
where N? = 3", Sn;, N = >, Sn; and there is a short exact sequence
in MF§

0—N—M-— M; —0
where Mz = (S, Sm', ) with m! = sm and ¢ (m!') = m. We
shall always assume that the above data for the structure of N' € MF§
satisfy assumptions C'1 and C2 from Subsection 1.4.

Note that in the above description of M € Extype, (M35, N) we can
replace m by m’ = m + v and m' by m" = m! 4+ v!, where v € N°,
v' € N and ¢ (v') = v. Then m" = sm’ + )", a/n;, where

Z ain; = Z ain; + vt — 3o (v').
In particular, if s EZ S* we canz always assume that
(2.1) ZamieNl—i—tNO
In terms of the correspoznding O-algebras we have:
e A = A(G) contains the O-algebra B = O[X1, ..., X,], where X? =

; Zj Xjc; with g, = =2/72 € O and 7, mod2 = kgo(5; mod %),
1 <i<wu,and C = (¢ ) € GL,(0);
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e A= B[Y], where ('Y + >, X;)* + 2Y = 0 or, equivalently,

2
(2.2) (Y +i Yy riXi> —nY =0

with 7/ mod 2 = kg50(8 mod t?¢), r; mod 2 = kgo(a; mod t%¢) and
(2.3) nr? = 0mod 7j; (or, equivalently, ;7 = 0 mod 7))

for all 1 < 4 < u (this follows from the above congruences t°5~a; =
0Omod ;). Recall that as usually ni = n;n; = —2 for all 7.

Let h = Y, r;X; € Ig. Then (2.3) implies that h* € flg. In
particular, if 7 ¢ O then h € 1. 1If fj € O} then (2.1) implies that
again h € I%%¢. Therefore, j'Y € I¥°.

By inductive assumption, there is an augmented flat Op-algebra
(Bo, Ip,) such that Ip = Ip, ®o, O. Therefore, h = by + wby, where
bo S [g)oc and bl S [Bo‘

From now on we use the Lubin-Tate group law. Clearly, there is
Y’ € I4 such that [nY'] = [nY + 7'h] — [7'bo] — [7/7b1]. I 7 ¢ O
then Y/ = Ymodnls and if 7 € O} then Y’ = Y mod(Y I¥¢ + w1%°).
Therefore, A = B[Y"].

The equation for Y’ can be found as follows. From (2.2) we obtain
that (7Y +17'h)? = —27Y. Then using the properties of the Lubin-Tate
group law from Subsection 2.2.3 we obtain:

RI(7Y") = (7Y + 7'h)] + [=27Y] = ([21(7'bo) + [2](7'7b1)) =

— (5] = [imobi] = > [=20700)*"] = > _ [~2(mb})*" ] mod 4(7i4)"*
n>0 n>0
Here (7714)"¢ coincides with 714 if 7 ¢ O and with I%¥¢, otherwise.
Notice that h? € 7Ig and, therefore, the right hand side of the
above congruence equals 72b* € (7%, )"¢. Using that [2](2(714)"¢) =
4(71 4)'¢ we can replace Y’ by Y = Y’ —2a with a suitable a € I4 such
that [2](7Y1) = 7°b*.
Finally, if 1 4+ Y2 = exp(lzr(7Y1)) then we still have A = B[Y5] and
(1 + 7Y3)? = exp(lpr(7?b*)) implies that Y — nYy = b} with b € By.
SO, for AO = B()D/Q], AO ®OO O =A. O

3. SURJECTIVITY OF G3,

In order to establish that 980 is antiequivalence of the categories
MF§" and Grp, it remains only to prove the following result.

Theorem 3.1. If Gy € Gro, then there is M € MFg such that
go(M) ~ GO ®OO O
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The proof will be given in Subsections 3.1-3.11. It uses induction on
the order |Gyl of Gy.

3.1. The case |Gy| = 2. If |Go| = 2 then there is n € Og, 1|2, such
that Gy = pu,, where u, = SpecOp[X], X? = nX, e(X) = 0 and
AX)=X®1+1® X + 17X ® X with np = —2. We can assume
that 7 = 75, 0 < r < e (because u, ~ w, iff n~'y’ € Of). Then for
M = (Sm, St"m, 1) € MFg with ¢1(t"m) = m, one has Go(M) =
ey ®0qg 0.

3.2. Basic strategy I. When studying the case |Go| > 2 we can re-
place Oy by its tamely ramified extension, cf. Subsection 2.2.2. In
particular, we can assume that in Grp, there is a short exact sequence

0—>,u77—>G0—>H0—>O,

where Hy = SpecBy, and H = Hy ®¢, O = Go(N) with N' € MF¥.

Use the description of B = By ®¢, O from Subsection 1.9.1.

