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Regular and irregular vibrational states: Localized anharmonic modes
in Ar 3

Nicholas J. Wright and Jeremy M. Hutsona)

Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, England

~Received 13 August 1998; accepted 9 October 1998!

We present a method for calculating the energy levels and wave functions of floppy triatomic
molecules such as the rare gas trimers. It is based upon a potential-optimized discrete variable
representation and takes into account the wide-amplitude vibrations that occur in such systems. We
have investigated the energy levels and wave functions for Ar3 . The wave functions for the
low-lying states show very regular behavior. Above the barrier to linearity, most of the wave
functions are irregular but some have simple nodal patterns that suggest localization along periodic
orbits. In addition to the ‘‘horseshoe’’ states previously described for H3

1 , we have identified
localized features corresponding to symmetric and antisymmetric stretching vibrations around a
linear configuration. The different localized modes can be combined to form more complex states
in a manner analogous to normal modes. ©1999 American Institute of Physics.
@S0021-9606~99!01402-6#

I. INTRODUCTION

The high-resolution spectra of Van der Waals trimers
contain detailed information on the potential energy surfaces
involved. Since the corresponding pair potentials are often
very well known, the trimer spectra can in favorable cases be
used to extract information on nonadditive intermolecular
forces.1–5 However, for this to be possible, precise and effi-
cient methods of calculating the spectroscopic properties of
trimers from potential energy surfaces are needed.

Bound-state calculations on Van der Waals trimers are
challenging because the potential energy surfaces are
strongly anharmonic, with low barriers to isomerization. The
molecules often perform large-amplitude coupled motions,
sampling a significant amount of configuration space. To
make such problems computationally tractable, methods
based upon the discrete variable representation~DVR! have
often been used. The most extensive calculations to date
have been performed on the H3

1 molecular ion.6–8 In this
work we choose to concentrate instead on Ar3 because we
hope later to extend the methodology to Ar2HF and Ar2HCl,
which are five-dimensional systems for which Ar3 provides a
prototype. In addition, the comparison between Ar3 and H3

1

should reveal how the dynamics depend on the potential en-
ergy surfaces and masses involved. Both Ar3 and H3

1 have
equilibrium geometries that are equilateral triangles and both
are very ‘‘floppy,’’ sampling large portions of the space of
possible nuclear configurations. In both systems isomeriza-
tion can occur via a linear transition state and the barrier is
only about one third of the well depth.

The wave functions and energy level distribution of a
polyatomic molecule reflect the underlying structure of its
phase space. The high-lying vibrational states of such a sys-
tem might be expected to be irregular because of the chaotic

nature of the phase space at high energies. It is often found
however that some states in this region have wave functions
that are more localized; they show regular nodal patterns and
do not sample all the energetically accessible phase space. In
their studies of the high-lying vibrational states of H3

1 ,9–14

LiCN,15 and KCN,16 Tennyson and co-workers identified
several types of localization effect. One of the aims of this
work is to see whether the wave functions of Ar3 show simi-
lar features, despite the different energy scales and masses
involved.

There have been several previous calculations of the
bound states of Ar3 . Horn et al.17 used vibrational self-
consistent-field theory in hyperspherical coordinates, while
Leitner, Berry, and Whitnell18 performed a DVR calculation
in hyperspherical coordinates. Cooper, Jain, and Hutson19

compared a variety of methods based on the normal mode,
Jacobi, and hyperspherical coordinate systems. However,
none of these calculations provide a reliable benchmark for
the present work, either because of a lack computer power
available at the time or because of programming errors as
described in Ref. 19.

