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The evolution of perturbations is a crucial part of the phenomenology of the dark sector cosmology. We

advocate parametrizing these perturbations using equations of state for the entropy perturbation and the

anisotropic stress. For small perturbations, these equations of state will be linear in the density, velocity

and metric perturbations, and in principle these can be related back to the field content of the underlying

model allowing for confrontation with observations. We illustrate our point by constructing gauge-

invariant entropy perturbations for theories where the dark sector Lagrangian is a general function

of a scalar field, its first and second derivatives, and the metric and its first derivative,

L ¼ Lð�; @��; @�@��; g��; @�g��Þ. As an example, we show how to apply this approach to the case

of models of kinetic gravity braiding.
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I. INTRODUCTION

The last decade in cosmology has seen the detection
and measurement of a large number of observables which
are sensitive to the details of the dark sector and its
perturbations [1]. This has received a boost recently with
the release of the results from the Planck satellite [2,3], and
future missions such as Euclid [4,5] and COrE [6] will
make this area one of the most exciting in the coming
decade. A consistent model of the gravitational dynamics
of the dark sector is essential if one wants to meaningfully
use data to tell us about which of the plethora of dark
energy/modified gravity theories [7–10] could be realized
by nature. Both the behavior of the equation-of-state pa-
rameter w ¼ P=ð�c2Þ and perturbations in the dark sector
must be modeled; neglecting dynamics of perturbations of
the dark sector is only valid when w ¼ �1.

For a given Lagrangian of the dark sector, the equation
of statewðaÞ and the perturbation evolution can be deduced
from the Euler-Lagrange equations. However, at present
there is no compelling fundamental model and so many
models have been proposed that some kind of phenome-
nological approach would appear to be in order that could
act as a staging post between observations and fundamental
theories. Of course, only one could possibly be the true
model and many of the models proposed are not entirely
consistent as fundamental theories, but taking advantage of
the projected observational advances must be part of level-
ing in on the true theory. Developing such an approach is
the main objective of this paper.

We will presume that the dark sector can be modeled by
an effective energy-momentum tensor U�� which is com-

patible with the symmetry of the Friedmann-Robertson-
Walker solution to Einstein’s equations. Such a model can
be entirely defined by the contribution of dark sector at the
level of the background by specifyingwðaÞ and indeedmost
papers presenting observational results specify constraints
on w, albeit at present usually assuming that it is constant
since the data are not currently particularly constraining.
Recent results from a principal component analysis study
[11] suggest that model and parametrization-independent
constraints on w will be possible in the future. Moreover,
under some weak assumptions, in some of the simplest
models for the dark sector, for example, minimally coupled
quintessence models specified by a potential Vð�Þ or FðRÞ
modified gravity models, there is a one-to-one correspon-
dence between the free function(s) describing the model
and wðaÞ. Therefore, we consider this aspect of the phe-
nomenology of the dark sector to be under control, if not
completely solved.
The situation is less clear for the evolution of

perturbations. One approach that has been proposed is
to parametrize our ignorance of the dark sector into
functions of time and space that can be interpreted as a
modified gravitational constant and gravitational ‘‘slip’’
[12–15]. A complimentary approach, which is much
closer to that advocated here, has been developed in
[16–20]. These works have developed model-independent
modifications to the perturbed Einstein equations which
are gauge invariant. In both cases the general nature of
these approaches perceived as a virtue in their develop-
ment could also be a weakness since this leads to large
number of free functions of space and time making it
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difficult to come to significant conclusions about the
nature of the dark sector.

Our ‘‘holy grail’’ is to provide a parametrization which
assumes almost zero phenomenological prejudices, and all
freedom is able to be traced back to some underlying
symmetry or physically motivated principle. For instance,
one could model the breaking of Lorentz or reparametriza-
tion invariance and then devise observations to constrain
the magnitude of the violating terms. Our approach will
still have a number of free functions, but these will be just
of time and not space, which is a significant simplification.
They will be minimal for a given set of assumptions and
importantly it will be possible to connect them to general
aspects of the underlying physical model.