Namely, B = O[Xy,...,X,] with the relations X? = 7, > Xicji,
where all n; € Oy, 712, C = (¢;;) € GL,(O), e(X;) = 0 and j; =
0H(Xi) = A(X:) - X;®1—-1®X; € Jpgp. In addition, if X' =
(X1,...,Xy) then ji, ..., ju, € jB®B. For 1 < i < u, the elements
n; are defined up to units in Oy and we can assume that 7; = 7> =
—2/n; with 7, € O. Our strategy is to use the explicit construction of
H = Hy ®p, O from Subsection 1.9.1 to describe G = Gy ®¢, O as an
element of the group Extey, (H, i, ®o, O). If 0" = O[«'] with 7% =,
we shall prove then that G’ = G ®c O’ appears in the form Go (M’),
where M’ € MF% with S’ = S[t'], t? = t.

Finally, we shall prove that the fact that G’ admits a descent Gy to
Og implies that M’ admits a descent to S, i.e. M' = M ®g S’ with
M € MF§ and, therefore, G = Go(M).

3.3. The group Extero, (Ho, pty). Let B =B ®o O', Ip = Ip ®0 O'.
Let O be the valution ring of an algebraic closure of K/ = K(7'),
B =B KRor O and IB = ]B’ Ko O

Introduce the (multiplicative) group H = H(Ho, pi,) of all elements
f € (1+nIz)* such that f2 € 1+7%Ig, and 6*(f) := A(f)(f@f) ' €
14 N1BysBo-

Then there is a group epimorphism © : H — Extao, (Ho, p1) at-
taching to f € H, the group scheme O(f) = SpecAy € Gro, such
that:

e Ay = By[X] where (1 +7X)? = f%

ec(X)=0and A(1+7X)=1+7X)® (1 +7X)-5*f;
o Ker© = (1 +1lp,)".



24 VICTOR ABRASHKIN

This result was proved in a very detailed way in Section 5 of [4] in a
more general context of p-group schemes, where p is any prime number.
Note that the case p = 2 is slightly easier to obtain.

If ) ¢ O (i.e. if p1,) is not multiplicative) then obviously f € 1+ I
If n € Of then we can always multiply f by a suitable element from
(1 + Ipe)* C (14 Ip)* to assume again that f € 1+ I'°. This
allows us to replace in the above description of Extero, (Ho, 1y), the
multiplicative group (1 + I3)* by m(Ip) = I'¢° with the Lubin-Tate
group law from Subsection 2.2.3.

More precisely, let o @ I5° — I35 5 and [2] : I%9° — % be such
that for any f € I%OC,

—or(f) =[A(N)] - f el -1 f];

— [21(5) = [f1+ [f]-

Let Hpr = Hyr(Ho, pty) be the subgroup of Ig’c (with respect to the
Lubin-Tate group law) consisting of f € I'e° such that [2](f) € 7*Ip,
and d.7(f) € 7lp,op,- Let Opr : Hir — Extaro, (Ho, ft,)) be such
that for all f € Hpr, Orr(f) = O(E(f)), where E(X) = exp(lzr(X))
is the Artin-Hasse exponential. Our description of Extay, (Ho, ) will
be used below in the following form.

Proposition 3.2. ©Or is a group epimorphism and its kernel equals
Her N (77[30) = (ﬁ[Bo)ZOC'

3.4. Main Lemma. In next subsections we work systematically with
the Lubin-Tate group law from Subsection 2.2.3. We always bear in
mind the following agreement: if, say, a € Ip appears in the form
[a] then a is assumed automatically to be an element of i) that is
the corresponding result of the Lubin-Tate addition is automatically
well-defined.

Recall that we use the multi-indices i = (iy, ..., 4,), where all coordi-
nates of the vector i belong to {0,1}. We shall use such indices for the
abbreviation X% := X' ... X especially, when 7(z) := ;4 - -+i, > 2.
If r(i) = 1 then the multi-index ¢ appears just as index 7, 1 < j < u,
such that i = (015, ...,0,;) (where 0 is the Kronecker symbol).

The following statement is very similar to the statement appeared
in Subsection 6.1 of [4] as Main Lemma.

Lemma 3.3 (Main Lemma). If f € Hpr = Hyr(Ho, pb) then there
are:

— Jo € nlp;

— for1 <i<u, dye O and o), € T'O;

— for all multi-indices i, D; € O,
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such that o, 0f € 710, D; X; € I5(2)"°, D;X* € I%° and

F=1fol+ Y (00X + [0 Xi] + [DiXi]) + |2 ) DiX*

1<i<u (i) 22

Remark. If 77 € Of we can always assume that all 0, = 0, because all
0}y X; can disappear by contributing to fy. In other words, we assume
that 02,03 € (70)"¢, i.e. these elements belong to 710 if 1 < i < uy
and belong to the maximal ideal m of O, otherwise.

