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 

Abstract — The paper presents a new model of the 

STATCOM aimed at power flow solutions using the 

Newton-Raphson method. The STATCOM is made up of the 

series connection of a Voltage Source Converter (VSC) and its 

connecting transformer. The VSC is represented in this paper 

by a complex tap-changing transformer whose primary and 

secondary windings correspond, notionally speaking, to the 

VSC’s AC and DC buses, respectively. The magnitude and 

phase angle of the complex tap changer are said to be the 

amplitude modulation index and the phase shift that would 

exist in a PWM inverter to enable either reactive power 

generation or absorption purely by electronic processing of the 

voltage and current waveforms within the VSC. The new 

STATCOM model allows for a comprehensive representation 

of its AC and DC circuits – this is in contrast to current 

practice where the STATCOM is represented by an equivalent 

variable voltage source, which is not amenable to a proper 

representation of the STATCOM’s DC circuit. One key 

characteristic of the new VSC model is that no special 

provisions within a conventional AC power flow solution 

algorithm is required to represent the DC circuit, since the 

complex tap-changing transformer of the VSC gives rise to the 

customary AC circuit and a notional DC circuit. The latter 

includes the DC capacitor, which in steady-state draws no 

current, and a current-dependent conductance to represent 

switching losses. The ensuing STATCOM model possesses 

unparalleled control capabilities in the operational parameters 

of both the AC and DC sides of the converter. The prowess of 

the new STATCOM power flow model is demonstrated by 

numerical examples where the quadratic convergence 

characteristics of the Newton-Raphson method are preserved. 
 

Index Terms — FACTS, STATCOM, Voltage Source 

Converter (VSC), Newton-Raphson method, power flows 

I. INTRODUCTION 

HE STATCOM is a key element of the FACTS 

technology. It is the modern counterpart of the 

well-established Static Var Compensator (SVC) and forms 

the basic building block with which other more advanced 

FACTS equipment may be built, such as the UPFC and the 

various forms of VSC-HVDC links. Indeed, the latter 

application has blurred the line between the FACTS and 

HVDC transmission options. In its most basic form, the 

STATCOM may be seen to comprise a voltage source 

converter (VSC) and a connecting transformer which, more 
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often than not, is a load tap-changing (LTC) transformer 

[1]-[2]. Current models aimed at fundamental frequency 

studies have it represented as a controllable voltage source 

behind a coupling impedance, very much in the same vein as 

the model of a synchronous condenser [2]-[3]. This simple 

concept represents well the fact that at the fundamental 

frequency, the STATCOM converter’s output voltage may 

be adjusted against the AC system’s voltage to achieve very 

tight control targets, a capability afforded by the 

switched-mode converter technology [1]-[8]. By way of 

example, the reactive power flow may be controlled by 

adjusting the converter’s output voltage magnitude against 

the AC system voltage [1]-[2]. The controllable voltage 

source concept explains the STATCOM’s steady-state 

operation from the vantage of its AC side. However, it fails 

to explain its operation from the DC side. A notable 

exception is the equivalent voltage source model reported in 

[9], where the STATCOM’s AC voltage is expressed as a 

function of the DC voltage and the amplitude modulation 

ratio. Nevertheless, incorporation of the switching losses in 

the DC bus or a DC load would be difficult to represent in 

this model owing to its equivalent voltage source nature. In 

most STATCOM models aimed at fundamental frequency 

power flows there is no easy way to ascertaining whether or 

not the converter’s operation is within the linear region of 

operation [10]. Also, the switching losses tend to be 

neglected, and the ohmic losses of the converter, along with 

the effects of the converter’s magnetics, are normally 

lumped together with those of the interfacing transformer. 

To circumvent these shortcomings, a new STATCOM 

model is put forward in this paper where the VSC is 

represented by a notional tap-changing transformer and a 

variable shunt susceptance. The primary and secondary sides 

of this tap-changing transformer may be interpreted as the 

VSC’s AC and DC sides, respectively. Such a VSC model 

takes into account, in an aggregated form, the phase shifting 

and scaling nature of the PWM control. That is, its 

magnitude and phase angle are assigned to be the amplitude 

modulation index and the phase shift that would exist in a 

PWM inverter to enable either reactive power generation or 

absorption purely by electronic processing of the voltage and 

current waveforms within the VSC. It should be noted that 

the VSC is designed to operate on a constant DC voltage and 

that a relatively small capacitor is used to support and 

stabilize the voltage at its DC bus. Moreover, this small 

rating capacitor does not contribute per se to the reactive 
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power exchange with the power grid [11]. The new model 

takes due account of the VSC switching and ohmic losses 

separately. It should be noted that in the new VSC model no 

special provisions within a conventional AC power flow 

solution algorithm is required to represent the DC circuit. 

