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We calculate the interaction potential between N atoms and NH molecules and use it to investigate cold and
ultracold collisions important for sympathetic cooling. The ratio of elastic to inelastic cross sections is large over
a wide range of collision energy and magnetic field for most isotopic combinations, so that sympathetic cooling
of NH molecules by N atoms is a good prospect. However, there are important effects due to a p-wave shape
resonance that may inhibit cooling in some cases. We show that scaling the reduced mass used in the collision is
approximately equivalent to scaling the interaction potential. We then explore the dependence of the scattering
properties on the reduced mass and explain the resonant effects observed using angular-momentum-insensitive

quantum defect theory.

I. INTRODUCTION

At temperatures below about 1 mK, atoms and molecules
enter a fully quantal regime where their de Broglie wave-
length is large compared to molecular dimensions. In this
regime, collision cross sections and reaction rates are domi-
nated by long-range forces [1, 2] and resonance phenomena
[3]. It is likely to be possible to control reaction rates by
tuning scattering resonances with applied electric and mag-
netic fields [4-6]. At even lower temperatures, below about 1
UK, trapped atoms and molecules form quantum gases such
as Bose-Einstein condensates and Fermi-degenerate gases, in
which every molecule occupies the lowest allowed transla-
tional state in the trap. The quantum gas regime offers ad-
ditional possibilities for a new form of quantum control, in
which chemical transformations are carried out coherently on
entire samples of ultracold atoms and molecules.

There have been enormous advances towards these goals
in the last few years. In particular, it is now possible to pro-
duce ultracold alkali metal dimers in their rovibronic ground
states from ultracold atoms both by photoassociation [7-9]
and by magnetoassociation followed by stimulated Raman
adiabatic passage (STIRAP) [10, 11]. However, for an alkali
metal dimer even the ground rovibronic state has nuclear spin
hyperfine structure [12, 13], and the resulting splittings are
comparable to the kinetic energies involved in ultracold col-
lisions. For the case of “°K®Rb, microwave transitions have
been used to transfer the ground-state molecules selectively
between different hyperfine and Zeeman levels [10, 14]. In
a very recent development, Ospelkaus et al. [15] have stud-
ied reactive collisions of such state-selected molecules, both
with one another and with ultracold K and Rb atoms. They
observed remarkable selectivity of the resulting reactions, in
which flipping the spin of a single nucleus could cause dra-
matic changes in the outcome of a collision [16].

Methods that form molecules from ultracold atoms can be
applied only in cases where the atoms themselves can be
cooled. In practice this restricts them to the alkali metals,
the alkaline earths, and a few other elements. These species
have a fairly limited chemistry. In order to cool a wider class
of molecules, including polyatomic ones, a number of direct
cooling methods [17-21] have been established over the last
decade. Among these methods, buffer-gas cooling is based
on the particularly simple idea of cooling molecules by elastic

collisions with cold He gas. If the molecules are paramagnetic
and in low-field-seeking states, they can be confined in a mag-
netic trap. The temperatures which can be achieved in buffer
gas cooling method are limited by the vapour pressure of the
buffer gas (ca. 400 mK for *He), but the method is particularly
valuable for two reasons: (i) it is very general and can in prin-
ciple be applied to any paramagnetic species, provided that a
detection scheme is available; (ii) it can produce large num-
bers and high densities of cold molecules. Buffer-gas cooling
has been reported for a variety of molecules including CaH
[18], CaF [22], NH [23, 24], CrH and MnH [25] and also for
a number of paramagnetic atoms [26-28]. Buffer-gas cool-
ing followed by evaporative cooling has recently been used to
achieve Bose-Einstein condensation with no laser cooling for
metastable helium [29].

The direct methods established so far are limited to tem-
peratures of 10 to 100 mK and above. To cool the molecules
further, to the uK regime, second-stage cooling methods must
be developed. The most promising and conceptually the sim-
plest method is sympathetic cooling, in which the molecules
are cooled by collisions with an atomic gas that can itself be
cooled to the ultracold regime, such as an alkali metal. The
most robust trapping methods for molecules work for low-
field-seeking states, which are never the lowest possible state
in an applied field. Inelastic collisions can therefore occur,
and either heat the trapped system or eject the molecules from
the trap. Sympathetic cooling can thus be successful only
if elastic collisions dominate inelastic ones, and it is usually
stated that the ratio of elastic to inelastic cross sections must
be 100 or more. Sympathetic cooling was initially developed
as a cooling method for trapped ions [30]. More recently it
has been used to achieve sub-Kelvin temperatures for poly-
atomic ions [31] and has also been used to produce ultracold
neutral atoms with scattering properties that are not suitable
for evaporative cooling, such as 'K [32].

Sympathetic cooling for molecules has not yet been
achieved, but several proposals have been explored. It was
initially proposed for NH molecules colliding with Rb atoms
[33] and studied in more details by Lara et al. [34, 35] for
OH colliding with Rb. Both OH and NH molecules interact
very strongly with Rb and the anisotropy of the interaction
potential is large compared to the molecular rotational con-
stant. The large anisotropy implies large couplings between
channels with different n (monomer rotation angular momen-
tum) and L (end-over-end angular momentum) quantum num-



bers, and Lara et al. showed that this resulted in large inelastic
cross-sections in the ultracold regime. The remedies they sug-
gested to improve sympathetic cooling and decrease inelastic
cross sections were: (i) to use light atoms as coolants, in order
to increase the heights of centrifugal barriers and suppress in-
elastic channels; (ii) to find atom-molecule system with much
smaller anisotropy in the interaction potential.

