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a b s t r a c t

The 1960, and 2010 Chilean great earthquakes provide modern analogues for the sedimentary signatures
of the largest megathrust events and their accompanying tsunamis. This paper presents lithological and
diatom assemblage data from five sites and provides key insights for the development of longer
earthquake chronologies, essential for assessing the seismic hazards associated with a subduction zone.
We find that the 1960 and 2010 tsunami deposits are fragmentary, variable and have no unique, diag-
nostic diatom assemblage. Where rapid postseismic sedimentation occurs, our diatom-based transfer
function model gives estimates of coseismic deformation that agree with independent estimates of land-
level change. Sedimentary hiatuses at two sites following the 2010 earthquake suggest that the
magnitude of coseismic deformation may be underestimated in fossil records. Where sediment accu-
mulation allows, criteria for distinguishing between seismic and non-seismic stratigraphies based on
evidence for the largest plate boundary earthquakes are corroborated by the lesser magnitude earth-
quake of 2010. The key to reconstructing earthquake characteristics, such as rupture magnitude and
differences between plate-boundary and upper plate sources, depends on applying explicit stratigraphic
assessment criteria at multiple sites in order to identify the spatial pattern of deformation associated
with each earthquake.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The Chilean megathrust creates great earthquakes exceeding
moment magnitude (Mw) 8, including the greatest magnitude ever
recorded, the 1960 Mw 9.5 rupture of the Valdivia segment, and the
Mw 8.8 Maule earthquake of 27th February 2010. These earthquakes
are characterised by intense, long duration shaking, significant land
surface deformation, generation of near-field tsunamis along the
Chilean coast and may spawn destructive trans-Pacific tsunamis.
Paleoseismic research at other subduction zones suggests historical
and instrumental records may be too short to adequately assess the
recurrence of the greatest magnitude seismic hazards, a factor
contributing to inadequate anticipation of the 2004 Sumatra-
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Andaman and 2011 Tohoku megathrust earthquakes (Stein and
Okal, 2011). Records kept by Spanish settlers and visiting Euro-
peans indicate fourmegathrust earthquakes in the Valdivia segment
over the last 500 years but current paleoseismic evidence records
only some of these. Using evidence from tidal marshes, Cisternas
et al. (2005) propose a 300-year recurrence interval between the
largest ruptures, with the megathrust remaining partly loaded with
accumulated plate motion through smaller intervening earth-
quakes. Differences between the historical and paleoseismic evi-
dence may reflect variations in the size of the rupture zones of
megathrust earthquakes; alternatively, interseismic land uplift may
lead to low sediment accumulation or erosion of tidal marshes so
the sediments record only a partial chronology of great earthquakes.
Given the range of processes that may control the preservation of
paleoseismic evidence (McCalpin and Carver, 2009), we require
correlation of evidence from multiple sites in order to reconstruct
the dimensions of land surface deformation and therefore estimate
the extent of the segment rupture for each event (Nelson et al.,
1996; Atwater and Hemphill-Haley, 1997; Atwater et al., 2005).
Analysis of the sedimentary record of the 1960 and 2010 earth-
quakes provides potential modern analogues for building century
to millennial scale paleoseismic records for different segments of
the Chilean megathrust.
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Following both the 1960 and 2010 earthquakes, measurements
of the displacement of coastal landforms and biotic environments,
such as shore platforms and intertidal encrusting molluscs,
provided the first quantitative maps of coseismic land uplift and
subsidence, essential for constraining models of slip distribution
(Plafker and Savage, 1970; Moreno et al., 2009; Farías et al., 2010;
Lorito et al., 2011; Vargas et al., 2011; Melnick et al., 2012). Such
records can be fragmentary in both space and time and sedi-
mentary records from tidal marshes can significantly enhance
the paleoseismic record of both the coseismic deformation
and changes through complete earthquake deformation cycles
(Hamilton and Shennan, 2005). In this paper we aim to develop
quantitative reconstructions of relative land surface deformation
during the 1960 and 2010 earthquakes based on lithostratigraphy
and diatom assemblages from five sites. We compare our results
with other estimates of coseismic deformation and use our
findings to test the applicability of criteria developed in studies
of the Cascadia subduction zone to differentiate between sedi-
mentary evidence of relative land- and sea-level changes of
seismic and non-seismic origins (Nelson et al., 1996). The Cas-
cadia studies, from Atwater’s (1987) seminal paper onwards,
made comparisons with the 1960 Chilean earthquake and the
1964 Mw 9.2 earthquake in Alaska. Nelson et al. (1996) suggested
their criteria would apply to magnitude 8 þ earthquakes and the
2010 Mw 8.8 Maule earthquake provides the opportunity to
directly test them. Finally, we assess the application and limita-
tions of stratigraphic and microfossil approaches for developing
Fig. 1. Tectonic setting of the Chilean subduction zone and the location of the field sites in
(main figure) and 2010 (inset) from Plafker and Savage (1970) and Vargas et al. (2011) respec
Northern Isla de Chiloé, including Chucalen and the modern transects at Estero Guillingo a
Holocene records of multiple earthquake deformation cycles
in Chile.

