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Abstract. In the famous paper [FZ2] Fomin and Zelevinsky ob-
tained Cartan-Killing type classification of all cluster algebras of
finite type, i.e. cluster algebras having only finitely many distinct
cluster variables. A wider class of cluster algebras is formed by
cluster algebras of finite mutation type which have finitely many
exchange matrices (but are allowed to have infinitely many cluster
variables). In this paper we classify all cluster algebras of finite
mutation type with skew-symmetric exchange matrices. Besides
cluster algebras of rank 2 and cluster algebras associated with
triangulations of surfaces there are exactly 11 exceptional skew-
symmetric cluster algebras of finite mutation type. More precisely,

9 of them are associated with root systems E6, E7, E8, Ẽ6, Ẽ7,

Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 ; two remaining were found by Derksen

and Owen in [DO]. We also describe a criterion which determines
if a skew-symmetric cluster algebra is of finite mutation type, and
discuss growth rate of cluster algebras.
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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in the
sequel of papers [FZ1], [FZ2], [BFZ], [FZ3].
We think of cluster algebra as a subalgebra of Q(x1, . . . , xn) de-

termined by generators (“cluster coordinates”). These generators are
collected into n-element groups called clusters connected by local tran-
sition rules which are determined by an n × n skew-symmetrizable
exchange matrix associated with each cluster. For precise definitions
see Section 2.
In [FZ2], Fomin and Zelevinsky discovered a deep connection be-

tween cluster algebras of finite type (i.e., cluster algebras containing
finitely many clusters) and Cartan-Killing classification of simple Lie
algebras. More precisely, they proved that there is a bijection between
Cartan matrices of finite type and cluster algebras of finite type. The
corresponding Cartan matrices can be obtained by some symmetriza-
tion procedure of exchange matrices.
Exchange matrices undergomutations which are explicitly described

locally. Collection of all exchange matrices of a cluster algebra form a
mutation class of exchange matrices. In particular, mutation class of a
cluster algebra of finite type is finite. In this paper, we are interested
in a larger class of cluster algebras, namely, cluster algebras whose
exchange matrices form finite mutation class. We will assume that
exchange matrices are skew-symmetric.
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Besides cluster algebras of finite type, there exist other series of
algebras belonging to the class in consideration. One series of exam-
ples is provided by cluster algebras corresponding to Cartan matrices
of affine Kac-Moody algebras with simply-laced Dynkin diagrams. It
was shown in [BR] that these examples exhaust all cases of acyclic
skew-symmetric cluster algebras of finite mutation type. Furthermore,
Seven in [S2] has shown that acyclic skew-symmetrizable cluster alge-
bras of finite mutation type correspond to affine Kac-Moody algebras.
One more large class of infinite type cluster algebras of finite mu-

tation type was studied in the paper [FST], where, in particular, was
shown that signed adjacency matrices of arcs of a triangulation of a
bordered two-dimensional surface have finite mutation class.
In the same paper, Fomin, Shapiro and Thurston discussed the con-

jecture [FST, Problem 12.10] that besides adjacency matrices of trian-
gulations of bordered two-dimensional surfaces and matrices mutation-

equivalent to one of the following nine types: E6, E7, E8, Ẽ6, Ẽ7, Ẽ8,

E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 (see [FST, Section 12]), there exist finitely many

skew-symmetric matrices of size at least 3 × 3 with finite mutation
class. Notice that the first three types in the list correspond to cluster
algebras of finite type.
In the preprint [DO] Derksen and Owen found two more skew-

symmetric matrices (denoted by X6 and X7) with finite mutation
class that are not included in the previous conjecture. The authors
also ask if their list of 11 mutation classes contains all the finite mu-
tation classes of skew-symmetric matrices of size at least 3 × 3 not
corresponding to triangulations.
The main goal of this paper is to prove the conjecture by Fomin,

Shapiro and Thurston by showing the completeness of the Derksen-
Owen list, i.e. to prove the following theorem:

Main Theorem (Theorem 6.1). Any skew-symmetric n× n matrix,
n ≥ 3, with finite mutation class is either an adjacency matrix of trian-
gulation of a bordered two-dimensional surface or a matrix mutation-
equivalent to a matrix of one of the following eleven types: E6, E7,

E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , X6, X7.

Remark 1.1. The same approach that we used for skew-symmetric ma-
trices is applicable (after small changes) for the more general case of
skew-symmetrizable matrices. The complete list of skew-symmetrizable
matrices with finite mutation class will be published elsewhere.
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We also show a way to classify all minimal skew-symmetric n × n
matrices with infinite mutation class. In particular, we prove that
n ≤ 10. This gives rise to the following criterion for a large skew-
symmetric matrix to have finite mutation class:

Theorem 7.4. A skew-symmetric n× n matrix B, n ≥ 10, has finite
mutation class if and only if a mutation class of every principal 10×10
submatrix of B is finite.

As an application of the classification of skew-symmetric matrices of
finite mutation type we characterize skew-symmetric cluster algebras
of polynomial growth, i.e. cluster algebras for which the number of
distinct clusters obtained from the initial one by n mutations grows
polynomially in n.

The paper is organized as follows. In Section 2, we provide neces-
sary background in cluster algebras, and reformulate the classification
problem of skew-symmetric matrices in terms of quivers by assigning
to every exchange matrix an oriented weighted graph.
In Section 3, we present the sketch of the proof of the Main Theorem.

We list all the key steps, and discuss the main combinatorial and
computational ideas we use. Sections 4–6 contain the detailed proofs.
Section 4 is devoted to the technique of block-decomposable quivers.

We recall the basic facts from [FST] and prove several properties we
will heavily use in the sequel. Section 5 contains the proof of the
key theorem classifying minimal non-decomposable quivers. Section 6
completes the proof of the Main Theorem.
In Section 7 we provide a criterion for a skew-symmetric matrix to

have finite mutation class. Section 8 is devoted to growth rates of
cluster algebras.
Finally, in Section 9 we use the results of the previous section to

complete the description of mutation classes of quivers of order 3.

We would like to thank M. Barot, V. Fock, S. Fomin, C. Geiss,
A. Goncharov, B. Keller, A. Seven, and A. Zelevinsky for their inter-
est in the problem and many fruitful discussions, and H.Thomas for
explaining us that linear growth of affine cluster algebras is a corollary
of categorification theory. The first and the third authors are grateful
to the University of Fribourg for a great atmosphere during their visit,
and for a partial support by SNF projects 200020-113199 and 200020-
121506/1. The second author thanks EPFL, Stockholm University,
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and Royal Institute of Technology, the third author thanks Michigan
State University for support during the work on this paper.

2. Cluster algebras, mutations, and quivers

We briefly remind the definition of coefficient-free cluster algebra.
An integer n × n matrix B is called skew-symmetrizable if there

exists an integer diagonal n × n matrix D = diag(d1, . . . , dn), such
that the product DB is a skew-symmetric matrix, i.e., dibi,j = −bj,idj.
A seed is a pair (f, B), where f = {f1, . . . , fn} form a collection of

algebraically independent rational functions of n variables x1, . . . , xn,
and B is a skew-symmetrizable matrix.
The part f of seed (f, B) is called cluster, elements fi are called

cluster variables, and B is called exchange matrix.

Definition 2.1. For any k, 1 ≤ k ≤ n we define the mutation of seed
(f, B) in direction k as a new seed (f ′, B′) in the following way:

(2.1) B′
i,j =

{
−Bij , if i = k or j = k;

Bij +
|Bik |Bkj+Bik|Bkj |

2
, otherwise.

(2.2) f ′
i =

{
fi, if i 6= k;
∏

Bij>0
f
Bij
j +

∏
Bij<0

f
−Bij
j

fi
, otherwise.