Soldan et al. [36] considered the possibility of reducing
the anisotropy by using alkaline-earth atoms (Ae) as colli-
sion partners for NH molecules. They showed that the neu-
tral states of Ae—NH systems are coupled to ion-pair states
AetNH™, with crossings between the neutral and ion-pair
surfaces at linear geometries. For Sr and Ca atoms the cross-
ings occurs at energies below the atom-molecule threshold, so
will be accessible in low-energy collisions. However, for Be-
NH and Mg-NH the crossings occurs at energies more than
1000 cm~! above the atom-molecule threshold. In these sys-
tems, the ion-pair state is likely to be inaccessible, so it is rea-
sonable to carry out collision calculations on a single covalent
surface. In addition, the potential energy surface for Mg—NH
turned out to be only weakly anisotropic. Wallis and Hutson
[37] carried out quantum scattering calculations of spin relax-
ation collisions (in magnetic fields) and showed that sympa-
thetic cooling of NH by collisions with Mg atoms should be
achievable if the molecules can be precooled to about 10 mK.

Sympathetic cooling has also been considered for NH3 and
ND3. In this case the molecules are initially slowed in a Stark
decelerator [38]. Zuchowski et al. [39] surveyed the inter-
action potentials for NHj3 interacting with alkali-metal and
alkaline-earth atoms. Zuchowski and Hutson [40] then carried
out quantum scattering calculations on collisions of ND3 with
Rb atoms and showed that molecules that are initially in the
upper component of the ammonia inversion doublet are likely
to undergo fast collisional relaxation to the ground state, and
that this is likely to prevent sympathetic cooling of molecules
trapped in low-field-seeking states in an electrostatic trap [41].
However, there is a good prospect for sympathetic cooling
of ammonia molecules in high-field-seeking states, even with
magnetically trapped atoms, because the terms in the hamilto-
nian that might cause spin-changing collisions of the Rb atoms
are very small. High-field-seeking states of ND3 can be con-
fined in an alternating current trap [42].

Recently, Hummon er al. [43] demonstrated buffer-gas
cooling and trapping of N (*S) atoms and simultaneous co-
trapping of NH molecules. Subsequent work [44] has demon-
strated N atom densities around 5 x 10’2 cm™> and lifetimes
around 10 s. This offers the possibility of cooling the atoms
further with atomic evaporative cooling, which has already
been achieved for metastable helium and Cr atoms [45, 46].

A gas of N atoms is potentially an excellent coolant for a
sympathetic cooling experiment. The N atom has a very small
polarizability compared to Group I and Group II elements and
this results in low Cg coefficients and small anisotropies of
the interaction potentials with molecules. The N atom also
has a relatively low mass, which results in higher centrifugal
barriers and stronger suppression of inelasticity for particles
scattered with L > 0.

This paper presents theoretical studies of cold and ultracold

collisions of N atoms with NH molecules, in order to investi-
gate the possibility of sympathetic cooling of NH by atomic
nitrogen. Since the cross sections depend strongly on the re-
duced mass of the collision system, we consider four isotopic
combinations of N-NH systems, with each of the two N atoms
being either '“N or ’N. We assume that both N and NH are
initially in their magnetically trappable spin-stretched states,
with the maximum possible values of the electron spin pro-
jection numbers. For such states only spin relaxation (and
not spin exchange) can occur and only the sextet interaction
potential contributes. We report calculations of the sextet po-
tential for N-NH and explore the behaviour of cross sections
as a function of collision energy and magnetic field. We dis-
cuss the sensitivity of the scattering results with respect to
uncertainties in the interaction potential. Finally, we analyze
the behaviour of the shape resonances in terms of angular-
momentum-insensitive quantum-defect theory (AQDT) [47].

II. N-NH POTENTIAL

The total spin of the N*S) + NHCZ ) system can be %,

% or % The chemical reaction N + NH — N, + H, which

occurs principally on the doublet surface, has been studied in
detail by Varandas and coworkers [48-50] and by Francombe
and Nyman [51]. It was shown that the doublet N-NH system
forms an NoH complex without a potential barrier along the
minimum energy path. A very small barrier exists between the
N>H complex and N, + H products and overall the reaction of
forming N>+H yields 6.33 eV of energy. To our knowledge,
no studies of quartet or sextet states of N-NH have been pub-
lished, though we are aware of work in progress by Tscherbul
and coworkers [52].

To obtain the sextet interaction potential we applied the re-
cently developed explicitly correlated, unrestricted coupled-
cluster method with single, double and noniterative triple ex-
citations [UCCSD(T)] [53-55]. We used the aug-cc-pVTZ ba-
sis set of Peterson et al. [56], which is designed specifically for
use with explicitly correlated calculations. The results from
the explicitly correlated (F12) calculation are compared with
those from UCCSD(T) calculations with uncorrelated basis
sets in Table I: it may be seen that the explicitly correlated
approach dramatically reduces the error caused by using un-
saturated basis sets. A fixed NH bond length of 1.0367 A was
used in all the calculations.