2. Study area and methods

In August 2010, six months after the 27th February Maule
earthquake, we completed field investigations of tidal marshes at
five sites, which we number from north to south for ease of refer-
ence (Fig. 1). Sites 1 and 2 lie in the 2010 segment, sites 3 and 4 in
the area where the 1960 and 2010 segments overlap, and site 5 is
near the centre of the 1960 segment. The spatial pattern of defor-
mation varies longitudinally within each rupture zone, with dis-
tance from the trench controlling the zones of coseismic uplift and
subsidence (Fig. 1). We targeted tidal marshes as theymay preserve
evidence of land-level changes and tsunami inundation in their
sediment stratigraphy (Atwater, 1987; Cisternas et al., 2005;
Hamilton and Shennan, 2005). We employed transects of pits and
short cores across marshes and adjacent coastal lowlands to assess
the type, continuity and extent of 2010 tsunami deposition and the
lateral extent and net accretion of sediments laid down since the
earthquake. Any sub-surface sand layers were also documented
and we use local testimony, comparison with other studies and
caesium-137 (137Cs) concentrations to suggest which relate to
tsunami deposition following the 1960 earthquake.

We selected cores from each transect for further laboratory
analyses, including diatom assemblages and grain size variations, to
reconstruct relative sea-level changes and to assess the
relation to the 2010 and 1960 rupture zones. Vertical land surface deformation in 1960
tively. Site 1: Río Mataquito; site 2: Río Andalién; site 3: Tubul; site 4: Río Tirua; site 5:
nd Puente Quilo.
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composition of tsunami deposits. Laboratory preparation of di-
atoms followed standardmethods (Palmer and Abbott,1986) with a
minimum of 250 diatom valves counted per sample. Diatoms live at
the sediment surface (epipelic or epipsammic), attached to vege-
tation (epiphytic) or in the water column (planktonic) and respond
to variations in their environment, including salinity and frequency
of tidal inundation (e.g. Vos and de Wolf, 1993). Diatoms may
provide information on the depositional environment and source of
sediments to a coastal area, for example they can be used to
distinguish tsunami deposits from other sediments and help
identify the source of tsunami lain sand (Dawson et al., 1996;
Hemphill-Haley, 1996; Dawson, 2007; Horton et al., 2011).

Diatom assemblages can also provide estimates of coseismic
land movement with decimetre precision (e.g. Shennan et al., 1996;
Zong et al., 2003; Hamilton and Shennan, 2005). We estimate
coseismic deformation for each site by comparing the diatom as-
semblages from sediments deposited before and after the earth-
quake with the modern distribution of diatoms at two tidal
marshes in northern Isla de Chiloé, site 5, and data collected by
Nelson et al. (2009). We use modern diatom samples collected in
2010 from site 5 only as it was not affected by elevation change or
tsunami inundation in 2010. To account for variations in tidal
ranges between sites, we convert the elevation of each modern
sample to a standardized water level index (SWLI), whereby a SWLI
value of 100 represents mean sea level and 200 represents mean
higher high water (Hamilton and Shennan, 2005). We define:

SWLIn ¼ 100ðhn � hMSLÞ
hMHHW � hMSL

þ 100 (1)

where:

SWLIn is the standardised water level index for sample n
hn is the elevation of sample n
hMSL is Mean Sea Level at the site
hMHHW is Mean Higher High Water at the site

We follow the transfer function approach outlined by Hamilton
and Shennan (2005), first using detrended canonical correspon-
dence analysis (DCCA) to determine the requirement for a unim-
odal method, then developing a transfer function model that can
produce reconstructions of marsh surface elevations, with error
terms, from fossil diatom sequences (Software: C2 version 1.7.2,
Juggins, 2011). Estimates of coseismic deformation compare pre-
and post-earthquake marsh surface elevations, accounting for the
thickness of any tsunami deposit. We define the uncertainty for
each estimate of coseismic deformation:

