AI P ‘ The Journal of

Chemical Physics
Regular and irregular vibrational states: Localized anharmonic modes in Ar 3
Nicholas J. Wright and Jeremy M. Hutson

Citation: The Journal of Chemical Physics 110, 902 (1999); doi: 10.1063/1.478057
View online: http://dx.doi.org/10.1063/1.478057

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/110/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

The effects of collision energy, vibrational mode, and vibrational angular momentum on energy transfer and
dissociation in N O 2 + —rare gas collisions: An experimental and trajectory study

J. Chem. Phys. 125, 133115 (2006); 10.1063/1.2229207

An ab initio potential energy surface and vibrational states of MgH2 (1 1 A")
J. Chem. Phys. 121, 4156 (2004); 10.1063/1.1777215

Regularity in highly excited vibrational dynamics of NOCI (X 1 A’): Quantum mechanical calculations on a new
potential energy surface
J. Chem. Phys. 119, 4251 (2003); 10.1063/1.1592503

A joint theoretical-experimental investigation of the lower bound states of the NO (X 2 I)— Ar complex
J. Chem. Phys. 113, 73 (2000); 10.1063/1.481776

Regular and irregular vibrational states: Localized anharmonic modes and transition-state spectroscopy of Na 3
J. Chem. Phys. 112, 3214 (2000); 10.1063/1.480905

TR
Launching in 2016}

cs research is here

AI P I Igrfgtonics



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1775931736/x01/AIP-PT/JCP_ArticleDL_081915/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Nicholas+J.+Wright&option1=author
http://scitation.aip.org/search?value1=Jeremy+M.+Hutson&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.478057
http://scitation.aip.org/content/aip/journal/jcp/110/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/13/10.1063/1.2229207?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/13/10.1063/1.2229207?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/121/9/10.1063/1.1777215?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/119/8/10.1063/1.1592503?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/119/8/10.1063/1.1592503?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/113/1/10.1063/1.481776?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/112/7/10.1063/1.480905?ver=pdfcov

JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 2 8 JANUARY 1999

Regular and irregular vibrational states: Localized anharmonic modes
in Ar

Nicholas J. Wright and Jeremy M. Hutson®
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, England

(Received 13 August 1998; accepted 9 October 1998

We present a method for calculating the energy levels and wave functions of floppy triatomic
molecules such as the rare gas trimers. It is based upon a potential-optimized discrete variable
representation and takes into account the wide-amplitude vibrations that occur in such systems. We
have investigated the energy levels and wave functions far Ahe wave functions for the
low-lying states show very regular behavior. Above the barrier to linearity, most of the wave
functions are irregular but some have simple nodal patterns that suggest localization along periodic
orbits. In addition to the “horseshoe” states previously described fgr, ke have identified
localized features corresponding to symmetric and antisymmetric stretching vibrations around a
linear configuration. The different localized modes can be combined to form more complex states
in a manner analogous to normal modes. 1@99 American Institute of Physics.
[S0021-960609)01402-9

I. INTRODUCTION nature of the phase space at high energies. It is often found
however that some states in this region have wave functions

The high-resolution spectra of Van der Waals trimersthat are more localized; they show regular nodal patterns and
contain detailed information on the potential energy surfaceslo not sample all the energetically accessible phase space. In
involved. Since the corresponding pair potentials are oftenheir studies of the high-lying vibrational states of {4
very well known, the trimer spectra can in favorable cases b&iCN,'® and KCN!® Tennyson and co-workers identified
used to extract information on nonadditive intermolecularseveral types of localization effect. One of the aims of this
forces!=® However, for this to be possible, precise and effi-work is to see whether the wave functions of,Ahow simi-
cient methods of calculating the spectroscopic properties dar features, despite the different energy scales and masses
trimers from potential energy surfaces are needed. involved.