II. THEORY

A. Discrete variable representation

The theory of the discrete variable representation~DVR!
method has been reviewed by Bacˇić and Light.20 The DVR
can be considered as representing the wave function in a
basis set of spatially localized ‘‘DVR functions,’’ obtained
by transformation of a corresponding set of spatially delocal-
ized basis functions. The spatial localization is computation-
ally advantageous, because it allows the DVR functions to be
tailored to the regions of configuration space accessible for a
particular system. Lightet al.21 show how to obtain a DVR
for a particular coordinate by transforming the appropriate
finite basis representation~FBR! Hamiltonian matrix ele-a!Electronic mail: j.m.hutson@durham.ac.uk
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ments. In the case that the finite basis is a set of orthogonal
functions, the DVR quadrature points and DVR-to-FBR
transformation matrix can be obtained using the method of
Harris, Engerholm, and Gwinn~HEG!.22

A major advantage of the DVR method is that the matrix
of the potential energy operator,V̂, is taken to be diagonal,
so that no multidimensional integrals over basis functions are
required. Another advantage arises from the structure of the
DVR Hamiltonian matrix, which can be exploited in the di-
agonalization procedure. The sparsity of the matrix makes it
efficient to use an iterative eigenvalue solver,7 while the fact
that it is nearly block diagonal facilitates the use of sequen-

tial diagonalization and truncation~SDT! contraction
schemes.23,9 Iterative diagonalization and SDT contraction
can be combined to good effect when using a parallel
supercomputer.24,25

In the present work we use a Jacobi coordinate system to
represent the ABC system as an atom A interacting with a
diatom BC. The vectorr of length r runs from atom B to
atom C~where atom B is the heavier of B and C if they are
different!. The vectorR of lengthR runs from the center of
mass of BC to atom A.u is the angle betweenr andR.

In this coordinate system the DVR Hamiltonian matrix
elements are:

HabgK
a8b8g8K85 (

i i 8 j j 8 l l 8

RTi 8a8
rTj 8b8

KuTl 8g8Hi jlK
i 8 j 8 l 8K8 RTia

rTj b
KuTlg

5Rda8adb8bdgg8dK8K1 rdb8bda8adgg8dK8K1
\2

2 S 1

m1Ra
2

1
1

m2r b
2 D uKdg8gda8adbb8dK8K

1
\2

2m1Ra
2 ~@J~J11!22K2#da8adb8bdgg8dK8K2@11dK0#1/2LJK

1 Bgg8K
1 da8adb8bdK8K11

2@11dK80#1/2LJK
2 Bgg8K

2 da8adb8bdK8K21!1Vabg
a8b8g8dK8K , ~1!

where the notation of Choi and Light26 is used. The first two
terms are the kinetic energy operators associated with the
two radial coordinates,R andr , the third term is the angular
kinetic energy, the fourth term contains the centrifugal term
and the Coriolis coupling, and the final term is the potential
energy. The transformation matricesT are labeled by super-
scriptsR, r, andKu to indicate the coordinate that they refer
to. Greek suffixes refer to DVR points and Roman suffixes to
FBR functions. The reduced massesm1 and m2 correspond
to the complete complex (2MAr/3 here! and the diatom
(MAr/2 here!, respectively. All calculations in the present
work are forJ50, so that the centrifugal term and the Cori-
olis coupling are zero, but our implementation allows forJ
Þ0.

B. Basis functions

The nth wave function of the system, with parityp and
total angular momentumJ, may be expanded in a finite basis
representation as

Cn
pJ~R,r ,u!5R21r 21(

i j lK
ci j lKn

Jp f i
R~R!f j

r~r !Pl
K~cosu!,

~2!

where the functionsPl
K(cosu) are associated Legendre poly-

nomials. The functionsf i
R(R) and f j

r(r ) are potential-
optimized basis functions inR and r ~described below!.

To generate the potential-optimized functionsf i
R(R) for

the R coordinate, solutions of a one-dimensional reference

Hamiltonian, 1DĤ ref
R , are calculated numerically using the

SCHRQ27 subroutine. In the present work,1DĤ ref
R is taken to

be

1DĤ ref
R 52

\2

2m1

]2

]R2
1Vb

R~R!, ~3!

where

Vb
R~R!5

\2

2m1

Lm~Lm11!

