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The complex ({Ru(dppe)Cp*}C≡C)2CO serves as an entry point to a range of 

bimetallic complexes linked by cross-conjugated bridging ligands bearing a pendant 

group, E. The extent of -delocalisation between the metal centers through the cross-

conjugated ligand appears to be sensitive to the electronic nature of E. 
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Abstract 

The reaction between Ru(C≡CH)(dppe)Cp* 1 and oxalyl chloride affords 

({Ru(dppe)Cp*}C≡C)2CO 2 in 72% yield.  Methylation (MeOTf) of 2 occurs firstly 

on the carbonyl oxygen, affording [({Ru(dppe)Cp*}C≡C)2C(OMe)]OTf  [3]OTf.  A 

second methylation of [3]
+
 on the alkynyl Cβ, proceeds slowly, affording 

[{Cp*(dppe)Ru}CCMeC(OMe)CC{Ru(dppe)Cp*}][OTf]2  [4][OTf]2, whereas 

protonation of [3]
+
 occurs readily to give crystallographically characterized 

[{Cp*(dppe)Ru}CCHC(OMe)CC{Ru(dppe)Cp*}][OTf]2 [5][OTf]2.  The molecular 

structures of [3]OTf and [5][OTf]2 suggest that polarization by the CO group results 

in significant contributions from the alkynyl-allenylidene or alkynyl-carbyne 

mesomers, respectively.  Reaction of 2 in refluxing MeOH containing [NH4]PF6 

results in partial methanolysis to give Ru{C≡CC(O)CH=CH(OMe)}(dppe)Cp* 6.  

Knövenagel condensation of 2 with CH2(CN)2 affords 

{[Ru(dppe)Cp*]C≡C}2C=C(CN)2 7.  The related asymmetric complex 

{Cp*(dppe)Ru}C≡C[C=C(CN)2]C≡CC≡C{Ru(dppe)Cp*} 8 was obtained from the 

reaction between Ru{C≡CC(CN)=C(CN)2}(dppe)Cp* and lithiated 

Ru(C≡CC≡CH)(dppe)Cp*.  Single crystal structural determinations of 2, [3]OTf, 

[5][OTf]2, 6, 7 and 8 are reported, together with a supporting computational study of 

relevant electronic structures. 
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Introduction 

The highly unsaturated molecule penta-1,4-diyne-3-one, or bis(ethynyl)ketone, 

(HC≡C)2CO was first reported in 1933.
1 

A variety of synthetic routes to this material 

and derivatives are now known, with one common approach to bis(alkynyl) ketones 

involving reactions of a formic ester with alkynyllithium reagents, followed by 

oxidation of the resulting alcohols, (RC≡C)2CH(OH).  The latter step is often 

achieved with K2Cr2O7 or MnO2, exemplified in the syntheses of (Me3SiC≡C)2CO
2
 

and (FcC≡C)2CO.
3,4

 Alternative approaches include reaction of an alkynoic chloride, 

RC≡CC(O)Cl with Me3SiC≡CC≡CSiMe3 under Friedel-Crafts conditions to give 

RC≡CC(O)C≡CC≡CSiMe3, for example.
3-5

 However, to the best of our knowledge, 

there are only three derivatives of the ‘skipped diyne’ penta-1,4-diyne-3-one which 

contain transition metals, namely FcC≡CC(O)C≡CSiPr
i
3,

2
 (FcC≡C)2CO

3,4
 and 

{(Ph3P)AuC≡C}2CO.
5
  

 

The range of complexes in which two metal-ligand fragments are linked by 

unsaturated bridges, particularly -(C≡C)x- chains,
6
 has recently been expanded to 

include compounds in which other groups, including a third metal-ligand moiety, such 

as ferrocene and biferrocene,
7,8

 Ru(dppe)2,
9  

Ru2(DMBA)4 (DMBA = N,N’-

dimethylbenzamidinate),
10

 C2Co2(CO)2(dppm),
11

 Pd(PEt3)2,
12

 and Hg,
13

  and also 

transition metal clusters,
14

 have been inserted into the -conjugated pathway. There is 

much current interest in the electronic structures of these complexes, and both 

experimental and computational results suggest that the inserted group may act as an 

insulator or an amplifier, with respect to the extent of -conjugation between the 

metal end-groups.
7-9,13,15-19 

 

We and others have also studied the effect of inserting a variety of organic groups,
15 

particularly aromatic hydrocarbon and heterocyclic systems, into the carbon chain of 

complexes {LnM}(C≡C)x{MLn}, on the electronic interactions between the end-

groups.
20-25

 The metal end-groups are often strongly electron-donating in character, 

such as M(dppe)Cp* (M = Fe, Ru) and the formal insertion of electron-attracting 

groups, such as CO, C=CH2, C=C(CN)2, into the bridge is a natural extension of this 

work, whilst also allowing further exploration of bimetallic complexes featuring 

cross-conjugated, carbon-rich ligands.
11,15,26  

 The increasing awareness of the role that 
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quantum interference (QI) effects may play in determining the transport of charge 

through molecules
27

 and proposals for QI-driven single molecule transistors based on 

cross-conjugated scaffolds
28

 add further interest to development of methods for the 

preparation of such cross-conjugated systems and the chemistry appropriate for tuning 

the relative lengths of the various -channels. This paper describes our work on the 

syntheses, characterization and properties of the dimetalla-ethynyl ketone 

({Cp*(dppe)Ru}C≡C)2CO and some related compounds.
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Results and Discussion 

Metalla-desilylation of trimethylsilyl-alkynes or -polyynes is an efficient route to 

alkynyl- or polyynyl-metal complexes.
29

 However, the attempted metalla-desilylation 

of (Me3SiC≡C)2CO with RuCl(PP)Cp' [(PP)Cp' = (PPh3)2Cp, (dppe)Cp, (dppe)Cp*] 

using a range of conditions (KF, [NBu4]F or NaOMe),
29,30

 in the presence of salts of 

large anions ([NH4]PF6, Na[BPh4]), additional bases (NEt3, dbu) and in various 

solvents (MeOH, Bu
t
OH, thf) proved unsuccessful, only recovered starting material or 

RuH(PP)Cp' (from reaction of the chloro complex with alcohols / bases
31

 ) having 

been obtained.  It is likely that the presence of the electron-withdrawing ketone 

function deactivates the deprotected (HC≡C)2CO (which is also unstable under these 

reaction conditions) towards metallation. Transmetalation of (PPh3AuC≡C)2CO with 

RuCl(dppe)Cp was also examined,
32

 but this led to the formation of an unusual 

dimetal-substituted pyrylium complex [1,3-{Ru(dppe)Cp}2{c-

COC(OMe)CHCCH}]PF6,
5
 rather than the desired bimetallic complex 

{[Cp(dppe)Ru]C≡C}2CO.  

 

Recently, it has been noted that the ethynyl complexes Ru(C≡CH)(PP)Cp' are strong 

nucleophiles, reacting with tetracyanoethene, for example, with elimination of HCN 

and formation of the corresponding tricyanovinylethynyl complexes, 

Ru{C≡CC(CN)=C(CN)2}(PP)Cp',
33

 rather than undergoing the usual [2 + 2]-

cycloaddition and subsequent ring-opening reactions to form tetracyanobutadienyl 

derivatives, Ru{C[=C(CN)2]CH=C(CN)2}(PP)Cp'.
34

   Unfortunately, reactions of 

Ru(C≡CH)(dppe)Cp* 1 with ketonic precursors, such as bis(2,4-

bisnitrophenyl)oxalate,
35

 diethyl carbonate or bis(imidazolyl) ketone, did not afford 

the desired compounds, even under relatively harsh conditions (refluxing THF for 3 

d). 

 

Interestingly, reactions of 1 with oxalyl dichloride followed by treatment with NEt3 

were discovered to yield the desired bis(metalla-ethynyl)ketone, 

({Cp*(dppe)Ru}C≡C)2CO 2.  Scale-up and optimisation of the reaction conditions led 

to isolation of 2 in 72% yield (Scheme 1).  Complex 2 is a yellow solid which was 

initially characterized by elemental analysis and mass spectrometry, with 

confirmation of the molecular structure being achieved with a single-crystal X-ray 

diffraction study.  In the IR spectrum, ν(C≡C) and ν(CO) bands were at 1980 and 
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1714 cm
-1

, respectively.  The usual NMR features for the Ru(dppe)Cp* groups (Cp* 

at δH 1.69, δC 10.37, 93.60;  dppe at δH 1.99, 3.00;  δC 29.65-30.15;  δP 82.6) were 

found, the 
13

C NMR spectrum also having signals for Cβ and CO at δC 120.91 and 

158.53, respectively;  the resonance for Cα was not observed, probably being obscured 

by resonances in the aromatic region.   In the ES-MS, ions at m/z 635, 687 and 1347 

are assigned to [Ru(dppe)(C5Me5)]
+
, [Ru(CCCO)(dppe)(C5Me5)]

+
 and [M + H]

+
, 

respectively. 