CD error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEPRE errorÞ2 þ ðEPOST errorÞ2

q
(2)

where:

CD error is the 1s error of the coseismic deformation estimate
EPRE error and EPOST error are the sample specific standard errors
for samples preceding and following the deformation event
respectively.
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Fig. 2. Observed against predicted elevation values for the four transects included in
the WA-PLS component 3 transfer function model. Valdivia AC: samples collected from
a fan bordering Río Angachilla; Valdivia transect DR: samples collected from Isla del
Rey (Nelson et al., 2009).
3. Transfer function model development

The modern training set comprises 96 samples collected in 2010
and 32 collected by Nelson et al. (2009) in 1989 (Supplementary
table A.1). DCCA confirms a unimodal relationship between mod-
ern diatom distributions and elevation (environmental gradient>2
standard deviations, Birks, 1995) and we use weighted averaging
partial least squares regression (WA-PLS) with bootstrapping cross-
validation (ter Braak and Juggins, 1993; Birks, 1995). We chose the
three-component model over one and two-component models, as
it has the highest r2 value, a more linear distribution of observed
against predicted values and a RMSEP improvement of at least 5%
with the addition of each extra component (Fig. 2). Increased pre-
cision can be obtained by reducing the range of sampled elevations;
however we currently have no independent measure to select a
model using a narrower elevation range, as applied in Alaskawhere
the data set is more than twice the size (Hamilton and Shennan,
2005).

Given the distance between sites and their different environ-
mental conditions, we may not expect the modern training set to
fully reflect the range of diatom assemblages and environments
that exist in fossil samples, even though the number of samples
exceeds the minimum required to give sample-specific error
terms in WA-PLS. We use an analogue measure, modern analogue
technique (MAT) to quantify the similarity between each fossil
sample and the modern training set using a squared chord dis-
tance dissimilarity method (Birks, 1995). We use the 5th percen-
tile of the dissimilarity values for the modern samples as the
threshold between a ‘good’ and ‘close’ modern analogues for each
fossil sample and the 20th percentile as the cut-off for a ‘poor’
modern analogue.
4. Results and reconstructions of deformation

4.1. Site 1: Río Mataquito

The site lies within the 2010 segment and north of the 1960
segment (Fig. 1). The Río Mataquito is deflected northwards by an
8 km long supratidal sand spit at its confluence with the Pacific.
The spit was largely submerged following coseismic deformation
in 2010 or eroded by the ensuing tsunami which crested 11 m
above tide level (Fig. 3; Vargas et al., 2011). Our transect of short
cores from a tidal marsh close to the pre-earthquake river mouth
shows the 2010 tsunami deposit to be of variable thickness. The
grey sand sheet exceeds 0.4 m in thickness close to the river



Fig. 3. Comparison of pre and post 2010 Maule earthquake Google Earth imagery for sites 1e4. Red lines indicate August 2010 sampling transects. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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channel, and thins in a landward direction (Fig. 4). The lower
contact is abrupt, with occasional above ground parts of terres-
trial plants preserved immediately beneath and within the sand,
pointing in the direction of flow as they were flattened by
tsunami inundation. The deposit is normally graded and is both
coarser grained and less organic than the underlying tidal marsh
sediments.

Diatom assemblages from the tsunami deposit are characterised
by epipelic and epipsammic taxa, with a significant minority,
w30%, of planktonic forms (Fig. 5). Almost 65% of the tsunami
assemblage is characterised by diatom species identified by the
transfer function model as reflecting environments above mean
higher high water. A further 25% of the assemblage consists of
species not encountered in the modern tidal marshes, with the
remaining 10% corresponding to species indicative of environments
below mean higher high water.

Despite an increase in accommodation space resulting from the
reported coseismic subsidence, (Vargas et al., 2011; Vigny et al.,
2011), we do not record any post-tsunami sediment accumulation
in the six month interval between the earthquake and field sam-
pling and, therefore, no estimate of coseismic deformation is
possible using the diatom-based transfer function.