R2
1Vmin

R ~R! ~4!

and Vmin
R (R) is obtained by minimizingV(R,r ,u) with re-

spect tor at u590° ~see Fig. 1!.
The definition ofVb

R(R) in Eq. ~4! includesLm , which is
the minimum value ofL ~the quantum number corresponding
to end-over-end rotation in a space-fixed representation! for
each symmetry block. The symmetry blocks are explained in
more detail below, but for now we note that in the even
(A1 /E) symmetry blockL is always even and thereforeLm

is 0. For the odd (A2 /E) block L is always odd andLm is 1.
This term prevents any DVR points for the odd symmetry
block being placed in the unsampled region of space near
R50, where they would be redundant~and cause numerical
problems!.

The procedure used to define the basis functionsf j
r(r )

for the r coordinate is similar except thatVmin
r (r ) is obtained

by minimizing V(R,r ,u) with respect toR, at bothu590°
and 0°, and taking the lower of the two results. NoLm(Lm

11) term is included here because the limitr 50 corre-
sponds to nuclear coalescence and is excluded byV(R,r ,u).
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The basis-generating potentialsVb
R(R) andVb

r (r ) are de-
signed to ensure that the basis sets span all values of one
coordinate that are accessible at any value of another. The
numerical functions obtained by solving the corresponding
one-dimensional Hamiltonians are used in a calculation
based on the HEG22 method to obtain potential-optimized
DVR ~PO-DVR!28 points in the required range.

C. Symmetry

The molecular symmetry group of Ar3 is D3h(M ). How-
ever, the only symmetry operation that appears naturally in
Jacobi coordinates is permutation of the labels of the ‘dia-
tom’ nuclei, which has the effectu→p2u. Use of the Ja-
cobi coordinate system effectively reduces the molecular
symmetry group toC2v(M ). The Hamiltonian matrix splits
into two blocks, symmetric and antisymmetric with respect
to the permutation. In terms of labels ofD3h(M ), the even
block containsA1 and E ~component 1! and the odd block
containsA2 andE ~component 2!. The symmetric block con-
tains only functions withl even in Eq.~2! and the odd block
contains only functions withl odd.

Since the linear geometry withR50 is accessible in
Ar3 , some care is needed to establish the boundary condi-
tions that apply there.29,7,8SinceC(R,r ,u) must be finite or
zero atR50, the basis functionsf i

R(R) must be zero at the
origin because of theR21 factor in Eq.~2!. It is possible to

generate such functions that are either even or odd with re-
spect to the transformation ‘‘R→2R’’ 8 ~though the concept
of R,0 is not meaningful for Jacobi coordinates as defined
here!. Mandelshtam and Taylor8 found empirically that odd
parity functions give the best convergence for the even
(A1 /E) symmetry block and even parity functions give the
best convergence for the odd (A2 /E) symmetry block.

The pairings may be explained as follows. In the even
symmetry block,C(R,r ,u) is finite atR50. To achieve this,
limR→0R21f i

R(R) must be finite, so thatf i
R(R) itself must

be linear inR near the origin. This is achieved by generating
basis functionsf i

R(R) with a node atR50 but a finite de-
rivative. These correspond to functions that are odd with
respect to the transformation ‘‘R→2R. ’’ Conversely, in the

TABLE I. A sample of the energy levels calculated for Ar3 . The potential
minimum is at2298.65 cm21. The full list is available electronically~Ref.
34!.

A1 /E A2 /E

G n En (cm21) En (cm21) n

A1 1 2254.89
E 2 2232.38 2232.38 1
A1 3 2224.29
A1 4 2211.95
E 5 2211.83 2211.83 2
¯ ¯ ¯ ¯ ¯

A1 17 2173.52
E 18 2173.43 2173.43 10
A1 19 2172.75
E 20 2172.42 2172.42 11
E 21 2171.79 2171.79 12
A1 22 2171.61
A2 2171.21 13
¯ ¯ ¯ ¯ ¯

E 56 2145.85 2145.85 35
A2 2145.82 36
A1 57 2145.37
E 58 2144.64 2144.64 37
A1 59 2144.12
E 60 2144.07 2144.07 38
¯ ¯ ¯ ¯ ¯

E 285 289.48 289.48 235
A1 286 289.27
E 287 289.25 289.23 236
A1 288 289.14
E 289 289.07 289.07 237
A2 289.05 238
E 290 288.99 289.01 239
A1 291 288.95

FIG. 1. The one-dimensional potential energy function used to obtain the
potential-optimized DVR quadrature points inR. The dashed line shows the
potential including the centrifugal term that is used for the odd symmetry
block. The atomic configurations at selected points are shown to illustrate
the isomerization pathway.