Bound-state calculations on Van der Waals trimers are  There have been several previous calculations of the
challenging because the potential energy surfaces afeound states of Ar Horn et all’ used vibrational self-
strongly anharmonic, with low barriers to isomerization. Theconsistent-field theory in hyperspherical coordinates, while
molecules often perform large-amplitude coupled motions|-€itner, Berry, and Whitnelf performed a DVR calculation
sampling a significant amount of configuration space. Tdn hyperspherical coordinates. Cooper, Jain, and Hdtson
make such problems computationally tractable, methodsompared a variety of methods based on the normal mode,
based upon the discrete variable representdf/R) have Jacobi, and hyperspherical coordinate systems. However,
often been used. The most extensive calculations to dateone of these calculations provide a reliable benchmark for
have been performed on thejHmolecular iorf~8 In this ~ the present work, either because of a lack computer power
work we choose to concentrate instead on Because we available at the time or because of programming errors as
hope later to extend the methodology to,MF and ApHCI,  described in Ref. 19.
which are five-dimensional systems for whichzAurovides a
prototype. In addition, the comparison between And H;
should reveal how the dynamics depend on the potential er“-' THEORY
ergy surfaces and masses involved. Both And I—g have A. Discrete variable representation

equilibrium geometries that are equilateral triangles and both The theory of the discrete variable representatDWR)
are very “floppy,” sampling large portions of the space of \o1hq4 has been reviewed by Baand Light?° The DVR
possible nuclear configurations. In both systems ISOMerizasyn pe considered as representing the wave function in a
tion can occur via a linear transition state and the barrier i%asis set of spatially localized “DVR functions,” obtained
only about one th'rd, of the well depth. o by transformation of a corresponding set of spatially delocal-
The wave functions and energy level distribution of @, pasis functions. The spatial localization is computation-
polyatomic molecule reflect the underlying structure of itsyy agvantageous, because it allows the DVR functions to be
phase space. The high-lying vibrational states of such a sy$ajjored to the regions of configuration space accessible for a
tem might be expected to be irregular because of the ChaOtBarticular system. Lighet al2! show how to obtain a DVR
for a particular coordinate by transforming the appropriate
dElectronic mail: j.m.hutson@durham.ac.uk finite basis representatioFBR) Hamiltonian matrix ele-
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ments. In the case that the finite basis is a set of orthogondial diagonalization and truncation(SDT) contraction
functions, the DVR quadrature points and DVR-to-FBRscheme$®? Iterative diagonalization and SDT contraction
transformation matrix can be obtained using the method otan be combined to good effect when using a parallel
Harris, Engerholm, and Gwin(HEG).?? supercomputet?®

A major advantage of the DVR method is that the matrix  In the present work we use a Jacobi coordinate system to
of the potential energy operatdv, is taken to be diagonal, represent the ABC system as an atom A interacting with a
so that no multidimensional integrals over basis functions aréliatom BC. The vector of lengthr runs from atom B to
required. Another advantage arises from the structure of thatom C(where atom B is the heavier of B and C if they are
DVR Hamiltonian matrix, which can be exploited in the di- differeny). The vectorR of lengthR runs from the center of
agonalization procedure. The sparsity of the matrix makes itmass of BC to atom A4 is the angle betweenandR.
efficient to use an iterative eigenvalue solVevhile the fact In this coordinate system the DVR Hamiltonian matrix
that it is nearly block diagonal facilitates the use of sequenelements are:

a'B 'y K' _ R r K6 i"ji"'K' R r K6
He L™ = > RTiw g Ty Hijk Tia T <),
TR
hZ

/5KIK+ ?

1 L) g

—R r
= daraaﬁrﬁéyy/ 5K’K+ dﬁ'ﬁéa’agyy yfyéa,a@m, 5K’K

2 2
MR, mary
2

+ . 5 ([33+1) = 2K?]18,148p1 58, Sk — [ 1+ Sko] VA SkB  Sar B Ok K 41
1M
—[1+ 8¢0]"A 3B 1k Sar aBpr pOirk—1) V) T Sk (1)