The reason is that the complex tap-changing transformer of 

the VSC yields the customary AC circuit and a notional DC 

circuit. The VSC model is series-connected with the LTC 

transformer model to make up the new STATCOM 

representation; a model with enhanced control capabilities in 

the operational parameters of both the AC and DC sides of 

the converter. Such control modelling flexibility attains 

special relevance when applied to the realm of VSC-HVDC 

or UPFC but these subject matters are topics of forthcoming 

publications. It should be pointed out that the concept of a 

complex ideal transformer to model a VSC has been applied 

elsewhere in connection with the UPFC [12, 13]. However, 

its shunt-connected VSC is represented by a variable 

susceptance and it is only its series-connected VSC that is 

represented by a complex ideal transformer –such an 

approach represents only an approximation to the 

conventional two-voltage source model of the UPFC [14, 

15]. More importantly, both UPFC models, that reported in 

[12, 13] and that reported in [14, 15], lack DC bus 

representation.  

II.  NEW VSC MODEL  

A. VSC main characteristics 

The STATCOM comprises the series connection of a VSC 

and an LTC transformer whose primary winding is 

shunt-connected with the AC power network. Physically, the 

VSC is built as a two-level or a multi-level inverter that uses 

a converter bridge made up of self-commutating switches 

driven by PWM control. It uses a small capacitor bank on its 

DC side to support and stabilize the DC voltage to enable 

converter operation. The converter keeps the capacitor 

charged to the required voltage level by making its output 

voltage lag the AC system voltage by a small phase angle 

[1]. The DC capacitor bank of value CDC is shown 

schematically in Fig. 1(a). It should be stated that CDC is not 

used per se in the VAR generation/absorption process. 

Instead, this process is carried out by action of the PWM 

control which shifts the voltage and current waveforms 

within the VSC to yield either leading or lagging VAR 

operation to satisfy operational requirements. 

It is said that the VSC has no inertia, its response is 

practically instantaneous, it does not significantly alter the 

existing system impedance and it can internally generate 

reactive (both capacitive and inductive) power [11]. For the 

purpose of fundamental frequency analysis, the VSC’s 

electronic processing of the voltage and current waveforms 

is well synthesized by the notional variable susceptance, Beq, 

which connects to the AC bus of the ideal complex 

tap-changing transformer - see Fig. 1(b). Note that Beq is 

responsible for the whole of the reactive power production in 

the valve set of the VSC. 

B. VSC nodal admittance matrix representation 

The fundamental frequency operation of the VSC shown 

schematically in Fig. 1(a) may be modeled by means of 

electric circuit components, as shown in Fig. 1(b). From the 

conceptual point of view, the central component of this VSC 

model is the ideal tap-changing transformer with complex 

tap which, in the absence of switching losses, may be seen to 

act as a nullator that constrains the source current to zero, 

with the source being the capacitor CDC, and the associated 

norator being the variable susceptance Beq [17]. Indeed, in 

steady-state operation the DC capacitor may be represented 

as a battery that yields voltage EDC and draws no current [18] 

– this point is addressed in more detail in Appendix A. 

Notice that the winding connected to node 1 is an AC node 

internal to the VSC and that the winding connected to node 0 

is a notional DC node. Two elements connect to the VSC’s 

DC bus, namely, the source, EDC, and the current–dependent 

resistor, Gsw. Hence, the ideal tap-changing transformer is 

the element that provides the interface for the VSC’s AC and 

DC circuits, as illustrated in Fig. 1(b). It should be 

emphasized that no reactive power flows through it, only 

real power which is akin to DC power. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: (a) VSC Schematic Representation; (b) VSC equivalent circuit 

 

We have drawn our inspiration to develop this model, 

from the following basic relationship:  
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where the tap magnitude m
'
a of the ideal tap-changing 

transformer corresponds to the VSC’s amplitude modulation 

coefficient where the following relationship holds for a 

two-level, three-phase VSC: 
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linear range of modulation, the amplitude modulation index 
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angle  is the phase angle of the complex voltage 1V  relative 

to the system phase reference, and EDC is the DC bus voltage 

which is a real scalar and on a per-unit basis carries a value 

of 2 . 

Other elements of the electric circuit shown in Fig. 1(b) 

are the series impedance which is connected to the ideal 

transformer’s AC side. The series reactance X1 represents the 

VSC’s interface magnetics. The series resistor R1 accounts 

for the ohmic losses which are proportional to the AC 

terminal current squared. Note that the secondary winding 

current I2 which is always a real quantity, splits into I’2 and 

I’’2. The latter current is always zero during steady-state 

operation. This is further elaborated in Appendix A, where 

the role of the VSC’s phase-shifting transformer is analyzed 

from the vantage of electronic circuits [17]. 