FIG. 2. The eigenvalue distribution of Ar3 . The density of states is the
gradient of the curve. The increase in the density of states above the barrier
to linearity is clearly visible around2170 cm21.
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antisymmetric block,C(R,r ,u) is zero atR50. To achieve
this, limR→0R21f i(R) must be zero, so thatf i

R(R) itself
must have a zero valueand derivativeat the origin. The
simplest such functions are those that are quadratic inR near
the origin, which are even with respect to the transformation
R→2R.

D. Lanczos diagonalization

We obtain the eigenvalues and eigenvectors of the
Hamiltonian matrix using the implicitly restarted Lanczos
method ~IRLM ! as outlined by Sorensen.30,31 The method
does not require explicit construction of the Hamiltonian ma-
trix; only matrix-vector products involving the Hamiltonian
are needed. This allows diagonalization of matrices far larger
than could be stored in computer memory. The computa-
tional cost of the IRLM can be broken down into two pieces.
The first is associated with the internal numerical operation
over the IRLM routines, over which the user has little con-
trol. The second is associated with the calculation of the
matrix-vector products, which can be made very efficient
because of the sparsity of the DVR Hamiltonian matrix.

The rate of convergence of the IRLM towards a solution
depends on the eigenvalue distribution of the Hamiltonian
matrix. The rate of convergence is inversely proportional to
the difference between the the largest and smallest eigenval-

ues ~the range of the spectrum.! The IRLM also converges
best if the eigenvalues of interest are well separated from the
rest of the spectrum. To improve the separation of the eigen-
value spectrum, we use the Chebychev polynomial precon-
ditioning scheme described by Korambath, Wu, and Hayes.32

This involves finding the eigenvectors of a polynomial func-
tion of the matrix and then using them to obtain the eigen-
values of the original matrix.

When constructing a DVR grid in theR coordinate, spe-
cial attention must be paid to the behavior near the origin,
R50, which corresponds to one atom lying exactly midway
between the other two~a linear geometry!. For Ar3 the bar-
rier to linearity is relatively low, so that this region must be
modeled carefully if states above the barrier are to be accu-
rate. The angular kinetic energy involves a factor ofR22,
and is thus singular atR50 unlessL50. As long as no DVR
quadrature point is placed exactly atR50, this does not
introduce an actual singularity into the DVR Hamiltonian
matrix. Nevertheless, close toR50 it is not adequate to
assume that theR22 operator is diagonal in the DVR repre-
sentation. In their calculation on H3

1 , Henderson, Tennyson,
and Sutcliffe6 found that assuming theR22 operator was
diagonal produced nonvariational convergence of the energy
levels. Correction for the effect is simple using our numeri-
cal potential-optimized functions, because the matrix of the

FIG. 3. Wave functions of Ar3 plotted
in Jacobi coordinates as a function of
R and r for u590°. The dotted line
shows the boundary of the classically
allowed region of configuration space
at the energy concerned. Solid and
dashed contours show positive and
negative values of the wave function,
respectively. Contours are for 0.64,
0.32, 0.16, 0.08, and 0.04 of the maxi-
mum amplitude.
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1/R2 operator in the FBR can be computed accurately by
numerical quadrature~Simpson’s rule! and then transformed
into the DVR. This gives angular kinetic energy terms that
are off-diagonal between different points inR, which makes
computation of the product of the Hamiltonian and the trial
vector in the Lanczos diagonalization a little more expensive,
but not prohibitively so.