We write (f ′, B′) = µk ((f, B)). Notice that µk(µk((f, B))) = (f, B).
We say that two seeds are mutation-equivalent if one is obtained from
the other by a sequence of seed mutations. Similarly we say that two
clusters or two exchange matrices are mutation-equivalent.
Notice that exchange matrix mutation 2.1 depends only on the ex-

change matrix itself. The collection of all matrices mutation-equivalent
to a given matrix B is called the mutation class of B.
For any skew-symmetrizable matrix B we define initial seed (x,B)

as ({x1, . . . , xn},B), B is the initial exchange matrix, x = {x1, . . . , xn}
is the initial cluster.
Cluster algebra A(B) associated with the skew-symmetrizable n×n

matrix B is a subalgebra of Q(x1, . . . , xn) generated by all cluster vari-
ables of the clusters mutation-equivalent to the initial cluster (x,B).
Cluster algebra A(B) is called of finite type if it contains only

finitely many cluster variables. In other words, all clusters mutation-
equivalent to initial cluster contain totally only finitely many distinct
cluster variables.
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In [FZ2], Fomin and Zelevinsky proved a remarkable theorem that
cluster algebras of finite type can be completely classified. More excit-
ingly, this classification is parallel to the famous Cartan-Killing clas-
sification of simple Lie algebras.
Let B be an integer n × n matrix. Its Cartan companion C(B) is

the integer n× n matrix defined as follows:

C(B)ij =

{
2, if i = j;
−|Bij |, otherwise.

Theorem 2.2 ([FZ2]). There is a canonical bijection between the Car-
tan matrices of finite type and cluster algebras of finite type. Under
this bijection, a Cartan matrix A of finite type corresponds to the clus-
ter algebra A(B), where B is an arbitrary skew-symmetrizable matrix
with C(B) = A.

The results by Fomin and Zelevinsky were further developed in [S1]
and [BGZ], where the effective criteria for cluster algebras of finite
type were given.
A cluster algebra of finite type has only finitely many distinct seeds.

Therefore, any cluster algebra that has only finitely many cluster vari-
ables contains only finitely many distinct exchange matrices. Quite
the contrary, the cluster algebra with finitely many exchange matrices
is not necessarily of finite type.

Definition 2.3. A cluster algebra with only finitely many exchange
matrices is called of finite mutation type.

Example 2.4. One example of infinite cluster algebra of finite muta-
tion type is the Markov cluster algebra whose exchange matrix is


0 2 −2
−2 0 2
2 −2 0




It was described in details in [FZ1]. Markov cluster algebra is not
of finite type, moreover, it is even not finitely generated. Notice,
however, that mutation in any direction leads simply to sign change
of exchange matrix. Therefore, the Markov cluster algebra is clearly
of finite mutation type.

Remark 2.5. Since the orbit of an exchange matrix depends on the ex-
change matrix only, we may speak about skew-symmetrizable matrices
of finite mutation type.
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Therefore, the Main Theorem describes all skew-symmetric integer
matrices whose mutation class is finite.
For our purposes it is convenient to encode an n×n skew-symmetric

integer matrix B by a finite oriented multigraph without loops and
2−cycles called quiver. More precisely, a quiver S is a finite 1-dimen-
sional simplicial complex with oriented weighted edges, where weights
are positive integers.
Vertices of S are labeled by [1, . . . , n]. If Bi,j > 0, we join vertices i

and j by an edge directed from i to j and assign to this edge weight
Bi,j. Vice versa, any quiver with integer positive weights corresponds
to a skew-symmetric integer matrix. While drawing quivers, usually
we draw edges of weight Bi,j as edges of multiplicity Bi,j , but some-
times, when it is more convenient, we put the weight on simple edge.
Mutations of exchange matrices induce mutations of quivers. If S

is the quiver corresponding to matrix B, and B′ is a mutation of B in
direction k, then we call the quiver S ′ associated to B′ a mutation of
S in direction k. It is easy to see that mutation in direction k changes
weights of quiver in the way described in the following picture (see
e.g. [K2]):

a ab b

c d

k k

c+ d = ab

Figure 2.1. Mutations of quivers

Clearly, for given quiver the notion of mutation class is well-defined.
We call a quiver mutation-finite if its mutation class is finite. Thus,
we are able to reformulate the problem of classification of exchange
matrices of finite type in terms of quivers: find all mutation-finite
quivers.
The following criterion for a quiver to be mutation-finite is well-

known (see e.g. [DO, Corollary 8])

Theorem 2.6. A quiver S of order at least 3 is mutation-finite if
and only if any quiver in the mutation class of S contains no edges of
weight greater than 2.

One can use linear algebra tools to describe quiver mutations.
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Let e1, . . . , en be a basis of vector space V over field k equipped
with a skew-symmetric form Ω. Denote by B the matrix of the form
Ω with respect to the basis ei, i.e. Bij = Ω(ei, ej).
For each i ∈ [1, n] we define new basis e′1, . . . , e

′
n in the following

way:

e′i = −ei

e′j = ej , if Ω(ei, ej) ≥ 0

e′j = ej − Ω(ei, ej)ei, if Ω(ei, ej) < 0.

Note that matrix B′ of the form Ω in basis e′k is the mutation of
matrix B in direction i.

From now on, we use language of quivers only. Let us fix some
notations we will use throughout the paper.
Let S be a quiver. A subquiver S1 ⊂ S is a subcomplex of S. The

order |S| is the number of vertices of quiver S. If S1 and S2 are sub-
quivers of quiver S, we denote by 〈S1, S2〉 the subquiver of S spanned
by all the vertices of S1 and S2.
Let S1 and S2 be subquivers of S having no common vertices. We

say that S1 and S2 are orthogonal (S1 ⊥ S2) if no edge joins vertices
of S1 and S2.
We denote by ValS(v) the unsigned valence of v in S (a double edge

adds two to the valence). A leaf of S is a vertex joined with exactly
one vertex in S.

3. Ideas of the proof

In this section we present all key steps of the proof.
We need to prove that all mutation-finite quivers except some finite

number of mutation classes satisfy some special properties, namely
they are block-decomposable (see Definition 4.1). In Section 5.11
we define a minimal non-decomposable quiver as a non-decomposable
quiver minimal with respect to inclusion (see Definition 5.1). By defi-
nition, any non-decomposable quiver contains a minimal non-decompo-
sable quiver as a subquiver. First, we prove the following theorem:

Theorem 5.2. Any minimal non-decomposable quiver contains at
most 7 vertices.

The proof of Theorem 5.2 contains the bulk of all the technical
details in the paper. We assume that there exists a minimal non-
decomposable quiver of order at least 8, and investigate the structure
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of block decompositions of proper subquivers of S. By exhaustive case-
by-case consideration we prove that S is also block-decomposable. The
main tools are Propositions 4.6 and 4.8 which under some assumptions
produce a block decomposition of S from block decompositions of
proper subquivers of S.
The next step is to prove the following key theorem:

Theorem 5.11. Any minimal non-decomposable mutation-finite qui-
ver is mutation-equivalent to one of the two quivers X6 and E6 shown
below.

E6 X6

The proof is based on the fact that the number of mutation-finite
quivers of order at most 7 is finite, and all such quivers can be eas-
ily classified. For that, we use an inductive procedure: we take one
representative from each finite mutation class of quivers of order n
and attach a vertex by edges of multiplicity at most 2 in all possible
ways (here we use Theorem 2.6). For each obtained quiver we check
if its mutation class is finite (by using Keller’s applet for quivers mu-
tations [K1]). In this way we get all the finite mutation classes of
quivers of order n + 1. After collecting all finite mutation classes of
order at most 7, we analyze whether they are block-decomposable. It
occurs that all the classes except ones containing X6 and E6 are block-
decomposable. The two quivers X6 and E6 are non-decomposable
by [DO, Propositions 4 and 6]).
Therefore, we proved that each mutation-finite non-decomposable

quiver contains a subquiver mutation-equivalent to X6 or E6 (Corol-
lary 5.13). This allows us to use the same inductive procedure to get
all the finite classes of non-decomposable quivers. We attach a vertex
to X6 and E6 by edges of multiplicity at most 2 in all possible ways.
In this way we get all the finite mutation classes of non-decomposable
quivers of order 7. More precisely, there are 3 of them, namely those

containing X7, E7 and Ẽ6. Any mutation-finite non-decomposable
quiver of order 8 should contain a subquiver mutation-equivalent to
one of these 3 quivers due to the following lemma:
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Lemma 6.4. Let S1 be a proper subquiver of S, let S0 be a quiver
mutation-equivalent to S1. Then there exists a quiver S ′ which is
mutation-equivalent to S and contains S0.