 

 

 

 

Scheme 1.  Possible mechanism accounting for the synthesis of 

{[Cp*(dppe)Ru]C≡C}2CO 2 from oxalyl dichloride and NEt3. 

 

The crystallographic study (Figure 1, Table 1) showed that 2 is comprised of a CO 

group bearing two -C≡C-Ru(dppe)Cp* moieties, both Cp* ligands being on the same 

side of the molecule and directed away from the CO group.  The Ru-C2C(O)C2-Ru 

moiety is essentially planar (χ
2
 = 695, δmax C(2,2´) 0.0473 Å).  Bond parameters of the 

Ru(dppe)Cp* group are within the normal ranges [Ru-P 2.2680, 2.2633(6), Ru-C(cp) 

(av.) 2.251 Å, P-Ru-P 83.21(2), P-Ru-C(1) 78.90, 89.79(7)º].
36

  The Ru-C(1) 

[1.985(2) Å] and C(1)-C(2) distances [1.220(3) Å] are normal for acetylide complexes 

of the Ru(dppe)Cp* fragment, there being  apparently little influence of the CO group 

on these parameters.  Angles at C(1) and C(2) are 174.6(2) and 173.4(3)º, 
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respectively.  For the carbonyl group, C(2)-C(3) and C(3)-O(3) are 1.437(3) and 

1.237(5) Å, with angles C(2)-C(3)-C(2') and C(2)-C(3)-O(3) being 116.8(3) and 

121.6(2)º. 

 
 

Figure 1.  Plot of a molecule of {[Cp*(dppe)Ru]C≡C}2CO 2. Hydrogen atoms 

omitted for clarity 

 

 

The chemistry leading to 2 underscores the nucleophilicity of 1,
33

 with a proposed 

route (Scheme 1) involving attack of 1 on ClC(O)C(O)Cl to give an intermediate 

vinylidene [Ru{=C=CHC(=O)C(=O)Cl}(dppe)Cp*]
+
. This intermediate species was 

not characterized, but treated with NEt3 in situ to ultimately give 2, likely through 

deprotonation of the vinylidene and reaction with a second molecule of 1, followed by 

loss of HCl and CO. Attempts to synthesise ({Cp(dppe)Ru}C≡C)2CO by an 

analogous route from Ru(C≡CH)(dppe)Cp and oxalyl dichloride afforded only 

[Ru(=C=CH2)(dppe)Cp]
+
, identified from its 

1
H and 

31
P NMR spectra, after work-

up.
35

  These results confirm earlier observations that Ru(C≡CH)(dppe)Cp is not as 

strong a nucleophile as 1.
33a,38
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Table 1.  Selected bond lengths (Å) and angles (º) for some complexes 

 

 

Complex 2   [3]OTf  

 

[5][OTf]2 

 

6  7  

 

8 

Bond lengths 

(Å) 

      

Ru(1)-P(1) 2.2680(6) 2.2704(5) 2.315(2) 2.2743(2) 2.282(4) 2.293(2) 

[P(11)] 

Ru(1)-P(2) 2.2633(6) 2.2829(5) 2.340(1) 2.2702(2) 2.275(3) 2.312(2) 

[P(12)] 

Ru(2)-P(3)  2.2897(6) 2.302(2)  2.269(3) 2.300(2) 

[P(21)] 

Ru(2)-P(4)  2.3038(5) 2.285(2)  2.256(3) 2.294(2) 

[P(22)] 

Ru(1)-C(cp) 2.231-

2.271(2) 

2.226-

2.275(2) 

2.237-

2.341(7) 

2.2382-

2.2754(9) 

2.226-

2.290(9) 

2.255-

2.322(6) 

(av.) 2.251 2.255 2.287 2.258 2.262 2.285 

Ru(2)-C(cp)  2.248-

2.289(2) 

2.236-

2.291(7) 

 2.120-

2.370(7) 

2.243-

2.312(6) 

(av.)  2.268 2.258  2.240 

(disorder) 

2.279 

Ru(1)-C(1) 1.985(2) 1.957(2) 1.798(6) 1.9870(9) 1.979(8) 1.991(6) 

C(1)-C(2) 1.220(3) 1.240(3) 1.344(9) 1.236(1) 1.210(12) 1.230(8) 

C(2)-C(3) 1.437(3) 1.383(3) 1.421(9) 1.435(1) 1.426(11) 1.431(9) 

C(3)-O(3) 1.237(3) 1.355(2) 1.339(7) 1.238(1)   

C(3)-C(4)  1.381(3) 1.351(10) 1.470(1) 1.398(13) 1.418(9) 

C(4)-C(5)  1.242(3) 1.249(10) 1.331(2) 1.264(13) 1.228(8) 

C(5)-Ru(2)  1.931(2) 1.918(8)  1.955(10) 1.975(6) 
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[C(7)] 

C(31)-O(3)  1.451(2) 1.444(9)    

       

Bond angles 

(º) 

      

P(1)-Ru(1)-

P(2) 

83.21(2) 83.33(2) 82.57(5) 82.692(9) 82.9(1) 82.98(6) 

[P(11,12)] 

P(1)-Ru(1)-

C(1) 

78.90(7) 81.38(6) 86.1(2) 87.14(3) 85.4(3) 80.7(2) 

[P(11)] 

P(2)-Ru(1)-

C(1) 

89.79(7) 88.75(6) 89.0(2) 80.70(2) 89.9(3) 90.1(2) 

[P(12)] 

P(3)-Ru(2)-

P(4) 

 82.69(2) 82.78(6)  84.0(1) 82.23(6) 

[P(21,22)] 

P(3)-Ru(2)-

C(5) 

 85.43(7) 90.7(2)  84.1(3) 83.1(2) 

[P(21), 

C(7)] 

P(4)-Ru(2)-

C(5) 

 90.18(6) 81.3(2)  84.6(3) 90.6(2) 

[P(22),C(7)] 

Ru(1)-C(1)-

C(2) 

174.6(2) 178.1(2) 173.4(5) 178.23(8) 173.1(9) 177.7(5) 

C(1)-C(2)-

C(3) 

173.4(3) 171.4(2) 124.8(6) 172.8(1) 174.0(11) 177.0(7) 

C(2)-C(3)-

C(4) 

116.8(3) 

[C(2')] 

124.8(2) 122.0(6) 119.20(9) 121.0(8) 116.7(6) 

C(3)-C(4)-

C(5) 

 173.2(2) 169.7(7) 121.60(9) 174.0(10) 171.3(7) 

C(4)-C(5)-

Ru(2) 

 173.8(2) 175.2(6)  176.1(8) 169.0(5) 

[C(6,7)] 

C(2)-C(3)- 121.6(2) 113.9(2) 113.9(6) 120.93(9)   
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O(3) 

C(4)-C(3)-

O(3) 

 121.2(2) 124.1(6) 119.87(9)   

C(3)-O(3)-

C(31) 

 117.0(2) 116.3(6)    

Cp(01)-

Ru(1)…Ru(2)-

Cp(02)
a
 

14.2 6.0 56.9 --- 13.5 79.8 

 

 

 

For 6 (data for one independent molecule):  C(5)-O(6) 1.348(1), O(6)-C(7) 1.433(2) Å;  C(4)-C(5)-O6) 128.7(1), C(5)-O(6)-C(7) 116.2(1)°. 

For 7 :  C(3)-C(31) 1.40(1), C(31)-C(32,33) 1.43(2), 1.42(1) Å;  C(2,4)-C(3)-C(31) 119.1(9), 119.9(7), C(3)-C(31)-C(32,33) 121.7, 121.6(9), 

C(32)-C(31)-C(33) 116.6(9)º. 

For 8 :  C(3)-C(31) 1.382(9), C(31)-C(32,33) 1.444, 1.443(9), C(5)-C(6) 1.376(9), C(6)-C(7) 1.232(8) Å;  C(2,4)-C(3)-C(31) 122.9(5), 120.3(5), 

C(32)-C(31)-C(33) 117.2(6), C(4)-C(5)-C(6) 177.3(7), C(5)-C(6)-C(7) 167.7(7)°. 
a 
Cp(01) and Cp(02) are the centroids of the Cp rings. 
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Methylation of {[Cp*(dppe)Ru]C≡C}2CO 2 

The reactions of the bis(metalla-ethynyl)ketone 2 with electrophiles were first 

examined to establish the relative order of addition to the ketone oxygen and ethynyl 

Cβ carbon.  Addition of one eq. of MeOTf to a solution of 2 in CH2Cl2 resulted in an 

instantaneous colour change from yellow to deep purple.  The single-crystal X-ray 

structure determination of the product isolated by column chromatography and 

crystallization showed that methylation has occurred on the carbonyl oxygen to give 

[({Ru(dppe)Cp*}CC)2C(OMe)]OTf  [3]OTf (Scheme 2).  The site of addition is 

consistent with the Mulliken atomic charges on these atoms in the model system 2´ 

(C –0.225, –0.228; O –0.457 e) (vide infra).  The relatively low frequency ν(C≡C) 

band (1920 cm
-1

) in [3]OTf is consistent with a degree of allenylidene (Ru=C=C=C) 

character in the bridging ligand, as is the presence of a strong band ν(C-O) at 1434 

cm
-1

. The 
1
H and 

13
C NMR spectra contain resonances for the OMe group at δH 3.10, 

δC 57.54, while the resonance of Cα was found at δC 197.16 (JCP = 21 Hz), also 

consistent with a significant carbene-like contribution to the molecular structure.  