4.2. Site 2: Río Andalién

The site lies within the 2010 segment and immediately north of
the 1960 segment (Fig. 1). Tidal marshes occupy the broad north-
facing embayment of the Bahía de Concepción between Talca-
huano and Penco. Estimates of coseismic movement in 2010 indi-
cate uplift to thewest (Fritz et al., 2011) and subsidence to the south
(Vigny et al., 2011). Watermarks in Talcahuano and Penco indicate
2010 tsunami flow depths of between 4 and 7 m (Fritz et al., 2011)
and a maximum inundation distance across the low lying tidal
marshes of 2.6 km (Morton et al., 2011). We investigated two
transects from the eastern edge of the embayment, alongside the
Río Andalién (Fig. 2).
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Fig. 5. Diatom assemblages of the 2010 and 1960 tsunami deposits, summarised by life
form (following Denys, 1991; Stoermer, 1980; Van Dam et al., 1994; Vos and de Wolf,
1993, 1988). Epipelic and epipsammic species are grouped as “attached to sediment”.
We do not report any tsunami deposit from site 3, Tubul.
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4.2.1. 2010 Earthquake and tsunami
The 2010 tsunami deposit is a largely continuous sand sheet

with occasional rounded mud rip-up clasts. The normally graded
deposit is generally less than 0.1 m thick and both transects exhibit
landward thinning (Fig. 4). The lower boundary is abrupt, however
vegetation was generally found to have remained in growth posi-
tion, rather than having been flattened beneath the sand layer.
Diatoms that live attached to sediment account for more than 75%
of the 2010 tsunami assemblage (Fig. 5). The summary assem-
blages (Fig. 6A) show that the tsunami deposit has a greater
proportion of species indicative of lower elevations than the un-
derlying tidal marsh sediment, reflecting net sediment transport
from the lower intertidal and perhaps subtidal zone during the
tsunami.

Six months after the earthquake, postseismic sediment accu-
mulation had reached amaximum of 20mm. Pre- and post-tsunami
diatom assemblages indicate subsidence of 0.75 � 0.43 m (Fig. 6A),
but we note the poor modern analogues and discuss this further in
Section 5.3.

4.2.2. 1960 Earthquake and tsunami
A second sand layer occurs approximately 0.2 m below the

present ground surface (Fig. 4). Comparison of the colour, grain size
and nature of the lower contact with the 2010 tsunami deposit
suggests that this lower sand layer was also deposited by a tsunami.
Numerous significant tsunamis have struck the coast of central
Chile, including major events in 1960, 1835, 1751, 1730, 1657, 1575
and 1570 (Lomnitz, 2004; Cisternas et al., 2005). Tide gauge data
from Talcahuano indicate that the 1960 tsunami reached heights of
3 m within Bahía de Concepción (Sievers et al., 1963). Comparable
tide gauge measurements of the 2010 tsunami were approximately
0.65 m lower, suggesting that the 1960 tsunami was also of suffi-
cient size to erode, transport and deposit intertidal sediments
within the bay. We find elevated 137Cs concentrations immediately
below the sand layer; this indicates deposition no earlier than the
beginning of atmospheric nuclear testing in 1952, suggesting that
the sand layer was deposited in 1960.
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Diatom assemblages from this deposit are highly mixed, with
epiphytic species and those that live attached to sediment
contributing the majority of the assemblage (Fig. 5). Planktonic
species are rare, accounting for less than 5% of the assemblage.
Species indicative of elevation classes above and below mean
higher high water occur approximately equally (Fig. 7A), giving no
clear indication of predominant sediment source.

Pre- and post-tsunami diatom assemblages are generally
similar, with the largest changes in species that are not charac-
terised by our modern assemblage data (Fig. 7A). Quantitative re-
constructions indicate uplift of 0.11 � 0.45 m, again noting the poor
modern analogue classifications.

4.3. Site 3: Tubul

Tubul lies in the area where the 2010 and 1960 segments
overlap (Fig. 1). The Tubul and Raqui rivers drain a substantial
sheltered tidal and freshwater marsh on the northern edge of the
Arauco Peninsula (Figs. 1 and 3). Estimates of coseismic movement
in 2010 indicate uplift of between 1 and 2 m (e.g. Farías et al., 2010;
Melnick et al., 2012). Our coring transects ranged from intertidal
mud and sand flat to freshwater marsh above the influence of
tides.

4.3.1. 2010 Earthquake and tsunami
Despite tsunami flow depths estimated at over 5 m (Fritz et al.,

2011), we did not observe a surficial or sub-surface tsunami deposit
at any location on our transects. This may reflect local effects of
coseismic uplift reducing the potential tsunami inundation dis-
tance inland and the position of our sampling area with respect to
the open coast.

Although we noted no change in sediment lithology in the field,
laboratory analysis of the uppermost 5 mm of the recovered sedi-
ment profile shows a significant change in diatom assemblage
(Fig. 6B). Our reconstruction indicates coseismic uplift of 0.64 �
0.67 m, with close modern analogues for the pre-earthquake
samples.

