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Optimized multichannel quantum defect theory for cold molecular collisions
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Multichannel quantum defect theory (MQDT) can provide an efficient alternative to full coupled-channel
calculations for low-energy molecular collisions. However, the efficiency relies on interpolation of the Y matrix
that encapsulates the short-range dynamics, and there are poles in Y that may prevent interpolation over the range
of energies of interest for cold molecular collisions. We show how the phases of the MQDT reference functions
may be chosen so as to remove such poles from the vicinity of a reference energy and dramatically increase
the range of interpolation. For the test case of Mg + NH, the resulting optimized Y matrix may be interpolated
smoothly over an energy range of several Kelvin and a magnetic field range of over 1000 gauss. Calculations at
additional energies and fields can then be performed at a computational cost that is proportional to the number
of channels N and not to N3.
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I. INTRODUCTION

Samples of cold and ultracold molecules have unique prop-
erties that are likely to have applications in many diverse areas.
These include high-precision measurement [1,2], quantum
information processing [3], and quantum simulation [4]. There
is also great interest in the development of controlled ultracold
chemistry [5].

Atomic and molecular interactions and collisions are
crucial to the production and properties of cold and ultracold
molecules. However, quantum-mechanical molecular collision
calculations can be computationally extremely expensive.
Such calculations are usually carried out using the coupled-
channel method, in which the wave function is expanded:

�(r,τ ) = r−1
N∑

i=1

ϕi(τ )ψi(r). (1)

Here the N functions ϕi(τ ) form a basis set for the motion
in all coordinates, τ , except the intermolecular distance, r ,
and ψi(r) is the radial wave function in channel i. Substituting
this expansion into the time-independent Schrödinger equation
and projecting onto the basis function ϕj (τ ) yields a set of N

coupled differential equations. The properties of completed
collisions are described by the scattering matrix S, which is
obtained by matching the functions ψi(r) to free-particle wave
functions (Ricatti-Bessel functions) at long range [6]. In the
full coupled-channel method, explicit solution of the coupled
equations takes a time proportional to N3.

The problems encountered in cold molecular collisions
often require very large numbers of channels. Atom-molecule
and molecule-molecule interaction potentials can be strongly
anisotropic, requiring large basis sets of rotational functions
for convergence. In addition, calculations are often required
in an applied field, where the total angular momentum J is
no longer a good quantum number [7,8]. Because of this,
the large sets of coupled equations cannot be factorized

into smaller blocks for each J as is possible in field-free
scattering [9]. Furthermore, at the very low collision energies
of interest, small splittings between molecular energy levels
have important consequences. Effects such as tunneling [10]
and nuclear hyperfine splitting [11,12] multiply the number of
channels.

In cold collision studies, the scattering S matrix is often
a fast function of collision energy E and magnetic field B,
with extensive structure due to scattering resonances and
discontinuous behavior at threshold. Calculations are often
required over a fine grid of energies and/or applied electric and
magnetic fields, and this further multiplies the computational
expense.

We have recently shown [13] that multichannel quantum de-
fect theory (MQDT) [14–19] provides an attractive alternative
to full coupled-channel calculations in these circumstances.
MQDT attempts to represent the scattering properties in terms
of a matrix Y (E,B) [16–19] that is a smooth function of E

and B. If this can be achieved, the matrix can be obtained
once and then used for calculations over a wide range of
energies and fields, or obtained by interpolation from a few
points. Once the matrix Y (E,B) has been obtained, the time
required for calculations at additional energies and fields is
only proportional to N , not N3.

One problem with MQDT is that the Y matrix may have
poles as a function of E and B, and these limit the range
over which it can be interpolated. In cold molecular collision
studies, calculations are typically needed over an energy range
of order 1 K above threshold and for magnetic fields up to
a few thousand gauss [20]. This contrasts with the situation
for collisions of ultracold atoms, where the energy range of
interest is commonly a few μK and the fields are typically a
few hundred gauss.

In the present paper, we show how MQDT Y matrices
can be defined to allow smooth interpolation over substantial
ranges of collision energy and applied field. This will allow
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the use of MQDT to provide substantial savings in computer
time.