Other signals for the Ru(dppe)Cp* moiety are found in the usual regions and include a 

single 
31

P resonance at δP 81.2. 

 



 13 

 
 

Scheme 2.  Reactions of ({Cp*(dppe)Ru}C≡C)2CO 2 with MeOTf .  

 

 

 

In the solid state (Figure 2), the cation [3]
+
 is not symmetrical, there being different 

Ru-C separations [Ru(1)-C(1) 1.957(2), Ru(2)-C(5) 1.931(2) Å;  the two 

C(1/5)=C(2/4) [av. 1.241(3) Å] and C(2/4)-C(3) bonds [1.382(3) Å] are not 

significantly different within each pair.  These results are interpreted in terms of 

contributions from two alkynyl / allenylidene resonance forms, one being favoured 

perhaps by steric interaction of the OMe group (which is not disordered) with the 

metal centres within the crystal. The solid state structure represents a frozen 

configuration which is evidently equilibrating in solution. 
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Figure 2.  Plot of the major component of the disordered cation in 

[{Ru(dppe)Cp*]CC}2C(OMe)]OTf  [3]OTf. Hydrogen atoms on all atoms bar C(31) 

omitted for clarity.  

 

Addition of two equivalents of MeOTf to 2 in CH2Cl2 gave the same instantaneous 

colour change to deep purple, indicative of the formation of [3]
+
, which evolved over 

3 weeks to give a red solution.  The 
31

P NMR of this red solution contained a 

resonance characteristic of [3]
+
 at δP 81.2, together with two pairs of singlets arising 

from a mixture of minor ([4][OTf]2: δP 81.4, 72.8) and major ([5][OTf]2: δP 80.0, 

69.1) products.  On heating the mixture to 35 °C, unreacted [3]OTf was consumed to 

give a solution containing a mixture of [4][OTf]2 and [5][OTf]2. However, on 

attempted separation of the reaction mixture on a silica column, a colour change of 

the adsorbed material back to purple was observed. Elution (acetone-hexane, 1/1) 

gave initially [3]OTf (82%) with further elution (acetone / MeOH gradient) affording 

a small amount (10%) of a red compound [4][OTf]2.  Although [4][OTf]2 has not been 

characterized unequivocally, the ES-MS contains the dication of a doubly-methylated 

complex at m/z 688.190 (calcd 688.178).  The IR spectrum also contains ν(C=C=C) 

and ν(C=C) bands at 1948 and 1538 cm
-1

, respectively, while the 
1
H and 

13
C NMR 

spectra have resonances which are assigned to =CMe (δH 2.18, δC 29.25) and OMe 
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groups (δH 2.64, δC 58.41).  There are two Ru-C signals at δC 352.13 (JCP = 16 Hz, 

vinylidene) and 245.35 (JCP = 19 Hz, allenylidene).  On the basis of these 

spectroscopic features, the minor red compound is suggested to be 

[{Cp*(dppe)Ru}=C=CMeC(OMe)C≡C{Ru(dppe)Cp*}][OTf]2 ([4][OTf]2 (Scheme 

2). 

 

The major product ([5][OTf]2) is formed only slowly, but as noted above is rapidly 

converted to [3]OTf
 
on silica.  Purification of [5][OTf]2 proved difficult, but several 

crystallizations (CH2Cl2 / Et2O) of the crude reaction mixture gave a pure sample.  

The single-crystal structural determination showed that this complex can be 

formulated as [{Cp*(dppe)Ru}=C=CHC(OMe)=C=C={Ru(dppe)Cp*}][OTf]2 

[5][OTf]2, the protic analogue of [4][OTf]2 (Figure 3).  Other spectroscopic data 

include ν(C=C=C) and ν(C=C) bands at 1960 and 1548 cm
-1

, respectively, and Me (δH 

2.61, δC 58.85) and vinyl signals (δH 5.27, δC 148.70) in the 
1
H and 

13
C NMR spectra.  

The two 
31

P resonances described above and which are characteristic of [5]
2+

 attest to 

the presence of different Ru(dppe)Cp* groups, also indicated by two sets of Cp* 

resonances at δH 1.47, 1.57 and δC 9.88, 9.98 and 98.87, 105.24. The formation of 

[5]
2+

 probably occurs by slow hydrolysis of MeOTf to HOTf during the prolonged 

reaction time, which then rapidly protonates Cβ of the C≡C triple bond in [3]
+
. Indeed, 

NMR-scale test reactions confirmed the formation of [5]
2+

 following addition of acids 

to [3]OTf. 
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Figure 3.  Plot of the dication in 

[{Cp*(dppe)Ru}=C=CHC(OMe)=C=C={Ru(dppe)Cp*}](OTf)2 [5][OTf]2. Hydrogen 

atoms on all atoms bar C(2) and C(31) omitted for clarity.  

 

 

While the formal interpretation of the structure of [5]
2+

 is the vinylidene-allenylidene 

dication shown in Scheme 2, the short Ru-C bonds [Ru(1)-C(1) 1.798(6), Ru(2)-C(5) 

1.918(8) Å] suggest a contribution from a carbyne-like structure (cf. Ru≡C 1.766(3) Å 

in [Ru(≡CCH=CPh2)(dippe)Cp*]
2+

) (Figure 4).
39

 There is considerable unsaturation in 

the various C-C bonds [C(1)-C(2) 1.344(9), C(3)-C(4) 1.35(1), C(4)-C(5) 1.25(1) Å], 

with angles at C(1, 4, 5) being 173.4(5), 169.7(7), 175.2(6)º].  As expected, bending 

of the C5 chain occurs at C(2) and C(3) [124.8, 122.0(6)º, respectively]. 
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Figure 4. The vinylidene and carbyne resonance forms of [5]
2+

. 

 

Reaction of 2 with [NH4]PF6 in refluxing MeOH gave low yields of yellow crystalline 

Ru{C≡CC(O)CH=CH(OMe)}(dppe)Cp* 6 (Scheme 3), the structure being revealed 

by a single-crystal X-ray determination (Figure 5) and conventional spectroscopic and 

analytical methods.  
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Figure 5.  Plot of one of the independent molecules of 

Ru{C≡CC(O)CH=CH(OMe)}(dppe)Cp* 6. 

 

 

Elemental microanalyses, high-resolution ES-MS data and spectroscopic properties 

agreed with the crystallographically determined structure of 6.   The IR spectrum of 6 

contains ν(C≡C) at 2018, ν(C=O) at 1621 and ν(C=C) at 1556 cm
-1

.  In the NMR 

spectra, signals at δH 5.62 and 7.80 [both with JHH = 12 Hz], δC 110.85 and 162.39 can 

be assigned to the trans vinyl group, with the OMe group giving signals at δH 2.95 

and δC 56.01.   The alkynyl Cα, Cβ and CO carbon atoms gave 
13

C NMR resonances at 

δC 146.07 (JCP = 23 Hz), 115.83 and 174.13.  In the ES-MS, ions at m/z 783, 767 and 

745 are assigned to [M + X]
+
 (X = K, Na and H, respectively), their compositions 

being confirmed by high-resolution measurements. 

 

It seems plausible that the reaction of 2 in the weakly acidic [NH4]
+
 / MeOH medium 

proceeds via the mechanism outlined in Scheme 3, which has obvious similarities 

with that proposed in Scheme 2. Initial protonation of the keto-oxygen is followed by 

methanol attack at C (attack at C being disfavored by the adjacent oxygen), Fischer 
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carbene formation and deprotonation.  Loss of one Ru(dppe)Cp* group (probably as 

the solvated cation) occurs by re-protonation.  

 

 

Scheme 3. The formation of 6 from 2. 

 

Knövenagel condensation 

Complex 2 provides an entry point for the preparation of other complexes in which 

the C4 chain is interrupted by a functionalized central C atom through derivative 

chemistry of the carbonyl moiety.  The reaction between 2 and malononitrile in the 

presence of basic alumina occurs much more slowly (3 d) than found in the usual 

Knövenagel condensation (ca 1 h) (Scheme 4).
40

 The product from this reaction forms 

orange crystals, of which a crystal structure determination showed the expected 

structure, {[Cp*(dppe)Ru]C≡C}2C=C(CN)2 7.  In addition to the usual resonances for 

the metal-ligand fragments, the 
13

C NMR spectrum contains resonances at δC 46.93 

[=C(CN)2], 94.11 (JCP = 2.2 Hz, Cβ), 120.13 (CN) and 165.49 (JCP = 22 Hz, Cα).  The 

31
P NMR contained a broad singlet at p 83.0 for the dppe ligands, likely a 
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consequence of slower dynamic motion in this relatively sterically congested 

molecule. 