}Nhere the rt]r?tatlipn ?f Choi and Ligaﬁlis used. Thetfirdst t‘ﬁ[’ﬁ thHamiltonian, PAR. are calculated numerically using the
erms are the kinetic energy operators associated wi , AR
two radial coordinateR and%),/ thz third term is the angular ECHRQ subroutine. In the present work}Hr is taken to
kinetic energy, the fourth term contains the centrifugal term
and the Coriolis coupling, and the final term is the potential R B2 52
energy. The transformation matricEsare labeled by super- PHR = - >——+Vi(R), 3
scriptsR, r, andK 6 to indicate the coordinate that they refer .
to. Greek suffixes refer to DVR points and Roman suffixes toyhere
FBR functions. The reduced masses and u, correspond
to the complete complex (@,,/3 here and the diatom
(Ma/2 herg, respectively. All calculations in the present
work are forJ=0, so that the centrifugal term and the Cori-
olis coupling are zero, but our implementation allows Jor and V{,(R) is obtained by minimizingv(R,r,6) with re-
#0. spect tor at 6=90° (see Fig. 1
The definition of\/E(R) in Eq.(4) includesL ,,, which is
the minimum value of. (the quantum number corresponding
to end-over-end rotation in a space-fixed representafimm
each symmetry block. The symmetry blocks are explained in
The nth wave function of the system, with parityand  more detail below, but for now we note that in the even
total angular momentur, may be expanded in a finite basis (A;/E) symmetry blockL is always even and therefotg;,
representation as is 0. For the odd A, /E) blockL is always odd andl, is 1.
This term prevents any DVR points for the odd symmetry
block being placed in the unsampled region of space near
R=0, where they would be redunda@nd cause numerical
(2)  problems.

The procedure used to define the basis functi¢f(s)
where the function@,’((cosa) are associated Legendre poly- for ther coordinate is similar except thaf,,(r) is obtained
nomials. The functions¢iR(R) and qb}(r) are potential- by minimizing V(R,r,6) with respect toR, at both§=90°
optimized basis functions iR andr (described beloy and 0°, and taking the lower of the two results. Ng(L,

To generate the potential-optimized functiaﬁE(R) for +1) term is included here because the limi0 corre-
the R coordinate, solutions of a one-dimensional referencesponds to nuclear coalescence and is excluded(Byr, 6).

#2 L(Ly+1)
VR(R)= Z—M%wm R) (4

B. Basis functions

xng(R,r,te')=R‘lr‘li%< Ciffkn #1(R)S}(r)PI‘(cos0),
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TABLE |. A sample of the energy levels calculated forsAThe potential -100
minimum is at—298.65 cm *. The full list is available electronicallyRef.
34).
A, /E A, E
-150
r n E, (cm™ ) E, (cm™%) n
A, 1 —254.89 -
E 2 —232.38 —232.38 1 'g
A 3 —224.29 = -200
A 4 —211.95 55
E 5 —211.83 —211.83 2 I>E
A 17 —173.52 250
E 18 —-173.43 —173.43 10 B
A 19 —172.75
E 20 —172.42 —172.42 11
E 21 —-171.79 —-171.79 12
A 22 —171.61 -300
E 56 —145.85 —145.85 35 FIG. 1. The one-dimensional potential energy function used to obtain the
Az —145.82 36 potential-optimized DVR quadrature pointsi The dashed line shows the
AL 57 —145.37 potential including the centrifugal term that is used for the odd symmetry
E 58 —144.64 —144.64 37 block. The atomic configurations at selected points are shown to illustrate
Ay 59 —144.12 the isomerization pathway.
E 60 —144.07 —144.07 38
E ggg _gg"z"? —89.48 235 generate such functions that are either even or odd with re-
) _89. . .  _p»8
E 287 _89.95 _89.23 236 spect to .the transformat|onR—> R _ (though the concept
A 288 -89.14 of R<0 is not meaningful for Jacobi coordinates as defined
E 289 —-89.07 —-89.07 237 hera. Mandelshtam and Tayl®found empirically that odd
Ay —89.05 238 parity functions give the best convergence for the even
E ;gi 722'22 ~89.01 239 (A1/E) symmetry block and even parity functions give the
1 - .

best convergence for the odd{/E) symmetry block.

The pairings may be explained as follows. In the even
symmetry block¥ (R,r, ) is finite atR=0. To achieve this,

The basis-generating potential§(R) andVi(r) are de-  limg_ R *¢X(R) must be finite, so thap{(R) itself must
signed to ensure that the basis sets span all values of ofe linear inR near the origin. This is achieved by generating
coordinate that are accessible at any value of another. Theasis functions¢iR(R) with a node atR=0 but a finite de-
numerical functions obtained by solving the correspondingivative. These correspond to functions that are odd with
one-dimensional Hamiltonians are used in a calculatiorrespect to the transformatiorR— —R.” Conversely, in the
based on the HE® method to obtain potential-optimized
DVR (PO-DVR? points in the required range.