The large matrix elements ofR22 term also lead to a
large spectral range for the Hamiltonian matrix, which inhib-
its efficient diagonalization. One way of dealing with this is
that used by Mandelshtam and Taylor,8 who defined an up-
per limit for the matrix elements of the angular kinetic en-
ergy operator; any matrix element above this limit was set
equal to it. This approach, although successful in their work,
does not mix well with the correction for the failure of the
DVR quadrature approximation described above. The trun-
cation must be done before transforming to the DVR, and
this destroys the separability of the angular kinetic energy
operator. Successive diagonalization and truncation provides
a more elegant way to remove the unphysically large com-
ponents of the angular kinetic energy matrix; in our imple-
mentation, we first diagonalize a~relatively small! DVR ma-
trix evaluated at fixedr ~with basis functions forR and u)
and then reject eigenvectors corresponding to large eigenval-
ues in choosing the basis set for the final Lanczos diagonal-
ization.

E. Potential energy surface

The potential energy surface for a trimer, ABC, may be
decomposed into pairwise-additive and nonadditive contribu-
tions,

Vtrimer5VAB~r AB!1VBC~r BC!1VAC~r AC!1Vnonadd, ~5!

wherer AB , r BC, andr AC are the interatomic distances. In the
present work we have used the pairwise-additive approxima-
tion which neglects the relatively small termVnonadd. In the
present work, the zero of energy corresponds to infinitely
separated atoms.

The potential energy surface for Ar3 is constructed using
the HFDID1 Ar–Ar pair potential of Aziz,33 which has a
well depth e599.55 cm21 at an interatomic distancer m

53.757 Å. The resulting Ar3 surface has a well depth of
3e'299 cm21. Any pairwise-additive surface for an atomic
trimer has a barrier to linearity that is very close to the pair
potential well depth, about 100 cm21 in this case. The lowest
dissociation channel, to Ar1Ar2 (v50) lies 85 cm21 below
the separated atoms, and thus 214 cm21 above the equilib-
rium geometry.

III. RESULTS AND DISCUSSION

We have attempted to calculate the energy levels and
wave functions for allJ50 bound states of Ar3 . The DVR

FIG. 4. Wave functions of Ar3 plotted
as in Fig. 3 and as a function ofr and
u for r 53.757 Å . The dotted line
shows the boundary of the classically
allowed region of configuration space
at the energy concerned. Solid and
dashed contours show positive and
negative values of the wave function,
respectively. Contours are for 0.64,
0.32, 0.16, 0.08, and 0.04 of the maxi-
mum amplitude.
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basis set was constructed using 34 points inu, 46 points in
R, and 38 points inr . The 34 angular points withu,90°
were taken from a 68-point Gauss-Legendre quadrature. The
quadrature points inR were obtained by applying the HEG
procedure to 46 numerical basis functions, which were in
turn obtained by integrating the one-dimensional Schro¨-
dinger equation@Eq. ~3!# from R50 to 8 Å. The quadrature
points inr were obtained similarly, propagating fromr 53 to
10 Å. SDT contraction was not used in these calculations
because of memory limitations, although it is implemented in
our program.

Samples of the energy levels obtained in different energy
regimes are given in Table I; the complete set is available
electronically.34 The large majority of the states lie above the
barrier to linearity. We obtain 336 states from the even sym-
metry block (NA1

1NE) and 277 states from the odd symme-
try block (NA2

1NE) below the lowest dissociation channel.
It is likely that we have missed at least a few long-range
levels very close to dissociation. The difference between the
energies of correspondingE levels in the even and odd sym-
metry blocks provides a useful measure of the basis-set con-
vergence and suggests that our results are accurate to about
60.05 cm21. However, the high density of states makes
identification ofE levels from near-degeneracies unreliable
at high energies.

The cumulative energy level distribution is shown in

Fig. 2; the density of states is the gradient of this. The den-
sity of states shows a sharp increase near the barrier to lin-
earity, where a significant amount of extra phase space be-
comes accessible. The density then increases fairly steadily

FIG. 5. Progression of regular states in Ar3 . The lower set of levels are the
horseshoe-like states, and the upper set are the ‘‘linear symmetric stretch’’
levels.