Using the same procedure, we list one-by-one all the mutation-finite
non-decomposable quivers of order 8, 9 and 10. The results are the en-
tries from the list by Derksen-Owen (see Fig. 6.1). Applying the induc-
tive procedure to a unique mutation-finite non-decomposable quiver

E
(1,1)
8 of order 10, we obtain no mutation-finite quivers. Now we use

the following statement:

Corollary 6.3. Suppose that for some d ≥ 7 there are no non-de-
composable mutation-finite quivers of order d. Then order of any
non-decomposable mutation-finite quiver does not exceed d− 1.

Corollary 6.3 implies that there is no non-decomposable mutation-
finite quiver of order at least 11, which completes the proof of the
Main Theorem.

4. Block decompositions of quivers

Let us start with definition of block-decomposable quivers (we re-
phrase Definition 13.1 from [FST]).

Definition 4.1. A block is a quiver isomorphic to one of the quivers
with black/white colored vertices shown on Fig. 4.1, or to a single ver-
tex. Vertices marked in white are called outlets. A connected quiver
S is called block-decomposable if it can be obtained from a collection
of blocks by identifying outlets of different blocks along some partial
matching (matching of outlets of the same block is not allowed), where
two edges with same endpoints and opposite directions cancel out, and
two edges with same endpoints and same directions form an edge of
weight 2. A non-connected quiver S is called block-decomposable ei-
ther if S satisfies the definition above, or if S is a disjoint union of
several mutually orthogonal quivers satisfying the definition above. If
S is not block-decomposable then we call S non-decomposable. De-
pending on a block, we call it a block of type I, II, III, IV, V, or simply
a block of n-th type.

We denote by BI, BII etc. the isomorphism classes of blocks of types
I, II, etc. respectively. For a block B we write B ∈ BI if B is of type
I.
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BI BII BIIIa BIIIb BIV BV

Figure 4.1. Blocks. Outlets are colored white, dead
ends are black.

Remark 4.2. It is shown in [FST] that block-decomposable quivers
have a nice geometrical interpretation: they are in one-to-one cor-
respondence with adjacency matrices of arcs of ideal (tagged) trian-
gulations of bordered two-dimensional surfaces with marked points
(see [FST, Section 13] for the detailed explanations). Mutations of
block-decomposable quivers correspond to flips of triangulations.

Figure 4.2. Fat sides denote arcs of triangulations.
Arrows form corresponding quiver.

In particular, this description implies that mutation class of any
block-decomposable quiver is finite (indeed, the absolute value of an
entry of adjacency matrix can not exceed 2). Another immediate
corollary is that any subquiver of a block-decomposable is block-
decomposable too.

Remark 4.3. As the following example shows, a block decomposition
of quiver (if exists) may not be unique.

Example 4.4. There are two ways to decompose an oriented triangle
into blocks, see Fig. 4.3.

We say that a vertex of a block is a dead end if it is not an outlet.

Remark 4.5. Notice that if S is decomposed into blocks, and u ∈ S
is a dead end of some block B, then any edge of B incident to u can
not cancel with any other edge of another block and therefore must
appear in S with weight 1.
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B

B1 B2

B3

Figure 4.3. Two different decompositions of an ori-
ented triangle into blocks

We call a vertex u ∈ S an outlet of S if S is block-decomposable
and there exists a block decomposition of S such that u is contained
in exactly one block B, and u is an outlet of B.
We use the following notations. For two vertices ui, uj of quiver S

we denote by (ui, uj) a directed arc connecting ui and uj which may
or may not belong to S. It may be directed either way. By (ui, uj, uk)
we denote oriented triangle with vertices ui, uj, uk which is oriented
either way and whose edges also may or may not belong to S. We use
standard notation 〈ui, uj〉 for an edge of S.
While drawing quivers, we keep the following notation:

• a non-oriented edge is used when orientation does not play any
role in the proof;

• an edge u v is an edge of a block containing u and v,
where u and v are not joined in the quiver. The figure assumes
a fixed block decomposition;

• an edge x a means that x is joined with a by some
edge.

Proposition 4.6. Let S be a connected quiver with n vertices, and let
b be a vertex of S satisfying the following properties:
(0) S \ b is not connected;
(1) for any u ∈ S the quiver S \ u is block-decomposable;
(2) at least one connected component of S \ b has at least 3 vertices;
(3) each connected component of S \ b has at most n− 3 vertices.

Then S is block-decomposable.

Proof. We divide S \ b into two parts S1 and S2 in the following way:
S1 is any connected component of S\b with at least 3 vertices (it exists
by assumption (2)), and S2 = S \ 〈b, S1〉. Notice that assumption (3)
implies that |S2| ≥ 2.
Now choose vertices a1 ∈ S1 and a2 ∈ S2 satisfying the following

conditions: S \ ai is connected, and S \ ai does not contain leaves
attached to b and belonging to S1. We always can take as a2 a vertex
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of S2 at the maximal distance from b. To choose a1 ∈ S1, we look
at the vertices on maximal distance from b in 〈S1, b〉. If the maximal
distance from b in S1∪ b is greater than 2, then we may take as a1 any
vertex of S1 at the maximal distance from b: in this case 〈S1, b〉 \ a1
does not contain leaves attached to b. If S1 contains a leaf of S, then
we can take as a1 this leaf. This does not produce leaves of 〈S1, b〉 \a1
since S1 is connected and |S1| ≥ 3. Finally, if the maximal distance
from b in S1 ∪ b is 2, and each vertex on distance 2 is not a leaf, we
take as a1 any neighbour of b with minimal number of neighbours in
S1. Again, this does not produce leaves of 〈S1, b〉 \ a1.
We will prove now that each 〈Si, b〉 is block-decomposable with out-

let b. Since b is the only common vertex of 〈S1, b〉 and 〈S2, b〉, this will
imply that S is block-decomposable.
Consider the quiver S \a2. It is block-decomposable by assumption

(1). Choose any its decomposition into blocks. Let us prove that for
any block B either B ∩S1 = ∅ or B ∩ (S2 \ a2) = ∅. In particular, this
will imply that S1 is block-decomposable, and b is an outlet (since
|S2| ≥ 2 and S \ a2 is connected). Suppose that for some B both
intersections B ∩ S1 and B ∩ (S2 \ a2) are not empty. We consider
below all possible types of block B. Table 4.1 illustrates the plan of
the proof.

Table 4.1. To the proof of Proposition 4.6

1 2 3 4

B =B =B = B =or

b

Case 1: B ∈ BIV, or B ∈ BV. At least one edge of B having a dead
end runs from S1 to S2 \ a2. By Remark 4.5 this edge appears in S
contradicting assumption S1 ⊥ S2.
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Case 2: B ∈ BIII. A unique outlet of B cannot coincide with b due
to the way of choosing a1 and a2. Therefore, some edge of B joins
vertices of S1 and S2 \ a2, which is impossible since both edges of B
have dead ends.

Case 3: B ∈ BII. Suppose first that b is not a vertex of B. Then
one vertex of B (say w) belongs to one part of S \ a2 (i.e. in either
S2 \ a2 or S1), and the remaining two (w1 and w2) to the other. Since
S does not contain edges (w,w1) and (w,w2) these edges must cancel
out with edges from other blocks of block decomposition. Since all
these additional blocks contain w, the only way is to attach a block
B1 of second type along all the three outlets of B. This results in
three vertices w, w1 and w2 unjoined with all other vertices of S \ a2.
In particular, 〈S1, b〉 is not connected (since |S1| ≥ 2), which implies
that S is not connected either.
Now suppose that b is a vertex of B. Then we may assume that

other vertices w1 and w2 of B belong to S1 and S2 \ a2 respectively.
S does not contain edge (w1, w2). The only way to avoid it in S is
to glue an edge (w1, w2) (which is a block B1 of the first type) to B
(since blocks of all other types are already prohibited by Cases 1,2
and the past of this one). Then w1 is a leaf of 〈S1, b〉 attached to b in
contradiction with the way of choosing of a2.

Case 4: B ∈ BI. Let B = (w1, w2), w1 ∈ S1 and w2 ∈ S2 \ a2.
The only way to avoid this edge in S is to glue another edge (w1, w2)
(which is a block B1 of the same type) to B (all other blocks are
already prohibited by previous cases). Then 〈S1, b〉 is not connected,
which implies that S is not connected.