The potential energy surface was obtained by carrying out
explicitly correlated UCCSD(T) calculations on a grid in Ja-
cobi coordinates (R;, Gj), where R is the intermolecular dis-
tance measured to the NH center of mass and 6 is the angle
between the NH bond vector and the vector from the NH cen-
ter of mass to the N atom. The radial grid R; was from 2.5
to 10 A in 0.25 A steps and the angular grid 6; was a set of
11 Gauss-Lobatto quadrature points, which include the two
linear geometries. All interaction energies were corrected for
basis-set superposition error using the counterpoise procedure
[58].

Radial interpolation is carried out using the reproducing
kernel Hilbert space (RKHS) method [59, 60] to evaluate



TABLE 1. Basis-set dependence of the N-NH interaction energy at
the global minimum for F12 calculations. The complete basis set
(CBS) extrapolation was obtained with the correlation energy func-
tional E(X) = A+ BX =3 [57] where X is the maximum angular mo-
mentum of electronic basis set.

basis set Eine (cm™1)
aug-cc-pVTZ —79.18
aug-cc-pvVQZ —86.03
aug-cc-pV5Z —88.51
aug-cc-pV6Z —89.33
CBS -90.47

F12 /aug-cc-pVTZ —89.10

TABLE II. Van der Waals coefficients for N-NH (Ehag) from
density-functional calculations.

n,A Cyp

6,0 33.50

6,2 11.44

7,1 60.87

7,3 55.28

8,0 717.14

8,2 988.87

V(R, ;) for arbitrary R and given 6;. At each distance R,
the potential is expanded in Legendre polynomials P (cos 6)
for A up to 8,

V(R,0) =Y Vi(R)Py(cosh). (1)
A

The coefficients V) (R) are obtained by integrating the ab ini-
tio potential using Gauss-Lobatto quadrature [35].

To provide an improved description of the long-range in-
teraction, we impose an analytical representation on the long-
range part of the components of the projected potential,

8 3
ViR)=—Y Y CaR™ )

n=61=0

The Van der Waals coefficients are given in Table II and were

calculated with the restricted open-shell coupled Kohn-Sham

method [61] with asymptotically corrected [62] PBEO func-

tional [63]. We connect the long-range function smoothly to

the supermolecular potential using the switching function [64]

I 1 T T

FR) = 5+ 7 sin == (3 —sin” =), (3)

where x = B=0HR=a with g =7 A and b = 11 A. f(R) =0 for
R<7Aand f(R)=1forR>11A.

The potential energy surface for N-NH is shown in Fig. 1.

It has two minima of comparable depths at linear geometries:

89.1 cm~! at N-NH and 76.4 cm~! at N-HN. The two min-

ima are separated by a saddle point near the T-shaped geom-

TABLE III. Characteristic points on the N-NH potential energy sur-
face. Energies are given incm™!, Rin A,

Global minimum Saddle point Secondary minimum
R,6 3.70,0 3.76,92°  3.49,180°
—89.1 —39.2 —76.4
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FIG. 1. The ab initio interaction potential of N-NH. Contours are
labeled in cm~!. The angle 6 = 0 corresponds to the N-N-H geom-
etry.

etry. The anisotropy of the potential near the Van der Waals
minimum is about 40 cm™~!, and the dominant contribution to
the anisotropy arises from V»(R).

1. Interaction potential uncertainty

An important problem in electronic structure theory is the
estimation of error bounds for calculated interaction ener-
gies. Since scattering calculations at very low energies de-
pend strongly on the details of the interaction, in this section
we discuss the uncertainty of the N-NH interaction potential
obtained here.

The largest contributions to the uncertainty of the interac-
tion potential arise from the approximate treatment of elec-
tronic correlation and the incompleteness of the electronic ba-
sis set. We expect that the effect of the neglecting vibrations
of the NH molecule is much less important, as are relativistic
and nonadiabatic effects.

First we need to estimate how well the UCCSD(T) method
works for sextet N-NH. To explore this, we performed 7-
electron full configuration-interaction (FCI) calculations of
the interaction energy. We included all electrons arising from
the H atom and the 2p electrons of N atoms. With FCI it was
possible to use only a very small basis set (6-31G, augmented
with spd midbond functions with an exponent 0.4). For this
small basis set, we compared the contribution to the corre-
lation part of the interaction energy (i.e., the intramonomer
correlation and the dispersion energy) with the UCCSD(T)
results for several linear geometries N-NH and N-HN . The
FCI correlation energy to be larger than the UCCSD(T) corre-
lation energy by 1 to 1.5%, for a wide range of R and at both



linear geometries. To a good approximation we expect the ra-

tio EFCl/EICCSPM) 6 be constant in different basis sets. This

suggests that the global minimum energy obtained with the
coupled-cluster method is underestimated by ca. 1.5 cm™!.