FIG. 6. Wave functions for states in-
volving excitation in the linear sym-
metric stretch mode, plotted as in Fig.
3. ~a!–~d! show states withns51 to 4.
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from about 2 states/cm21 at the barrier maximum to about 8
states/cm21 at E52100 cm21.

It is interesting to compare the wave functions for Ar3

with those for H3
1 .9,11–14Examples of the present results are

shown as contour plots in Fig. 3. Since the wave functions
are functions of three coordinates, they are presented here as
cuts at either fixedu or fixed r . Other representations can be
envisaged, but these appear to be the most helpful for present
purposes. TheR21 and r 21 factors in Eq.~2! have been
included, because without them all the wave functions ap-
pear to have a nodal plane atR50.

Normal mode quantum numbers are not appropriate for
highly excited states of floppy molecules. For H3

1 , an as-
signment in terms of normal modes has been possible only
up to the fourth polyad.14 For Ar3 , there are only six vibra-
tional levels that lie below the classical barrier to isomeriza-
tion. The effective barrier is raised somewhat by zero-point
energy at the transition state, but nevertheless only the low-
est few levels can be assigned in terms of normal modes. For
Ar3 on the HFD-C potential energy surface,35 Cooper, Jain,
and Hutson,19 were able to assign the first excitation in each
mode and some of the states in the second polyad. The HF-
DID1 potential33 used in the present work is qualitatively
similar, and the assignments of the low-energy states are the
same.

The classical isomerization barrier occurs at2199
cm21. At the linear geometry, Ar3 is expected to have about

twice the zero-point energy of Ar2 ~15 cm21), so the first
level to sample the region around linearity significantly is
expected near2170 cm21. The first state that actually has
significant amplitude aroundR50 is the 17th state ofA1 /E
symmetry at2173.5 cm21. The wave function for this state
is shown in Fig. 3~b!, along with that for the ground state
@Fig. 3~a!#.

In H3
1 , extensive localization effects were observed in

the wave functions of states lying above the barrier to
linearity.12–14 In particular, Tennyson and co-workers12,13

observed a progression of ‘‘horseshoe’’ states, in which one
H atom moves between the other two~and out the other
side!, with the two ‘‘outer’’ atoms moving apart to make
way for it. The horseshoe states are so-called because their
wave functions show a regular nodal pattern that follows a
horseshoe-shaped curve in a representation such as Fig. 3,
including the reflection to negativeR. In H3

1 , the ‘‘regular’’
horseshoe states are embedded in a ‘‘bath’’ of irregular
states, and in most cases the horseshoe character is spread
over a considerable number of eigenstates. Under these cir-
cumstances, correlation functions13 were found useful in ana-
lyzing the underlying regular features. The positions of the
horseshoe states correspond to intensity peaks in the calcu-
lated spectrum.12

We have observed similar effects in Ar3 , as shown in
Fig. 3. Once again there are a few regular states, with rela-
tively simple nodal patterns, lying among and mixed with a

FIG. 7. Wave functions for states of
different symmetry withns53 in the
linear symmetric stretch mode, plotted
as in Fig. 4.

908 J. Chem. Phys., Vol. 110, No. 2, 8 January 1999 N. J. Wright and J. M. Hutson

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.234.252.67 On: Wed, 19 Aug 2015 10:24:04



dense bath of irregular states. A particularly clear example of
a horseshoe state is shown in Fig. 3~c!. The wave function
may be contrasted with that for an irregular bath state such as
that in Fig. 3~d!. The wave function for the bath state shows
no obvious nodal pattern and fills all the energetically avail-
able space.