We will build on our earlier work [21–23] which could
be described as a background fixed effective field theory
approach [24–26] modeling those degrees of freedom that
are observationally active—not to be confused with the
background-dependent approach, for example [27]. The
active degrees of freedom we consider here are scalar
fields, the metric and their derivatives. In addition, one
could include vector fields but we will not consider that
possibility here. We will impose reparametrization invari-
ance and second-order field equations. An important novel
feature of the approach we advocate is then to eliminate the
active degrees of freedom to establish an equation of state
for the perturbations that will be linear in the density,
velocity and metric perturbations. What we are doing is
modeling the imperfect fluid behavior that is due to the
complicated internal degrees of freedom with this equation
of state and this is, of course, what we also do at back-
ground order. A restricted case of this the general idea was
argued for in [28] without the specific connection to the
internal degrees of freedom.

II. BASIC FORMALISM

The perturbed field equations are �EG
�
� ¼

8�G�ET
�
� þ �EU

�
� where �E denotes an Eulerian varia-

tion. The perturbed dark energy momentum tensor �EU
�
�

contains all information about the dark sector at the level of
linearized perturbations, and its components can be iden-
tified with perturbed fluid variables,

�EU
�
� ¼ ��u�u� þ 2ð�þ PÞvð�u�Þ

þ �P��
� þ P��

�: (1)

The perturbed fluid variables f��; v�; �P;��
�g are con-

structed from perturbed field variables which appear in the
underlying theory in a complicated way (we will give an
explicit example later). One can perform the standard split
of the anisotropic stress, ��

�, into scalar-vector-tensor
perturbations to give �S, �V and �T. In what follows
we will concentrate on the scalar (density) perturbations,
but the basic idea can also be applied—more simply—to
the vector and tensor case, see for example [21–23].

The perturbed fluid variables are constrained by the
conservation equation, �Eðr�U

��Þ ¼ 0, which, in

Fourier space for scalar perturbations in the synchronous
gauge, are given by

_� ¼ �ð1þ wÞ
�
�k2	S þ 1

2
_h

�
� 3Hw�; (2a)

_	S ¼ �H ð1� 3wÞ	S � w

1þ w

�
�þ �� 2

3
�S

�
; (2b)

with the entropy perturbation

w� �
�
�P

��
� w

�
�: (3)

For simplicity we have set _w ¼ 0 and 	S is defined from
the velocity field via 	S ¼ ik � v=k2.
Given these two conservation equations, knowledge of

two of the fluid variables f�; 	S;�;�Sg in terms of the
other two and perturbed metric variables fh;
g (and their
time derivatives) would close the system of equations and
allow observational quantities to be deduced in the linear
regime. If SOð3; 1Þ reparametrization invariance is im-
posed on the underlying theory, the entropy � and aniso-
tropic stress�S are gauge-invariant quantities, and hence it
seems sensible to aim to write � � �ð�; 	S; h; 
Þ and
�S � �Sð�; 	S; h; 
Þ where it is implicit that we include
derivatives of the quantities.
In [22,23] we worked out the cases where the dark sector

only contains the metric, L ¼ Lðg��Þ and is time trans-

lation invariant [that is, SOð0; 1Þ invariant], and another
case where the dark sector contains a scalar field � and its
Lorentz-invariant kinetic scalar X � � 1

2r��r��. In

these two cases, the gauge-invariant equations of state
are respectively given by

Lðg��Þ )
(
w� ¼ 0;

w�S ¼ 3
2 ðw� c2s Þ½�� 3ð1þ wÞ
�; (4a)

Lð�;XÞ )
(
w� ¼ ðc2s � wÞ½�� 3H ð1þ wÞ	S�:
w�S ¼ 0:

(4b)

In each of these parametrizations there is only one
free function of time: c2s ðtÞ, which can be interpreted as a
speed-of-sound propagation. In analogy to the case of w,
we would envisage taking this to be constant until the data
are sufficiently constraining to make a principal compo-
nent analysis meaningful. Equation (4a) describes pertur-
bations of elastic dark energy [21,29]. When c2s � 1,
(4b) describes minimally coupled quintessence perturba-
tions and more general values correspond to k-essence
models [24,30,31].