The proof of this Lemma uses the auxiliary statements from Subsec-
tion 3.6 and will be given in Subsection 3.7 below. This is a simplified
version of the proof of Main Lemma in [4], where we studied the group
schemes of period p > 2. As a matter of fact, this simplified version
works equally well also in the case p > 2.

3.5. Basic strategy II. Via Main Lemma we shall prove below the
existence of M’ € MF% such that G’ ~ Go/(M’). The description of
Go as an element of Extg,, (Ho, pt,y) from Subsection 3.3 is given in
terms of Kummer’s theory and, therefore, is of multiplicative nature.
On the other hand, the construction of the algebra of Go (M) as ex-
tension of B’ = B ®c O’ should be given (by the definition of Go/) in
additive terms. Therefore, the description of A(Gy) as an extension of
By = A(H)) in terms of the Lubin-Tate group is a natural step towards
presentation of G ®o O’ in the form Gor (M’).

If Gy is given via f € Hyr(Ho, pt,) then Ay = By[Y] with equation
for Y coming from the relation 2l;,7(7Y) = lpr(f) in Ay ®o, Ko. If
iy is multiplicative, e.g. 7 = 1, then it is much easier to obtain an
“Integral” version of the above relation. The left-hand side 2;7(Y) =
2Y +Y?+2(Y?/2)* 4 ... looks nicely related to operations in filtered
modules of the form tp(M). As for the right-hand side, we need it to
belong to ¢ (N), i.e. to be congruent to a linear combination of all Xj.
By Main Lemma after replacing f by f = [f] — [fo], lzo(f) is a linear
combination of all I;7(0}yX;), lrr(0X;) and lr(D;X;) modulo 2/5.
First two logarithms can give non-trivial denominators but in A" =
A ®p O we can consider the element [g] = [f] — >, ([0}, Xi] + [0/1 X3])
and because all D; X; € I5(2), lr7(g) is an O'-linear combination of all
Xi,..., X, modulo Jg, i.e. gives already an element of 1 (N) ®o O'.

If p,, is not multiplicative the calculations should be more precise
because of the extra factor 7. (Here we can see a crucial difference with
the case p > 2, where ideals of the form (p/7)Ip are still DP-ideals.) In
particular, we can’t ignore the quadratic forms in X; coming from the
third term (D;X;)*/4 of the expansion of I;7(D;X;) and the second
term ¢* in I 7(2g), where ¢ = Y. D; X% The elaboration of Main
Lemma from Subsection 3.8 relates these quadratic forms and allows
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us to prove in Subsection 3.9 that they, as a matter of fact, kill one-
another. This provides us in Subsection 3.11 with explicit construction

of M' € MF¥, and the existence of M € MF§ such that M’ = M®gS5".
A formal verification that G ~ Go(M) is done in Subsection 3.12.

3.6. Auxiliary statements. Follow Subsection 3.3 of [4] to introduce
the ideals Ig(a) and Ig(a)® in B, where a € O. Recall that any
a € I can be uniquely written as a = Y, 0;(a) X* with the coefficients
0; = 0i(a) € O. )

Definition. For any a € O, set
a)lp(a) :={a € Ip | all (0;(a)X%)?* € alp}
b) Ip(a)c = {a € Ip | all (0;(a)X%)? € allsc}.

Note (use property (C) from Subsection 1.9.1), that for any 1 < i <
ug, X; € Ip(n)'e but for ug < i < u, X; & Ig(n;)¢ = 1. In addi-
tion, for arbitrary a € O, the O-modules Ig(a) and Ig(a)™ depend
generally on the above chosen special construction of B. Nevertheless,
one can verify that:

loc

o for any a € O, Ig(«a) and Ip(«a)™ are ideals in B;

e for a|2, we have Igz(a) = {a € Ip | a* € alp} and, similarly,
Ig(a)c ={a € I | a® € al°}.

For obvious reasons, the above ideals I = Ig(a) and I = Ip(a)™*
satisfy property (1.5) from Subsection 1.9.2.

Remark. a) For any a € O we shall denote below by Iz(a) and
Iz(a)%¢ the similar ideals of the O-algebra B = B ®¢ O. Clearly,
they also satisfy property (1.5).

b) Using the special basis { X4 ®1,1® X2, X4 @ X% | {,,i,} of Ipgp
and Izgp we can introduce similarly the ideals Ipgp(ar) and Izg5(a).

The following lemmas admit straightforward proofs and are quite
analogous to the lemmas from [4] Subsection 6.2, Lemmas 6.2-6.6.