As one would expect, the complex power conservation 

property of the ideal transformer in Fig. 1(b) stands but note 

that there is no reactive power flowing through it, since all 

the reactive power requirements of the VSC model 

(generation/absorption) are met by the shunt branch Beq 

connected at node 1. The power relationships between nodes 

1 and 0, which account for the full VSC model, are: 
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The switching loss model corresponds to a constant 

resistance (conductance) G0, which under the presence of 

constant DC voltage and constant load current, would yield 

constant power loss for a given switching frequency of the 

PWM converter. Admittedly, the constant resistance 

characteristic may be inaccurate because although the DC 

voltage is kept largely constant, the load current will vary 

according to the prevailing operating condition. Hence, it is 

proposed that the resistance characteristic derived at rated 

voltage and current be corrected by the quadratic ratio of the 

actual current to the nominal current, 
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where Gsw would be a resistive term exhibiting a degree of 

power behavior. 

The voltage and current relationships in the ideal 

tap-changing transformer are: 
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The current through the admittance connected between 

nodes vR and 1 is: 
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At node 0, the following relationship holds: 
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Combining (5) and (6) and incorporating constraints from 

the electric circuit in Fig. 1(b): 
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and more explicitly: 
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(8) 

Notice that this expression represents the VSC equivalent 

circuit in Fig. 1(b) in steady-state, with the capacitor effect 

represented by the DC voltage EDC. 

C. VSC nodal power equations 

The complex power model is derived from the nodal 

admittance matrix where, subsequently, the DC voltage will 

be referred only as V0 as opposed to EDC: 
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Following some arduous algebra, the nodal active and 

reactive power expressions are arrived at: 
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D. VSC linearized system of equations 

These equations are non-linear and their solution, for a 

pre-defined set of generation and load pattern may be carried 

out using the Newton-Raphson method. This involves 

repeated linearization of the nodal power equations. Their 

initial evaluation requires an informed guess of the state 

variable values: ),,',,,( )0()0()0()0(

0

)0()0(

eqavRvR
BmV  , 

when the aim 

is to regulate voltage magnitude at bus vR using the VSC’s 

amplitude modulation ratio (ma
’ 
) and keep V0 at a constant 

value. In practice, the latter is possible due to the DC 

capacitor’s action. The linearized system of equations is: 
 

 
 
 



























































































































eq

aa

vR

eqvRvRvRaavRvRvR

eqvRvRvRaavRvRvR

eqaavR

eqvRvRvRaavRvRvR

eqvRvRvRaavRvRvR

vR

vR

vR

vR

B

VV

mm

BQQQmmQQ

BPPPmmPP

BPPPmmPP

BQQQmmQQ

BPPPmmPP

Q

P

Q

P

Q

P

















00

0

000000

000000

000000

0

0

0

0

0

0

''

0')'(

0')'(

001000

0''

0''

0''

(11) 

Subsequent evaluations of the nodal power equations are 
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carried out using the improved set of values being furnished 

by the iterative process: ),,',,,( )()()()(
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iteration counter. In this application, the regulated powers 
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P
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Q


 also form part of the control set. The 

entries making up eq. (11) are given in Appendix B. 
 

1) Mismatch power terms and control variables: 

A mismatch power term is the difference between the net 

power and the calculated power at a given bus, say vR, and 0. 

The calculated powers are determined using the nodal power 

equations (10), giving, 
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The mismatch power flow in branch vR-0 is the 

difference between the target power flow at the branch and 

the calculated power. In the VSC application, both active 

and reactive power targets are normally set to zero. 
 

2) State variables and increments: 

The state variable increments calculated at iteration (r) 

with the power flow model are: 
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3) Non-regulated solutions: 

If no voltage regulation at node vR is applied, the voltage 

magnitude VvR replaces m’a as state variable in the linearized 

power flow equation (11). Other control options may be 

available, but some caution needs to be exercised in the VSC 

and STATCOM applications because power regulation at 

node vR cannot be achieved since the internal power losses 

are not known a priori, and voltage control in the DC node 0 

is achieved by virtue of the DC capacitor. 
 

4) Practical implementations: 

a) Control Strategy: 

As illustrated in Fig. 1(b), the VSC is assumed to be 

connected between a sending bus, vR, and a receiving bus, 0, 

with the former taken to be the VSC’s AC bus and the latter 

taken to be the VSC’s DC bus. The voltage V0 is kept 

constant by the action of a small DC capacitor bank with 

rated capacitance CDC, which in steady-state draws no 

current. In the Newton-Raphson power flow solution the DC 

bus will be treated as a PV-type node with zero nodal power 

injection and a constant voltage magnitude of value EDC. 