 

 

Scheme 4.  Knövenagel condensation reaction between CH2(CN)2 and 2 to give 7.   

 

Figure 6 shows a plot of a molecule of 7, differences between the two halves being 

experimentally insignificant.  The structure can be formulated as a metallated 1,1-

dicyano-2,2-bis(ethynyl)ethene carrying two Ru(dppe)Cp* groups. Bond parameters 

for the Ru(dppe)Cp* moieties are within the usual ranges and are similar to those 

found for the ketone 2.  Within the C=C(CN)2 group, C(2,4)-C(3) are 1.43, 1.40(1) 

and C(3)-C(31) is 1.40(1) Å;  the angle C(2)-C(3)-C(4) is 121.0(8)°.  In the crystal, 

the two Cp* groups are on the same side of the molecule and opposite to the C(CN)2 

group.  The cyanocarbon ligand is essentially planar (χ
2
 (Ru2C9N2) = 696). 

Figure 6.  Plot of a molecule of ({Cp*(dppe)Ru}C≡C)2C=C(CN)2 7. Only one 

component of the disordered atoms at Ru(2) has been included (See Experimental).  
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Of interest here is a similar complex which was obtained from the reaction between 

Ru{C≡CC(CN)=C(CN)2}(dppe)Cp*, which undergoes ready nucleophilic substitution 

of the CN group gem to the metal centre,
34

 and the lithiated complex obtained from 

Ru(C≡CC≡CH)(dppe)Cp* and LiBu (Scheme 5).
38,41

 The product from this reaction 

was obtained as a magenta solid and identified spectroscopically and by a single-

crystal structure determination (Figure 7) as 

{Cp*(dppe)Ru}C≡CC{=C(CN)2}C≡CC≡C{Ru(dppe)Cp*} 8.  

 

 

 

Scheme 5.  Synthesis of {Cp*(dppe)Ru}C≡CC{=C(CN)2}C≡CC≡C{Ru(dppe)Cp* 8. 

 

The IR spectrum of 8 contains a weak ν(CN) band at 2209 cm
-1

 and two (CC) 

bands at 2111 and 1976 cm
-1

, with the latter being broader and more intense.  The 

expected signals for the two similar Ru(dppe)Cp* metal centres are found in the NMR 

spectra, with two equally intense signals for dppe (δP 80.8, 81.1) and Cp* ligands (δH 

1.56, 1.64, δC 10.25, 10.39  and 94.89, 95.84).  Despite several attempts a satisfactory 

elemental microanalysis was not obtained, but high-resolution mass spectrometry of 

the ions [M + H]
+
 and [M + Na]

+
 agreed with the calculated formulations. 
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Figure 7.  Plot of a molecule of 

{Cp*(dppe)Ru}C≡CC{=C(CN)2}C≡CC≡C{Ru(dppe)Cp*} 8. 

 

A molecule of 8 is shown in Figure 7, with selected bond parameters collected in 

Table 1.  The two Ru(dppe)Cp* moieties have similar bond lengths and angles within 

the usual ranges.  The two Ru-C bonds are similar at 1.991(6) and 1.975(6) Å, 

respectively.  Within the cyanocarbon ligand, all three C≡C triple bonds have 

essentially the same bond length, 1.23 Å, with C(sp)-C(sp) and C(sp)-C(sp
2
) 

separations C(3)-C(31) 1.376(9) and 1.431(9), 1.418(9)  Å, respectively.  The ethynyl 

and diynyl groups are not strictly linear with angles at individual carbon atoms C(1, 2, 

5-8) ranging between 167.7(7) and 177.7(5) °.  The angles C(2)-C(3)-C(4) and C(32)-

C(31)-C(33) are 116.7(6) and 117.2(6)º, respectively, while the dihedral angle 

between C(33)-C(31)-C(32) and C(2)-C(3)-C(4) about the C(3)-C(31) bond is 5.8(3)°. 

 

UV-vis spectroscopy  

 

The range of colours displayed by complexes 2 - 8 prompted measurement of their 

UV-vis absorption spectra (Figure 8). The bright yellow parent complex 2 exhibits an 
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absorption at 387 nm ( 24 900 l mol
-1

 cm
-1

) with a shoulder at 339 nm ( 15 000 l 

mol
-1

 cm
-1

) (Figure 7), likely due to a combination of MLCT and intraligand 

transitions. The substitution of the ketone moiety for the dicyanomethylene in orange-

coloured 7 causes a red-shift in these transitions, which appear as a broad transition 

envelope centered near 477 nm ( 30 800 l mol
-1

 cm
-1

), consistent with the MLCT 

assignment. The increased conjugation pathway offered by the hepta-1,4,7-triyne-3-

one-diyl ligand in dark-maroon coloured 8 results in a further red-shift and greater 

separation of these absorption features leading to two features at  499 (27 700) and 

533 nm (26 300 l mol
-1

 cm
-1

).  

 

The methylated derivative [3]OTf has a striking purple colour that arises from an 

intense absorption band at 545 nm ( 51 100 l mol
-1

 cm
-1

), consistent with an 

extensively conjugated ligand backbone or a strong MLCT transition. Methylation to 

give [4][OTf]2 causes a blue shift in the absorption band, as might be expected from a 

more localized allenylidene / vinylidene structure, which now appears as a broad, 

unresolved feature with apparent max 489 nm,  32 100 l mol
-1

 cm
-1 

. The protonated 

mono-methylated adduct [5]
2+

 gives a similar spectrum to [4][OTf]2 with a band λmax 

at 481 nm. However, no molar absorption was recorded as there was partial 

deprotonation of [5]
2+

 to [3]
+
, (observed from the appearance of the band at 545 nm) 

highlighting the acidity of the vinylidene proton. 
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Figure 8. The UV-vis absorption spectra of 2, [3]OTf, [4][OTf]2, 7 and 8 in CH2Cl2. 

 

Electrochemistry 

The electrochemical response of bi- and poly-metallic complexes featuring 

conjugated bridging ligands has been a topic of considerable interest for many years.
42

 

It has become clear from these very many investigations that the electronic character 

of even chemically and structurally similar compounds {LnM}(bridge){MLn} can 

vary dramatically. Consequently, this family of compounds can be used to construct 

compounds which display: metal-localised redox character, giving rise to well-

behaved examples of mixed-valence complexes that may be weakly 
24c,24e,43

 or 

strongly coupled;
21f

 significantly carbon-ligand localized redox-properties and for 

which mixed-valence descriptions are less appropriate;
15,44

 and a growing range of 

intermediate situations in which the extensively mixed metal- and carbon-based 

ligand orbitals
21e,45

 and dynamic conformational effects
24a

 create difficulties in 

making a clear distinction between the extremes of metal and ligand redox character. 
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Complex 2 and its derivatives provide a useful opportunity to extend these studies to 

include an assessment of the influence of a cross-conjugated carbon-rich ligand on the 

electrochemical response (Table 2) and electronic nature of the complexes and redox-

related products, complementing recent investigations with complexes featuring gem-

enediyne and linear polyynediyl based bridging ligands.
11,15,26  

  

 

The closely related complexes 2 and 7 each undergo three sequential one-electron 

oxidations at moderate potentials, the third being irreversible in each case. The 

substantial separation of the first two redox processes E1/2(2) – E1/2(1)  = 200 mV (2), 

300 mV (7) gives rise to large comproportionation constants KC, indicating the 

significant thermodynamic stability of the electrochemically generated monocations 

[2]
+
 and [7]

+
.
46

 The electrochemical response of the ‘asymmetric’ complex 8 is 

essentially identical to that of 7, despite the additional CC moiety that has been 

formally inserted into one ‘arm’ of the bridging ligand. The methylated complex 

[3]OTf displays two oxidation events at significantly more positive potentials than the 

neutral complexes 2, 7 and 8, no doubt a consequence of the cationic nature of the 

organometallic fragment. The third oxidation to give [3]
4+

 is likely shifted outside of 

the accessible solvent window. However, a reduction wave is now also observed at –

1.49 V. Although correlations between optical and electrochemically determined 

band-gaps need to be made with caution, there is precise agreement between these 

two measures in the case of [3]OTf (E1/2(1)–E1/2(Red) = 2.27 V; max = 545 nm = 2.27 

eV). 

 

Unsurprisingly, the dicationic vinylidene derivatives only exhibit one irreversible 

oxidation wave at even more positive potentials than E1/2(1) in [3]OTf, together with 

an irreversible reduction wave. The cyclic voltammogram of the related mononuclear 
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complex Ru{CCC(CN)=C(CN)2}(dppe)Cp* features only a single, irreversible 

oxidation wave some +420 mV relative to E1/2(1) in 7, indicative of the relative 

electron-donating and -withdrawing capacities of the Cp*(dppe)RuCC– and -CN 

moieties.  