Lemma 3.4. Suppose Cy,...,C, € O, g € Ig’c, Gp € m and g =
>-Ci X mod(I5(60)" + I), where I C 1%° is an ideal satisfying con-
dition (1.5) from Subsection 1.9.2. Then

9= > [CiXi]+ | Y CiX'| modT

1<i<u r(1)>2

with all Cz/, Cé S O, CZXZ = C{Xz mod IB(ﬂo)loc and C’E‘X.'i € Ig(ﬁo)loc.
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Lemma 3.5. Suppose | equals either O or 1.
a) If o}, 0 € ™O are such that o}, 0%} € 7O, then for any a € Ip,
[01a] + [oha] — [(0} + 0h)a] € 7ip;
b) If o' € 70O, 0"* € O and ay,ay € Iy then
[0'ai] + [0'as] — [0/ (a1 + as)] € 7.
Remark. a) When proving Lemma 3.4 use first remark from Subsec-
tion 1.9.2; b) note the following special cases of above Lemma 3.5:
— [d'a] +[=dd] €
— [0pr (' X3)] = [0'i] € o5

Lemma 3.6. If C € O, a; € m and CX; € Ig(a1)" then
Srr(CX;) = C?X; @ X;mod Ig(a)) + T,

where J is the ideal defined in the end of Subsection 1.9.2.

Remark. Note that if CX; € I5(2)" then C%2X; ® X; € J.

Proof. From the definition of the Lubin-Tate group law, cf. Subsection
2.2.3 it follows that

(3.1) 0rr(CXy) = [Chi] — [-C*(X; @14+ 1® Xi)j:] — [-C°X; @ X]
NP ®1+1® Xi,5)] — Y [CYPu(X; ©1,1® X))

Weknowthatfo;1<i<u0,ji€jandifug<i<uthenC’€ﬁ1
and again Cj; € J. Therefore, the first, second and forth terms of
the right-hand side of (3.1) belong to J. As for the last term of that

formula it remains to note that (Ig(al)l“) C Ig(af)loe. O

3.7. Proof of Main Lemma. Prove that for any o € m, one has

(3.2)
F=al+ Y ([0jXi] + [0 Xi] + [DiXi]) mod (21 + I5(a?)"*)
1<i<u
where
o fa S ﬁ[B;

e all o}, = oly(a) € O, oy = 0y (a) € 7'O are such that 02, 02 € 7O;
(If 7 € Of then we can assume that all o}, = 0.)

e all D; € O are such that D; X; € I5(a,2)"¢ := Ig(a)c + I5(2)%.

First, there is an oy € m such that (3.2) holds for trivial reasons with
a = ap. Indeed, if 7 ¢ Of then use that f? = [2](f) = 0mod 7l5; oth-
erwise, use that [f] — [fo] € mIz, where fy € Ip and f = fymodmIz.

By induction on « it will be sufficient to prove that if (3.2) holds
with @ = a7 € m then it also holds with o = 3.
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Apply Lemma 3.4 with Z = 27¢¢ to obtain
(3.3)

= [faul + Y ([05Xi] + [0} Xi] + + Y Dix*| mod2r”,

1<i<u r(i)>2

where all D}, D} € O, D/X; € Ig(v,2)" and DXt € Ig(af)l~.
By Lemma 3.5 all 6.7(0}yX;), 6r7(0,, X;) € filpgp + J. Therefore,
the condition d.7(f) € M08, C 7lpep implies (use Lemma 3.6) that

YO DPX;®@Xi+ Y DiXU @ X" € illpgpmod(Ipep(e}) + J)

1<i<u i Fig=t

(Recall that all multi-indices i, i,, i, are non-zero vectors with coordi-
nates 0 or 1. )

This implies the following properties (cf. first Remark in Subsection
1.9.2):

a) for 1 <i < u, DPX; ® X; = 0;X; ® X;mod(Iggp5(ad) + J),
where o; € 70;

b) if (i) > 2 then D/X% ® X% = 0,X% @ X mod(Ige5(a3)'*+ ),
where o; € 710.

Consider the morphism of multiplication m : B ® B — B. Then
([B@,B(%)l"c) Iz(a3)e, m(J) = 2I'e°. Therefore, b) implies that

(D} —0;) X" € Ipgp(a3)™ +2I2° and the last summand in (3.3) disap-

pears modulo I5(a3)"¢ by contributing to the corresponding f,,, € 7lp.

If 2|y formula (3.2) has been already proved for o« = ay because we
don’t need to change the terms D]X;.

If 1|2 we should continue with property a). If D/ X; ® X; € J keep
D} the same. Otherwise, by first Remark from Subsection 1.9.2 we can
assume that D/X; ® X; € Ig55(a3)°. Consider the elements ofy € O
and o} € 7O such that 0; = 0l +olf mod 20;7 and 0, 02 = 0 mod o;.
Lemma 3.7. [D;X;]+ [0/, X;] + [0}, X;] = Zj [D};X;] mod I5(a2)te,
where all D}; € O and Dj;X; € I5(a3)".