Since all the four cases are done, we obtain that S1 is block-decompo-
sable with outlet b. Considering S \ a1 instead of S \ a2, in a similar
way we conclude that S2 is also block-decomposable with outlet b.
Gluing these decompositions together along b we obtain a block de-
composition of S.

�

Remark 4.7. In all the situations where we will apply Proposition 4.6
connectedness of S and assumption (1) will be stated in advance.
Usually it is sufficient only to point out the vertex b (in this case
we say that S is block-decomposable by Proposition 4.6 applied to b)
and all the assumptions are evidently satisfied. Only in the proofs
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of Lemma 5.7 and Theorem 5.2 assumption (3) requires additional
explanations.

Proposition 4.8. Let S be a connected quiver S = 〈S1, b1, b2, S2〉,
where S1 ⊥ S2, and S has at least 8 vertices. Suppose that
(0) b1 and b2 are not joined in S;
(1) for any u ∈ S the quiver S \ u is block-decomposable;
(2) there exist a1 ∈ S1, a2 ∈ S2 such that

(2a) S \ ai is connected;
(2b) either 〈Si, b1, b2〉 \ ai or 〈Sj , b1, b2〉 (for i, j = 1, 2, j 6= i)

contains no leaves attached to b1;
similarly, either 〈Si, b1, b2〉 \ ai or 〈Sj , b1, b2〉 (for j 6= i) con-

tains no leaves attached to b2;
(2c) if ai is joined with bj (for i, j = 1, 2), then there is another

vertex wi ∈ Si attached to bj.

Then S is block-decomposable.

Proof. The plan is similar to the proof of Proposition 4.6. The idea is
to prove that each Si together with those of b1, b2 which are attached
to Si is block-decomposable with outlets b1 and b2 (or just one of them
if the second is not joined with Si). Then we combine together these
block decompositions to obtain a decomposition of S. First we show
that for any block decomposition of S \ a2 any block B is contained
entirely either in 〈S1, b1, b2〉 or in 〈S2, b1, b2〉 \a2. For this, we consider
any block decomposition of S \ a2, assuming that for a block B both
intersections B ∩ S1 and B ∩ (S2 \ a2) are not empty. We consider all
possible types of block B (see Table 4.2) and obtain contradiction for
each type.
Notice that the assumption (2c) implies that |Si| ≥ 2. We will refer

this fact as assumption (3).

Case 1: B ∈ BV, or B ∈ BIII. The proof is the same as in Proposi-
tion 4.6.

Case 2: B ∈ BIV. Evidently, both b1, b2 ∈ B. We may assume that
both b1 and b2 are either dead ends of B, or outlets of B (otherwise, by
Remark 4.5 S contains simple edge (b1, b2) contradicting assumption
(0)). First suppose that b1 and b2 are dead ends of B. Then we may
assume that the remaining vertices w1, w2 of B lie in S1 and S2 \ a2
respectively. The edge (w1, w2) of B must be canceled out by an edge
of another block B1, otherwise (w1, w2) appears in S contradicting
S1 ⊥ S2. Block B1 cannot be of type IV (otherwise none of its vertices
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Table 4.2. To the proof of Proposition 4.8

1 2 3 4

B=B= B= B=or

a2

b1b1

b1

b1b1b1

b1
b1

b1

b2

b2

b2

b2b2

b2
b2

b2

w1

w1w1

w1

w1

w1

w1

w2w2

w2

w2

w2

w2

w2

t1t1

t1

t1

t2

S1 = {w1}

B1 is the only block containing b2 ∃ block B2 6= B1 : b2 ∈ B2

3.1 3.2

B2 ⊂ 〈b2, S1〉 B2 ⊂ 〈b2, S2 \ a2〉

3.1.1 3.1.2

t1 is a leaf t1 is not a leaf

B

B1

B2

B2B2

Table 4.3
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is b1, so the block directly connects S1 and S2). Therefore it is either
of type II or I. If B1 is of type II (i.e. a triangle with vertices w1, w2

and w, w 6= bi), then we note that edges (w1, w) and (w,w2) are not
canceled out by other blocks and appear in S. Therefore either (w1w)
or (ww2) connects S1 to S2, and, hence, contradicts the assumption
S1 ⊥ S2. If we glue an edge (w1, w2) as a block of the first type,
then w1 is not joined with any other vertex of S1. Since b1 and b2
are dead ends of B, they are not joined with any other vertex of S1

either. Thus, due to assumption (3) the subquiver 〈S1, b1, b2〉 is not
connected, so S is not connected either.
Now suppose that b1 and b2 are outlets of B. Denote by w1 ∈ S1 and

w2 ∈ S2 \ a2 the other vertices of B. To avoid the edge (b1, b2) in S,
some block should be glued along this edge. If we glue a block of first
or forth type, then we obtain a quiver with respectively 4 and 6 vertices
without outlets. Since S has at least 8 vertices the complement of this
quiver in S \ a2 is nonempty and S \ a2 is not connected contradicting
the choice of a2. If we glue a block of the second type (a triangle
b1b2w), then we obtain a quiver with 5 vertices, the only outlet is
w. Therefore, all the remaining vertices of S \ a2 are not joined with
vertices of B. In particular, w ∈ S1 (otherwise S1 consists of w1

only), so S2 consists of w2 and a2. Hence, S is block-decomposable by
Proposition 4.6 applied to w.

Case 3: B ∈ BII. We may assume that vertices of B are b1, w1 ∈ S1

and w2 ∈ S2 \ a2. Since edge (w1, w2) is not in S it must be canceled
by a block B1. It is either of type I or II (since all other types are
already excluded above). B1 is not of the first type, otherwise w1 and
w2 are leaves in S1 and S2, resp., attached to b1, contradicting (2b).
Therefore, B1 is of type II, and the remaining vertex of B1 is either b1
or b2. If it is b1 then S is not connected. We conclude that b2 ∈ B1.
Any other block B′

1 with vertex b1 is contained in either 〈S1, b1〉 or
〈b1, S2 \ a2〉 (otherwise, if B

′
1 containing b1 has nonempty intersection

with both S1 and S2\a2, then B′
1 is again of type II. As above there ex-

ists B′
2 containing b2 completing B′

1 in such a way that 〈B,B1, B
′
1, B

′
2〉

form a six vertex subquiver without outlets. Since |S| ≥ 8, this im-
plies that S \ a2 is not connected.) Similarly, any block with vertex b2
(other than B1) is contained either in 〈b1, b2, S1〉 or in 〈b1, b2, S2 \ a2〉.
Further, no vertex of S \ a2 except b1, b2 is joined with w1 and w2.
Therefore, S \ a2 consists of 〈b1, b2, w1, w2〉, blocks attached to b1

and b2, and vertices not joined with 〈b1, b2, w1, w2〉. Combining that
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with assumption (3), we see that there is at least one vertex t1 ∈ S1

distinct from w1 which is joined with at least one of b1 and b2 by a
simple edge. We may assume that t1 is attached to b1. Since b1 is
contained in two blocks of S \ a2, no vertex of S2 except possibly a2
is joined with b1.
Suppose that no block except B1 contains b2. Then the subquiver

S\〈b1, b2, w1, w2, a2〉 belongs to S1 and is joined with b1 only. Applying
Proposition 4.6 to b1 we conclude that S is block-decomposable.
Let us consider the case when some block B2 is attached to b2. As

we have already shown, B2 is entirely contained either in 〈S1, b1, b2〉
or in 〈b1, b2, S2 \ a2〉.