600 b

C. Symmetry

The molecular symmetry group of Ais D3n(M). How- seor T

ever, the only symmetry operation that appears naturally in
Jacobi coordinates is permutation of the labels of the ‘dia-5 400
tom’ nuclei, which has the effed— 7— 6. Use of the Ja-
cobi coordinate system effectively reduces the molecular
symmetry group taC,,(M). The Hamiltonian matrix splits
into two blocks, symmetric and antisymmetric with respect g
to the permutation. In terms of labels Bf;,(M), the even 200 - /' ]
block containsA; and E (component 1 and the odd block %
containsA, andE (component 2 The symmetric block con- 100 | /,f |
tains only functions with even in Eq.(2) and the odd block e
contains only functions with odd. e ’

Since the linear geometry witR=0 is accessible in %50 200 150 100
Arz, some care is needed to establish the boundary condi E (em™)

. ’7’8 . . .
tions that apply ther€’ SinceW(R,r, 6) must be finite or FIG. 2. The eigenvalue distribution of Ar The density of states is the

_ ; ; R
zero atR=0, the basis funCt'Onﬂ’i (R) must _be zero at the gradient of the curve. The increase in the density of states above the barrier
origin because of th& ! factor in Eq.(2). It is possible to  to linearity is clearly visible aroune- 170 cni 2.

by

ue numi

300 E

genval
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a
90° 90°

I
47 Ground Stqtle < A /E stot?1 17 FIG. 3. Wave functions of Arplotted

—254.9cm N —173.5cm \ in Jacobi coordinates as a function of
T 3 T T T T R andr for #=90°. The dotted line
0 1 2 3 4 5 0 1 2 3 4 5 shows the boundary of the classically
allowed region of configuration space
at the energy concerned. Solid and
dashed contours show positive and
negative values of the wave function,
respectively. Contours are for 0.64,
0.32, 0.16, 0.08, and 0.04 of the maxi-
mum amplitude.

44 A, /E state 289
—89.1ecm™’ ! —89.1cm™’

antisymmetric blockW (R,r,6) is zero atR=0. To achieve ues(the range of the spectrupiThe IRLM also converges
this, limg_oR 1¢;(R) must be zero, so thabiR(R) itself  best if the eigenvalues of interest are well separated from the
must have a zero valuand derivativeat the origin. The rest of the spectrum. To improve the separation of the eigen-
simplest such functions are those that are quadrafitriear  value spectrum, we use the Chebychev polynomial precon-
the origin, which are even with respect to the transformatiorditioning scheme described by Korambath, Wu, and Hafes.

R——R. This involves finding the eigenvectors of a polynomial func-
tion of the matrix and then using them to obtain the eigen-
D. Lanczos diagonalization values of the original matrix.

We obtain the eigenvalues and eigenvectors of the. When.constructmg aPVR grid in thie c;oordmate, spe-
Hamiltonian matrix using the implicitly restarted Lanczos i@l attention must be paid to the behavior near the origin,
method (IRLM) as outlined by Sorenséh3! The method R=0, which corresponds_ to one atom lying exactly midway
does not require explicit construction of the Hamiltonian ma-Petween the other twéa linear geometry For Ar; the bar-
trix; only matrix-vector products involving the Hamiltonian Mer to linearity is relatively low, so that this region must be
are needed. This allows diagonalization of matrices far largefnodeled carefully if states above the barrier are to be accu-
than could be stored in computer memory. The computalate. The angular kinetic energy involves a factorRof?,
tional cost of the IRLM can be broken down into two pieces.and is thus singular &=0 unlesd.=0. As long as no DVR
The first is associated with the internal numerical operatiorfluadrature point is placed exactly B=0, this does not
over the IRLM routines, over which the user has little con-introduce an actual singularity into the DVR Hamiltonian
trol. The second is associated with the calculation of thenatrix. Nevertheless, close t8=0 it is not adequate to
matrix-vector products, which can be made very efficientassume that thR™2 operator is diagonal in the DVR repre-
because of the sparsity of the DVR Hamiltonian matrix. ~ sentation. In their calculation onjH Henderson, Tennyson,