Proof. Suppose 1 < i < up. In this case X? € I(n;)" and property a)
means that (D — 01)771 € 0. Therefore (use that asl4), (D} — ol —
o))’ € a0, ie. (D — ofy — 0})X; € Ig(an)'. Also, 0 = Dfn; =
oin; = 0ign; = offn; mod a0, i.e. 0y X;, 01 X; € IB(ozl)lOC
Suppose uy < i < u. In this case n; € O*, D; € m and X;, X? € I¥.
The relation (D?—0;) X;®X; € Iz(a2)!° means that (D*—o0;)n; € aom,
DPn; = (0l + off)nimod aem, (D) — oy — o})*n; € aem and again
(D; — ol0 — ozl)X € [B( 2)tee. Similarly, D/X; € I(a;)!° means that

2 112 - 3 1 1/ _ l
0= DPn; = om; = olgn; = ofn; mod aym, i.e. 0y X;, 0 X; € T(aq)™.
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Now for any 1 <7 < u,
[DiXi] + [=0ip Xi] + [0 Xi] = [(D; — 0j — 01) Xi]
—[Diofp X7 — [Djofy X7] — [—ofof X7 mod g (03)"
where all terms in the right-hand side belong to (Ig(al)l"c) C Iz(ag)tee.
Thus the right-hand side is congruent modulo I5(a3)"¢ to > 1D X
with all D}; € O and D};X; € Iz(ap)"". Lemma 3.7 is proved. O

Finally, we finish the proof of formula (3.2) with @ = ay by noting
that (use Lemma 3.5)

D ([0 Xi] + [0 Xi]) = D ([=0foXi] + [~oi Xi]) =

+Z Ol + 0l) Xy] + [(0y + o) Xi]),

where a € nlp.
Clearly, there is v € m such that Iz(a?)" C 2I%°. Tt remains to
apply Lemma 3.4 with Z = 0 to finish the proof of Main Lemma.

3.8. Elaboration of Main Lemma. Let D = C~! = (d;;) and for
1 < <,

R, = Z <X51 ® Xs, + Xs, ® X81)051t682td1527; € Ipgp.

t
51<52

Then property (C) of the matrix C' from Subsection 1.9.1 implies that
all ; R; € Ig’éB. Indeed, if 7; X, ® X, ¢ I]lé)éB then 1 < i < wg (because
f; must belong to Of) and uy < s1,52 < u (because Xj,, X,, ¢ 1),
but then c,,;dy;, cs,idy; = 0mod 7. Therefore, the system of congruences

(3.4) > Bicsi = iii(Ri + BY) mod Ipgp(4)'™, 1<i<u,

has a unique solution (B4, ..., B,) mod Ipgp(4)"° with all B; € T25 5.
We shall use below the following agreement: if 1 <i < wu and a € O

then Ip(a)® will be equal to I5(a)"° if i < up and to Ip(a) if i > uo.

Same agreement will be used for similar ideals Ipgp(a), I5(w), etc.

Lemma 3.8. With above notation one has
5= X ® Xid +2Bi+ Y u(Xu ® X)) due (70X, @ 1+ 107X, )dyg
t tau

+2 Z(ﬁtXt ® 1+ 1® 7X;)Bidy mod IB®B<16)(i)
¢

Proof. 1t will be sufficient to verify by direct calculations that the right-
hand sides of above congruences give solutions of equalities (1.3) mod-
ulo Ipep(16)®. (When calculating use that the first two summands
belong to Ipgp(4)® and the last two ones — to Ipgp(8)®.) O
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One can easily see that the above elements B; € [ g’é p appear in the
form

Bi = Z 75182i(X81 ® X82 + X52 & XSl) mod ]B®B(4)ZOC

51<82

where all 74,5,; € O. Introduce the elements

Ei = Z Xleszcsltcsztdgia §1 = Z 731521’X51X52
t

51<52
s1<82

Then
e (By,...,B,)mod Ig(4) is a unique solution in ¢ mod I(4)
of the congruences > By = i(R; + B?) mod I5(4)" ;

o for all i, 67(B;) = B; mod Ipgp(4)".

Now we can state the following elaboration of Main Lemma.

loc

Proposition 3.9. In Lemma 3.3 the elements D; € O, 1 <i < u, and
g = Zr@>2 D; X" € Iggp can be taken in such a way that

a) (D? 4+ > ,(0ly + 0y + Ds)dist; — 0;)X? € 415, where 1 < i < u
and all 6; € nO;

b) g = ",(0l + 0}y + D;)Bi mod I5(4)"*.