Case 3.1: B2 is contained in 〈S1, b2〉. In this case S2 consists of
w2 and a2 only, so |S2| = 2. Recall that w1 is joined with b1 and
b2 only, and define new decomposition of S = 〈S ′

1, b1, b2, S
′
2〉, where

S ′
1 = S1\w1, and S ′

2 = 〈S2, w1〉. We will show that this decomposition
satisfies all the assumptions of Proposition 4.8. Since |S2| = 2 and
|S| ≥ 8, this decomposition satisfies |S ′

1|, |S
′
2| ≥ 3. Therefore we may

avoid Case 3.1.
Clearly, assumptions (0) and (1) hold. We need to choose vertices a′1

and a′2 satisfying conditions (2a)–(2c). We keep a′2 = a2. Recall that
t1 ∈ S ′

1 is attached to b1, and some vertex of B2 (say t2) is attached to
b2. So, if a2 is not a leaf of S attached to exactly one of b1 and b2 we
may choose as a′1 any vertex of S ′

1 different from both t1 and t2 and
satisfying condition (2a), see Fig. 4.4.

w2 w2w1 w1

b1 b1

b2 b2

t1 t1

t2 t2

a2 a2

S1 S2 S′
1 S′

2

Figure 4.4. To the proof of Proposition 4.8, Case 3.1

Suppose that a2 is a leaf of S attached to exactly one of b1 and
b2, say to b1. Notice that there exists at most one leaf of S in S ′

1

attached to b1, otherwise assumption (2b) does not hold for the initial



CLUSTER ALGEBRAS OF FINITE MUTATION TYPE 19

decomposition of S. We may assume that if there is a leaf of S in S ′
1

attached to b1, then it is t1. Consider the following two cases.

Case 3.1.1: t1 is a leaf of S. If there exists another vertex of S ′
1

attached to b1, then a′1 = t1 satisfies all the assumptions. So, t1 is
the only vertex of S ′

1 attached to b1. Further, as we have seen above,
S \ 〈t1, a2〉 is block-decomposable with outlet b1, vertices t1 and a2
are joined with b1 only. Therefore, depending on the orientation of
edges 〈b1, t1〉 and 〈b1, a2〉, we may glue either a block of the third type
composed by b1, t1 and a2, or a composition of a second type block with
an extra edge (t1, a2) in appropriate direction, which implies that S is
block-decomposable.

Case 3.1.2: t1 is not a leaf of S. Denote by r1 any vertex of S ′
1 at-

tached to t1, and consider the following quiver S ′=〈r1, t1, b1, w1, w2, a2〉.
As a proper subquiver of S, S ′ should be block-decomposable. How-
ever, using the Java applet [K1] by Keller one can easily check that
the mutation class of S ′ is infinite, so S ′ is non decomposable.

Table 4.3. To the proof of Proposition 4.8, Case 3.2

3.2.1 3.2.2 3.2.3 3.2.4

B3

B3

B4

B4

w2

w2

w2

w2

w2
w2w2

u2 b1

b2

B3 is the only block
containing w2

3.2.2.1

3.2.2.2 3.2.4.1

3.2.4.2

3.2.4.3

B4 = B4 =

B4 =

Case 3.2: B2 is contained in 〈b2, S2 \ a2〉. If t1 is not a leaf of S then
applying Proposition 4.6 to b1 we see that S is block-decomposable.
Thus, we may assume that t1 is a leaf of S. In this case S1 consists
of w1 and t1 only, so |S1| = 2. If a2 is joined with neither b1 nor w2,
then S is block-decomposable by Proposition 4.6 applied to b2. By the
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same reason, a2 is joined with some vertex t2 ∈ S \ 〈t1, b1, w1, w2, b2〉.
If a2 is not joined with w2, then switching S1 and S2 leads us back to
Case 3.1. Thus, we may assume that a2 is attached to w2 by a simple
edge.
Now take any block decomposition of S \t1 and consider all possible

types of blocks containing vertex w2 (see Table 4.3). Recall that the
valence ValS\t1(w2) = 3.

Case 3.2.1: w2 lies in block B3 of type V. In this case w2 is a dead
end of B3 (due to its valence), one of b1 and b2 is a dead end of B3,
and another one is an outlet (since the orientations of edges 〈w2, b1〉
and 〈w2, b2〉 differ, see Fig. 4.5). Then the edge (b1, b2) in B3 is not
canceled out by any other edge. Therefore, b1 and b2 are joined in S
contradicting assumption (0).

b1b1

b2b2

w1w1 w2w2 or

Figure 4.5. To the proof of Proposition 4.8, Case
3.2.1. Orientations of the edges 〈w2, b1〉 and 〈w2, b2〉
are different.

Case 3.2.2: w2 is contained in block B3 of type IV. In this case w2

is an outlet of B3 (since ValS\t1(w2) = 3). Consider two cases.

Case 3.2.2.1: w2 is contained in block B3 only. Then one of b1
and b2 is a dead end of B3, and another one is an outlet (since the
orientations of edges 〈w2, b1〉 and 〈w2, b2〉 are different). Therefore, b1
is joined with b2, which contradicts assumption (0).

Case 3.2.2.2: w2 is contained simultaneously in two blocks B3 and
B4, B4 6= B3. Since ValS\t1(w2) = 3, B4 is of second type. Again,
the orientations of edges 〈w2, b1〉 and 〈w2, b2〉 are different, so a2 is a
dead end of B3. This implies that valence of a2 is 2, so only t2 can be
outlet of B3. The second dead end of B3 should be joined with both
t2 and w2. Since b1 is not joined with t2, b2 is a dead end of B3. But
this contradicts existence of the edge joining b2 and w1.

Case 3.2.3: w2 is contained in blockB3 of type III. Since ValS\t1(w2)=
3, vertex w2 is the outlet of B3. By the same reason at least one of b1
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and b2 is a dead end of B3, hence a leaf of S \ t1. But neither b1 nor
b2 is a leaf and such B3 does not exist.

Case 3.2.4: w2 is contained in block B3 of type II. Recall that
ValS\t1(w2) = 3, so in this case w2 is also contained in block B4 of first
type. There are exactly three ways to place vertices w2, b1, b2, a2 into
two blocks.

Case 3.2.4.1: B4 = (w2, a2). Then B3 has an edge (b1, b2) which
must cancel out in S \ t1. Since b1 is joined with w1, the only way to
cancel out edge (b1, b2) in S \ t1 is to attach along this edge a second
type block B5 = (b1, b2, w1). Then b2 ∈ B3 ∩B5, so it must be disjoint
from B2. Hence B2 = ∅.

Case 3.2.4.2: B4 = (w2, b2). Then B3 = (w2, b1, a2). Since w1 is
not joined with a2 and ValS\t1(b1) ≤ 3, vertices b1 and w1 compose a
block B5 of first type. Since ValS\t1(w1) = 2, vertices w1 and b2 also
compose a block B6 of first type. Again, this implies that b2 ∈ B3∩B6,
so B2 = ∅.

Case 3.2.4.3: B4 = (w2, b1). Then B3 = (w2, b2, a2). The proof
is similar to the previous case. Since w1 is not joined with a2, and
ValS\t1(b1) ≤ 3, vertices b1 and w1 compose a block B5 of first type.
Since ValS\t1(w1) = 2, vertices w1 and b2 also compose a block B6 of
first type. This implies that b2 ∈ B3 ∩B6, so again B2 = ∅.

Case 4: B ∈ BI. The proof is the same as in Proposition 4.6.

We call the connected component of 〈Si, b1, b2〉 containing Si the

closure of Si and denote it by S̃i. We proved above that any block in

the decomposition of S \ a2 is entirely contained in exactly one of S̃1

and S̃2. Consider the union of all the blocks with vertices from S̃1 only.

They form a block decomposition either of S̃1, or of S̃1 ∪ (b1, b2), i.e.

S̃1 with edge (b1, b2). Due to assumption (2c), in both cases vertices
b1 and b2 are outlets. Similarly, considering a block decomposition of
S \ a1, we obtain a block decomposition either of S̃2, or of S̃2∪ (b1, b2)
where both b1 and b2 are outlets.
Suppose that in the way described above we got block decomposi-

tions of S̃1 and S̃2. Then we can glue these decompositions to obtain
a block decomposition of S. Now we will prove that in all other cases
S is also block-decomposable.

Now suppose that for one of S̃1 and S̃2 (say S̃1) we got a block

decomposition of S̃1 with an edge (b1, b2). Consider the corresponding
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decomposition of S \ a2. Clearly, there is a block B1 in the decompo-

sition of S̃1 with an edge (b1, b2) containing both b1 and b2 as outlets.
Since b1 and b2 are not joined in S, there exists a block B2 with ver-
tices from S̃2 containing the edge (b1, b2), again both b1, b2 are outlets.
Notice that B1 and B2 are blocks of second or fourth type (block of
third or fifth type has one outlet only; if Bi is a block of first type
then no vertex of Si \ a2 can be attached to bj , so |Si| ≤ 1).
First, we prove that if S is not block-decomposable then |S1| = 2.