 

When compared with the most closely related linear polycarbon-bridged bimetallic 

complexes {Ru(dppe)Cp*}2{-(CC)n} (n = 2, 3, 4) it is readily apparent that the 

present complexes are oxidized at much less positive potentials than 2 and its 

derivatives and analogues, and there is a pronounced dependence of E1/2(2)–E1/2(1) on 

the number of alkynyl moieties in the ligand. Spectroelectrochemical and 

computational studies have shown the substantial contribution from the linear carbon 

ligand to the redox active orbitals in the polyynediyl family based on ruthenium half-

sandwich fragments.
15,44

  Consequently, the radical cations [{Ru(dppe)Cp*}2{-

(CC)n}]
+
 are arguably better described as metal-stabilised carbon radicals than as 

true mixed-valence species. However, attempts to investigate many of the complexes 

described here by spectroelectrochemical methods were hampered by the chemical 

irreversibility of the redox processes. Therefore, in order to better assess the 

significance of the electrochemical results, and the ‘mixed-valence’ nature or 

otherwise of the electrochemically derived products in the cross-conjugated examples, 

we turned to DFT studies, with computational results correlated with the available 

spectroscopic data. 
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Table 2  Electrochemical responses of 2-[5][OTf]2, 7, 8 and related complexes.
a 

Compound 

E1/2(1)
b 

E1/2(2) ΔE1/2
c 

Kc
d 

E1/2(3), 

E1/2(4)  

E1/2 (Red)
e
 
 

{Cp*(dppe)Ru*}2 

{-(C≡C)2  
44b 

 
-0.43 +0.22 0.65 1.27 x 10

11
 

+1.04 

+1.74
 i
 

 

2 +0.26 +0.46 0.20 2.40 x 10
3 

+0.84
i 

 

7 +0.49 +0.79 0.30 1.17 x 10
5 

+1.38
i 

 

8 +0.48 +0.74 0.26    

Ru{C≡CC(CN)=C(

CN)2}(dppe)Cp* 

33b
  

+0.91
i
     -1.06 

[3]OTf +0.78 +1.15 0.39
f 

3.89 x 10
6
  -1.49

i
  

[4][OTf]2 +1.12
i
     -1.03

i
  

[5][OTf]2 +1.03
i
      -0.70

i
 

 

a
 CH2Cl2 / 0.1 M [Bu4N]PF6 at ca. 25 C. 

b
 Potentials (V) referenced to [FeCp2]/ 

[FeCp2]
+
 = +0.46 V or [FeCp*2]/ [FeCp*2]

+
 = -0.02 V.

47
 
c 

ΔE1/2 = E1/2(2)-E1/2(1). 
d
 Kc 

= exp(ΔEF /RT). 
e
 Half-wave potential of a reduction wave. 

f
 ΔE1/2 was approximated 

as the separation between the peak potentials of two anodic waves. 
i
 Irreversible, E1/2 

estimated from peak potentials of an only partially chemically reversible process.  

 

Electronic Structure Calculations  

The presence of a cross-conjugated bridging ligand between the Ru(dppe)Cp* 

fragments in 2, 3, 7 and 8 prompts consideration of the extent of delocalization within 

the molecular frameworks, and the sensitivity of the distribution of -electron density 

to the nature of the C substituent.
26b

 Computational models of these complexes (2´, 

[3´]
+
, 7´, 8´), as well as the parent organic gem-diethynylethene (gem-DEE) and 

reference ene-diyne complex 9´ (Figure 9), were examined  using full ligand sets and 
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no symmetry restrictions (B3LYP / 3-21G* all atoms). A summary of important bond 

lengths and angles from the optimized geometries, tables of orbital energies and 

composition, and plots of key molecular orbitals not otherwise shown are given in the 

Supporting Information. The gas-phase model geometries generally reproduce the 

conformations of the metal fragments observed in the crystallographically determined 

structures which indicate that the conformations adopted in the solid state are strongly 

influenced by intramolecular steric and electronic factors rather than by crystal 

packing. The computational models also reproduce individual bond parameters with 

an approximately 1% over-estimation of bond lengths.  

 

 

 

Figure 9.  The compounds gem-diethynylethene (gem-DEE) and 9´
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The parent gem-diethynylethene (gem-DEE) and derived complex 9´ provide a 

convenient starting point for discussions and a benchmark for further comparisons 

with other members of the series. The electronic structures of gem-DEE and 

substituted derivatives, including bimetallic systems, have been studied at various 

levels on previous occasions.
26a,26b,48 

The in- and out-of-plane -type orbitals of gem-

DEE have been described by Cao and Ren,
26b

 and a summary of the composition of 

these -orbitals together with contour plots are given in the Supporting Information, 

using the same labeling system as in the previous work. The electronic structure of the 

Ru(CCR)(PR3)2Cp fragment has also been described in detail on many previous 

occasions,
44,49 

and it is sufficient to note here that the HOMO and HOMO–1 are 

approximately orthogonal and essentially derived from out-of-phase mixing of the 

ethynyl -system with dxz and dyz metal orbitals (taking z as colinear with the Ru-CC 

-bond, y directed at the centroid of the Cp ring). 

 

The HOMO of 9´ is derived from the anti-bonding combination of the gem-DEE 

HOMO (4, out-of-plane ligand ) and in-phase combination of the metal dxz orbitals, 

and is therefore delocalized over the 8-atom, cross-conjugated Ru-CC-C(=CH2)-

CC-Ru chain with substantial contributions from both metal atoms (26%) and the 

carbon-rich bridge (62%) (Figure 10).  The significant weighting of the carbon-rich 

fragment in the HOMO is common in ruthenium complexes of this type.
15,44,49,50

 

There is a re-ordering of the HOMO–1 and HOMO–2 orbitals relative to those of the 

computational model system {trans-Fe(Me)(dHpe)2}2(-DEE) studied by Cao and 

Ren,
26b

 but neither of these orbitals feature any appreciable contribution from the 

ethenyl -system. The ligand * system lies well above the unoccupied orbitals of the 

Ru(dppe)Cp* fragments and comprises the LUMO+18. Metallation causes a small 

increase in the C(1)C(2) / C(4)C(5) and C(3)=CH2 bond lengths relative to gem-

DEE at the same level of theory, in a fashion similar to that noted elsewhere for iron 

derivatives of gem-DEE.
26b
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Figure 10. Plots, energies and % composition of selected orbitals of 9´ (isocontour 

value  0.02 (e/bohr
3
)
1/2

). 

 

Perhaps surprisingly, the introduction of the strongly electron withdrawing 

dicyanomethylene moiety in 7´ has little effect on the composition or order of the 

occupied orbitals when compared with 9´, although the LUMO is heavily associated 

with the cyanocarbon * system (Figure 11). The modest influence of the 

dicyanomethylene groups on the metal centers is evidenced by the small elongation of 

the Ru-P bond lengths (Table 4), due to a reduction in metal-phosphine back-bonding.  

There is also a modest contraction of the Ru(1, 2)-C(1, 5) bonds, likely a consequence 

of both reduced electrostatic attraction and decreased metal-alkynyl back-bonding. 

The closely related ynyl-diyl complex 8´ has a pronounced asymmetry in the 

electronic structure arising from the combination of ethynyl and butadiynyl fragments 

(Figure 11). Whilst the LUMO is also dominated by the C=C(CN)2 * system, the 

HOMO and HOMO–1, which are close in energy but not degenerate, are closer in 

composition to {Cp*(dppe)RuCC}- and {Cp*(dppe)RuCCCC}- fragments, the 

latter admixed with 4. The HOMO-2 and HOMO-3 are derived from in-plane 

overlaps of the metal and ynyl / diynyl -systems. 
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Figure 11. Plots energies and % composition of the HOMO and the unoccupied 

molecular orbital most closely corresponding to the gem-DEE LUMO (*) for 2´, 

[3´]
+
, 7, 8 and 10´ (isocontour value  0.02 (e/bohr

3
)
1/2

).  

 

The formal replacement of the methylene =CH2 moiety in 9´ by the ketone =O in 2´ 

has a similar structural effect to that of the dicyanomethylene moieties in 7´ and 8´ 

and also causes orbital re-ordering relative to the parent system. The HOMO in 2´ lies 

in the plane of the diethynylketone ligand, and is derived from the gem-DEE 3 and 

metal dxz admixed with the in-plane- oxygen p-type orbital. The HOMO–1 in 2´ is 

similar in composition to the HOMO–1 in 9´ whilst the HOMO–2 in 2´ lies 

approximately perpendicular to the plane of the ligand and therefore resembles the 

HOMO in 9´, but with substantially reduced contribution from the C=O moiety. 

Overall, there is little by way of a fully extended -conjugated pathway between the 

metal centers through the diethynylketone-based bridge. The introduction of the 

ketone moiety has little effect on the relative position of the ligand * system, which 

is found in LUMO+12. Methylation of 2´ to give [3´]
+
 causes the ligand * system to 

descend below the level of the unoccupied metal-based orbitals and comprises the 

LUMO in a fashion similar to that noted for the dicyanomethylene derivatives 7´ and 

8´. The HOMO of  [3´]
+
 again features little character from the C carbon atom and 

the metal ethynyl fragments are effectively insulated from each other. It would appear 

that a better description of the intense absorption feature in [3]
+
 is as an MLCT rather 

than intraligand transition. 