Remark. Part a) implies that all 6; = 0mod 7; and if up < ¢ < u then
0; = 0mod 7. In other words, all ¢; € (;0)"°.

Proof. Let f := [f] — [fo]. Then
Sr(f) =Y (0l +0fy + Di)js + ) DiX; @ X,

2

+> DHX; @1+ 1® X;)j; + 20" (9) mod I e 5(16)".

For 1 <t < u, let s(t) = >,(0}y + 0}y + D;)dym. Then using the
explicit formulas for~jz~ mod Ipgp(16)®, 1 < i < u, from Lemma 3.8
we obtain that d;7(f) is congruent modulo I545(16)"¢ to

> (Di+5(t) X, @ X, 42 ) (0o + 04y + Dy) Bt
t

t

Z(Df +s())(Xi®14+10 Xy) (2Bt + Z Ayt Xy ® Xu> + 25" (g).
t u

Follow the coefficient for X; ® X;, 1 <1 < u.

Verify that only the first sum contributes to this coefficient.

Indeed, the second sum does not contribute because B; mod Ipgp(4)°
is a linear combination of the terms X, ® X, with s; # so. The re-
maining big sum also does not contribute modulo 47%¢ . because:

BwB
— 2B4(X; ® 1) and 2B;(1 ® X;) contribute in the same way;
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— for similar reason it will be sufficient to verify that X; ® X; can
appear in (7,X, ® X,)(X; ® 1) with coefficient from 20; but if this
coefficient is not 0 then u =t and we can use that n,7, = —2.

So, for 1 < i < u, (D? 4+ 5(1))X; @ X; € filpgpmod I 55 5(16)".
Therefore, there is 6; € 77O such that (D? + s(i) — 6;)n; belongs to 40.
This proves part a).

The remaining terms in the relation 6,7 (f) € 7/pgp mod I5,5(16)
give

loc

> (0l + 0y + D) B+ 6*(g) € Ipopmod Iep(4)™
(use property a) to eliminate the last big sum).

We know that i = =, (0l +0}; +D;) Bi+g is of the form 3, -, C; X",
Therefore, the relation 6th € Ipgpmod Ig5(4)°¢ implies that h =
ho mod I5(4)"¢ with hy € I. So, replacing fo by fo — 2ho we obtain
property b). O

3.9. Explicit calculation of I;p(f). As earlier, f € Hpp(Ho, pty) 1
given via Main Lemma where we can now assume that Dy, ..., D, €
and g € I satisfy Proposition 3.9. We also set f = [f] — [fo], Lz
30X, L =37 iy OXi 4+ 20 cicu MX; and define

i Ly if7 ¢ O ) Al5(4)  if ¢ O
L - loc _ ntp n Ia(4 loc _ B
(1L5) {ngc itie o (15(4)) I5(4)e if i € O

N Sa

For 1 < i < w and ¢; € O from Proposition 3.9, let o}, € O and
0l € 'O be such that 6; = 03 + 02 mod 2770 and 03,03 € 6,0.
Proposition 3.10. With above notation
lr(f) = =)ol Xi+ Y Lur(ofXi) mod((71L)"* + (715(4))*).
il il

(In both sums 1 <i<wu and 0 <1< 3.)
Proof. Note that (use that all D;X; € 15(2))

D2X2 D2X2\ 72 D2x2\*
lor(DiXi) = DX, + = +( 3 ) +2 <T> mod 475

Rewrite property a) of Proposition 3.9 in the following form
D2X?2
2

5 x?
== > > (0l + 0y + Dy)disii X7 mod 2L

Then

D?X? 0; X ?
Z # = Z OTl - Z(o’sO + 0l + Ds) Xsmod 2L

i 7 s
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Property a) also implies that
2
D2X2\"° 52
( z2 i ) = (%—’ — Z(ogo + 0l + Ds)dis> (Xz?/ni)2 mod 4T

The first factor in the right-hand side of the last congruence can be
written in the form

02 2 o2
(—2) ( f3) + Z D2d2 + A,
i

where A; € O and belongs to the maximal ideal m of O if uy < i < u.
Then

D2X2\ 2
S

modulo (7L3)"¢ + 2(715)"°, because
Y Dl X2, => DIX!=0mod2Ls.