II. THEORY

A full description of MQDT has been given previously
[14–19]. We give here only a brief description, following
Ref. [13], which is sufficient to describe the notation we use.

MQDT defines the matrix Y (E,B) at a matching distance
rmatch at relatively short range. The N -channel scattering
problem at energy E is partitioned into No open channels (with
E∞

i � E, where E∞
i is the threshold of channel i), Nc weakly

closed channels, and Ns strongly closed channels. Strongly
closed channels are those that make no significant contribution
to the scattering dynamics at r > rmatch.

The scattering dynamics beyond rmatch is accounted for
using single-channel (uncoupled) calculations in a basis set
that diagonalizes the Hamiltonian at r = ∞. The solution of
the multichannel Schrödinger equation at r > rmatch is written
in the matrix form

� = r−1[ f (r) + g(r)Y ], (2)

where f and g are diagonal matrices containing the functions
fi and gi , which are linearly independent solutions of a
reference Schrödinger equation in each asymptotic channel i,[

− h̄2

2μ

d2

dr2
+ U ref

i (r) − E

]
fi(r) = 0, (3)

and similarly for gi(r). The reference potentials U ref
i (r)

approach the true potential at long range, and μ is the reduced
mass. They include the centrifugal terms h̄2Li(Li + 1)/2μr2,
where Li is the partial-wave quantum number for channel i.
Y is an Nref × Nref matrix, where Nref = No + Nc.

In our approach [13], Y is obtained numerically by
matching the solutions of the coupled-channel equations to
fi(r) and gi(r) at rmatch. The S matrix is then obtained from
Y using Eqs. (21) to (23) of Ref. [13], which require three
QDT parameters (Ci , tan λi , and ξi) in each open channel and
a single QDT parameter tan νi in each weakly closed channel.
In the open channels the reference functions are asymptotically

related to Ricatti-Bessel functions JLi
(r) and NLi

(r) [6],(
fi

gi

)
=

(
Ci 0

−Ci tan λi C−1
i

) (
cos ξi sin ξi

− sin ξi cos ξi

) (
JLi

NLi

)
.

(4)

Here ξi is the asymptotic phase shift of the function fi with
respect to the Ricatti-Bessel function JLi

. The QDT parameter
Ci relates the amplitudes of the energy-normalized functions
at long range to functions with Wentzel-Kramers-Brillouin
(WKB) normalization at short range, while tan λi describes the
modification of the WKB phase due to threshold effects. Far
from threshold, Ci ≈ 1 and tan λi ≈ 0. In the weakly closed
channels the reference functions are asymptotically(

fi

gi

)
=

(
cos νi sin νi

− sin νi cos νi

) (
φi

γi

)
, (5)

where φi is the solution of Eq. (3) that decays exponentially
at large r and γi is its linearly independent partner, which is
exponentially growing.

The absolute phases chosen for the reference functions fi

and gi are arbitrary, and different choices produce different
Y matrices and different MQDT parameters. In particular,
Eq. (2) shows that a pole in Y occurs whenever the propagated
multichannel wave function in any channel i is proportional
to the reference function gi and has no contribution from
fi . However, all phase choices produce the same physical S
matrix. We are therefore free to choose the phase in order to
produce a Y matrix with advantageous characteristics. Here
we show how the phase may be chosen to produce a Y matrix
that is pole free over a wide range of energy or magnetic field
and can be interpolated smoothly.

Rotating the reference functions fi and gi by an angle θi

gives a new set of linearly independent reference functions f̄i

and ḡi , (
f̄i

ḡi

)
=

(
cos θi − sin θi

sin θi cos θi

) (
fi

gi

)
. (6)

These rotated reference functions define a new Y matrix and a
new set of QDT parameters (C̄, tan λ̄, ξ̄ , and tan ν̄). Combining
Eqs. (4), (5), and (6) gives

ξ̄i = arctan

[
C2

i sin ξi(cos θi + tan λi sin θi) − cos ξi sin θi

C2
i cos ξi(cos θi + tan λi sin θi) + sin ξi sin θi

]
, (7)

tan λ̄i = − 2C4
i tan λi cos 2θi + [

1 + C4
i (tan2 λi − 1)