Indeed, no vertex of S1 except vertices of B1 can be attached to b1 or
b2. If B1 is of fourth type, then both its vertices belonging to S1 are
dead ends, so |S1| = 2. If B1 is of second type with third vertex v1,
then S is block-decomposable by Proposition 4.6 applied to v1 unless
|S1| = 2.
Finally, we look at the type of B2. Again, no vertex of S2\a2 except

vertices of B2 can be attached to b1 or b2. If B2 is of fourth type, we
see that |S2| ≤ 3, so |S| < 8, which contradicts assumptions of the
proposition. Therefore, we may assume that B2 is of second type with
third vertex v2. In particular, v2 is the only vertex of S2 \ a2 joined
with b1 and b2. We will prove that S is block-decomposable.
If a2 is joined with neither b1 nor b2, then S is block-decomposable

by Proposition 4.6 applied to v2. So, we may assume that a2 is joined
with one of b1 and b2, say b1. If a2 is joined with no vertex of S2 \ v2,
then again S is block-decomposable by Proposition 4.6 applied to v2.
Hence, there is t2 ∈ S2 \ v2 attached to a2. Further, since |S1| = 2
and |S| ≥ 8, there exists a vertex u2 ∈ S2 \ 〈v2, a2〉 joined with v2
(see Fig. 4.6), otherwise S is block-decomposable by Proposition 4.6
applied to a2.

v2 v2

t2 t2 = u2

b1 b1

b2 b2a1 a1

a2 a2

u1 u1

u2

or

Figure 4.6. To the proof of Proposition 4.8.

Take a1 ∈ S1, and consider a block decomposition of S \ a1. Denote
by u1 the remaining vertex of S1, and consider all blocks containing
b1. Since ValS(b1) ≤ 4 and no block contains vertices from S1 and
S2 simultaneously, b1 does not belong to a block of fifth type. Since
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a2 and v2 are not leaves, b1 does not belong to a block of third type.
Moreover, b1 does not belong to a block of fourth type: in this case a2
and v2 are dead ends contradicting existence of u2.
Block (u1, b1, b2) can not exist, otherwise b1 enters three blocks si-

multaneously. Therefore, (b1, u1) is a block of first type while b1, a2, v2
compose a block of second type (since S\a1 is connected). Notice that
v2 is the only vertex of S2 \ a2 joined with b1 and b2, which implies
that either (b2, v2) is a block of first type, or (b2, v2, a2) is a block of
second type (see Fig. 4.7). In both cases v2 is contained in two blocks,
so it cannot be attached to u2. This contradiction completes the proof
of the Proposition.

v2
v2

b1 b1

b2 b2

a2 a2

u1
u1

u2
u2

or

Figure 4.7. To the proof of Proposition 4.8, v2 belongs
to two blocks and cannot be joined with u2.

�

Corollary 4.9. Suppose that S = 〈S1, b1, b2, S2〉 satisfies all the as-
sumptions of Proposition 4.8 except (2). Suppose also that |S1| ≥
2, |S2| ≥ 3, and there exists c1 ∈ S1 such that the following holds:
(a) S1 \ c1 is connected;
(b) S1 contains no leaves of S attached to b1 or b2, and S1 \ c1

contains no leaves of S \ c1 attached to b1 or b2;
(c) S1 \ c1 is attached to both b1 and b2.
Then S is block-decomposable.

Proof. We will show how to choose a1 and a2 to fit into assumption
(2) of Proposition 4.8.
As a1 we can always take c1. Clearly, assumptions (a)–(c) imply

corresponding assumptions (2a)–(2c) of the Proposition 4.8 for a1.
To choose a2, we look how S2 is attached to b1 and b2. If either

S2 is not attached to one of them (say b2) or there is a vertex v2 ∈
S2 joined with both b1 and b2, then we take as a2 any vertex of S2

being at the maximal distance from b1; otherwise, we fix two vertices
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v1, v2 ∈ S2 joined with b1 and b2 respectively, and take as a2 any vertex
of S2 \ 〈v1, v2〉 being at the maximal distance from b1.

�

5. Minimal non-decomposable quivers

Our aim is to prove that any non-decomposable quiver contains a
subquiver of relatively small order which is non-decomposable either.

Definition 5.1. A minimal non-decomposable quiver S is a quiver
that

• is non-decomposable;
• for any u ∈ S the quiver S \ u is block-decomposable.

Notice that a minimal non-decomposable quiver is connected. In-
deed, if S is non-connected and non-decomposable, then at least one
connected component of S is non-decomposable either.

Theorem 5.2. Any minimal non-decomposable quiver contains at
most 7 vertices.

The plan of the proof is the following. We assume that there exists a
quiver S of order at least 8 satisfying the assumptions of Theorem 5.2,
and show for each type of block that if a block-decomposable subquiver
S \ u contains block of this type then S is also block-decomposable.
Throughout this section we assume that S satisfies the assumptions

of Theorem 5.2. Here we emphasize that we do not assume the muta-
tion class of S to be finite.
A link LS(v) of vertex v in S is a subquiver of S spanned by all

neighbors of v. If S is block-decomposable, we introduce for a given
block decomposition a quiver ΘS(v) obtained by gluing all blocks ei-
ther containing v or having at least two points in common with LS(v).
Notice that ΘS(v) may not be a subquiver of S. Clearly, LS(v) is a
subquiver of ΘS(v) for any block decomposition of S.

Lemma 5.3. For any x ∈ S any block decomposition of S \ x does
not contain blocks of type V.

To prove the lemma we use the following proposition.

Proposition 5.4. Suppose that S \ x contains a subquiver S1 con-
sisting of a block B of type V (with dead ends v1, . . . , v4 and outlet
v) and a vertex t joined with v (and probably with some of vi). Then
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for any u ∈ S \ S1 and any block decomposition of S \ u a subquiver
〈v, v1, . . . , v4〉 is contained in one block of type V. In particular, t does
not attach to any of vi, i = 1, . . . , 4.

Proof. Take any u ∈ S \ S1 and consider any block decomposition of
S2 = S \ u. Since valence of v in S2 is at least 5, v is contained in
exactly two blocks B1 and B2, at least one of which is of the type V
or IV. Suppose that none of B1 and B2 is of the type V, and let B1

be of the type IV. Then for any choice of B2 the number of vertices of
S2 which are neighbors of v and have valence at least three in S2 does
not exceed 3. However, there are at least four such vertices v1, . . . , v4,
so the contradiction implies that we may assume B1 to be of the type
V with outlet v.
Since block B of S \x is of type V, the subquiver 〈v1, v2, v3, v4〉 ⊂ S

is a cycle. At the same time, the link LS2
(v) is a disjoint union of a

cycle of order 4 (composed by dead ends of B1) and another quiver
with at most 4 vertices (composed by vertices of B2 \ v). If we assume
that v1, v2, v3, v4 are not contained in one block B1 (or B2) in S2, then
v1, v2, v3, v4 do not compose a cycle, and we come to a contradiction.
To complete the proof it is enough to notice that only block of type
V contains chordless cycle of length 4.

�

Proof of Lemma 5.3. Suppose that a block decomposition of S\x con-
tains a block B of type V with dead ends v1, . . . , v4 and outlet v.
Consider two cases: either ValS(v) ≥ 5 or ValS(v) = 4.

Case 1: ValS(v) ≥ 5. Then there exists u ∈ S, u /∈ B that is
joined with v. Denote S1 = 〈v, v1, v2, v3, v4, u〉, and consider any block
decomposition of S2 = S \ w2 for any w2 /∈ S1. By Proposition 5.4,
〈v, v1, v2, v3, v4〉 form a block B1 of type V with the outlet v. Therefore,
no vertex of 〈u, S2 \ S1〉 is joined with v1, v2, v3, v4. Since |S| ≥ 8,
we have S \ 〈w2, S1〉 6= ∅. Consider a block decomposition of S3 =
S \ w3 for some w3 ∈ S \ 〈S1, w2〉. No vertex of S3 \ S1 is joined
with v1, v2, v3, v4. In particular, we obtain that none of w2, w3, u
is joined with v1, v2, v3, v4. Moreover, since w2 and w3 are arbitrary
vertices of S \ S1, this implies that no vertex of 〈u, S \ S1〉 is joined
with v1, v2, v3, v4. Thus, S is block-decomposable by Proposition 4.6
applied to v.