/»2X2 2 12X2
= <OZT) + (3—> +2 Z D22 X, Xy CuriCuyi

u1<u2

s Qs Ay Cui
7,8,U

Note also that

2
D?X? Dini
2 (T) =2 ( 5 ) (E X2 +2 E X31X32051i052i>

s 51<82

belongs to 2Lz + 415.
Taking above calculations together we obtain

ZZLTDX Z( Z0+011X+Z o X +ZZD2R =
—Z 0y Xi +ZZLT [0/, Xi] [0§3Xi])+QZD§R

modulo (nLB)l"C + 2(77]3)“’0 because all 2(03X?/2)* and 2(03X?/2)*
belong to 2Lz 4+ 415.
On the other hand we have:

=", D2B2mod(7il5)"*¢, use Proposition 3.9b);
S, DB} = Y, (D?/i)Bses — Y2, DRy mod I5(4)1°, cf. Subsec-
tion 3.9;
D2 /iy = = (0l + 0y + Ds)d;s mod 77O, use Proposition 3.9a).
Therefore,

lur(29) = 2(g* + 9) = —2 ) _ D} Rymod (il 5(4))"
t

because 2(715)"°, 215(4)"¢, 2n1%5¢ 5 are contained in (715(4))"°.
The Proposition is proved. U
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3.10. Special element h € I3 and its properties. With above no-
tation set

= [~] - Z[Ongi]-
2](f) = [21(f; ) >il2l(0yX;) € Ip C I and,

Note that [2](h) 1) =1
= (1/2)lpr(2]h) € Ip ®o K. Then by Proposition

therefore, I, 1 (h)
3.10

(1
lpr(h) = 7lymod(fIp (4))"°,
where lp =Y . a,X; with a; € O" and one has

(3.5) a; = — Z o;; mod 70’
!

In addition, if 7 € O} then [y € I%¢.
Proposition 3.11. a) [2](h) = 27ly mod 2(71)"¢;

b) (SLT(h) = ~/(5—~_(l()) mOd(ﬁ/[B/®B/(4))lOC.
Proof. a) By Main Lemma, h € Ip/(2)" and, therefore, [2](h) €
215 (2)¢ + (IB/(2)ZOC)2 C Ip(4)"°, cf. Subsection 2.2.3. The standard
DP-structure on this ideal is topologically nilpotent and 2(7 I /)" is its
DP-subideal. Therefore, the congruence I ([2]h) = 277/lo mod 2(77 1 (4))'°
implies that [2](h) € 2(/Ip/)!¢ (use that I is bijective on any ideal
with nilpotent divided powers). If [2](h) = 2A with A € (' 15/)"°¢ then
lr([2](h) = 2Amod 2(71 /)¢ and, therefore, A = 7jly mod(fjlp)°.

b) Similarly, Main Lemma implies that

(SLT(h) € IB/(2)IOC (%9 IB/(Q)ZOC C Ipep (4)106.

Again this ideal has topologically nilpotent DP-structure and in addi-
tion we have

lLT<5LT<h)) = 5+ZLT(}L> = ~/5+l0 mOd(ﬁ[B/®B/(4>>lOC

Proceeding as in a) we obtain dp7(h) € (7 Ipgp(4)). It remains to
note that then 6p7(h)?/2 € (7lpgp (4)) and, therefore, 17 (drr(h)) =
5LT(h) mod(ﬁ[B/®B/ (4))loc_ ]

Proposition 3.12. For 1 <i < u, (3,07)n € 7170y mod 270.
Proof. We know that [2](f) € 21'30 On the other hand,

21(f) = [2(fo) + +Z 03 Xi),

where fy € nlp. Note that:
2](fo) = f3 mod 2715 implies that [2](fo) € 7°I5, mod 2(77]B)loc;
[2](0, X;) = [02X?] + [20,,X;] mod 2(71 )" (use that all 0} € 7O);
2](h) = = 3_,,[203Xi] mod 2(71p:)"¢ by the above proposition.
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So,
(3.6) > [0 X7) € i’ I, mod 2(ij )"

il
Note that for all 4 (use just that 72 = mp),
03, 03 € 10y + 270;
o2, 02 € m0g + 270;
X? € g, + 21p.
This implies that:

> ([0R X2 + [03X2) = (0 + 03) X2 mod (i1, + 2ii15)

) )

D ([ORXF + [5X7]) = ) (0 + off) XF mod(7° L5, + 20ilp)
Clearly, 3=, (0fy + 0j3) X7 € iilp, + 2ilp and 37, (off + 073) X} €
mlp, + 2nlp. Therefore, (3.6) implies that for any 1 < i < u,
(02 + 0o2)n; € 10y + 270 and (03 + 02)n; € 270. This proves the
proposition. U

3.11. Introducing M = M(G) € MFS. Choose a rings identification
Kgror » S'modt® — O’ mod 2 such that Kgo/|smoedte = Kso. Consider
lo=>,a;X; € Ip from Subsection 3.10 and set

l1 = Z bzXZ = (—lo — ﬁ/lg — s — 77/2n_1l0n — ... ) mod 2(77’[3/)100

Let §, aq,...,a, € S’ be such that kgo/(§ modt®) = 7’ mod2 and
kgror(o; mod t®) = b;mod 2 for 1 < i < w.