]
sin 2θi

2
{
C4

i cos2 θi + sin θi

[
sin θi + C4

i tan λi(2 cos θi + tan λi sin θi)
]} , (8)

C̄i =
[

sin ξi sin θi

Ci

+ Ci cos ξi(cos θi + tan λi sin θi)

]√√√√1 +
[

cos ξi sin θi − C2
i sin ξi(cos θi + tan λi sin θi)

]2[
sin ξi sin θi + C2

i cos ξi(cos θi + tan λi sin θi)
]2 , (9)

ν̄i = νi − θi . (10)

Far from threshold (E � 1 K), Eqs. (7) to (10) simplify to
ξ̄i = ξi − θi , tan λi ≈ 0, Ci ≈ 1, and ν̄i = νi − θi . However,
in the threshold region that is of interest in cold molecule
studies, Eqs. (7) to (10) must be evaluated explicitly.

A. Basis sets and quantum numbers

As a test case, we consider cold collisions between NH
(3�−) and Mg atoms [21]. This is the same system as
considered in Ref. [13], but the present work uses a larger
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basis set, which introduces more scattering resonances and
denser poles in the Y matrix.

The energy levels of NH in a magnetic field are most
conveniently described using Hund’s case (b), in which the
molecular rotation n couples to the spin s to produce a total
monomer angular momentum j . In zero field, each rotational
level n is split into sublevels labeled by j . In a magnetic field,
each sublevel splits further into 2j + 1 levels labeled by mj ,
the projection of j onto the axis defined by the field. For the
n = 0 levels that are of most interest for cold molecule studies,
there is only a single zero-field level with j = 1 that splits into
three components with mj = +1, 0, and −1.

The coupled equations are constructed in a partly coupled
basis set |nsjmj 〉|LML〉, where L is the end-over-end rota-
tional angular momentum of the Mg atom and the NH molecule
about one another and ML is its projection on the axis defined
by the magnetic field. Hyperfine structure is neglected. The
matrix elements of the total Hamiltonian in this basis set are
given in Refs. [8] and [22]. The only good quantum numbers
during the collision are the parity p = (−1)n+L+1 and the total
projection quantum number M = mj + ML. The calculations
in the present work are performed for p = −1 and M = 1. This
choice includes s-wave scattering of NH molecules in initial
state mj = +1, which is magnetically trappable, to mj = 0
and −1, which are not. The present work uses a converged
basis set including all functions up to nmax = 6 and Lmax = 8,
as in Ref. [21].

We label elements of Y and S by subscripts α,L,ML →
α′,L′,M ′

L, where α represents an eigenstate of free NH that
may be approximately labeled by (n,s,j,mj ). However, the
collisions considered in the present paper are all among the
n = 0,j = 1 levels and so α is simply abbreviated to mj . For
diagonal elements we suppress the second set of labels.

B. Numerical methods

The coupled-channel calculations required for both MQDT
and the full coupled-channel approach were carried out using
the MOLSCAT package [23], as modified to handle collisions
in magnetic fields [22]. The coupled equations were solved
numerically using the hybrid log-derivative propagator of
Alexander and Manolopoulos [24], which uses a fixed-step-
size log-derivative propagator in the short-range region (rmin �
r < rmid) and a variable-step-size Airy propagator in the
long-range region (rmid � r � rmax). The full coupled-channel
calculations used rmin = 2.5 Å, rmid = 50 Å, and rmax = 250 Å
(where 1 Å = 10−10 m). MQDT requires coupled-channel
calculations only from rmin to rmatch (which is less than rmid),
so only the fixed-step-size propagator was used in this case.

The MQDT reference functions and quantum defect pa-
rameters were obtained as described in Ref. [13], using
the renormalized Numerov method [25] to solve the one-
dimension Schrödinger equations for the reference potentials.
The MQDT Y matrix was then obtained by matching to
the log-derivative matrix extracted from the coupled-channel
propagation at a distance rmatch. In this paper all MQDT
calculations use the reference potential

U ref
i (r) = V0(r) + h̄2Li(Li + 1)

2μr2
+ E∞

i , (11)
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r (Å)
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FIG. 1. The V0 reference potentials for Mg + NH. The first and
second rotational excited states are also shown (n = 1,2). The hard
wall at r = 4.0 Å is shown as a vertical dashed line. The dot-dashed
horizontal line corresponds to zero energy.

where V0(r) is the isotropic part of the interaction potential.
This reference potential has been shown to produce quantita-
tively accurate results when Y is re-evaluated at each collision
energy and magnetic field [13]. However, such re-evaluation
relinquishes most of the computational savings that MQDT is
intended to achieve.