The rate of convergence of the IRLM towards a solutionand Sutcliffé found that assuming th& 2 operator was
depends on the eigenvalue distribution of the Hamiltoniardiagonal produced nonvariational convergence of the energy
matrix. The rate of convergence is inversely proportional tdevels. Correction for the effect is simple using our numeri-
the difference between the the largest and smallest eigenvatal potential-optimized functions, because the matrix of the
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FIG. 4. Wave functions of Arplotted
as in Fig. 3 and as a function ofand

6 for r=3.757 A . The dotted line
shows the boundary of the classically
allowed region of configuration space
at the energy concerned. Solid and
dashed contours show positive and
negative values of the wave function,
respectively. Contours are for 0.64,
0.32, 0.16, 0.08, and 0.04 of the maxi-
mum amplitude.

2 2
14 A./E state 58 14 A./E state 59
—144.6cm™’ —-144.1cm™’
Y T T T 0 T T T
0 50 100 150 0 50 100 150
0 (deg) 6 (deg)

1/R? operator in the FBR can be computed accurately byE. Potential energy surface
numerical quadraturé€Simpson’s rulg and then transformed

into the DVR. This gives angular kinetic energy terms thatdeC
are off-diagonal between different pointsR) which makes
computation of the product of the Hamiltonian and the trial
vector in the Lanczos diagonalization a little more expensive,  Viimer= Vas(rag) + Vec(rec) T Vac(rac) + Vionads  (5)

but not prohibitively so. wherer x5, 'gc, andr xc are the interatomic distances. In the

; -2
The large matrix elements &®"~ term also lead 10 @ 5 aqent work we have used the pairwise-additive approxima-
large spectral range for the Hamiltonian matrix, which inhib-44 1 \which neglects the relatively small teffnage In the

its efficient diagonalization. One way of dealing with this is present work, the zero of energy corresponds to infinitely
that used by Mandelshtam and Tayforho defined an up- separated atoms.

per limit for the matrix glements of the angqlar' kilnetic eN-  The potential energy surface for Ais constructed using
ergy operator; any matrix element above this limit was Sethe HEDID1 Ar—Ar pair potential of AziZ2 which has a

equal to it. This appr_oach, although successful i_n their worky | depth e=99.55 cm! at an interatomic distance;,
does not mix well with the correction _for the failure of the _3 757 A The resulting Ar surface has a well depth of
DV_R gquadrature approximation descrlk_)ed above. The trung 299 ¢ L. Any pairwise-additive surface for an atomic
cation must be done before transforming to the DVR, antyjmer has a barrier to linearity that is very close to the pair

this destroys the separability of the angular kinetic energy,sential well depth, about 100 chin this case. The lowest
operator. Successive diagonalization and truncation providegssociation channel. to ArAr, (v=0) lies 85 cr ! below

a more elegant way to remove the unphysically large comMge senarated atoms, and thus 214 érabove the equilib-
ponents of the angular kinetic energy matrix; in our imple- geometry.

mentation, we first diagonalize(eelatively small DVR ma-

trix evaluat_ed at _flxed (with basis funct|_ons foR and _6) Il RESULTS AND DISCUSSION
and then reject eigenvectors corresponding to large eigenval-
ues in choosing the basis set for the final Lanczos diagonal- We have attempted to calculate the energy levels and
ization. wave functions for all=0 bound states of Ar The DVR

The potential energy surface for a trimer, ABC, may be
omposed into pairwise-additive and nonadditive contribu-
tions,
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basis set was constructed using 34 point®,ird6 points in '

R, and 38 points irr. The 34 angular points witl#<90°

were taken from a 68-point Gauss-Legendre quadrature. Th -
guadrature points iR were obtained by applying the HEG -
procedure to 46 numerical basis functions, which were in | -

turn obtained by integrating the one-dimensional Schro
dinger equatiofEq. (3)] from R=0 to 8 A. The quadrature g
points inr were obtained similarly, propagating frans 3 to

10 A. SDT contraction was not used in these calculations

)
|

gy (
1

s -180 -
f=
v} -

because of memory limitations, although it is implemented in -

our program.

Samples of the energy levels obtained in different energy

-220 |

regimes are given in Table I; the complete set is available -

electronically®* The large majority of the states lie above the
barrier to linearity. We obtain 336 states from the even sym-

—260 T L

metry block (N, +Ng) and 277 states from the odd symme-

try block (NA2+ Ng) below the lowest dissociation channel.