Likewise, the voltage magnitude |VvR| is regulated within 

system-dependent maximum and minimum values, afforded 

by the following basic relationship: 
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Note that in the VSC’s linear range of modulation, the 

index ma takes values within the bounds: 10 
a

m  and that 

aa
mm  23' . However, in power systems reactive power 

control applications, it is unlikely that values of ma lower 

than 0.5 will be used. The reason is that voltage magnitude at 

the VSC’s AC bus must be kept within practical limits 

because too high a voltage may induce insulation 

coordination failure at the point of connection with the 

power grid and too low a voltage may induce a condition of 

voltage collapse. Note that with realistic values of R1=0.001 

p.u., X1=0.01 p.u. and EDC=2 p.u. and considering 

low-current operation, say 0.1 p.u., |VvR| will take a value of 

0.6114 p.u. with ma=0.5. In the power flow solution the 

active and reactive powers are regulated on the VSC’s DC 

bus – the former is set to either zero or to a specified DC 

load, whereas the latter is always set to zero. 

b) Simplifying assumptions: 

A key feature of this model is that the phase angle value at 

node 0 is independent of circuit parameters or network 

complexity to the left of the phase-shifting transformer. The 

reason is that the ideal phase shifter decouples, angle-wise, 

the circuits to the left and to the right of the ideal 

transformer. Moreover, the phase angle voltage at bus 0 

keeps its value given at the point of initialization. Hence, in 

the application pursued in this paper, it makes sense to stick 

to zero phase angle voltage initialization for this bus - when 

looked at it from the vantage of rectangular coordinates, its 

imaginary part does not exist. This may reduce the linearized 

equation (11) by one row and one column since the value of 

0 is known a priori, i.e., 0 =0. 

c) Initial parameters and limits: 

Three VSC parameters require initialization. They are the 

amplitude modulation ratio (m’a) and its phase angle (). 

They are normally set at 23  and 0, respectively. The VSC 

is assumed to operate within the linear region, whereas the 

phase angle  is assumed to have no limits. The third 

parameter is the equivalent shunt susceptance (Beq), wich is 

given an initial value that lies within the range Beq+ and Beq-. 

E. VSC Test Cases 

The VSC model is applied in a rather contrived test case 

where the STATCOM is connected at the receiving end of a 

loaded transmission line to illustrate its performance, and for 

ease of reproduction. At this point in the paper, it is assumed 

that the STATCOM transformer is a conventional 

transformer and that its leakage reactance is lumped together 

with the reactance of the VSC. Hence, we shall refer to it as 

VSC as opposed to STATCOM. Three cases are considered: 

(i) the VSC is used to provide reactive power; (ii) the VSC is 

used to draw reactive power; and (iii) the VSC is used to 

supply a DC load. 
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a) Test  Case 1 

The three-node system shown in Fig. 2 comprises one 

generator, one transmission line and one AC/DC converter 

(VSC), which is represented by the elements shown within 

the broken-line rectangle. 

 

 

 

 

 

 

 

 

 

 
Figure 2: VSC providing voltage support at bus 2. 

 

The generator node is taken to be the Slack bus where the 

voltage magnitude is kept at 1 p.u. and its phase angle 

provides a reference for all other phase angles in the 

network, excepting bus 0, where the phase angle is always 

zero in the STATCOM or VSC application. Bus 0 would be 

interpreted as the DC bus of the VSC circuit where the 

voltage is always a real quantity. 

The following parameters are used in this system - (i) 

transmission line resistance and reactance: 0.05 p.u. and 0.10 

p.u.; (ii) VSC series resistance and reactance: 0.01 p.u., 0.10 

p.u.; (iii) VSC nominal values of shunt conductance and 

susceptance: 0.01 and 1.05 p.u.; (iv) active and reactive 

power load at node 2: 0.25 p.u. and 0.20 p.u. 

As already stated in Section 4(b), the phase angle value at 

node 0 is independent of circuit parameters, network 

complexity and initializing conditions left of the phase 

shifter transformer - it is not specific to this circuit under test. 

To prove this point, different initial values are given to the 

Slack bus and the resulting voltages shown in Table I. 

It should be noted that the phase angle voltage at bus 0 

keeps its value given at the point of initialization and that in 

the application pursued in this paper, we shall stick to zero 

phase angle voltage initialization for this bus. When looked 

at it from the vantage of rectangular coordinates, its 

imaginary part does not exist. Indeed, an equivalent solution 

would be obtained by using a linearized equation akin to (11) 

but with no provision for the state variable 0. 
 

TABLE I 

POWER FLOW SOLUTION FOR VARIOUS PHASE ANGLES AT THE SLACK BUS 

V1 (p.u.) V2 (p.u.) V0 (p.u.) 

10 1.05-3.37 1.41420  1.4142 

1-10 1.05-13.37 1.41420  1.4142 

1+10 1.05+6.63 1.41420  1.4142 

 

The phase angle difference between buses 1 and 2 is, in 

each case: -3.37. The Newton-Raphson power flow 

algorithm converges in 7 iterations in all three cases, to a 

mismatch tolerance of 10
-12

. The symbol  is used in this 

table to signify “akin to”. 