Introduce M’ = M'(G) = (M, M"™,p}) D N’ := N ®5 S such
that M =m/S" @& (N° ®g S'), M" = m'S" + (N!' ®g S’) € M with

m't = &m' + 37, ayny, and @ (m') =m/.

Proposition 3.13. a) M’ € MF%;

b) there is M = M(G) € MF§ such that M' = M ®g S".
Proof. a) M' € MF%, means that t*m’ € M, ie. for 1 <i < u, one
has t°5 ta; = 0mod 3; or, equivalently,

(t°5; )a; = 0mod 3.

Using (3.5) and the identification rgo/ we can rewrite these congru-
ences in the form (3, 0})n; = 0mod7 or equivalently, (}°,07)n; =
0mod 7?. Clearly, these conditions follow from Proposition 3.12.

b) The criterion of the existence of a descent M of M’ to S from

Proposition 1.4 can be specified in our case in the following form: for
all 1 <7< u, a; € Smod s, 5.
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_ Using the identification kg0 we rewrite these conditions in the form
b;mod7, € Omod7n/. By (3.5) we can replace them by >, o}, €
Omod 77/, then by Y, 07 € Oymod ;7 and finally by (3, 07)n; €
Op mod 2n0O. But this is given again by Proposition 3.12. U

3.12. Construction of isomorphism Go(M) ~ G. We know that
G = SpecA, where A = B[X], [2](7X) = [2](f) € (7’1l C (7*1p)""

and (SLT(ﬁX) = (SLT(f) € (ﬁIBO®BO)loc C (ﬁIB@)B)loc-
Let A, = A ®O Ol and let Z c IA’ be such that ﬁ,Z _ [ﬁX] .
> _ial03Xi]. Note that

(37 Z+i ) o Xi=Z—lg=Z+1; =0modi Ly
il

Proposition 3.14. a) 7 Z € (i 14(2))"¢;
b) 67(Z —ly) = ' Lwga(4);
Q)i (Z%)2) = Z + [ mod (i} Ly (4))"°.

Proof. a) By Proposition 3.11a), [2](7Z) = [2](h) = 27lo mod 2(7;1 /)"
This implies (7' 2)% € 2(7/14)"¢, i.e. §Y2Z € I (2)%¢. 1f 7j € O} then
a) is proved. Continue with the following congruence

(7 Z) = lpr(h) = 7lo mod (75 (4))"
(cf. Proposition 3.10). It implies that
(3.8) Z — 1o+ (Z*/2)(1+72%/2) € (7 La(4))".

By (3.7) (Z = lp)/7 € In and 1 +7j(Z*/2) = 1mod 714 is invertible
(use that 77 ¢ OF). Therefore, Z%/2 € I and a) is completely proved.

b) By proposition 3.11b), o,7(7'Z) = 70 lymod il gp(4). Tt re-
mains to note that Z € I4/(2) implies that

opr(ifZ) = 0% (' Z) mod fjlag ar(4).
¢) Iterating (3.8) we obtain
N(Z22) =2~y =7/ Z22)2 = Z — Lo =I5 — (i 2% /2)*
=7 lg—il— =72 — .= Z 4, mod (7 Ly (4))"
The proposition is proved. U
Consider the ideals Ju and Jagas, cf. Subsection 1.3.

Corollary 3.15. There is Z € Ly such that
a) 7 E’V(,";’]/IA/(ZJ:))IOC;
b) 7(Z2/2) = Z + ly mod 7' J a5
) 67(2),07(2%/2) € Jagu.
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Proof. Let Z =i/ (Z2/2) — 1.
Part a) follows directly from Proposition 3.14.
Because (7 14(4))!¢ C I./(2) this implies that

(3.9) Z%)2 = Z%/2mod J 4

and we obtained part b).

By Proposition 3.14b), 67 Z € Iaga(4). This implies that §7(Z2/2) €
Jargar, use Proposition 3.14a). So, §t7 ¢ Jaga and by (3.9) we ob-
tain 5+(22/2) € Jagar- |

By above Corollary the correspondences m’ — Z2/2mod Jy and
mt — Zmod Ju give a map of filtered modules M’ — (A4’). This
gives a morphism of O'-algebras IT" : A(Go/(M')) — A’. By Propo-
sition 1.12 we can assume that II" is also a morphism of coalgebras.
Both these coalgebras contain B = B ®p O’ and Il'|p is isomor-
phism. Similarly, both the coalgebras have as their quotient the coal-
gebra A(p,) ® O" and II' induces on it a coalgebra isomorphism as well.
This implies that II’ is isomorphism of coalgebras and Theorem 3.1 is
completely proved.
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