4.4. Site 4: Río Tirua

The Río Tirua meanders through a low-lying coastal plain,
characterised by tidal and freshwater marsh environments. The site
is close to the southern limit of surface deformation in 2010 and
within the 1960 segment (Fig. 1). Intertidal mussels indicate
coseismic uplift of between 0.5 and 1 m in 2010 (Melnick et al.,
2012). Our transect lies w1 km from the open coast (Fig. 3).

4.4.1. 2010 Earthquake and tsunami
While tsunami runup reached 20 m on the exposed rocky

shoreline to the southwest, heights closer to the river mouth were
approximately half as large (Fritz et al., 2011; Vargas et al., 2011;
Bahlburg and Spiske, 2012). The 2010 tsunami deposited a grey
sand layer which we traced along the incised banks of the Río Tirua.
The deposit exceeds 0.1 m in thickness and thins upstream and,
more rapidly, away from the river channel (Fig. 4). The lower con-
tact is abrupt, with frequent flattened stems below and encased
within the base of the deposit.

The tsunami diatom assemblage is predominately composed
of species that live attached to sediment, with some epiphytic
forms (Fig. 5). Taxa favouring the lower elevations of the
modern transects contribute 25e45% of the assemblage,
with species not found in the modern marshes providing a
further 30%.

Therewas no identifiable postseismic sedimentation six months
after the 2010 earthquake. Tsunami-lain sand was still visible at the
surface in January 2012, almost two years after the earthquake. No
estimate of coseismic deformation is possible using the diatom-
based transfer function.
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4.4.2. 1960 Earthquake and tsunami
We observed a second sand layer, analogous to that deposited by

the 2010 tsunami, at a depth varying between 0.1 and 0.4 m
alongside the Río Tirua. The contact with underlying marsh
sediments is abrupt. Elevated 137Cs concentrations in the buried
marsh surface and the testimony of local residents who experi-
enced the event suggest that this layer relates to the tsunami
associated with the 1960 earthquake. Tsunami runup on Isla
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Mocha, 30 km offshore from the mouth of the Río Tirua, exceeded
15 m (Sievers et al., 1963), but the wave height as it approached the
mainland in this sector is unknown. By way of comparison, runup
during 2010 exceeded 20 m on Isla Mocha (Fritz et al., 2011);
however the difference may result from the different approach
directions of the two tsunamis. The 1960 tsunami deposit is
generally thinner and more fragmented than the 2010 deposit
(Fig. 4), as we also noted for site 2, Río Andalién.

The 1960 sand layer is characterised by a higher proportion of
epiphytic and planktonic species than the 2010 deposit, although
epipelic and epipsammic species still contribute more than half of
the total assemblage (Fig. 5). Species indicative of elevations above
mean higher high water are dominant in most of the tsunami
samples; however a peak in the abundance of one species results in
almost 50% of one sample consisting of diatoms of unknown
elevation preference (Fig. 7B).

Pre- and post-tsunami diatom assemblages are generally
similar; however there are no close modern analogues for any of
the samples. Our marsh surface reconstructions are indistinguish-
able from zero, 0.03 � 0.72 m (Fig. 7B).

4.5. Site 5: Chucalen

On the north west of Isla de Chiloé, tidal marshes line the
western fringe of Bahía Quetalmahue, sheltered from the Pacific
Ocean by the Lacui Peninsula (Fig. 1). This region is close to the
centre of the 1960 segment and w400 km south of the 2010
segment. There was no tsunami recorded here in 2010.

4.5.1. 1960 Earthquake and tsunami
At Chucalen we traced a grey sandy deposit through a 100 m

long transect at depths of between 0.1 and 0.35 m below the pre-
sent marsh surface (Fig. 4). The normally graded deposit decreases
in thickness with increasing elevation and distance from the marsh
front. The contact with the underlying marsh sediments is abrupt.
Through comparison with preliminary investigations by Bartsch-
Winkler and Schmoll (1993), 137Cs concentrations and statements
from local residents, we correlate this deposit with the 1960
tsunami. Witnesses suggest that a series of three waves resulted in
runup exceeding 15 m on exposed headlands on the northern edge
of the Lacui Peninsula, with 5 m waves striking Ancud, decreasing
to 1.5 m in Bahía Quetalmahue (Sievers et al., 1963). Bartsch-
Winkler and Schmoll (1993), however, suggested waves of several
times this magnitude may have entered the Quetalmahue estuary
across the isthmus that joins the Lacui Peninsula, close to our
sampling area.