The basis set convergence pattern shown in Table I yields a
complete basis-set limit of the global minimum depth of 90.47
cm~!. This is 1.37 cm~! more than in the method used for the
complete surface here. We also performed test calculations
including additional core-valence basis functions that are ab-
sent in the basis set used for the complete surface potential.
The interaction energy at the global minimum obtained with
aug-cc-pCVTZ is approximately 1 cm™!smaller than for basis
sets with no core-valence functions.

In summary we can set the error bounds on the interaction
potential at the global minimum between —1 and +3 cm™!,

which is approximately between —1% and +3%.

III. N-NH SCATTERING CALCULATIONS

The Hamiltonian of the NH molecule may be written
Hng = bNHIV2 +}’N§

6 1
* [94571 s Y (1) (A S@8P . @
q

The three terms are, respectively, the rigid rotor Hamiltonian,
the spin-rotation interaction and the intramonomer spin-spin
interaction. The numerical values of the constants used in the
present work are byg = 16.343 cm™! [65], Y= —0.055 cm™!
and Ags = 0.92 cm~! [66]. The NH molecule is assumed to
be in its ground vibrational state.

The Hamiltonian of the N-NH collision system in a mag-
netic field may be written

W d2 iz
H=—— >R+ +Hxu+Hz +Vss +Viu(R, 0).
JuRdRE . T opge TNz s int(R, 6)
)

J

4

Here £ is the operator for the end-over-end angular momen-
tum of N and NH about one another, Hz represents the Zee-
man interaction of N and NH with the magnetic field, Vsg
is the (anisotropic) intermolecular spin-spin interaction, and
Vint(R, ) is the intermolecular potential.

The convention for quantum numbers in this paper is as
follows: L and M} denote the end-over-end angular momen-
tum and its projection onto the space-fixed Z axis defined by
the magnetic field. Monomer quantum numbers are indicated
with lower-case letters to avoid confusion with those of the
collision system as a whole. The spins and spin projections
of the N and NH molecules are denoted by sa, sg and ma,
and myp, respectively. The rotational quantum number of the
NH molecule and its projection are denoted ng and m,g The
projection of the total angular momentum,

Moy = My, +my,g + mgp + mgA, (6)

is rigorously conserved in a collision, but the total angular
momentum itself is not, except at zero field. It is convenient
to carry out scattering calculations is a fully uncoupled basis
set, |samga)|spmsp) [npmup)|LML). We have written a plug-
in routine for the MOLSCAT scattering program [67], imple-
menting all the matrix elements required for scattering calcu-
lations in this basis set.

The total spin S of a system made up of an open-shell atom
and an open-shell molecule can take values between |sa — sp|
and sa + sg. For N-NH the allowed values are S = %, % and

%, corresponding to doublet, quartet and sextet, respectively.
The interaction potential Viy (R, 6) may be written in terms of
projection operators,

SA+SB

Vint(Rae) = Z

S=—|sa+sB]

S)Vs(R,0)(S| @)

and the general matrix element of Vi (R, 8) in our basis set is

(samgasgmspnpm,s LM |Vin (R, 6) \sAm;A spmignpm,gL'M} ) =

¥ (— 122 A M (06 1) (i LM |V (R, 8) [y LM

SA  SB S SA  SB N (8)
/ ! / / :
msA Mg —HhigA — NB Mgy Mgy —Mgp — Mg

N

The three interaction potentials Vg(R, 8) differ only by short-
range Pauli exchange terms. They have the same long-range
coefficients, so become degenerate once the N atom and NH
molecule are far enough apart that their valence shells do not
overlap. The doublet surface has a potential well several hun-
dred times deeper than the Van der Waals sextet state, so that
full quantum calculations including the doublet state would

(

require very large basis sets of rotational functions and could
not be converged. In the present work we therefore approxi-
mate the operator Viy (R, 0) operator by taking Vs = Vs, for
all spin states. This approximation is legitimate because we
are primarily interested in N-NH collisions between mag-
netically trapped atoms and molecules, with msa = sp = %

and m;g = sp = 1. These are spin-stretched states, and V3 2



and Vj , have no matrix elements (diagonal or off-diagonal)
involving spin-stretched states. When this approximation is
made, orthogonality relations for the 3 symbols reduce Eq.
8 to a form diagonal both in ms and m,g. The explicit ex-
pression for (ngm,g LM |Vs(R, 0)|ngm|zL'M] ) is the same as

J

for scattering of NH from a closed-shell atom [5], with the
addition of factors §,, R
The intermolecular spin-spin interaction has matrix ele-

ments

! ! Vi ! / !
(samsaspmspnpm g LMy |Vss|samiasgmigngm,gL'M; ) =

V30A(R)S,. v 6,

/
1:100:

L2
000

The spin-spin coupling constant A(R) is Ena®a}/R3, where
Ey is the Hartree energy and « is the fine-structure constant.