10 15 20 25
no. of quanta

FIG. 5. Progression of regular states i; AThe lower set of levels are the

It is likely that we have missed at least a few long-rangenorseshoe-like states, and the upper set are the “linear symmetric stretch”
levels very close to dissociation. The difference between thévels.
energies of correspondirtglevels in the even and odd sym-

metry blocks provides a useful measure of the basis-set con-
vergence and suggests that our results are accurate to about

+0.05 cm L.

However, the high density of states makesFig. 2; the density of states is the gradient of this. The den-

identification of E levels from near-degeneracies unreliablesity of states shows a sharp increase near the barrier to lin-
earity, where a significant amount of extra phase space be-
The cumulative energy level distribution is shown in comes accessible. The density then increases fairly steadily

at high energies.

90°

A, /E state 79\ \

—134.1cm™ !

90°
- \\\
o\
\
P o \
i N o i 3
41 A./E state 126\ S 44 A./E state 177 \
—118.6cm’’ N —106.2cm”™ N
3 T T T T 3 T T T T
0 1 4 5 0 1 4 5

2R (A)s

2R (A)s

FIG. 6. Wave functions for states in-
volving excitation in the linear sym-
metric stretch mode, plotted as in Fig.
3. (a)—(d) show states witln;=1 to 4.
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9 a 9 b
o° 0

8 8
7 7

N

o<l

p—

_ 6 6

44 A,/E state 125 41 A,/E state 126

—118.6cm™ —118.6cm™
3 T T T T T T T 3 T T T T T T T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 FIG. 7. Wave functions for states of
8 different symmetry withng=3 in the
9 c d linear symmetric stretch mode, plotted

as in Fig. 4.

44 A,/E state 94
-1186cm™'

1 A, /E state 125
-118.6cm™’

Y T T T
8 0 50 100 150

6 (deg)

from about 2 states/cnt at the barrier maximum to about 8 twice the zero-point energy of Ar(15 cm 1), so the first
states/cm?® at E=—100 cm L. level to sample the region around linearity significantly is

It is interesting to compare the wave functions for, Ar expected near 170 cnil. The first state that actually has
with those for H .%~1*Examples of the present results are significant amplitude arounB=0 is the 17th state oA, /E
shown as contour plots in Fig. 3. Since the wave functionsymmetry at—173.5 cni X, The wave function for this state
are functions of three coordinates, they are presented here esshown in Fig. 8), along with that for the ground state
cuts at either fixed or fixedr. Other representations can be [Fig. 3a)].
envisaged, but these appear to be the most helpful for present In H; , extensive localization effects were observed in
purposes. TheR™! andr~?! factors in Eq.(2) have been the wave functions of states lying above the barrier to
included, because without them all the wave functions aplinearity?=** In particular, Tennyson and co-work&rs®
pear to have a nodal plane Rt=0. observed a progression of “horseshoe” states, in which one

Normal mode quantum numbers are not appropriate foH atom moves between the other twand out the other
highly excited states of floppy molecules. Foi Han as-  side, with the two “outer” atoms moving apart to make
signment in terms of normal modes has been possible onlway for it. The horseshoe states are so-called because their
up to the fourth polyad? For Arg, there are only six vibra- wave functions show a regular nodal pattern that follows a
tional levels that lie below the classical barrier to isomeriza-horseshoe-shaped curve in a representation such as Fig. 3,
tion. The effective barrier is raised somewhat by zero-poinincluding the reflection to negativR. In H; , the “regular”
energy at the transition state, but nevertheless only the lowhorseshoe states are embedded in a “bath” of irregular
est few levels can be assigned in terms of normal modes. Fatates, and in most cases the horseshoe character is spread
Ar; on the HFD-C potential energy surfateCooper, Jain, over a considerable number of eigenstates. Under these cir-
and Hutsor? were able to assign the first excitation in eachcumstances, correlation functidisvere found useful in ana-
mode and some of the states in the second polyad. The HFyzing the underlying regular features. The positions of the
DID1 potentiaf® used in the present work is qualitatively horseshoe states correspond to intensity peaks in the calcu-
similar, and the assignments of the low-energy states are tHated spectruni?
same. We have observed similar effects in AAras shown in