 

 To further assess the emerging trend in which strongly electron-withdrawing groups 

decrease the cross-conjugated -electron pathway through the 1,1-diethynylethene-

derived bridge, the computational model system {Cp*(dppe)RuC≡C}2C{=C(NH2)2} 

10´ was constructed (Figure 11). The introduction of the strongly electron-donating 

NH2 groups causes a significant increase in the energy cross-conjugated ligand * 

system, which is found to comprise the LUMO+21 and LUMO+22 in 10´. However, 

of more interest is the effect that these substituents have on the composition of the 

HOMO.  The electron-donating groups lead to a substantial increase in the 

contribution from C to the HOMO giving rise to a more delocalized -system along 

the Ru(1)-C(1)C(2)-C(3)-C(4)C(5)-Ru(2) chain.  On this basis we would suggest 
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that more effectively delocalized, cross-conjugated -channels can be engineered by 

introduction of electron-donating groups to the ligand periphery. 

 

 

Conclusions 

This work has used the nucleophilic properties of ethynyl compound 1 to generate 

bis(metalla-ethynyl) ketone 2 from oxalyl dichloride.  The electron-withdrawing 

carbonyl group deactivates the C≡C triple bond to metalla-desilylation in attempted 

syntheses of {[Cp’(PP)Ru]C≡C}2CO [Cp’ = Cp*, Cp; PP = dppe, (PPh3)2]  from 

(Me3SiC≡C)2CO.  Methylation of 2 with methyl triflate proceeds initially at the 

carbonyl oxygen atom rather than the alkynyl Cβ to give methyl ether [3]OTf. 

However, a second electrophilic attack (Me
+
) on [3]

+
 occurs in a slow reaction at Cβ 

to give the bis-methyl adduct [4][OTf]2.  Protonation of [3]
+
 at Cβ gives vinylidene 

[5][OTf]2, from which the proton on Cβ could be readily removed to regenerate [3]
+
.  

Upon heating 2 in refluxing MeOH containing [NH4]PF6, partial dissociation of 

Ru(dppe)Cp* groups occurred to give the mononuclear complex 

Ru{C≡CC(O)CH=CH(OMe)}(dppe)Cp* 6. Knövenagel condensation of ketone 2 

with CH2(CN)2 gives the dicyanomethylene derivative 7.  The related compound 

{Cp*(dppe)Ru}C≡CC{=C(CN)2}C≡CC≡C{Ru(dppe)Cp*} 8 was obtained by 

nucleophilic displacement of the CN group gem to Ru from 

Ru{C≡CC(CN)=C(CN)2}(dppe)Cp* by LiC≡CC≡CRu(dppe)Cp*.   

 

Structural studies have shown that the complexes have shorter Ru-C distances than 

usually found, suggesting that the presence of the CO group in 2 results in major 

contributions from the vinylidene-allenylidene or carbyne-allenylidene mesomers to 

the overall structures of these complexes.  Electronic structure calculations reveal the 

-electron pathway in 2, [3]
+
, 7 and 8 is not extensively delocalized through the 

formally cross-conjugated system. The extent of -delocalisation between the metal 

centres through the cross-conjugated ligand appears to be diminished in response to 

the introduction of strongly electron-withdrawing groups at C. However, the 

introduction of additional electron-donating substituents at the 2-position in the 

metallated ene-1,1-diyne, as in 10´, leads to an increase the electron density at C, 

with potential for a marked increase in the degree of electronic interaction through 



 34 

these unusual -electron systems. Further synthetic efforts in this direction are 

underway in our laboratories. 

 

Experimental 

General comments.  All reactions were carried out under dry nitrogen or argon, 

although normally no special precautions to exclude air were taken during subsequent 

work-up.  Common solvents were dried, distilled under nitrogen and degassed before 

use.  They were purified as follows: diethyl ether, hexane, and thf were distilled over 

Na/benzophenone; benzene was distilled from Na; CH2Cl2 and Bu
t
OH were distilled 

from CaH2; NEt3 was distilled from KOH; MeOH was distilled from Mg(OMe)2. 

 

Purification of products was carried out either by preparative thin-layer 

chromatography (TLC) on glass plates (20 x 20 cm
2
) coated with silica gel (Merck, 

0.5 mm thick), flash chromatography on silica gel (Davisil, 40-63 micron), basic 

alumina (Fluka, Brockmann activity I, pH 10 ± 0.5, 0.05-0.15 mm) or neutral alumina 

(Fluka, Brockmann activity I, pH 7 ± 0.5, 0.05-0.15 mm). 

 

Elemental analyses were carried out by CMAS, Belmont, Australia, and Campbell 

Microanalytical Centre, University of Otago, Dunedin, New Zealand. 

 

Instrumentation.  IR spectra:  Bruker IFS28 FT-IR spectrometer.  Spectra in CH2Cl2 

were obtained using a 0.5 mm path-length solution cell with NaCl windows.  Nujol 

mull spectra were obtained from samples mounted between NaCl discs.  

NMR spectra:  Varian Gemini 2000 (
1
H at 300.145 MHz, 

13
C at 75.479 MHz, 

31
P at 

121.501 MHz) or Unity Inova 600 (
1
H at 599.653 MHz, 

13
C at 150.796 MHz) 

instruments, the latter equipped with a cryo-probe.  Samples were contained in 5 mm 

sample tubes.  Chemical shifts are given in ppm relative to internal tetramethylsilane 

for 
1
H and 

13
C NMR spectra, external H3PO4 for 

31
P NMR spectra. 

Positive-ion electrospray mass spectra (ES-MS) or high resolution mass spectra (HR-

MS) were obtained from samples dissolved in MeOH or MeCN, with added NaOMe 

as an aid to ionisation when required.
51

  Solutions were injected into Finnigan LCQ 

(ES-MS, Adelaide), Varian Platform II (ES-MS) or Bruker MicroTOF spectrometers 

(HR-MS, Waikato) and were calibrated against a standard sodium formate solution. 
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Nitrogen was used as the drying and nebulising gas.  Peaks listed are the most intense 

of isotopic clusters. UV-vis spectra were obtained with a Varian-Cary 5000 UV-Vis-

NIR spectrophotometer.  Samples in CH2Cl2 were contained in fused quartz cells, 

path-length 1 cm. Cyclic voltammograms (CVs) were recorded using a PAR Model 

263A potentiostat, with a saturated calomel electrode.  The cell contained a Pt disk 

working electrode, and Pt wire counter and pseudo-reference electrodes. 

Electrochemical samples (1 mM) were dissolved in CH2Cl2 containing 0.1 M 

[NBu4]PF6 as the supporting electrolyte.  Potentials are given in V vs SCE, with 

FeCp2 / [FeCp2]
+
 (+0.46 V) or FeCp*2 / [FeCp2]

+
 (-0.02 V) as internal calibrants.

47
 
 

 

Reagents.  The reagents ClCOCOCl , MeOTf , 2.5 M solution of BuLi in hexanes and 

NH4PF6 were purchased and used as received. The compounds Ru(CCH)(dppe)Cp* 

1 
44b

, Ru{C≡CC(CN)=C(CN)2}(dppe)Cp* 7 
33

 and Ru(CCCCH)(dppe)Cp* 
52

 were 

prepared by the cited methods. 

 

Synthesis of {Cp*(dppe)RuC≡C}2CO 2 

(a)  Oxalyl chloride (0.6 ml of a 0.2 M solution in thf, 0.12 mmol) was added to a 

solution of Ru(C≡CH)(dppe)Cp* (100 mg, 0.15 mmol) in thf (5 ml).  The colour of 

the solution changed rapidly from yellow through red to green.  After standing 

overnight at r.t., NEt3 (3 ml, excess) was added causing a further colour change to 

purple.  After 1 h, solvent was removed and the residue was taken up in the minimum 

amount of CH2Cl2 (containing 5% NEt3).  The resulting solution was passed through a 

small column of basic alumina (3.0 x 4.5 cm), eluting with the same solvent mixture.  

The yellow band was collected and afforded {Cp*(dppe)RuC≡C}2CO 2 (58 mg, 57%) 

as a yellow solid.  Crystals suitable for X-ray diffraction were obtained from hexane.  

Anal. Calcd (C77H78OP4Ru2.C6H14): C, 69.63; H, 6.48; M (solvent free), 1346. Found: 

C, 69.56; H, 6.61. IR (nujol, cm
-1

):  ν(C≡C) 1980s, ν(C=O) 1714w. 
1
H NMR (C6D6): 

δ 1.69 (s, 30H, Cp*), 1.99, 3.00 (2  m, 4  CH2, 2  dppe), 7.02-7.96 (m, 40H, Ph). 

13
C NMR (C6D6): δ 10.37 (s, C5Me5), 29.65-30.15 (m, PCH2CH2P), 93.60 (s, C5Me5), 

120.91 (s, C≡), 127.41-139.23 (m, Ph), 158.53 (s, CO). 
31

P NMR (C6D6): δ 82.6 (s).  