The VSC consumes 0.0271 p.u. of active power from the 

system to account for its internal losses whilst supplying 

0.8817 p.u. of reactive power to the system. The equivalent 

susceptance (in capacitive mode) produces 0.9523 p.u. of 

reactive power and its capacitive susceptance stands at 

Beq=0.7408 p.u. As one would expect, the VSC switching 

losses are 2%, corresponding to a conductance G0=1%. The 

DC bus voltage is controlled at 1.4142 p.u. and the voltage 

magnitude at bus 2 is kept at 1.05 with a ‘true’ ma=0.9257. 

Notice that m’a=0.8017. The phase shifter angle takes a 

value of -3.93. The line current drawn by the VSC is 

0.8402+84.87. 

For the sake of completeness, the test case is solved by 

modeling the VSC using its well-known representation 

based on the equivalent voltage source [1]-[4], which, in this 

case, has been extended to incorporate a shunt resistor to 

account for the VSC’s switching losses.  

 

 

 

 

 

 

 

 

 

 
Figure 3: Test circuit using the conventional voltage source representation 

of the VSC. 
 

Note that all the relevant parameters for this circuit are the 

same as in the circuit in Fig. 2, except that the resistance 

corresponding to the switching losses is connected on the 

left-hand side of the complex tap changer and, accordingly, 

it is affected by the square of the “off-nominal turns ratio” 

ma
’
, i.e., R0=0.01/0.8017

2
. Node 0 is treated as a PV-type bus 

with zero active power injection and its voltage magnitude 

corresponds to the DC-like voltage of 1.4142 p.u. in the 

circuit of Fig. 2, affected by ma
’
, i.e., 

V0=1.41420.8017=1.1338.  

The results were obtained using a conventional power 

flow program where bus 0 is treated as a PV bus with zero 

active power contribution and set to regulate voltage 

magnitude at the bus at 1.1338 p.u. As expected, the iterative 

solutions furnished by both modeling approaches yield 

similar results but the results at bus 0 merit additional 

analysis.The complex voltage at the equivalent voltage 

source corresponds to the cascading of the voltage at bus 0 in 

Fig. 2 and its phase shifter complex tap value. Furthermore, 

the reactive power contributed by the equivalent susceptance 

in the test circuit of Figure 2 equals the reactive power 

generated by the equivalent voltage source in the test circuit 

of Fig. 3. 

The following limitations spring to mind in the voltage 

source model of the VSC compared to the new model 

introduced in this paper: (i) the voltage magnitude of the 

voltage source is difficult to determine since only the DC 

voltage is known and the amplitude modulation index (ma) is 

not known a priori; (ii) by the same token, the switching 

losses will only be known approximately. 

In this numerical example, the switching loss correction 

given by eq. (3) was not applied in order to be able to 

0.8817 

1.05-3.37 10 

0.0271 0.2771 

0.25+j0.20 

2 

1 
0.6326 

0.3616 

0.6817 
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0.9523 0.02 

0 

0.9257-3.93 

 93.31338.1
0

V

 
 37.305.1

2
V  

0.0271 

0.8818 
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0 

0.02 

 01
1

V  

2 

1 
0.6326 

0.3616 

0.6817 

0.02 

0.9523 
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compare the response furnished by the two VSC models, 

namely, the new VSC model and the equivalent voltage 

source model. In any case, little change is expected since the 

current magnitude (0.8402 p.u.) is close to the 1 p.u. rated 

current. Perhaps the most noticeable change is a reduction in 

the switching loss from 2% to 1.4% and the ensuing 

adjustment in active power flows. 

b) Test  Case 2 

The operating conditions of the power circuit in Test Case 

1 are modified to force the VSC to draw reactive power from 

the slack generator connected at bus 1. 

 

 

 

 

 

 

 

 

 

 
Figure 4: The test network uses the same circuit parameters as in Test Case 1 
but the voltage magnitude at bus 2 is kept at 0.95 p.u. using ma to force the 

reactive power flow into the VSC. 

 

The VSC draws 0.0007 p.u. of active power and 0.1493 

p.u. of reactive power. The equivalent susceptance absorbs 

0.1469 p.u. of reactive power and its inductive susceptance 

stands at Beq=-0.1682 p.u. The VSC switching losses are 

low, 0.05%, since the current drawn by the VSC is quite 

small, i.e. 0.1572-90.17 p.u. The DC bus voltage is 

controlled at 1.4142 p.u. and the voltage magnitude at bus 2 

is kept at 0.95 with ma=0.7628. The phase shifter angle takes 

a value of -0.37. 

c) Test  Case 3 

Test Case 1 is expanded to incorporate a load in the DC 

side of the VSC in the form of a battery system which is 

assumed to take a constant power of 0.5 p.u. 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Test network with a battery load on its DC bus 
 

This test network uses the same circuit parameters as in 

Test Case 1 but a second load is added in the form of a 

battery which is being supplied through the VSC at 0.5 p.u. 

of power. The VSC is used to keep the voltage magnitude at 

1.05 p.u. at bus 2. 