Diatoms that live attached to sediment account for almost three
quarters of the tsunami deposit assemblage at Chucalen, with di-
atoms of unknown life form making up the second largest
component (Fig. 5). When classified by modern distribution, the
tsunami deposit exhibits a greater proportion of species indicative
of lower elevations than those from the underlying tidal marsh
sediment (Fig. 7C).

Diatom assemblages in sediments immediately above and
below the tsunami deposit show a change from species character-
istic of the highest elevations of modern tidal marshes to taxa more
tolerant of regular tidal inundation (Fig. 7C). Paleomarsh surface
elevation reconstructions indicate land subsidence of 1.12� 0.53m.

5. Discussion

5.1. Tsunami deposition

The tidal marshes investigated here demonstrate a variable and
fragmentary record of tsunamis associated with two great
earthquakes in 1960 and 2010. We found no 2010 tsunami deposit
at one of the four marshes adjacent to the rupture zone. Where
present, it is composed ofmore than 85% sand and abruptly overlies
finer grained, more organic tidal marsh sediments, frequently
preserving flattened but still rooted terrestrial plants at their con-
tact. Flattened vegetation assists in determining tsunami flow di-
rection (e.g. Morton et al., 2011). The extent and continuity of the
deposit is highly variable. At Río Mataquito, site 1, the sand layer
reaches a maximum of 0.40m in thickness, however accumulations
of 0.05e0.15 m are more common both at this site, and at the other
sites investigated. Comparable 2010 tsunami deposit thicknesses
are reported by Horton et al. (2011) and Morton et al. (2011). At our
sites the 2010 deposit fines in a landward direction, reflecting
decreasing sediment transport as the wave train moved inland. We
attribute further along-transect variability in the thickness of the
deposit to variable vegetation cover and pre-tsunami surface
topography (Morton et al., 2007).

The 1960 tsunami deposit is preserved as a continuous strati-
graphic layer only at Chucalen, site 5, in the central part of the
rupture segment. Towards the northern limit of the 1960 segment it
is absent from site 3, Tubul and fragmented at site 4, Río Tirua. It is
present, though fragmented at site 2, Río Andalién, just north of the
segment boundary, and we did not encounter any buried sand
layers at site 1. Where present, the deposit is similar to the 2010
tsunami layer: sand-rich and abruptly overlying organic tidal
marsh sediment. The thin and fragmentary nature of the deposit,
despite the significant size of the 1960 tsunami, may indicate
postseismic erosion prior to burial and encasement into the sedi-
ment record.

Diatom assemblages from tsunami sand layers vary both be-
tween different sites for the same tsunami and between different
tsunamis at the same site. There is no unique tsunami diatom
assemblage. Rather, the assemblage reflects the local sediment
source, with mixed assemblages of different salinity preferences,
different life forms and different habitats. Diatom assemblages are
likely to be mixed as tsunamis inundate inland areas and erode,
transport and redeposit marine, intertidal and non-marine sedi-
ments. Similar mixed assemblages including freshwater, brackish
and marine species are observed in tsunami deposits at Pichilemu,
central Chile, reported by Horton et al. (2011), and are consistent
with observations in modern and paleotsunami deposits elsewhere
(Hemphill-Haley, 1996; Atwater and Hemphill-Haley, 1997; Tuttle
et al., 2004; Dawson, 2007; Sawai et al., 2008).

5.2. Estimating coseismic land-level change

Transfer function models provide estimates of coseismic land
surface deformation for two of the five sites in 2010 and three sites
in 1960. The lack of post-earthquake sedimentation or the absence
of a 1960 tsunami deposit to guide our sampling approach pre-
cludes the quantification of deformation at the remaining sites.
Despite our reservations based on the lack of good modern ana-
logues, our reconstructions compare favourably with published
estimates of coseismic land-level change (Fig. 8). This confirms the
potential of using diatom-based transfer function models to
quantify coseismic movement from previous great earthquakes in
this region. The apparent offset for the 2010 data (Fig. 8) may be the
effect of the lack of good modern analogues, but it may also reflect
the different measures of coseismic subsidence. The GPS and
benchmark relevelling data relate to the vertical movement of rock
surfaces, whereas marsh sediments may undergo additional local
scale subsidence due to ground shaking and dewatering leading to
sediment consolidation. This was observed at numerous locations
in Alaska during the 1964Mw 9.2 earthquake (Plafker,1969) and the
Mw 8.1 and 8.2 earthquakes in 1899 (Plafker and Thatcher, 2008).
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The estimates by Plafker and Savage (1970) for coseismicmotions in
1960 may also incorporate some local sediment consolidation,
for example their estimate from close to our site 5 based on com-
parison of the lower growth limit of pre- and post-earthquake
vegetation.
5.3. Limitations and improvement of quantitative reconstructions of
relative land- and sea-level change