III. RELATION TO THE FIELD CONTENT

We now give an example of field content to show what
types of theories yield equations of state. We start from a
field content given by
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L ¼ Lð�; @��; @�@��; g��; @�g��Þ; (5)

which is at most linear in @�g��, and �EU
�� can be

computed from the quadratic Lagrangian for perturbations,
Lf2g, and written as

�EU
�� ¼ Ŷ���L�þ Ŵ�����Lg�� �L�U

��: (6)

We have written �L ¼ �E þL� (where L� is the Lie

derivative along ��) so that the theory is built with the
Stuckelberg fields �� which parametrize violations of
reparametrization invariance—in everything that follows,
the parameters in the theory are arranged so that the ��

fields consistently decouple and the theory is manifestly
SOð3; 1Þ reparametrization invariant. We restrict ourselves
(for calculability) to the theories which have

Ŷ�� ¼ A�� þ B���r� þ C����r�r�

þD�����r�r�r�; (7a)

Ŵ���� ¼ E���� þ F�����r�: (7b)

The symmetries of the tensors fA; . . . ;Fg inEqs. (7a) and (7b)
are inherited from the effective Lagrangian for perturba-
tions [22]. One could include higher-derivative terms in
the expansions which would encompass more theories.
We impose spatial isotropy on the background spacetime
to allow use of the (3þ 1) decomposition to isolate all

terms in the tensors in the expansions of Ŷ��, Ŵ����.
For theories which are (i) SOð3; 1Þ reparametrization
invariant and (ii) have second-order field equations, the
perturbed fluid variables are constructed from the field
variables according to

�� A14
_h

	S

�P

0
BB@

1
CCA ¼

A11 A12 0

A21 A22 0

A31 A32 A33

0
BB@

1
CCA

��

_��

€��

0
BB@

1
CCA; (8)

and it turns out, in the case under consideration, that
�S ¼ 0 (and�V ¼ �T ¼ 0); in order to create a nonzero
anisotropic stress, in the case of just scalar and tensor
fields, it appears to be necessary to break at least part of
the reparametrization invariance as is the case of elastic
dark energy. The eight functions fA11; . . .A33g are only
time dependent. It is possible to isolate how the compo-
nents of the tensors fA; . . . ; Fg combine to construct the AIJ

in (8); the exact form is very complicated, and we do not
reproduce it here. As an example, one finds that it is only
the components of the tensor F which contribute to A14. If
we now eliminate the internal degrees of freedom

f��; _��; €��g, the entropy perturbation is of the form

w� ¼ B1�þ B2	þ B3
_hþ B4

€h (9)

for some BI, which are functions of the AIJ. The depen-

dencies of these functions are B1 ¼ B1ðtÞ, B2 ¼ Bð0Þ
2 ðtÞ þ

k2Bð1Þ
2 ðtÞ, B3 ¼ B3ðtÞ, B4 ¼ B4ðtÞ.

The functions AIJ represent how the field content com-
bines to construct the fluid variables; for this reason we call
the AIJ the activation functions, or AFs for short, and we
call the matrix [AIJ] the activation matrix. Specific theories
can be used to prescribe the values of the AFs. Suppose

that if for some reason one has A33 ¼ 0 then €�� is
‘‘deactivated’’ and does not influence the fluid variables.
The important takeaway message from (8) is to notice how
the activation matrix prescribes which field variables are
activated and thus appear in which fluid variable.

IV. GAUGE-INVARIANT EQUATIONS
OF STATE FOR PERTURBATIONS

Earlier we stated that the form of w� (9) must be gauge
invariant. The most general gauge-invariant form of the
equation of state that yields second-order field equations
for all theories with field content (5) and energy-
momentum tensor (6) with (7a) and (7b) can be written as

w� ¼ ð�� wÞ
�
�� 3H ð1þ wÞ�1	

S

� 3H ð1þ wÞ�2

2k2 � 6ð _H �H 2Þ
_h

þ 3H ð1þ wÞð1� �1 � �2Þ
6 €H þ 6H 3 � 18H _H þ 2k2H

€h

�
: (10)