The matrix elements for NH monomer operators are the
same as for scattering of NH from a closed-shell atom [5],
with the addition of factors §,, R

If one or both of the colliding species is not in a spin-
stretched state (with the highest possible value of myg), the
system will undergo very fast spin exchange driven by the
difference between the S = %, % and S = % potentials. For
spin-stretched states, however, spin exchange cannot occur
and only spin relaxation is possible. There are two mech-
anisms for spin relaxation. The first is similar to the well-
known mechanism of spin relaxation for spin-stretched states
of alkali metal atoms, and arises through direct coupling of
the initial state ma = +3,m = +1 (with ng = m,p = 0),
to final states with msa and/or msg reduced by 1 by the in-
termolecular spin-spin interaction term and Mj, increased to
conserve Myy. Such transitions are relatively slow, because
the intermolecular spin-spin interaction is weak. The second
mechanism is that described by Krems and Dalgarno [68].
For the same initial state, the intramonomer spin-spin inter-
action mixes ng = 0 with ng = 2, and even in a magnetic
field it mixes m,g = 0 with m,g = £1,+2. The states with
m,g = +1,+2 have mgg =0, —1. The states with m,, = 1,2 are
then coupled by the anisotropy of the interaction potential to
n =0, m, = 0 states with changed M}, but the same mp (which
is lower than in the initial state). This mechanism is also ex-
pected to be fairly weak for a low-anisotropy system such as
N-NH: the n = 0 and n = 2 rotational levels of NH differ in
energy by 96 cm~!, while the potential anisotropy V> (R) that
couples them is a short-range interaction that is never greater
than 40 cm~! in the energetically accessible region. For both
mechanisms, spin relaxation is suppressed for s-wave scatter-
ing (L = 0,M; = 0) at low energies and fields because the
conservation of My requires M; # 0 and therefore L' > 0,
producing a centrifugal barrier in the outgoing channel.

We carry out scattering calculations with the MOLSCAT

- (—1)‘YA+“B’""‘A*’”»VB’ML [sa(sa+1)(2sa+ 1)sp(sp+1)(2s + 1)(2L+1)(2L' +1)]2

y L 2 L 11 2
e \ ML —q1—q2 M} a9 @ —q1—q

SA 1 SA SB 1 SB (9)
—Mga q1 My —mgp g2 mp

package [67]. The coupled equations are solved using
the hybrid log-derivative/Airy propagator of Alexander and
Manolopoulos [69]. We used the fixed-step log-derivative
propagator from 2.8 A to 70 A with an interval size of 0.08
A, followed by a variable-step Airy propagation out to 400 A.
We carried out convergence tests on state-to-state cross sec-
tions both in the s-wave regime and at energies up to E = 1 K,
at fields of B =200 G, 1000 G and 2 T. In all cases a basis set
withn=0...3and L =0...7 gave convergence to within ap-
proximately 1% for all state-to-state cross sections. This basis
set was therefore used in all the remaining calculations.

IV. RESULTS

Fig. 2 shows the Zeeman energy levels of the noninter-
acting N+NH system. In the buffer-gas cooling experiment,
[43] both atoms and molecules are trapped in their low-field-
seeking state with mgy = % and ng = m,g = 0, mgg = 1.
The experiment has already achieved temperatures around
550 mK, and at this temperature atoms with an energy of 5kT
sample magnetic fields up to 2 T in a quadrupole trap. How-
ever, as the temperature decreases, so too will the magnetic
fields sampled. We therefore consider collision energies from
10 uK to 1 K and fields from 10 Gto 2 T.

The N atom is considerably less polarizable than alkali
metal or alkaline earth atoms. As a result, the dispersion co-
efficient Cg ¢ for N-NH is considerably lower than for most
metal atom — molecule systems that have been considered pre-
viously as candidates for sympathetic cooling. Together with
a low reduced mass, this results in relatively high centrifugal
barriers for L > 0 partial waves: 14 mK for L =1, 71 mK for
L =2, 120 mK for L = 3, etc. The high centrifugal barriers
also mean that quite small number of partial waves are needed
to converge cross sections: for example, including contribu-
tions from L up to 4 is sufficient to obtain convergence up to
about 0.5 K.
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FIG. 2. Energy levels of the noninteracting N+NH system in a mag-
netic field. The dotted red lines show the energy obtained by adding
the d-wave centrifugal barrier height (71 mK) to the levels with
Mot = % and My; = % The crossings between the red lines and the
initial-state energy indicate the fields above which s-wave inelastic
cross sections are no longer suppressed by centrifugal barriers.

A. Close-coupling calculations

Calculated elastic and inelastic cross sections for the four
different isotopic combinations are shown as a function of col-
lision energy E in Fig. 3, for representative magnetic fields
of 200 G, 300 G, 1000 G and 2 T. In a simple hard-sphere
model of sympathetic cooling, neglecting inelastic collisions,
the temperature relaxes towards equilibrium and reaches a 1/e
point after (m; +my)?/2mm; collisions [70], where m; and
my are the masses of the two species. For sympathetic cooling
to be successful we need the ratio of elastic to inelastic cross
sections to be much larger than this. The calculated ratios are
shown in Fig. 4: for the most part they are more than 50 at col-
lision energies above about 1 mK, indicating that sympathetic
cooling of NH by N is likely to be feasible.