ES-MS (MeOH, m/z):  1347, [M + H]
+
;  687, [Cp*(dppe)RuC≡CCO]

+
;  635, 

[Ru(dppe)Cp*]
+
. 
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(b) A stirred solution of Ru(CCH)(dppe)Cp* (1.0 g, 1.52 mmol) in thf (50 ml) was 

treated with oxalyl chloride (4.18 ml of 0.2 M solution in thf, 0.834 mmol). The  

yellow colour initially turned red then rapidly changed to green. After 1 h, the colour 

was dark bronze.  After stirring at r.t. for 2 d, NEt3 (10 ml) was added to the solution, 

which became purple. After stirring for one more day, solvent was removed under 

reduced pressure.  The residue was dissolved in a minimum amount of CH2Cl2 and 

purified by flash chromatography (silica, 3 x 30 cm; gradient eluted: petroleum spirit-

CH2Cl2-NEt3 40/10/1 to 10/10/1). The first yellow-green band was 

Ru(CCH)(dppe)Cp* (confirmed by 
1
H and 

31
P NMR).  The second yellow fraction 

contained crude {Cp*(dppe)RuC≡C}2CO 2, which was then passed through another 

similar column using the same solvent system to give pure 2 as a yellow solid (730 

mg, 72%), spectroscopically identical to the sample prepared by the smaller scale 

route. 

 

Reactions of {Cp*(dppe)RuC≡C}2CO 2 

(a)  Methylation.  (i)  [{Cp*(dppe)RuC≡C}2C(OMe)]OTf  [3]OTf.  A solution of 

{Cp*(dppe)RuC≡C}2CO (60 mg, 0.045 mmol) in CH2Cl2 (10 ml) was treated with 

MeOTf (5.1 μl, 0.045 mmol) causing the solution colour to instantaneously turn from 

yellow to purple.  The reaction mixture was stirred for 1 h before the solvent was 

removed under reduced pressure.  The residue was purified by flash chromatography 

(silica, acetone-hexane, 1/1) and the major purple band contained 

[{Cp*(dppe)RuC≡C}2C(OMe)]OTf [3]OTf (57 mg, 84%), obtained as a purple solid.  

X-ray quality crystals were grown from C6H6/Et2O. Anal. Calcd (C79H81F3O4P4Ru2S): 

C, 62.86; H, 5.41; M (cation), 1361.  Found: C, 62.89; H, 5.34. IR (nujol, cm
-1

):  

ν(C≡C) 1920vs; ν(C-O) 1434s; ν(CF/SO) 1267s, 1223s 1185w, 1149m, 1097m, 

1069w, 1033m. 
1
H NMR (CDCl3): δ 1.50 (s, 30H, 2 x Cp*), 2.14, 2.49 (2 x m, 4 x 

CH2, 2 x dppe), 3.10 (s, 3H, OMe), 7.03-7.46 (m, 40H, Ph). 
13

C NMR (CDCl3): δ 

10.11 (s, C5Me5), 29.31-31.11 (m, CH2P), 57.54 (s, OMe), 96.68 (s, C5Me5), 108.25 

(s, C≡), 127.93-135.94 (m, Ph), 197.16 [t, JCP = 21 Hz, C]. 
31

P NMR (CDCl3): δ 81.2 

(s).  ES-MS (MeOH, m/z):  1361, M
+
;  635, [Ru(dppe)Cp*]

+
.  

 

(ii) (a)  [{Cp*(dppe)Ru}=C=CMeC(OMe)=C=C={Ru(dppe)Cp*}][OTf]2  [4][OTf]2.  

A solution of {Cp*(dppe)RuC≡C}2CO (100 mg, 0.074 mmol) in CH2Cl2 (10 ml) was 
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treated with MeOTf (26 μl, 0.230 mmol) in a Schlenk tube under Ar and stirred at 

35ºC.  After 3 weeks, the now red solution was loaded onto a column (acetone-

hexane, 1/1), upon which the colour changed to purple. A purple fraction contained 

[{Cp*(dppe)RuC≡C}2C(OMe)]OTf  [3]OTf (92 mg, 82%).  A red band was eluted 

with acetone and MeOH, then NaCl (10-50 mg) was then added to the top of the 

column to increase the ionic strength of the eluent to give 

[{Cp*(dppe)Ru}=C=CMeC(OMe)=C=C={Ru(dppe)Cp*}][OTf]2  [4][OTf]2 as a dark 

red solid (13 mg, 10%).  Anal. Calcd (C81H81F6O7P5Ru2S2): C, 58.13; H, 5.06; M 

(cation), 1376.  Found: C, 57.61; H, 5.16. IR (nujol, cm
-1

):  ν(Ru=C=C=C) 1948s, 

ν(C=C) 1538s, ν(CF/SO) 1264s, 1223m, 1150m, 1097w, 1030w. 
1
H NMR (CDCl3): δ 

1.53, 1.63 (2  s, 2  15H, 2  Cp*), 2.18 (s, 3H, =CMe), 2.60, 2.85 (2  m, 4  CH2, 

2  dppe), 2.64 (s, 3H, OMe), 6.94-7.66 (m, 40H, Ph). 
13

C NMR (CDCl3): δ 9.94, 

10.21 (s, 2  C5Me5), 29.25 (s, =CMe), 29.10-30.06 (m, 2  CH2P), 58.41 (s, OMe), 

98.77, 104.73 (2  s, 2  C5Me5), 113.91, 138.69, 150.67 (3  s, C), 120.96 [q, JCF = 

321 Hz, CF3], 127.76-135.19 (m, Ph), 245.35 [t, JCP = 19 Hz, Ru=C=C=C], 352.13 [t, 

JCP = 16 Hz, Ru=C=CMe]. 
31

P NMR (CDCl3): δ 81.4 (s), 72.8 (s). HR-MS (MeOH, 

m/z):  Found (calcd):  M
2+

:  688.190 (688.178). 

 

(iii)  [{Cp*(dppe)Ru}=C=CHC(OMe)=C=C={Ru(dppe)Cp*}][OTf]2  [5][OTf]2.  A 

solution of {Cp*(dppe)RuC≡C}2CO (80 mg, 0.060 mmol) in CH2Cl2 (10 ml) was 

treated with MeOTf (14 μl, 0.122 mmol) under Ar.  The solution turned purple 

straight away and after 3 weeks was red.  Et2O was layered onto the solution to induce 

crystallisation, and the resulting solid was similarly recrystallised to give 

[{Cp*(dppe)Ru} =C=CHC(OMe)=C=C={Ru(dppe)Cp*}][OTf]2  [5][OTf]2 (60 mg, 

60%) as dark red crystals.   X-ray quality crystals were grown from CH2Cl2/Et2O. 

Anal. Calcd (C80H82F6O7P4Ru2S2): C, 57.90; H, 4.98; M (cation), 1362.  Found: C, 

56.98; H, 5.05. IR (nujol, cm
-1

):  ν(C=C=C) 1960m, ν(C=C) 1548m, ν(CF/SO) 

1272m, 1221w, 1152m, 1097w, 1031m. 
1
H NMR (CDCl3): δ 1.47, 1.57 (2 x s, 2 x 

15H, 2 x Cp*), 2.45, 2.96 (2  m, 4  CH2, 2  dppe), 2.61 (s, 3H, OMe), 5.27 (s, 1H, 

=CH) 7.00-7.54 (m, 40H, Ph). 
13

C NMR (CDCl3): δ 9.88, 9.98 (2  s, 2  C5Me5), 

27.52-27.83, 29.37-29.68 (2  m, 2  CH2P), 58.85 (s, OMe), 98.87, 105.24 (2  s, 2 

 C5Me5), 116.02, 137.93 (2  s, C), 120.97 [q, JCF = 321 Hz, CF3], 128.04-134.42 

(m, Ph), 148.70 (s, =CH), 242.54 [t, JCP = 20 Hz, Ru=C=C=C], 344.44 [t, JCP = 16 
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Hz, Ru=C=CH]. 
31

P NMR (CDCl3): δ 80.0 (s), 69.1 (s).  ES-MS (MeCN, m/z):  1361, 

[{Cp*(dppe)RuC≡C}2C(OMe)]
+
. HR-MS (MeCN, m/z):  Found (calcd):  1361.319 

(1361.332), [{Cp*(dppe)RuC≡C}2C(OMe)]
+
.  