A triatomic molecule can be described in terms of an
atom A and a diatom BC in three different ways. Each Ar3

geometry can thus be described by three different sets of
Jacobi coordinates corresponding to different labelings of
the atoms. For example, the symmetric linear geometry
with r AB5r BC5r m can be described by (R,r ,u)
5(0,2r m ,undefined), (1.5r m ,r m,0°), and (1.5r m ,r m,180°).
It is important to remember this when interpreting wave
functions. This is illustrated in Fig. 4, which shows two
neighboring states with horseshoe character. The wave func-
tions are shown both as functions ofR andr for u590° and
as functions ofR and u for r 5r m53.757 Å. Although the
paths followed in coordinate space are quite different in Figs.
4~a! and 4~c!, the molecular configurations involved are in
fact the same: another way to view the horseshoe motion is
as an Ar atom rotating around the end of an Ar2 diatom.

One difference between Ar3 and H3
1 is that in Ar3 there

are fewer bath states underlying each regular state, and the
regular character is generally spread over a few eigenstates at
most. The regular patterns can be seen more easily in the
wave functions for Ar3 than for H3

1 . The progression of
horseshoe-like states can be followed all the way down to the
ground state, although below the barrier to linearity the
horseshoe is ‘‘broken,’’ with no amplitude nearR50. The
resulting energy level pattern is shown in Fig. 5, and shows
a remarkably regular~though strongly anharmonic! progres-
sion, with a plateau that corresponds to the barrier to linear-
ity.

We have observed several additional types of localiza-
tion effect~‘‘localized anharmonic modes’’! in Ar3 . Most of
these can be explained in terms of vibrations about a sym-
metrical linear geometry, which corresponds to a saddle
point on the potential energy surfaces of both H3

1 and Ar3 .
Indeed, the horseshoe motion can be considered as a~very!
wide-amplitude bending motion about such a geometry.
Symmetric and antisymmetric stretching vibrations about the
linear geometry can also be envisaged, and both these are
observed in one form or another.

The linear symmetric stretch mode is most clearly seen
as excitation in ther coordinate withR close to zero. Figure
6 shows states with quantum numbersns51 to 4 in this
mode. The symmetric stretch energy levels also show a regu-
lar progression, as shown in Fig. 5. The equilibrium geom-
etry of Ar2 hasr m53.757 Å, so the three equivalent linear
saddle point structures have (R,r ,u)'(0, 7.52 Å, unde-
fined!, ~5.64 Å, 3.76 Å, 0°) and~5.64 Å, 3.76 Å, 180°). The
wave functions for the three states withns53 are shown in
Fig. 7, and may be seen to show amplitude at all three ge-
ometries. Note that the symmetric stretch corresponds toR
and r increasingin phasewith one another in the feature at
r 5r m . The properly symmetrized states are combinations of
the states localized about the three equivalent linear geom-
etries, withA1 andE symmetry in the molecular symmetry

groupD3h(M ). It may be seen that our basis set~which does
not explicitly impose this symmetry! has produced reason-
ably well-symmetrized wave functions for these three states.
As expected, two of the states@A1 , Fig. 7~a!, and one com-
ponent ofE, Fig. 7~b!# are in the even symmetry block, and
the third is in the odd block. Figure 7~d! shows theA1 state

FIG. 8. Wave functions for states involving one quantum of excitation in the
atom–diatom intermolecular stretch mode, plotted as in Fig. 4. This mode
corresponds to the linear asymmetric stretch atu50 and to the horseshoe
mode nearu590°.
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for ns53 as a function ofR andu for r 5r m ; it may be seen
that the function is indeed localized around the linear con-
figuration~s!, and does not undergo large angular excursions.

We also looked for the antisymmetric stretch mode. The
obvious place to look for it is atu50, as excitations inR
aboutR50 with r'2r m . Such features are indeed observed,
as seen in Fig. 8~a! ~which is for a state in the odd block,
because a node is required atR50). This state also shows
amplitude around the configuration corresponding to the ‘‘re-
ordered’’ linear geometries. Since this is an antisymmetric
stretch,R andr increaseout of phasewith one another in the
feature atr 5r m . However, in this case the amplitude isnot
confined to the linear geometries. Figure 8~b! shows the
wave function as a function ofR and u for r 5r m and Fig.
8~c! shows it as a function ofR and r for u580° ~because
there is a node atu590°): the molecule is clearly undergo-
ing horseshoe-type motion in addition to the antisymmetric
stretch. The stretching motion involved here is perhaps best
considered as the intermolecular stretch of an atom–diatom
complex. At u50, the radial motion in Fig. 8~b! is essen-
tially the asymmetric stretch of a linear molecule, but near
u590° the amplitude of the ‘‘stretching’’ motion is enough
to carry the atom through the center of the diatom, and this is
the horseshoe motion.