Several different effects are evident in Fig. 3. The first is
that the cross sections enter the s-wave regime, where they
are proportional to E “1/2 quite different energies for dif-
ferent isotopic species. This occurs because of p-wave reso-
nant effects. Once in the s-wave regime, however, the inelas-
tic cross sections generally decrease at magnetic fields below
about 300 G, because of the centrifugal barriers in the out-
going channels. Since atoms and molecules in a quadrupole
trap sample lower and lower fields as the temperature is de-
creased, this indicates that sympathetic cooling will become
increasingly effective as the temperature is lowered, as pre-
dicted for Mg-NH [37]. Lastly, inelastic collisions are also
suppressed for very high magnetic fields. All these effects
will be discussed in more detail below.

Spin relaxation collisions can change mgs for the N atom,
mgp for the NH molecule, or both. Fig. 5 shows the state-to-
state cross sections for the most important final states for YN—
ISNH as a function of energy at two different fields. It may be
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FIG. 3. Elastic and inelastic cross sections for N-NH scattering for
I4N-14NH, "“N-1°NH, "'N-!4NH and ' N-'SNH for different mag-
netic fields. The elastic cross section (black line) is almost indepen-
dent of field. The positions of the p- and d-wave exit-channel barriers
are marked with vertical lines.
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seen that dominant final states are those in which mgs and/or
myp has changed by 1. These collisions are driven by the inter-
molecular spin-spin interaction. Transitions that change mp
by 2 can occur only by the second mechanism described in
Section III above, involving the potential anisotropy, and are
seen to be very much weaker except in a small resonant re-
gion.

The “N-!“NH system shows behaviour quite different
from the others, with a large peak in the inelastic cross sec-
tions near 10 mK which reduces the elastic-to-inelastic ratio
to around 10. This ratio may not be high enough for effec-
tive sympathetic cooling from an initial temperature of tens of
milliKelvin. The peak appears at the same energy for all val-
ues of the field. It arises from a p-wave shape resonance in the
incoming channel, as discussed in section IV C below. For the
larger reduced masses of the other isotopic combinations, the
quasibound state responsible for the shape resonance drops
below threshold and becomes a true bound state. Thus the
other isotopic combinations do not exhibit this feature and
have more favourable properties for sympathetic cooling.

The SN-I>NH system exhibits d-wave shape resonances
for collision energies of 50 to 70 mK, but they are much
weaker than the p-wave resonance for “N-!'“NH and their
presence does not strongly affect the total inelastic cross sec-
tion.

The L = 2 centrifugal barrier plays a crucial role in spin
relaxation in the ultracold regime. For an incoming channel
with L = 0, spin relaxation requires outgoing L > 2. If the en-
ergy difference between the incoming and outgoing channels
is smaller than the height of the L = 2 centrifugal barrier, the
s-wave inelastic cross section is suppressed (see Fig. 2). The
s-wave state-to-state cross sections are shown as a function of
magnetic field in Fig. 6 for "*N-!4NH at a collision energy
of 50 uK. The inelastic cross sections generally decrease at
magnetic fields below about 500 G, though there is a dip in
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each state-to-state component between 100 and 300 G. These
dips are due to suppression of the inelastic cross sections in
the wings of resonances, as described by Hutson e al. [6]; in
this case the resonances concerned are shape resonances in the
d-wave outgoing channels.

The suppression of inelastic scattering by the centrifugal
barrier is clear in the total inelastic cross section only for
systems with reduced mass larger than for '“N-'“NH. For
the '*N-!4NH system itself, the p-wave contribution is very
strong even at very low energies. In fact, the p-wave enhance-
ment of the inelastic cross section between 50 uK and 1 mK is
so strong that the total inelastic cross section does not follow

the E~2 power-law dependence expected from the Wigner
threshold laws at these energies.

Suppression of inelastic collisions due to barriers in the out-
going channels decreases as the magnetic field increases (so
that the kinetic energy release increases). Eventually, how-
ever, the inelastic cross section reaches a maximum and starts
to decrease again. This occurs for all partial waves, and the
total cross sections at a field of 2 T are typically reduced by a
factor of about 10 from their values at 0.1 T. Since for some
isotopic combinations the low-field ratio of elastic to inelastic
cross sections may not be large enough at temperatures of 1
to 10 mK, the application of a strong bias field to a magnetic
trap offers a possible way way to improve the ratio.

Suppression of inelastic cross sections at high fields has
been observed for O(3P)-He collisions [71], for OH-OH [72]
and for collisions of Cr atoms [73]. For small inelasticity, the
distorted-wave Born approximation gives [74]

2

Oip = 4mk; / Vi(R)Uir(R)y¢(R)dR| | (10)

where y; and Y are energy-normalized wavefunctions in the
initial and final channels, U;s is the coupling between the
channels, and k; is the wave vector in the incoming channel.
Fig. 7 shows the integrand of Eq. 10 for the intermolecular
spin-spin term (R™3) at kinetic energy releases of 0.5 K, 1 K
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FIG. 7. The integrand of the distorted-wave Born approximation (Eq.
10) for *N-“NH at a collision energy of 1 mK for different kinetic
energy releases. The incoming wavefunction is calculated for L =0
and the outgoing wavefunction for L = 2.
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FIG. 8. Elastic and total inelastic cross sections for *N—!14NH at
E =5 mK and B = 50 G as a function of both reduced mass and
potential scaling factors.

and 3 K, corresponding to fields of 3800 G, 7600 G and 2.3 T
for transitions with Amgsa + Amgg = —1. It may be seen that
there is significant oscillatory cancellation in the integral at
high fields, when y;(R) and y/(R) oscillate out of phase with
one another in the interaction region, and this combines with
the effect of the resonances in the d-wave outgoing channels
to produce the maxima in Fig. 6. The oscillatory cancellation
occurs for arbitrary partial waves.