The reference potential contains a hard wall at r = rwall
i , so

that U ref
i (r) = ∞ for r < rwall

i . In the present paper we take
rwall
i = 4.0 Å. Figure 1 shows the reference potentials for the

lowest three rotational states. All channels with n � 2 were
treated as strongly closed and thus not included in the MQDT
part of the calculation, but were included in the log-derivative
propagation.

III. RESULTS AND DISCUSSION

Figure 2(a) shows a single diagonal element of the Y matrix,
Y−1,8+2, as a function of the matching distance and energy,
obtained with unrotated reference functions. Y−1,8,+2 is a
representative element of Y with poles at the same locations as
the other elements, chosen to give a good visual representation
of the pole structure. There are many poles visible, which
prevent polynomial interpolation over energies of more than
0.5 K for any value of rmatch (and much less than this for
some choices of rmatch). The energies of the poles become
independent of rmatch at long range.

The presence of low-energy poles in Y for some values of
rmatch is a serious problem. For MQDT to be efficient, rmatch

must be chosen without solving the coupled equations at many
different energies. The calculations needed to produce contour
plots such as those in Fig. 2 are feasible for a test case such
as Mg + NH, but would be prohibitively expensive for a very
large system.

Figure 2(b) shows the same element of the Y matrix
as a function of the matching distance and energy for
reference functions rotated by θi = π/2. The poles are in quite
different places, but once again there are many of them. The
combination of Figs. 2(a) and 2(b) demonstrates that, for any
arbitrary choice of rotation angles, poles will appear in the
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FIG. 2. (Color online) Contour plot of arctan Yii/π for a represen-
tative diagonal Y matrix element, Y−1,8,+2, as a function of energy and
rmatch at B = 10 G: (a) obtained with unrotated reference functions
(θi = 0), (b) obtained with reference functions rotated by θi = π/2,
and (c) obtained with optimized reference functions with θi = θ

opt
i in

all channels. The arctangent is show for clarity of plotting: It maps
the real numbers, R, to the domain −π/2 to π/2, thus allowing all
magnitudes of Y matrix elements to be seen on a single plot.

Y matrix, preventing simple interpolation for most choices of
rmatch. This will be true in any MQDT problem with a large

density of resonances. The contour plots do, however, show
that the position of poles is strongly dependent on the rotation
angle, even at large values of rmatch. This suggests that it will
be possible to optimize the rotation angles in order to move the
poles away from the energy range of interest. It is emphasized
that the S matrices obtained from the Y matrices shown in the
different panels of Fig. 2 are identical.

We now consider how to rotate the reference functions
to maximize the pole-free range over which Y can be
interpolated. Yii as a function of θi is given by

Yii = tan(θi + δi), (12)

where δi is the phase shift between the unrotated reference
function fi and the propagated multichannel wave function in
channel i. There is a pole in Yii when θi + δi = π/2 and a
zero when θi + δi = 0. We thus set θ

opt
i = −δi at one choice

of rmatch, E and B, so that the propagated multichannel wave
function and the reference wave functions are almost in phase
and the resulting Y matrix in that region is pole free.

Because the channels are coupled, rotating the reference
functions in one channel affects the other elements of the Y
matrix. In this work we loop over the channels sequentially,
setting each diagonal element to 0 in turn. By repeatedly
looping over all channels, all the diagonal Y matrix elements
are set to 0. For Mg + NH it was sufficient to loop over
the channels twice. In a more strongly coupled system it is
expected that this would need to be repeated more times. This
approach allows a set of optimized θi to be obtained from a
single multichannel propagation.