Although the current modern training set includes samples
from four transects in two locations and from modern environ-
ments ranging from unvegetated tidal flat below mean sea level to
above the highest limits of tidal inundation, many of the fossil
samples do not have a ‘good’ or ‘close’modern analogue. While this
is, in part, a result of our selected percentile thresholds that are
stricter than those used in some other studies, the apparent
dissimilarity between modern and fossil diatom assemblages re-
mains a cause for concern. We highlight this lack of modern ana-
logues as a limitation of the current study and advocate the need for
larger training sets, preferably from a wide range of sites. The
modern samples are from locations well to the south of sites 1e4
and there may be a spatial control on diatom assemblages that we
are currently unable to assess. Ongoing postseismic deformation
and the lack of significant sedimentation preclude the collection
and use of samples from sites within the 2010 rupture zone and
further investigations should focus on the northern half of the 1960
rupture zone.

Accurate estimates of the magnitude of coseismic deformation
depend on the recommencement of sediment accumulation before
significant postseismic deformation has occurred. The fourmarshes
in the 2010 rupture zone showed variable responses six months
after the earthquake. At site 1, no postseismic sedimentation fol-
lowed coseismic subsidence and tsunami deposition. Up to 20 mm
of sedimentation followed coseismic subsidence and tsunami
deposition at site 2. At site 3, up to 5 mm of sedimentation followed
coseismic uplift and no tsunami sedimentation and by early 2012,
vegetated marsh was developing on previously unvegetated tidal
flat. At site 4, no postseismic sedimentation had occurred almost
two years after coseismic uplift and tsunami sedimentation in
2010. These postseismic accumulation rates are several orders of
magnitude less than after the 1964 Alaskan earthquake (Atwater
et al., 2001) and closer to estimates from the channels of the
Cruces river following the 1960 Chilean earthquake (Reinhardt
et al., 2010). Postseismic vertical movements in the six months
following the Maule 2010 earthquake were small, estimated from
GPS data at <15 mm at Concepción and <50 mm elsewhere along
the rupture zone (Baez et al., 2010). Consequently, postseismic
movements are unlikely to significantly affect estimates of coseis-
mic land motions based on sediment biostratigraphy at sites 2 and
3. At sites with a sedimentary hiatus, coseismic deformation esti-
mates will include both coseismic and some postseismic move-
ments, resulting in potential underestimation of the coseismic
movement. In fossil sequences it can be very difficult to identify the
duration of any hiatus. Radiocarbon dated samples either side of
the stratigraphic boundary will give maximum and minimum ages
andmay identify a large hiatus (e.g. Carver and Plafker, 2008), while
reconstructions for the same episode from multiple locations on
the same marsh also help (e.g. Shennan and Hamilton, 2006).

5.4. A test of the criteria to differentiate between sedimentary
evidence of seismic and non-seismic relative land- and sea-level
changes

Based on observations of sedimentary responses to the largest
plate boundary earthquakes and similar stratigraphies found in
tectonically stable locations, Nelson et al. (1996) propose a series
of criteria for differentiating between evidence for seismic and
non-seismic relative land- and sea-level changes. Atwater and
Hemphill-Haley (1997) apply the same criteria alongside geophys-
ical approaches and structural geology to discuss the differences
between plate-boundary and upper-plate sources for the earth-
quakes, the sizes of the earthquakes, the dimensions of plate-
boundary ruptures and the trade-off between size and frequency.
Both of these papers point to differences between Mw 7.5 or 8.0
earthquakes and great earthquakes, Mw 8þ. The 2010 earthquake
provides an opportunity to test the criteria on a smaller plate-
boundary rupture than the 1960 Chilean Mw 9.5 and 1964 Alaskan
Mw 9.2 earthquakes.