B. Dependence on interaction potential and reduced mass

Because of the crucial role played by the p-wave shape res-
onance for '*N-!“NH at energies up to 10 mK, it is impor-
tant to investigate the influence of uncertainties in the inter-
action potential on the cross sections. The shape of the 2D
interaction potential is complicated and the scattering proper-
ties might in principle depend on many parameters. However,
Gribakin and Flambaum [75] showed that for single-channel



scattering the scattering length a behaves as
a:d[l—tan(cb—g)}, (11)

where, for a potential with long-range form —CsR~°, the
mean scattering length a is 0.956(2/.LC6/h2)% and

Y o 2y1
o= [ (2uvin(R)/#)* R (12)

Although N-NH is a many-channel scattering problem, it is
elastically dominated and Eq. 12 with Vi, (R) replaced by
Vo(R) reproduces the major features of the elastic scattering.
Thus scaling u is approximately equivalent to scaling the en-
tire interaction potential, and either of these scalings provides
a good way to explore the variation of scattering length as a
function of potential. Fig. 8 shows the elastic and total inelas-
tic cross sections for “N-“NH at E = 5 mK and B = 50 G as
a function of both reduced mass and potential scaling factors.
It may be seen that the two scalings have a very similar effect,
apart from a small shift in the Feshbach resonance around
A = 1.08, which comes from a rotationally excited state of
NH.

We estimate the bounds on the accuracy of our potential
to be between —2.5 and +3% of the well depth. We have
therefore carried out calculations of the cross sections as a
function of a variable reduced mass, parameterized by scaling
factor 4 — A u for a collision energy of 5 mK. A scaling fac-
tor 2 = 1 corresponds to the reduced mass for '*N—'“NH. The
result is shown in Fig. 9. There is a strong maximum in the
total inelastic cross section near A = 1.012, due to a p-wave
shape resonance in the elastic channel. A change of 1.2% in
the potential is within the estimated error bound of our calcu-
lations. Enhancement of the cross sections due to the p-wave
resonance might thus occur for heavier isotopic combinations
than '“N-14NH if our potential is slightly too deep. Although
we believe it is more likely that our potential is too shallow
than too deep, this cannot be ruled out. However, it is quite
unlikely that enhancement due to the p-wave resonance would
occur for the heaviest system, ISN_ISNH.

C. AQDT analysis of shape resonances

In this section we consider the N-NH scattering in the con-
text of angular-momentum-insensitive quantum defect theory
(AQDT) [47]. The upper part of Fig. 10 shows the positions of
(quasi)bound states for L=0...2 as a function of the reduced-
mass scaling factor A for values between 0.8 and 1.2. The
L = 0 bound state crosses the threshold at a value of the re-
duced mass much smaller than that for '*N—!“NH, well out-
side the estimated error bounds for the potential. There is thus
no s-wave resonance in the scattering for any of the systems
considered here.

The p-wave shape resonance in the cross sections for *N—
14NH arises from the quasibound state with L = 1, which is 6
mK above threshold for A = 1. As the reduced mass increases
above this, the L = 1 bound state crosses the threshold at A =

potential error
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FIG. 9. Elastic and inelastic cross sections for a collision energy of 5
mK as a function of scaled reduced mass. The dashed vertical lines
indicate the values of u for the systems concerned here, from left
to right, "*N-“NH, "*N-1°NH, ’N-'*NH and 'N-'SNH, respec-
tively. The solid vertical line shows the value A = 1.024 for which
the scattering length a = 2a.

1.024 and becomes a "real" bound state. This explains why
we see no p-wave shape resonances in the cross sections for
collisions with reduced mass larger than 1.024 114 14, i.e. for
all systems containing at least one '>N atom. For large values
of u the L = 2 bound state comes close to threshold, and this
results in the (small) d-wave shape resonance that can be seen
in the ’N-°NH cross sections.

The lower panel of Fig. 10 shows the s-wave scattering
length as a function of scaling factor A. As expected, there
is a pole near A = 0.9 as the L = 0 bound state crosses the
threshold. Within the estimated error bounds of the potential,
a varies between 22.3 and 15.2 10\, so that the elastic cross
section for small Eq) (in the Wigner regime) varies between
6250 and 2900 A2,

In angular-momentum-insensitive quantum defect theory
[47, 76, TT], the scattering properties of a system for arbitrary
L can be predicted from only a few parameters: the s-wave
scattering length a, the dispersion coefficient Cg and the re-
duced mass u (and thus @). The positions where L > 0 bound
states cross threshold, and hence produce shape resonances,
depend only on the relationship between a and a. In partic-
ular, when a = 2a there is an L = 1 bound state exactly at
threshold, and systems with a slightly larger than 2a have a p-
wave shape resonance at a collision energies below the height
of the p-wave centrifugal barrier. This is the case for the '“N—
4NH system here. For a = a there is an L = 2 bound state
exactly at threshold. The scattering length for SN-SNH is
1.54a, which is close enough above a to produce a d-wave
shape resonance at finite energy. The energies at which the p-
wave and d-wave resonances appear can be read off the L = 1
and 2 lines in Fig. 10.