Rotated reference functions have previously been used
to transform Y matrices in the study of atomic spectra
[26–30] and atomic collisions [31]. Adjusting θi at each
energy such that Yii = 0 was shown to produce a weak
energy dependence of off-diagonal Y matrix elements across
thresholds [31]. However, this approach required propagating
the full multichannel wave function many times at different
energies, which is precisely what the present work tries to
avoid.

Figure 2(c) shows how the representative element Y
opt
−1,8,+2

varies as a function of the matching distance and energy. All
the θi values are optimized as described above at E = 0.5 K
and B = 10 G for each value of rmatch, but are not reoptimized
at each energy. Comparison of this with Figs. 2(a) and 2(b)
shows the effectiveness of optimizing the reference functions.
Without optimization, there were no choices of rmatch for which
Y was pole free and thus suitable for interpolation over the
energy range of interest. After optimization, Y opt is pole free
over a substantial range, of about 1 K, for any choice of rmatch <

8 Å. For values of rmatch < 6.5 Å, Y opt is pole free over many
Kelvin. Beyond 6.5 Å, poles start to enter Y opt in the energy
range of interest. Once the poles have settled at their asymptotic
values at rmatch > 7.5 Å, we find that positive energies up to
about 2 K are pole free. However, at larger values of rmatch

the linearity of Y opt over the pole-free region decreases. This
is due to negative-energy poles in the Y matrix, which our
procedure cannot move significantly. There is one particularly
bad choice of rmatch at about 6.8 Å, but provided this unlucky
choice of rmatch is avoided, Y opt can be interpolated smoothly
over the positive energy range from 0 to > 2 K for any choice
of rmatch.

022711-4



OPTIMIZED MULTICHANNEL QUANTUM DEFECT THEORY . . . PHYSICAL REVIEW A 86, 022711 (2012)

10
-6

10
-4

10
-2

10
0

Collision Energy (K)

0

1

2

3

4

|T
|2

Full coupled-channel
MQDT
MQDT (interpolated)

|T|
2

+1,0,0

|T|
2

+1,2,0

|T|
2

+1,4,0

FIG. 3. (Color online) The squares of diagonal T -matrix elements
Tmj ,L,ML

in the incoming channels for mj = +1 and L = 0, 2, and
4 at B = 10 G, obtained from full coupled-channel calculations
(solid, black) and MQDT with optimized reference functions for
rmatch = 6.5 Å, both with (dot-dash, blue) and without (dashed, red)
interpolation.

Figure 3 compares diagonal T -matrix elements |Tii |2
(where Tij = δij − Sij ) obtained from full coupled-channel
calculations with those from the MQDT method, with a
matching distance of rmatch = 6.5 Å, using reference functions
optimized at 0.5 K. MQDT results were obtained both by
recalculating the Y matrix at every energy and by interpolating
Y opt linearly between two points separated by 1 K. The
MQDT results with Y recalculated at each energy can scarcely
be distinguished from the full coupled-channel results. The
MQDT results obtained by interpolation are also very similar
to the full coupled-channel results except around the resonance
feature at E ≈ 0.1 K. The interpolated result could, of
course, be improved simply by performing coupled-channel
calculations to obtain Y opt at one or two extra energies across
the range, to allow for a higher-order interpolation, or by using
a linear interpolation over a smaller energy range.

In this work we use θi to rotate our short-range reference
functions fi and gi . In principle, we could rotate the reference
functions by varying the asymptotic phase shifts ξ̄i instead
of the short-range phases θi . However, Figure 4 shows why
this is not desirable. Due to the highly nonlinear relationship
between ξ̄i and θi , obtaining the optimum rotation angle of the
short-range reference functions fi and gi by varying the angle
ξ̄i would be laborious at very low collision energies.

A. Magnetically tunable Feshbach resonances

The effects of magnetic fields on cold molecular collisions
are very important, since collisions can be controlled by taking
advantage of magnetically tunable low-energy Feshbach reso-
nances. We are therefore interested in how S matrix elements
behave as a function of magnetic field across Feshbach
resonances. It is thus important that the Y matrix is weakly
dependent on magnetic field in such regions.

Figure 5 shows the diagonal elements of the optimized Y
matrix as a function of magnetic field for Mg + NH collisions
over the range from 10 to 5000 G for a collision energy of 1 mK.