Case 2: ValS(v) = 4. Fix a block decomposition of S \ x containing
B. Since ValS(v) = 4 and v1, . . . , v4 are dead ends, no vertex of
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S\{x∪B} is joined with vertices of B. Again, S is block-decomposable
by Proposition 4.6 applied to x.

�

Lemma 5.5. For any x ∈ S no block decomposition of S \ x contains
blocks of type IV.

Proof. Consider any block decomposition of S \ x. Any vertex is con-
tained in at most two blocks. By Lemma 5.3, any block decomposition
of S \ x does not contain blocks of type V. This implies that the va-
lence ValS\x(v) does not exceed 6 for any v ∈ S \x. Thus, ValS(v) ≤ 8
(recall that any proper subquiver of S, and therefore S itself, does not
contain edges of multiplicity greater than 2 due to Theorem 2.6).
Now let B be a block of type IV in some block decomposition of S\x,

denote by v1 and v2 the outlets of B, and assume that ValS\x(v2) ≤
ValS\x(v1) ≤ 6. If ValS\x(v2) = ValS\x(v1), we assume that ValS(v2) ≤
ValS(v1). We analyze the situation case by case with respect to the
valence ValS\x(v1) decreasing. Each case splits in two: either v1 is
joined with x or not (see Table 5.1).
Notice that x may be joined with v1 by a simple edge only. Indeed,

suppose that x is joined with v1 by a double edge. Denote by w1 and
w2 dead ends of B. Since the subquiver 〈x, v1, w1〉 is decomposable
and its mutation class is finite, x is joined with w1 and the triangle
composed by x, v1 and w1 is oriented (this follows from the fact that the
mutation class of a chain of a double edge and a simple edge is infinite
independently of the orientations of edges, and the mutation class
of a non-oriented triangle containing a double edge is also infinite).
By the same reason, v2 is joined with both x and v1, and the triangle
composed by x, v1 and v2 is oriented. Thus, directions of edges 〈v1, w1〉
and 〈v1, v2〉 induce opposite orientations of edge 〈x, w1〉 (see Fig. 5.1).
Obtained contradiction shows that ValS(v1) ≤ ValS\x(v1) + 1.

Case 1: ValS\x(v1) = 6.

Case 1.1: x 6⊥ v, hence ValS(v1) = 7. Then v1 is contained in block
B1 of type IV, and v1 is joined with x. Denote the dead ends of B1

by w3 and w4, and the remaining outlet by v3.

Case 1.1.1: v3 coincides with v2. Since ValS(v1) = 7, v1 and v2 are
joined by a double edge. Consider S1 = S\w1 with some block decom-
position. Clearly, ValS1

(v1) = 6, and subquiver 〈v1, v2, x, w2, w3, w4〉 ⊂
S1 is obtained by gluing two blocks of fourth type along the edge
(v1, v2). In particular, x is a dead end of one of these blocks, so x is
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Table 5.1. To the proof of Lemma 5.5

1
ValS\x(v1) = 6

2
ValS\x(v1) = 5

3
ValS\x(v1) = 4

4
ValS\x(v1) = 3

5
ValS\x(v1) = 2

1.1

x 6⊥ v1 x 6⊥ v1 x 6⊥ v1x 6⊥ v1x ⊥ v1 x ⊥ v1x ⊥ v1 x ⊥ v1

1.2 2.1 2.2 3.1 3.2 4.1 4.2

1.1.1

1.1.2

1.2.1

1.2.2

2.2.1

2.2.2

3.2.1

3.2.2

4.2.1

4.2.2

2.2.2.1 2.2.2.2

B2

v1 v1v1
v1

v1

v1v1

v1

v1v1v1

v1v2 v2 v2

v2v2v2v2v2

v2v3 v3
u1u1

u2u2

x

x

or

v3 = v2v3 = v2

v3 6= v2 v3 6= v2

u2 = v2

u2 6= v2

no block contains u1, u2, v2
simultaneously

B2 contains u1, u2, v2

joined with v2 and is not joined with w2, w3, w4. Similarly, considering
S2 = S \ w2, we see that x is not joined with w1 either.

v1v1 v2v2

w1w1

w2 w2

xx

or

Figure 5.1. To the proof of Lemma 5.5. One of the
triangles xv1v2 and xv1w1 is non-oriented.
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Now consider subquiver S ′ = 〈v1, x, w1, w2, w3, w4〉. The only edges
in S ′ are those joining v1 with other vertices. Using Keller’s ap-
plet [K1] we can check that mutation class of S ′ is infinite. Recall
that S ′ is a subquiver of block-decomposable quiver and, hence, is
block-decomposable itself. Therefore, its mutation class must be fi-
nite, and obtained contradiction eliminates the considered case.

Case 1.1.2: v3 does not coincide with v2. Consider S1 = S \v3. Since
ValS1

(v1) = 6, subquiver 〈v1, v2, x, w1, w2, w3, w4〉 ⊂ S1 is obtained by
gluing of two blocks of fourth type at v1. Vertices w3 and w4 are
not joined, so x is an outlet of block 〈v1, x, w3, w4〉. In particular, x
is joined with w3 and w4 and is not joined with w1 and w2. Now,
considering S2 = S \ v2, we obtain in a similar way that x is joined
with w1 and w2 and is not joined with w3 and w4, so we come to a
contradiction.

Case 1.2: x ⊥ v1, hence ValS(v1) = 6. As in the previous case, v1 is
contained in block B1 of type IV. Denote the dead ends of B1 by w3

and w4, and the remaining outlet by v3.

Case 1.2.1: v3 coincides with v2. Since ValS(v1) = 6, v1 and v2 are
joined by a double edge. The only outlets of B and B1 are v1 and
v2, and they are already contained in two blocks each. Therefore, the
quiver spanned by B and B1 has no outlets, so any other vertex of
S except x is not joined with S ′ = 〈v1, v2, w1, w2, w3, w4〉. Now take
any vertex u distinct from x which is not contained in B or B1, and
consider any block decomposition of S1 = S \ u. Since ValS1

(v1) =
ValS1

(v2) = 6, the subquiver S ′ ⊂ S1 is again obtained by gluing
of two blocks of fourth type along the edge (v1, v2). By the reasons
described above, no vertex of S except u is joined with vertices of S ′.
This implies that neither x nor u is attached to S ′, so no vertex of
S \ S ′ is attached to S ′ and S is not connected.

Case 1.2.2: v3 does not coincide with v2. Recall that none of vertices
w1, w2, w3, w4 is joined with vertices of S \ {x ∪ (B1 ∩ B2)}. Let us
prove that they are not joined with x either.
There are two options for link LS\x(v1): either v2 is joined with v3

or not. Notice that if two vertices u and v are dead ends of a block of
type IV with outlet v1 in some block decomposition of any quiver S ′,
then u and v are leaves of the link LS′(v), and the distance between
them equals two.
Consider the quiver S1 = S \ w1 with some block decomposition.

Since ValS1
(v1) = 5, subquiver 〈v1, v2, v3, w2, w3, w4〉 ⊂ S1 is obtained
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by gluing a block of fourth type and a block of second or third type
at v1. Looking at the link LS1

(v1), we see that there is only one
pair of leaves at distance two, namely w3 and w4. Therefore, vertices
v1, v3, w3, w4 are contained in one block of fourth type. In particular,
x is not joined with w3 and w4. Similarly, considering S2 = S \w3, we
obtain that x is not joined with w1 and w2.
Let us take another one look at block decomposition of S1. Since w2

is joined with v2, vertices v1, v2, w2 are contained in a block of second
type, i.e. triangle. Since none of w1 and w2 is joined with any other
vertex of S than v1 and v2 we can replace triangle v1v2w2 by block
(v1, v2, w1, w2) of type IV to obtain a block decomposition of S.

Case 2: ValS\x(v1) = 5.