It is interesting that localized anharmonic modes can be
combined in much the same way as normal modes. Figures
9~a! and 9~b! show another pair of localized states which are
combinations of the symmetric stretch and horseshoe modes.
These states are similar to the ‘‘nodal horseshoe’’ described
for H3

1 in Ref.36. The fact that the nodal horseshoe is a
combination of two localized modes suggests that the linear
symmetric stretch mode is probably present in H3

1 as well.
In H3

1 , the regular states are localized along the trajec-
tories of classical periodic orbits.37 A study of the periodic
orbits of Ar3 on the potential energy surface used here has
been carried out,38 but it concentrated on Ar1 Ar2 collisions
~at energies above those relevant to bound states!. Calculat-
ing the bound-state periodic orbits of Ar3 is beyond the
scope of the present work, but it seems reasonable to at-
tribute the localization effects observed here to such orbits.
Investigating the connection between the localization effects

and periodic orbits of Ar3 would be an interesting topic for
future work.

The picture of regular features spread over several states
accords with the standard ‘‘time-independent’’ picture of in-
tramolecular vibrational energy redistribution39 ~IVR!: when
a regular state is embedded in a dense bath of other states,
the character of the regular state is spread out over the bath
states, its contribution peaking as a function of energy in a
near-Lorentzian manner. At higher energies, the density of
bath states is greater and the ‘‘regular’’ character is spread
over more energy levels. If the bath is dense enough, it may
turn out that no one eigenstate ends up with a significant
amount of regular character. Such effects can be thought of
as the bound state analogue of quantum mechanical scatter-
ing resonances. When the quasicontinuum becomes an actual
~dissociative! continuum, the regular character is spread out
over the width of the resulting predissociating state.

IV. CONCLUSIONS

We have developed a method of calculating the energy
levels and wave functions of floppy triatomic molecules
based upon the potential-optimized discrete variable repre-
sentation~PO-DVR!. The method allows accurate calcula-
tions on states above the barrier to isomerization by the use
of a numerical finite basis representation from which the cor-
responding PO-DVR is obtained.

Most of the states that lie above the isomerization barrier
are irregular in character; they fill all the energetically acces-
sible configuration space, and their wave functions have no
obvious nodal pattern. However, embedded among these ir-
regular states are some more regular states, which are more
localized and have simple nodal patterns. The regular and
irregular states are mixed to a greater or lesser extent, and in
some cases the regular character is spread over several eigen-
states. This general behavior is similar to that observed pre-
viously for the H3

1 molecular ion.
The horseshoe localization effect previously observed in

H3
1 is also present in Ar3 . We have also found additional

types of localization effect, corresponding to symmetric and
antisymmetric stretching motions about a linear configura-

FIG. 9. Wave functions for states in-
volving simultaneous excitation in the
linear symmetric stretch and horseshoe
modes, plotted as in Fig. 3.
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tion. Even the horseshoe mode can be considered as the
bending motion of a linear molecule. The different localized
modes can be combined to form more complex localized
features.

The wave functions of floppy molecules reveal a fasci-
nating range of dynamical behavior. Future work in this area
should lead to a better understanding of the relationship be-
tween the quantum and classical descriptions of such sys-
tems. At the moment it is possible to calculate the wave
functions and explain their localized features with reference
to the periodic orbits of the system. A theory in which the
periodic orbits are used to predict the quantum behavior is,
however, not yet available. By studying a range of different
molecules, it may be possible to develop such a theory.
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