The key criteria outlined by Nelson et al. (1996) are: lateral
extent of peat-mud couplets with sharp upper contacts, sudden-
ness of subsidence, amount of subsidence, synchroneity of subsi-
dence with other sites and, for some locations, presence of tsunami
sediments. Although these criteria were developed for areas un-
dergoing coseismic subsidence, they are equally applicable to
identifying coseismic uplift (Shennan et al., 2009). Section 5.1,
above, demonstrates the variable pattern of tsunami deposition,
but confirms that, where present, it is a valuable line of evidence
andmay occur in either uplifted or subsided locations. Our work on
the 2010 earthquake deposits suggests that, in south central Chile,
sedimentary hiatuses and low rates of sedimentation may tempo-
rarily postpone the formation of the characteristic subsidence
stratigraphy (Section 5.2), but the burial and preservation of the
1960 deposits shows that any hiatus is brief in the context of
multiple earthquake cycles. Our diatom-based reconstructions of
relative land/sea-level change are promising, but require a greater
range of modern samples in order to provide better modern ana-
logues and greater confidence in the elevation estimates and
associated error terms. Nelson et al. (1996) and Atwater and
Hemphill-Haley (1997) draw attention to a lower limit of resolu-
tion for identifying coseismic deformation; approximately 0.5 m.
Our estimates, Section 5.2, currently do not suggest any finer
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resolution. Comparison of the marsh sediment sequences for the
2010 and 1960 earthquakes suggests that they produce similar
stratigraphic records and that the key to reconstructing earthquake
characteristics, such as the rupture magnitude and differences be-
tween plate-boundary and upper-plate sources, depends on
applying the stratigraphic criteria at multiple sites in order to
identify the spatial pattern of deformation associated with each
earthquake.
5.5. Implications for reconstructing Holocene megathrust
earthquake rupture zones

Precise estimates of coseismic deformation are required from
multiple sites to constrain models of the location, dimensions
and slip distribution of megathrust earthquakes (Atwater and
Hemphill-Haley, 1997; Atwater et al., 2005). To date, elastic defor-
mation models of the 1960 and 2010 earthquakes have been con-
strained by GPS vectors and measurements of displaced coastal
landforms and biotic environments (e.g. Plafker and Savage, 1970;
Moreno et al., 2009; Farías et al., 2010; Lorito et al., 2011). Further
development of the diatom-based transfer function approach
detailed here provides an additional viable method for validating
models of these earthquakes, with the added benefit of applica-
bility to older ruptures. Databases of coseismic deformation index
points, each characterised by a vertical deformation estimate with
an associated error term and spatial and chronological attributes,
may be used to assist estimation of the magnitude of historical and
prehistoric earthquakes. Such databases have already been suc-
cessfully employed to constrain the magnitude of past great
earthquakes in Cascadia (Atwater and Hemphill-Haley, 1997;
Leonard et al., 2004, 2010; Hawkes et al., 2011). The development of
this approach along the Chilean subduction zone may allow further
investigation of the variability in rupture mode in the 1960
segment (Cisternas et al., 2005) and confirm or refute the perma-
nence of the Arauco Peninsula as a segment boundary overmultiple
seismic cycles.

Differentiation between the closely temporally spaced rupture
of two adjacent segments and a single, multi-segment rupture may
prove crucial to interpreting evidence for the largest Holocene
megathrust earthquakes (Atwater and Hemphill-Haley, 1997;
Atwater et al., 2005; Shennan, 2009; Shennan et al., 2009). While
radiocarbon dating alone may be insufficient to distinguish be-
tween single andmulti-segment ruptures, the work presented here
establishes the stratigraphic separation of two closely timed
earthquakes in locations close to a seismic segment boundary. We
suggest that detailed marsh surface elevation reconstructions from
boundary locations, combined with precise dating approaches,
should form an integral part of establishing the long-term history of
the seismic hazards associated with the Chilean subduction zone.
6. Conclusions

The 1960 and 2010 Chilean great earthquakes provide critical
modern analogues for sedimentary processes during seismic cycles
at plate boundaries. The major conclusions of this work are:

1) Deposits from the 1960 and 2010 tsunamis are fragmentary,
variable and have no unique, diagnostic diatom assemblage.

2) Our transfer function method provides estimates of coseismic
land surface deformation for two sites in 2010 and three sites in
1960. Reconstructions agree with independent estimates,
confirming the potential for our approach to be used to quan-
tify coseismic deformation for previous great earthquakes in
south central Chile.
3) Sedimentary hiatuses at two sites following the 2010 earth-
quake indicate that the magnitude of coseismic deformation
may be underestimated in fossil records.

4) A lack of close modern analogues for fossil diatom assemblages
remains a limitation of the current study and we advocate the
need for larger training sets, preferably from a wide range of
sites.

5) Where sediment accumulation allows, criteria for distinguish-
ing between seismic and non-seismic stratigraphies developed
from evidence for the largest plate boundary earthquakes
(Nelson et al., 1996; Atwater and Hemphill-Haley, 1997) are
corroborated by the lesser magnitude earthquake of 2010.
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