The classical isomerization barrier occurs atl99  Fig. 3. Once again there are a few regular states, with rela-
cm 1. At the linear geometry, Aris expected to have about tively simple nodal patterns, lying among and mixed with a
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dense bath of irregular states. A particularly clear example of
a horseshoe state is shown in Figc)3 The wave function 0°
may be contrasted with that for an irregular bath state such as
that in Fig. 3d). The wave function for the bath state shows 8
no obvious nodal pattern and fills all the energetically avail-

able space. A

A triatomic molecule can be described in terms of an <

atom A and a diatom BC in three different ways. Each Ar C
geometry can thus be described by three different sets of

-

2

Jacobi coordinates corresponding to different labelings of 57

the atoms. For example, the symmetric linear geometry

with rag=rgc=r,, can be described by R(r,6) 49 A,/E state 52

=(0,2r ,,undefined), (1.5,,rm,0°), and (1.5,,,r,,180°). —1354cm™

It is important to remember this when interpreting wave 3 T T T T T T

functions. This is illustrated in Fig. 4, which shows two
neighboring states with horseshoe character. The wave func-
tions are shown both as functions®fandr for #=90° and
as functions ofR and 6 for r=r,,=3.757 A. Although the
paths followed in coordinate space are quite different in Figs.
4(a) and 4c), the molecular configurations involved are in
fact the same: another way to view the horseshoe motion is
as an Ar atom rotating around the end of an Aratom.

One difference between Aand H; is that in Ar there
are fewer bath states underlying each regular state, and the
regular character is generally spread over a few eigenstates at
most. The regular patterns can be seen more easily in the
wave functions for A¢ than for rg The progression of
horseshoe-like states can be followed all the way down to the 17
ground state, although below the barrier to linearity the
horseshoe is “broken,” with no amplitude nek=0. The
resulting energy level pattern is shown in Fig. 5, and shows 8 (deq)
a remarkably regulafthough strongly anharmoniprogres- 9
sion, with a plateau that corresponds to the barrier to linear- 9] 88"
ity.

A, /E state 52
—135.4cm™’

0 T T T
0 50 100 150

We have observed several additional types of localiza- 8 '
tion effect(“localized anharmonic modeg'in Ar;. Most of
these can be explained in terms of vibrations about a sym- 74
metrical linear geometry, which corresponds to a saddle
point on the potential energy surfaces of both Bnd Ar,.
Indeed, the horseshoe motion can be considered(asrg
wide-amplitude bending motion about such a geometry. 5
Symmetric and antisymmetric stretching vibrations about the ,
linear geo.metry can also be envisaged, and both these are o A, /E state 52“
observed in one form or another. —135.4cm”’

The linear symmetric stretch mode is most clearly seen
as excitation in the coordinate withR close to zero. Figure 0 1 2 3 4 5 6 7
6 shows states with quantum numberg=1 to 4 in this R (A)
mode. The symmetric stretch energy levels also show a regu-
lar progression, as shown in Fig. 5. The equilibrium geom-IG. 8. Wave functions for states involving one quantum of excitation in the
etry of Ar, hasr,,=3.757 A, so the three equivalent linear atom—diatom intermplecular stretch_mode, plotted as in Fig. 4. This mode

. corresponds to the linear asymmetric stretcl9at0 and to the horseshoe
saddle point structures haveRf,0)~(0, 7.52 A, unde- mode near=90°.
fined), (5.64 A, 3.76 A, 0°) and5.64 A, 3.76 A, 180°). The
wave functions for the three states with=3 are shown in
Fig. 7, and may be seen to show amplitude at all three gegroupD3,(M). It may be seen that our basis $&hich does
ometries. Note that the symmetric stretch correspond? to not explicitly impose this symmetyyhas produced reason-
andr increasingin phasewith one another in the feature at ably well-symmetrized wave functions for these three states.
r=r.. The properly symmetrized states are combinations ofAs expected, two of the statgs,, Fig. /@), and one com-
the states localized about the three equivalent linear geonponent ofE, Fig. 7(b)] are in the even symmetry block, and
etries, withA; andE symmetry in the molecular symmetry the third is in the odd block. Figure(d@ shows theA, state

e
o<
g
v 6
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6 FIG. 9. Wave functions for states in-
C 89 volving simultaneous excitation in the
<. AN linear symmetric stretch and horseshoe
5] @ modes, plotted as in Fig. 3.
3 ‘__)_
41 A,/E state 90 41 A, /E state 100 =, &N ™~
—130.2cm”’ —126.5¢cm”' @@_ <
3 T T T T 3 T T T T
0 1 4 5 0 1 4 5

for ng=3 as a function oRand# for r =r,; it may be seen

2R (A)s

and periodic orbits of Ay would be an interesting topic for

that the function is indeed localized around the linear confuture work.