0 0.2 0.4 0.6 0.8 1
θ/π
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-0.5

0

0.5

1

ξ/
π

1 K
0.1 K
0.01 K
0.001 K

FIG. 4. (Color online) The asymptotic phase shift ξ̄i as a function
of the rotation angle θi for the incoming d-wave channel (+1,2,0).

This range of fields tunes across six Feshbach resonances.
The reference functions were optimized at 10 G and 1 mK.
The elements of Y opt are smoothly curved over the entire
5000-G range and could be well represented by a low-order
polynomial.

Figure 6 shows the comparison between optimized MQDT
and full coupled-channel calculations for a selection of
diagonal and off-diagonal T -matrix elements as the magnetic
field is tuned at 1 mK. The reference functions were optimized
at 10 G and 1 mK and MQDT results were obtained by
linear interpolation of Y opt between two points separated by
1000 G and by 5000 G. Interpolation over 1000 G gives
resonance features that are in very good agreement with the full
coupled-channel calculation to better than 1 G. Interpolation
over 5000 G gives resonance features of the correct shape, with
positions that are still within about 10 G of the full coupled-
channel results. The difference between the interpolated result
and the full coupled-channel calculation is a result of both
the choice of rmatch and the interpolation. The quality of the
interpolation could be improved by considering a few more
fields across the range to allow for higher-order polynomial
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-0.1

0

0.1

0.2

Y

Y
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Y
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Y
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Y
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FIG. 5. (Color online) Representative Y opt matrix elements as a
function of field at E = 1 mK.
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FIG. 6. (Color online) Squares of T -matrix elements at 1 mK as a
function of field in the vicinity of a Feshbach resonance: (a) diagonal
elements and (b) off-diagonal elements.

interpolation or by using linear interpolation over a smaller
field range.

Full MQDT calculations recalculating the Y matrix at
every magnetic field give resonance positions accurate to
0.4 G. The remaining errors between the full coupled-channel
calculations and the MQDT results will reduce with a larger
value of rmatch. As seen in Figure 2(c), the optimized Y
matrices obtained at larger values of rmatch are still amenable
to interpolation, though over a more restricted energy range.

IV. CONCLUSIONS

We have shown that multichannel quantum defect theory
can provide an efficient computational method for low-energy

molecular collisions as a function of both energy and magnetic
field. In particular, we have shown how a disposable parameter
of MQDT, the phase of the short-range reference functions,
may be chosen to make the MQDT Y matrix smooth and
pole free over a wide range of energy and field. This smooth
variation allows the Y matrix to be evaluated from coupled-
channel calculations at a few values of the energy and field and
then to be obtained by interpolation at intermediate values. It
is not necessary to repeat the expensive coupled-channel part
of the calculation on a fine grid.

The procedure developed here is to choose the phase of
the reference functions in each channel so that the diagonal
Y matrix in each channel is zero at a reference energy
and field. This ensures that there are no poles in the Y
matrix, which would prevent smooth interpolation, close to
the reference energy. Optimizing the phase in this way is very
inexpensive, and once it is done the cost of calculations at
additional energies and fields varies only linearly with the
number of channels N , not as N3 as for full coupled-channel
calculations. MQDT with optimized Y matrices is thus a very
promising alternative to full coupled-channel calculations for
cold molecular collisions, particularly when fine scans over
collision energy and magnetic field are required.

The Y matrix is defined to encapsulate all the collision
dynamics that occurs inside a matching distance rmatch, and
the choice of this distance is important. There is a trade-off
between the accuracy of the method and the size of the pole-
free region of the optimized Y matrix. For large values of
rmatch, resonant features may appear in the Y matrix and prevent
simple interpolation over large ranges of energy and field. For
smaller values of rmatch, optimizing the reference functions
allows interpolation over many Kelvin, but the accuracy of
MQDT is reduced because interchannel coupling is neglected
outside rmatch.

For the moderately anisotropic Mg + NH system studied
here, optimized MQDT with an interpolated Y matrix can
provide numerical results in quantitative agreement with fully
converged coupled-channel calculations. In future work, we
will investigate the extension of this approach to more strongly
coupled systems, with larger anisotropy of the interaction
potential and more closed channels that produce scattering
resonances.
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