The total VSC active power loss stands at 4.76% p.u. 

where 3.18% corresponds to switching loss and 1.58% 

corresponds to ohmic loss. The VSC contributes 1.2046 p.u. 

to supply the reactive power load of 0.20 p.u. and the rest 

being exported to the Slack generator. The VSC equivalent 

susceptance with a capacitive value of Beq=1.0111 p.u. 

produces 1.3634 p.u. of reactive power. The SVC is set to 

regulate voltage magnitude at its AC bus at 1.05 p.u. and its 

actual complex modulation ratio is: 0.9481-10.25. The 

current drawn by the VSC is 1.2602+58.44. The solution 

converges in 7 iterations to a tolerance of 10
-12

. 

III. POWER FLOW STATCOM MODEL  

For studies at the fundamental frequency, the STATCOM 

may be seen to comprise a VSC and an interfacing 

transformer, which may be a load tap changer (LTC). The 

VSC schematic representation and equivalent circuit are 

given in Fig. 1 and the equivalent circuit of the LTC 

transformer is given in Fig. 6. 
 

 

 

 

 

 

 

 

 
 

Figure 6: LTC transformer equivalent 
 

Inclusion of the STATCOM model in a power flow 

solution is straightforward. It only requires explicit 

representation of the nodal power flow equations of the VSC 

connected between say, nodes 0 and VR, and the nodal 

power equations of the LTC transformer connected between 

say, nodes VR and K. Alternatively, a more compact set of 

power flow equations may be achieved by realizing that the 

interface point between the VSC and LTC circuits, namely 

vR node, receives a zero external (nodal) current injection. 

Then a mathematical elimination of node vR becomes an 

option. However, it should be noted that this reduced model 

is only attractive if we are prepared to lose a degree of 

modeling flexibility, since this bus is not explicitly available 

for regulating action of either T or ma
’
. Instead, the combined 

regulating action will take place in the high-voltage side of 

the LTC transformer. 

A. Reduced STATCOM nodal admittance matrix 

The nodal admittance matrix of the LTC transformer in 

Fig. 6, is: 
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Combining the two individual models yields the 

compound model representing the VSC-LTC or STATCOM 

model: 
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Mathematical elimination of node vR yields the following 

reduced nodal admittance matrix: 
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where 1
2 YYT l   and 

eqasweq BmGY 2'j . 

B. STATCOM nodal power equations 

Following a similar procedure as in section II-C for the 

derivation of the nodal power equations of the VSC, the 

active and reactive power expressions for the STATCOM 

model are derived: 
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The numerical solution of equation system (18), for a 

pre-defined set of generation and load pattern, is carried out 

very efficiently by iteration using the Newton-Raphson 

method. Similarly to the VSC model in Section II-C, this 

involves repeated linearization of the nodal power equations 

and their initial evaluation requires an informed guess of the 

state variables values:
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linearized system of equations may be compacted further by 

eliminating the row and column associated to the variable 0, 

since this is a priori known variable that keeps its value at the 

point of initialization, which in this application is zero. The 

ensuing equation is: 
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where Tma
’
 is used to signify the use of either T or ma

’
. 

 

The attraction of (19) is its rather compact nature in 

representing the combined operation of the VSC and the 

LTC transformer with only four variables. However, this 

comes at a price – some modeling flexibility is lost. Notice 

that since the connecting bus between the VSC and the LTC 

is not explicitly available in this combined model, it cannot 

be controlled by the regulating action of either T or ma
’
. Also, 

since the DC bus is regulated by the action of the DC 

capacitor and treated in the power flow solution as a PV bus 

then T and ma
’
 are available solely for the purpose of 

regulating voltage magnitude at the high-voltage bus of the 

LTC transformer. Hence, the regulating action of T and ma
’
 is 

sequential in this model. It should be emphasized that, from 

the power flow solution vantage, there is no actual restriction 

in attempting to control the DC bus voltage with either T or 

ma
’
. However, from the equipment operation point of view, 

this regulating action is hardly ever done. 

Subsequent evaluations of the nodal power equations are 

carried out using the improved set of values furnished by the 

iterative process:
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BmT  , where (r) is 

the iteration counter. It should be noticed that in this 

formulation, the control capabilities have been extended 

compared to that of the VSC in (11). It becomes possible to 

regulate nodal voltage magnitude at the STATCOM terminal 

(bus k) using the combined action of the LTC tap (T) and the 

VSC amplitude modulation coefficient (ma
’ 
), one at the time. 

It should be remarked that in an actual VSC, ma
’
 takes 

continuous values and that in an actual LTC transformer, the 

tap T takes discrete values. Nevertheless, for the purpose of 

the power flow model using the Newton-Raphson method 

and aiming at maintaining the quadratic convergence 

characteristic of this iterative algorithm, the variable T is 

assumed to take continuous values. It is at the end of the 

iterative solution that the tap T is moved to the nearest 

physical tap value and then nodal voltages are re-adjusted 

and power flows and power losses calculated. 