This is the equation of state for dark sector perturbations,
since it prescribes exactly how the details of a theory
combine into terms which directly alter the fluid equations
and cosmological observables. With (10) and the fact
that �S ¼ 0, the fluid equations (2a) and (2b) close.
There are three dimensionless functions of scale and time
F � f�;�1; �2g which completely specify perturbations.
The scale dependence of the functions F can be precisely
isolated, reducing the freedom to a set of time-dependant
functions only.
The functions F can all be determined as functions of

the AFs AIJ, which in turn can all be determined from
components of the tensors (7a) and (7b) that were derived
from a Lagrangian for perturbations. Particular theories
can be used to compute what these functions are. The
functions F are subject to stability requirements and thus
cannot take arbitrary values.
The number of free functions can be reduced by choos-

ing restrictions on the theory space. There are a few
obvious ways to do this, and each will end up simplifying

the equation of state. For example, if A33 ¼ 0 then €�� is
removed from the ‘‘active’’ field content (8); this renders
all BI in (9) scale independent and sets �2 ¼ 1� �1 in the
equation of state (10). Another way to proceed could be to
knock out tensors from the expansion of �EU

�
�. For

instance, when all components F ¼ 0, then A14 ¼ 0; this
restriction also sets �2 ¼ 1� �1. Note that if additionally
�1 ¼ 1 then (10) becomes (4b).
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V. EXAMPLE: KINETIC GRAVITY BRAIDING

For illustrative purposes, we study a class of examples
that are included in the more general form of the AFs
described earlier (and therefore of our equations of state
for dark sector perturbations). This can be thought of as
being a ‘‘truncated’’ Horndeski theory, and is given by the
kinetic gravity braiding [24,32–35] (KGB) theory, whose
Lagrangian is

L ¼ Að�;XÞh�þBð�;XÞ; (11)

where A, B are arbitrary functions of the scalar field �
and the kinetic scalar X � � 1

2r��r��. The field

equations for the scalar field are at most of second order.
The energy-momentum tensor calculated from (11) is
given by U�� ¼ L;Xr��r��þ 2rð�Ar�Þ�þ Pg��,

where P � B�r��r�A. On an isotropic background,

the energy density � and pressure P are given by

� ¼ �Bþ 2ðA;� þB;XÞ � 2A;XX
ffiffiffiffiffiffiffiffi
2X

p
K

� �ð�;X; KÞ; (12a)

P ¼ Bþ 2A;�X þ 2A;XX
ffiffiffiffiffiffiffiffi
2X

p
Y

� Pð�;X;YÞ; (12b)

where Y � _X, K ¼ 3H andH is the Hubble parameter.
These can then be used to compute the following first
variations:

��� 1
2�;K

_h

	S

�P

0
BB@

1
CCA ¼

�;� �;X 0

b1 b2 0

P;� P;X P;Y

0
BB@

1
CCA

��

�X

�Y

0
BB@

1
CCA; (13)

where b1, b2 are functions of background field variables
given by

ð�þ PÞb1 � ðB;X þ 2A;� � KA;X

ffiffiffiffiffiffiffiffi
2X

p
Þ

ffiffiffiffiffiffiffiffi
2X

p
; (14a)

ð�þ PÞb2 � A;X

ffiffiffiffiffiffiffiffi
2X

p
: (14b)

We can deduce that B2 ¼ Bð0Þ
2 ðtÞ þ k2Bð1Þ

2 ðtÞ with B1ðtÞ,
B3ðtÞ and B4ðtÞ scale independent. From this we

conclude that � � �ðtÞ, �1 � �ð0Þ
1 ðtÞ þ k2�ð1Þ

1 ðtÞ and

�2 � ½3ð _H �H 2Þ þ k2��ð0Þ
2 ðtÞ; that is, there are just

four time-dependent functions which can be measured:

�, �ð0Þ
1 , �ð1Þ

1 , �ð0Þ
2 (N.B. the last two are not dimensionless).

If the KGB theory is shift symmetric, that is, L ¼
AðXÞh�þBðXÞ, then �ð0Þ

1 � 0 and therefore there

are then just three time-dependent functions.

VI. DISCUSSION

In this paper we outlined the philosophy of our approach,
and we provided our main results with schematic deriva-
tions. These are the activation matrix (8) and the gauge-
invariant equations of state for dark sector perturbations
(10). The equations of state are a neat way to package
parametrizations of perturbations in the dark sector, and
we advocate that those attempting to constrain dark energy
and modified gravity theories of the kind described by
L ¼ Lð�; @��; @�@��; g��; @�g��Þ should do this via

the parameters �, �1 and �2 which can be related back to
the fundamental nature of the theory. We have not included
explicit expressions relating the different parts to our cal-
culation. These will be presented in future work along with
our analysis of the current observational constraints on the
parametrization and the prospects for the future.
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