figuratior(s), and does not undergo large angular excursions.

The picture of regular features spread over several states

We also looked for the antisymmetric stretch mode. Theaccords with the standard “time-independent” picture of in-

obvious place to look for it is ab=0, as excitations iR

tramolecular vibrational energy redistributfSr{lVR): when

aboutR=0 with r~2r,,. Such features are indeed observed,a regular state is embedded in a dense bath of other states,
as seen in Fig. @ (which is for a state in the odd block, the character of the regular state is spread out over the bath
because a node is requiredRé=0). This state also shows States, its contribution peaking as a function of energy in a
amplitude around the configuration corresponding to the “re-near-Lorentzian manner. At higher energies, the density of
ordered” linear geometries. Since this is an antisymmetridoath states is greater and the “regular” character is spread

stretch,R andr increaseout of phaseawvith one another in the
feature atr =r,,. However, in this case the amplituderist
confined to the linear geometries. Figuré)8shows the
wave function as a function d® and 6 for r=r, and Fig.
8(c) shows it as a function oR andr for §=80° (because

over more energy levels. If the bath is dense enough, it may
turn out that no one eigenstate ends up with a significant
amount of regular character. Such effects can be thought of
as the bound state analogue of quantum mechanical scatter-
ing resonances. When the quasicontinuum becomes an actual

there is a node af=90°): the molecule is clearly undergo- (dissociativg continuum, the regular character is spread out
ing horseshoe-type motion in addition to the antisymmetricover the width of the resulting predissociating state.
stretch. The stretching motion involved here is perhaps best

considered as the intermolecular stretch of an atom—dlatorpv_ CONCLUSIONS

complex. At =0, the radial motion in Fig. ®) is essen-

tially the asymmetric stretch of a linear molecule, but near

We have developed a method of calculating the energy

#=90° the amplitude of the “stretching” motion is enough levels and wave functions of floppy triatomic molecules
to carry the atom through the center of the diatom, and this ibased upon the potential-optimized discrete variable repre-

the horseshoe motion.

sentation(PO-DVR). The method allows accurate calcula-

It is interesting that localized anharmonic modes can beions on states above the barrier to isomerization by the use
combined in much the same way as normal modes. Figuresf a numerical finite basis representation from which the cor-
9(a) and 9b) show another pair of localized states which areresponding PO-DVR is obtained.

combinations of the symmetric stretch and horseshoe modes.

Most of the states that lie above the isomerization barrier

These states are similar to the “nodal horseshoe” describedre irregular in character; they fill all the energetically acces-
for H; in Ref.36. The fact that the nodal horseshoe is asible configuration space, and their wave functions have no
combination of two localized modes suggests that the lineaobvious nodal pattern. However, embedded among these ir-

symmetric stretch mode is probably present i &s well.

regular states are some more regular states, which are more

In Hg, the regular states are localized along the trajeclocalized and have simple nodal patterns. The regular and

tories of classical periodic orbifé.A study of the periodic

irregular states are mixed to a greater or lesser extent, and in

orbits of Ar; on the potential energy surface used here hasome cases the regular character is spread over several eigen-

been carried ou but it concentrated on At Ar, collisions
(at energies above those relevant to bound sta@alculat-
ing the bound-state periodic orbits of Ais beyond the

states. This general behavior is similar to that observed pre-
viously for the H molecular ion.

The horseshoe localization effect previously observed in

scope of the present work, but it seems reasonable to aH; is also present in Ar We have also found additional
tribute the localization effects observed here to such orbitstypes of localization effect, corresponding to symmetric and
Investigating the connection between the localization effectantisymmetric stretching motions about a linear configura-
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