The mismatch power terms and control variables remain 

the same as in (12), except that the subscript k replaces the 

subscript vR. In the state variables increments in (13) the 

subscript vR is also replaced by the subscript k and the newly 

introduced state variable Tma
’
 replaces ma

’
, 
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                           (20) 
 

where T and ma
’
 are normally initialized at 1 and 23 , 

respectively. 

C. STATCOM Test Cases 

Two test cases are presented in this section to illustrate the 

control flexibility afforded by the reduced STATCOM 

model. The first case relates to a contrived system which is, 

essentially, the same system as that used in Test Case 1, 

except that the STACOM model replaces the VSC model. 

The second test case is a modified version of the IEEE 

30-node system [16] where two STATCOMs regulate 

voltage magnitude at two different points in the network. 
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a) Test Case 4 

The power circuit in Test Case 1 is modified to replace the 

VSC connected at bus 2 by a STATCOM, where the LTC’s 

STATCOM figures prominently in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Upgraded network used in Test Case 1, to include the LTC 
transformer  

 

The test network uses the same circuit parameters as in 

Test Case 1 except that the parameters of the LTC 

transformer are added to the circuit parameters: RT=0.01 p.u. 

and XT=0.10 p.u. The tap limits are: 0.8<T<1.2. The 

generator keeps the voltage magnitude at the slack node at 1 

p.u. The STATCOM consumes 0.0304 p.u. of active power 

from the system to account for its internal losses whilst 

supplying 0.8836 p.u. of reactive power to the system. The 

VSC switching losses stand at G0=1.42% and the remaining 

1.62% correspond to ohmic losses in the LTC transformer 

and VSC. The DC bus voltage is kept at 1.4142 p.u. by 

action of the DC capacitor and this bus is treated in the 

power flow solution as a PV bus. The voltage magnitude at 

bus 2 is kept at 1.05 p.u. with a combination of a selected ma 

of 0.8945 and a resulting transformer tap of T=1.1335. The 

current drawn by the STATCOM is 0.8421+84.63. 

b) Test Case 5 

In order to test the performance of the proposed 

STATCOM model in a larger power network, the IEEE 

30-node system is selected [16]. The fix banks of capacitors 

at nodes 10 and 24 in the original network are replaced with 

STATCOMs which are set to regulate voltage magnitudes at 

their points of connection with the power grid. Their 

respective DC voltages are kept at 1.4142 p.u. The relevant 

portions of the modified 30-bus system are shown in Fig. 8. 

The voltage magnitudes at the compensated buses, 

namely, 10 and 24, are compared in Table II to the case when 

conventional capacitor banks are connected to these nodes, 

and when no compensation is used. 
 

TABLE II 

VOLTAGE MAGNITUDES AT THE COMPENSATED BUSES IN THE 30-BUS 

SYSTEM FOR TWO COMPENSATION OPTIONS 

Compensation 

Case 

VOLTAGE MAGNITUDE (P.U.) 

Bus 10 Bus 24 

None 0.9703 0.9480 

Fix 0.9957 0.9731 

STATCOMs 0.9957 0.9731 

 

The two STATCOMs use identical parameters and their 

LTC transformers are set at their nominal tap positions 

(T=1). They are assumed to contain no resistance and their 

reactances are XTR=0.05 p.u. The VSCs series and shunt 

parameters, in per-unit, are: R1=0.01, X1=0.05, Gsw=0.01 

and Beq=0.50, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: STATCOMs supplying reactive power at buses 10 and 24 of the 

modified IEEE 30-bus system 
 

The susceptance values used for the case with fix 

compensation at buses 10 and 24 are 0.19 p.u. and 0.043 p.u., 

which are the values given in [16]. For the STATCOM case, 

the voltages at buses 10 and 24 are kept at the same level as 

those given by the case with fix compensation. As expected, 

one benefit of shunt compensation is to reduce the system 

power losses due to an improved voltage profile, and this 

trend is shown in the power loss figures presented in Table 

III. The STATCOM-type compensation introduces an 

additional kind of power loss which is associated with the 

high-frequency switching of the PWM control used by the 

VSC technology and ohmic losses. The STATCOM losses 

are quite low in this case because the currents drawn by the 

two STATCOMs are low compared to the 1 p.u. rated 

currents namely, 0.1899+85.73 p.u. and 0.0419+84.92 

p.u. 
 