 

(b)  Protonation.  Preparation of Ru{C≡CC(O)CH=CH(OMe)}(dppe)Cp* 6.  MeOH 

(7 ml) was added to a mixture of {Cp*(dppe)RuC≡C}2CO (40 mg, 0.03 mmol) and 

[NH4]PF6 (10 mg, 0.06 mmol) and the mixture was heated under reflux for 7 h.  After 

removal of solvent, the residue was dissolved in acetone and purified by preparative 

t.l.c. (acetone/hexane, 1/2).  The major yellow band (Rf = 0.47) contained 

Ru{C≡CC(O)CH=CH(OMe)}(dppe)Cp* 6 (13 mg, 6%), obtained as yellow crystals 

(C6H6 / hexane).  Anal.  Calcd (C42H44O2P2Ru):  C, 67.82;  H, 5.96;  M, 744.  Found:  

C, 68.01;  H, 6.18.  IR (CH2Cl2, cm
-1

):  ν(C≡C) 2018s, ν(C=O) 1621m, ν(C=C) 

1556m (br).  
1
H NMR (C6D6):  δ 1.56 (s, 15H, Cp*), 1.84, 2.71 (2 x m, 4H, dppe), 

2.95 (s, 3H, OMe), 5.62 [d, JHH = 12 Hz, 1H, H1], 7.80 [d, JHH = 12 Hz, 1H, H2], 6.98-

7.86 (m, 20H, Ph).  
13

C NMR (C6D6):  δ 10.27 (s, C5Me5), 29.53 (m, CH2), 56.01 

(OMe), 93.60 (C5Me5), 110.85 (s, C1), 115.83 (s, Cβ), 127.84-138.89 (Ph), 146.07 [t, 

J(CP) = 23 Hz, Cα], 162.39 (C), 174.13 (C=O).  
31

P NMR (C6D6):  δ 80.9 (s).  ES-

MS (MeOH + NaOMe), m/z):  783.161 (calcd 783.150), [M + K]
+
;  767.186 

(767.176), [M + Na]
+
;  745.205 (745.194), [M + H]

+
. 

 

(c)  Knövenagel condensation.  To a mixture of {Cp*(dppe)RuC≡C}2CO (89 mg, 

0.066 mmol), CH2(CN)2 (13 mg, 0.198 mmol) and basic Al2O3 (80 mg) was added 

CH2Cl2 (8 ml) and reaction mixture was heated at reflux point for 3 d, the colour 

turning from yellow to orange.  Solvent was removed and the residue was purified by 

preparative t.l.c. (acetone-hexane, 3/7) to give a red-orange band (Rf = 0.56), which 

afforded {Cp*(dppe)RuC≡C}2C=C(CN)2 7 (27 mg, 29%) as an orange solid.  X-ray 

quality crystals were grown from CH2Cl2/hexane.  Anal. Calcd (C80H78N2P4Ru2): C, 

68.95; H, 5.64; N, 2.01; M, 1394. Found: C, 69.10; H, 5.89; N, 2.04. IR (CH2Cl2, cm
-

1
):  ν(C≡N) 2199w, ν(C≡C) 1967vs, ν(C=C) 1481w, 1435w, 1399w, 1303w. (nujol): 

ν(C≡N) 2193m, ν(C≡C) 1995s, 1971vs, ν(C=C)1435s, 1401m, 1301m. 
1
H NMR 

(C6D6): δ 1.63 (s, 30H, 2  Cp*), 2.39 (m, 4  CH2, 2  dppe), 7.04-7.31, 7.74 (2  m, 

40H, Ph). 
13

C NMR (C6D6): δ 10.76 (s, C5Me5), 30.40 (m, CH2P), 46.93 [s, C(CN)2], 

94.11 [t, JCP = 2.2 Hz, Ru-C≡C], 94.85 (s, C5Me5), 120.13 (s, CN), 127.91-139.86 (m, 
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Ph), 165.49 [t, JCP = 22 Hz, C]. 
31

P NMR (C6D6): δ 83.0 (br s).  ES-MS (MeOH, 

m/z):  1417, [M + Na]
+
; 1394, M

+
;  635, [Ru(dppe)Cp*]

+
. 

 

Preparation of {Cp*(dppe)Ru}C≡C{C=C(CN)2}C≡CC≡C{Ru(dppe)Cp*} 8 

A solution of Ru(C≡CC≡CH)(dppe)Cp* (74 mg, 0.108 mmol) in thf (20 ml) was 

cooled to -78˚C and treated with BuLi (0.047 ml of 2.5 M solution in hexane, 0.118 

mmol).  After 30 min Ru{C≡CC(CN)=C(CN)2}(dppe)Cp* (75 mg, 0.098 mmol) was 

added to the solution.  The mixture was allowed to warm to r.t. and after 90 min was 

reddish purple.  The solvent was removed and the residue was dissolved in the 

minimum amount of toluene and loaded onto a column (flash silica, acetone-

petroleum spirit, 1/4). The magenta band was collected and afforded 

{Cp*(dppe)Ru}C≡CC[=C(CN)2]C≡CC≡C{Ru(dppe)Cp*} 8 as a dark magenta solid 

(28 mg, 20%).  X-ray quality crystals were grown from C6D6 / MeOH.  IR (CH2Cl2, 

cm
-1

): ν (C≡N) 2209w, ν(C≡C) 2111s, 1994vs, ν(C=C) 1435m, 1419m. 
1
H NMR 

(C6D6): δ 1.56, 1.64 (2 x s, 15H, Cp*), 2.43, 2.90 (2  m, 4  CH2, 2  dppe), 7.04-

7.83 (m, 40H, Ph). 
13

C NMR (CD2Cl2): δ 10.25, 10.39 (2  s, C5Me5), 29.50-30.25 

(m, CH2P), 72.78, 94.69, 95.70, 100.27, 125.88, 138.45 (6  s, C), 94.89, 95.84 (2  s, 

C5Me5), 118.99, 119.12 (2  s, CN), 128.20-137.95 (m, Ph), 162.57, 188.35 [2  t, JCP 

= 23, 23 Hz, C (RuC4), C´ (RuC2), respectively]. 
31

P NMR (C6D6): δ 81.1 (s), 80.8 

(s). ES-MS (MeOH, m/z): 1441, [M + Na]
+
; 1418, M

+
; 676, [Ru(NCMe)(dppe)Cp*]

+
;  

635, [Ru(dppe)Cp*]
+
.  HR-MS: Found (calcd):  [M + Na]

+
, 1441.328 (1441.310);  [M 

+ H]
+
, 1419.319 (1419.328).  Satisfactory elemental analyses could not be obtained. 

 

 

 

Structure determinations 

Diffraction data were measured using either an Oxford Diffraction Xcalibur or 

Gemini diffractometer at 100K (150K for 7) with Mo-K radiation,  = 0.71073 Å 

(Cu-Kα , λ = 1.54178 Å for [5][OTf]2, 7).  Following multi-scan or analytical 

absorption corrections and solution by direct methods, the structures were refined 

using full matrix least squares refinements on F
2 

using the SHELXL 97 program.
53

 

Except where stated below, anisotropic displacement parameter forms were refined 

for the non-hydrogen atoms; hydrogen atoms were treated as a riding model    
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Pertinent results are given in Figs. 1-7 (which show non-hydrogen atoms with 50% 

probability amplitude displacement ellipsoids (20% for 7, 30% for 5, 9) with 

hydrogen atoms removed for clarity) and in Tables 1 and the supporting information. 

 

Compound [3]OTf: One phenyl ring and two of the solvent benzene molecules are 

each disordered over two sites.  The site occupancies of these were refined with the 

same value on the basis of contact distances and after trial refinement showed no 

significant differences between the individual parameters. The occupancies of the 

major and minor components refined to 0.607(3) and 1-0.607(3).  The geometries of 

the disordered solvent molecules were restrained to ideal values. 

 

Compound 7: Five phenyl rings and the Cp* ligand on Ru(2) are disordered over two 

sets of sites, with occupancy factors set at 0.5 after trial refinement. Electron density 

due to a solvent molecule was modelled as a dichloromethane molecule disordered 

about a crystallographic 2-fold axis, the overall site occupancy being constrained to 

0.5 after trial refinement. The geometries of the disordered phenyl and Cp* rings and 

of the solvent were restrained to ideal values. The carbon atoms of the disordered Ph 

rings were refined with isotropic displacement parameters. 

 

Computational details  

All DFT computations were carried out with the Gaussian 03 package.
54

 The model 

geometries were optimised at the B3LYP/3-21G* level of theory,
55-59

 to reduce 

computational effort, with no symmetry constraints, in a manner similar to that 

reported elsewhere.
59

 
 
MOs and frequencies were computed on these optimised 

geometries at the same level of theory. All geometries were identified as minima (no 

imaginary frequencies). A scaling factor of 0.95 was applied to the calculated 

frequencies.
60,61

 The MO contributions were generated using the GaussSum package 

and plotted using GaussView 5.0.
62
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Supporting Information 

Tables of crystallographic refinement details. Tables of optimized geometries, orbital 

energies and composition from gem-DEE, 2´, 3´, 7´, 8´, 9´ and 10´. Plots of key 

orbitals of gem-DEE and 9´. CIF files, figures and tables giving all crystallographic 

data and selected bond distances.  This material is available free of charge via the 

Internet at http://pubs.org.acs. Full details of the structure determinations (except 

structure factors) have also been deposited with the Cambridge Crystallographic Data 

Centre as CCDC 897230 [2], 897232 [3]OTf, 897234 [5][OTf]2, 897235 [6], 897236 

[7], 897237 [8].  Copies of this information may be obtained free of charge from The 

Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax:  + 44 1223 336 

033;  e-mail:  deposit@ccdc.cam.ac.uk or www:  http://www.ccdc.cam.ac.uk). 
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