It should be noted that a change in the interaction poten-
tial would result in “sliding" the vertical lines representing
the four isotopic combinations horizontally along Fig. 10. A
range of behaviour can exist for potentials within our un-



0.1

0.08 |

d-wave barrier

0.06 | ~.

L=2
0.04 \

0.02

ol K = \\ B B .

0.8 0.9 1.0 11 1.2

energy /K

p-wave barrier

100

80 |

60 |

40 |

20

scattering length / A

0.8 0.9 1.0 11 1.2

>

FIG. 10. Near-threshold bound states of sextet N-NH for L =0...2
as a function of u (upper panel), and the p-dependence of the s-
wave scattering length (lower panel). Field-free calculations with a
structureless atom and diatom were used to obtain the bound states
here. The dashed vertical lines indicate the values of p for '“N-
14NH, "“N=1°NH, "'N-!4NH and "YN-!5NH, respectively, from left
to right. The red dotted line on the lower panel indicates 2a and the
green dotted line indicates a.

certainties of our calculations. Our calculations thus do not
definitively identify which characteristics will be be observed
for a particular isotopic combination.

To study the shape of the resonant features more quanti-
tatively, we can consider the Cr(E) functions introduced by
Mies [78, 79]. These functions give the connection between
a semiclassical JWKB description of scattering states (valid
at large collision energies) and the near-threshold behaviour.
The function C; ' (E) can be viewed as an enhancement factor
in the short-range part of the wavefunction due to the presence
of the long-range potential, including any resonant effects in
the incoming channel. In Fig. 11 we show the C, ' (E) func-
tions for p-wave scattering with A = 1, 1.023 and 1.031 (the
last of these values corresponding to the reduced mass of '*N—
ISNH). As the scattering length decreases and reaches 24, the
height of the peak in Cl_1 (E) goes to +oo, as shown in Fig. 12,
and the energy at which the peak occurs approaches zero. The
width of the resonance decreases, corresponding to increasing
the lifetime of the quasibound state. The intensity of the res-
onance rapidly decreases once the scattering length is larger
than 24, corresponding to a bound state below threshold.
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FIG. 11. The p-wave transmission function Cl’1 (E) for N-NH sys-
tems with reduced masses corresponding to: “N—NH (aja =
2.34), “N-NH (a/a = 1.94), and an artificial system with A =
1.031, for which a/a — 2.
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FIG. 12. The height of the peak in the C fl (E) function as a function
of reduced-mass scaling factor A.

V.  CONCLUSIONS

We have calculated a potential energy surface for N atoms
(*S) interacting with NH molecules (*X7) in the spin-% (sex-
tet) state, using unrestricted coupled-cluster calculations with
an explicitly correlated basis set. This is the surface that gov-
erns collisions of cold N atoms and NH molecules in a mag-
netic trap. We have used the surface to carry out quantum
scattering calculations of cold collisions for different isotopic
combinations of N and NH, as a function of collision energy
and magnetic field.

The sextet potential energy surface is weakly anisotropic,
with an anisotropy of approximately 40 cm~! in the well re-
gion. The anisotropy is dominated by the P>(cos 6) Legen-
dre, which mixes states with An = 42 in the NH rotational
quantum n. Since the anisotropy is smaller than the separa-
tion between the n = 0 and 2 states, it causes relatively weak
mixing during collisions and the scattering is generally elas-
tically dominated. The inelastic cross sections are suppressed
both at low energy and low field (by centrifugal barrier in the
exit channels) and at very high field (by oscillatory cancella-
tion due to the large kinetic energy release). For most isotopic



combinations the ratio of elastic to inelastic cross sections is
high enough, over a wide enough range of collision energy
and magnetic field, that sympathetic cooling of NH by N is a
good prospect.

We have shown that a scaling of the interaction potential is
approximately equivalent in its effects to a scaling of the col-
lision reduced mass. We estimate our interaction potential to
be accurate to within 3%. We have investigated scaling the
reduced mass by up to 20% from the value for *N-!“NH.
The scaling revealed that there are major effects arising for
a p-wave shape resonance, which produce enhanced inelas-
tic scattering for *N—!NH at low energies on our best po-
tential surface. We have used angular-momentum-insensitive
quantum defect theory (AQDT) to understand how the results
change for different isotopic combinations.

11

Scaling the potential energy surface, or equivalently the re-
duced mass, is a very useful tool for understanding cold colli-
sion calculations. In combination with AQDT, it can provide
powerful insights into low-energy scattering for low-energy
collisions where where only a few partial waves contribute to
the scattering.
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