TABLE III 
POWER LOSS AT THE COMPENSATED BUSES IN THE 30-BUS SYSTEM FOR TWO 

COMPENSATION OPTIONS 

Compensation 
Case 

ACTIVE POWER LOSS (%) 

Network STATCOMs 

None 3.12 - 
Fix 2.89 - 

STATCOMs 2.94 0.12 

The power flow solutions converged in 6 iterations for the first two cases 

and in 7 iterations for the STATCOMs, to mismatch a tolerance of 10-12. 
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IV. CONCLUSIONS  

A new STATCOM model aimed at power flow solutions 

using the Newton-Raphson method has been introduced. The 

model represents a paradigm shift in the way the 

fundamental frequency, positive sequence VSC-FACTS 

controllers are represented. It does not treat the controller as 

an idealized controllable voltage source but rather as a 

compound transformer device to which certain control 

properties of PWM-based inverters may be linked. This 

argument is similar to the one advanced for DC-to-DC 

converters which have been linked, conceptually speaking, 

to step-up and step-down transformers [19]. The phase angle 

of the complex tap changer represents the phase shift that 

would exist in a PWM inverter and coincides with the phase 

angle of the conventional voltage source model of the VSC. 

More specifically, this would be the phase angle required by 

the VSC to enable either reactive power generation or 

absorption purely by electronic processing of the voltage and 

current waveforms within the VSC. The switching losses, 

ohmic losses and the connecting LTC transformer are all 

explicitly represented in the new STATCOM model. The 

complex tap changer in the VSC model and the real tap 

changer in the LTC model enable an effective voltage 

regulation at the point of connection with the grid and at the 

VSC’s AC node. The model has been tested in a simple 

system for ease of reproduction by interested parties. A 

larger power system has also been used to show that the new 

STATCOM power flow model retains its strong 

convergence characteristics. 
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APPENDIX A: THE IDEAL PHASE SHIFTER CIRCUIT  

One salient characteristic of the new VSC model is that no 

special provisions within a conventional AC power flow 

solution algorithm is required to represent the DC circuit, 

since the complex tap-changing transformer of the VSC may 

be used with ease to give rise to the customary AC circuit 

and a notional DC circuit. However, some further 

explanation is required since the modelling development 

involves the conflation of AC and DC circuit concepts at an 

equivalent node, brought about by the use of the ideal 

tap-changing transformer concept. 

In order to elaborate the explanation from the vantage of 

electronic circuits, we are going to assume that the 

conductance associated with switching losses, Gsw, in Fig. 

1(b), may be referred to the primary side of the ideal 

transformer. The relevant part of the circuit illustrating such 

a situation but with capacitor representation, as opposed to 

its equivalent battery representation, is shown in Fig. A.1, 

 

 

 

 

 

 

 

 

 

 
Figure A.1: Equivalent circuit showing the ideal phase-shifting transformer 

of Fig. 1(b) and neighboring elements, where 
eqsweq BGY j .  
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By invoking eq. (4), 
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In steady-state, a charged DC capacitor draws zero current 

and it is well-accepted that it may be represented as a 

charged battery [18] and, by extension, as a DC voltage 

source feeding no current. These facts are reflected by (A.1) 

and (A.2) and give the opportunity to interpret the circuit in 

Fig. A.1 in terms of electronic circuits concepts. Hence, it 

may be argued that in steady-state this circuit behaves as a 

nullor operating on a DC source representing the DC 

capacitor. The nullor is made up of a nullator and a norator 

[17], represented in this case by the ideal phase-shifting 

transformer and the equivalent admittance,
 

eqY , respectively. 

The circuit in Fig. A.1 may be re-drawn as follows, 

 

 

 

 

 

 

 

 

 
Figure A.2: Interpretation of the equivalent circuit of Fig. A.1 in terms of 

electronic circuit elements 
 

The nullator and the norator are said to be linear, 

time-invariant one-port elements. The former is defined as 

having zero current through it and zero voltage across it. The 

latter, on the other hand, can have an arbitrary current 

through it and an arbitrary voltage across its terminals. 

Nullators have properties of both short-circuit (zero voltage) 

and open-circuit (zero current) connections. They are current 

and voltage sources at the same time. A norator is a voltage 

or current source with infinite gain. It takes whatever current 

and voltage is required by the external circuit to meet 

Kirchhoff’s circuit laws. A norator is always paired with a 

nulator [17]. 

Either, by careful examination of (A.1) and (A.2) or by 

analysis of the electronic equivalent circuit in Fig. A.2, it can 

be seen that the ideal, complex tap-changing transformer of 

the VSC gives raise to the customary AC circuit and a 

notional DC circuit where the DC capacitor yields voltage 

EDC but draws no current. 

In a more general sense and from the viewpoint of the AC 

power flow solution, if resistive elements or DC power loads 

are connected to the notional DC bus then currents do pass 

through the ideal phase-shifting transformer but it would be 

a component of current that yields a nodal voltage V0 with 

zero phase angle and, as one would expect, yields power 

with no imaginary component, hence, no reactive power 

exists in this part of the notional DC circuit. 

APPENDIX B: PARTIAL DERIVATIVE TERMS FOR THE VSC 

The partial derivative terms making up the Jacobian 

matrix in eqn. (11) are given below. Note that these 

derivative terms do not include the current dependency in the 

switching loss term GSW – refer to (3). 
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