Case 2.1: x 6⊥ v1, ValS(v1) = 6. Since |S| ≥ 8, there exists y ∈
S which is not joined with v1. Since ValS\y(v1) = 6, in any block
decomposition of S \ y vertex v1 is an outlet of a block of type IV, so
we may refer to Case 1.2.

Case 2.2: x ⊥ v1, ValS(v1) = 5. Vertex v1 is contained in block B
and in block B1 of type II or III. Vertices w1 and w2 are dead ends of
B, so they are joined in S \ x with v1 and v2 only.
Denote by u1 and u2 the remaining vertices of B1, and consider

the quiver ΘS\x(v1). Since the union of B and B1 has at most 3
outlets, ΘS\x(v1) consists of blocks B, B1 and probably some block B2

containing at least two of vertices v2, u1 and u2. Consider the following
three cases.

Case 2.2.1: Vertex v2 coincides with u2. In this case v1 and v2 are
joined by a double edge, B1 is a block of second type (which implies
that u1 is joined with v2, so ValS(v2) ≥ 5), and the union of B and
B1 has a unique outlet u1. Thus, 〈LS(v1), v1〉 \ u1 may be joined
with x only. Since ValS(v2) ≤ ValS(v1) = 5, x is not joined with v1
and v2. If x is not joined with w1 and w2 either, then we can apply
Proposition 4.6 to u1. Therefore, we may assume that x is joined with
at least one of w1 and w2, say w1.
Now take any y /∈ 〈B, u1, x〉 and consider S1 = S\y with some block

decomposition. Recall that y cannot be joined with any vertex of B.
Since ValS1

(v1) = 5, v1 is contained in some fourth type block of this
decomposition together with v2 and two of w1, w2, u1. But w1 is joined
with x, so it cannot be a dead end of the block. Hence, v1, v2, w2, u1

compose a block of type IV with outlets v1, v2 and dead ends w2, u1.
In particular, neither w2 nor u1 is attached to x. If y is not joined
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with u1, then we can apply Proposition 4.6 to w1. Therefore, we may
assume that y is joined with u1.
By assumption, |S| ≥ 8. Thus, we can take a vertex z which does

not coincide with any of preceding ones, and consider S2 = S \ z (see
Fig. 5.2). As explained above, any block decomposition of subquiver
〈B, u1〉 is a union of two blocks with one outlet only. However, w1 is
joined with x, and u1 is joined with y, so we come to a contradiction.

v1 v2

w1

w2

x

u1

yz

Figure 5.2. To the proof of Lemma 5.5, Case 2.2.1

Case 2.2.2: Neither u1 nor u2 coincides with v2. The case also splits
into the following two.

Case 2.2.2.1: ΘS\x(v1) consists of three blocks B, B1, B2, where
B2 is a triangle with vertices v2, u1 and u2. In this case the quiver
ΘS\x(v1) has no outlets, so no vertex of S \ΘS\x(v1) except x is joined
with ΘS\x(v1).
Take any vertex y ∈ S \ ΘS\x(v1) distinct from x, and consider

quiver S1 = S \ y. The quiver ΘS\y(v1) is spanned by ΘS\x(v1) and
probably x. Since ValS1

(v1) = 5, three of vertices w1, w2, v2, u1, u2

should compose a block B′ of type IV together with v1. Since none
of w1, w2 is joined with any of u1, u2, that block contains v2. Vertex
v1 is also contained in some block B′′ of type II or III which contains
two remaining vertices of ΘS\x(v1). Similarly, the same two vertices
lie in some block B′′′ of type II or III containing v2. In particular,
all vertices of LS(v1) are either dead ends of block B′, or are already
contained in two blocks, so x /∈ ΘS\y(v1), and, moreover, x is not
joined with ΘS\y(v1) implying that S is not connected.

Case 2.2.2.2: no block contains vertices v2, u1 and u2 simultaneously.
In this case LS(v1) contains exactly two leaves on distance two from
each other, namely w1 and w2, see Table 5.2. This means that for
any y /∈ LS(v1) distinct from v1 and x and any block decomposition of
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S1 = S \ y vertices v1, v2, w1, w2 compose a block of forth type, which
implies that x is not joined with w1 and w2.

Table 5.2. To the proof of Lemma 5.5, Case 2.2.2.2

v1v1v1v1v1

v2 v2v2v2

v2v2 v2v2v2

v2

v2v2v2v2v2

w1 w1w1w1w1

w1w1w1w1w1

w2 w2

w2w2
w2 w2

w2w2 w2

w2

w2
w2w2

u2

u2

u2u2 u2

u2u2 u2

u2

u2

u2u2u2 u2u2

u1

u1

u1u1u1

u1u1u1

u1

u1

u1u1u1u1u1

ΘS\x(v1)

LS\x(v1)

LS\w1
(v1)

Now consider S2 = S \ w1 with a block decomposition. Clearly,
ValS2

(v1) = 4. Looking at possible quivers ΘS\x(v1) (see Table. 5.2),
one can notice that LS2

(v1) does not contain a pair of leaves on distance
two, so v1 is contained in two blocks of second or third type. Since w2

is joined with v1 and v2 only, it is easy to see that w2, v1, v2 compose
a block of type II. Now recall that neither w1 nor w2 are joined with
any vertex of S except v1 and v2, so we can replace triangle v1, v2, w2

by block v1, v2, w1, w2 of type IV to obtain a block decomposition of
S.
Notice that we do not show in Table. 5.2 quivers ΘS\x(v1) in which

vertices u1 and u2 are contained in two blocks simultaneously. The
case of a triangle with vertices u1, u2 and v2 is treated in Case 2.2.2.1,
and it is easy to see that all the others do not produce new leaves.

Case 3: ValS\x(v1) = 4.

Case 3.1: x 6⊥ v1, ValS(v1) = 5. The proof is the same as in Case
2.1. Namely, since |S| ≥ 8, there exists y ∈ S which is not joined with
v1. Since ValS\y(v1) = 5, in any block decomposition of S \ y vertex
v1 is an outlet of a block of type IV, so we may refer to Case 2.2.

Case 3.2: x ⊥ v1, ValS(v1) = 4. In this case vertex v1 is contained
in block B and in block B1 of type I or IV. Consider these two cases
separately.

Case 3.2.1: Block B1 is of type IV. The case is similar to Case 1.2.1,
the only difference is in the orientation of B1: instead of getting double
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edge, the edge (v1, v2) cancels out. Vertex v2 is also contained in B1,
denote by w3 and w4 dead ends of B1. The only vertex joined with B
and B1 is x. We want to show that x is not joined with LS(v1), which
will imply that S is not connected.
Take any vertex y /∈ 〈LS(v1), v1, x〉 and consider S1 = S \ y with

some block decomposition. If v1 is contained in a block of fourth type,
then the second block containing v1 is also of forth type (otherwise the
remaining block is an edge, and the link LS1

(v1) = LS(v1) contains
at most 3 edges, contradicting the fact that LS(v1) contains 4 edges),
and we see that x is not joined with LS(v1). Therefore, v1 is contained
in two blocks of type II or III. More precisely, since valence of all
neighbors of v1 is at least two, v1 is contained in two blocks B′ and
B′

1 of type II.
Block B′ contains one of w1, w2 and one of w3, w4 (due to orientation,

see Fig. 5.3 a)), assume that it contains w1 and w3. To avoid the edge
(w1, w3) which does not appear in S, another block B′

1 should contain
w1 and w3. Since w1 and w3 are joined with v2, B

′
1 is either of second or

fourth type. In the latter case v2 is a dead end of B′
1, but v2 is joined

with w2 and w4 also. Hence, B′
1 is a triangle containing v2, w1, w3,

see Fig. 5.3 b). Similarly, w2, w4 and v2 are contained in block B′′
1

of second type. In particular, all the vertices of LS(v1) are already
contained in two blocks, so x is not joined with LS(v1).

v1v1v1 v2v2v2

w1w1
w1

w2w2
w2

w3w3
w3

w4w4
w4

or

a) b)

Figure 5.3. To the proof of Lemma 5.5, Case 3.2.1

Case 3.2.2: Block B1 is of type I. Denote by u the second vertex of
B1. If u coincides with v2, then 〈LS(v1), v1〉 has no outlets, so we can
apply Proposition 4.6 to x. Now we may assume that u 6= v2.
If u is joined with v2, then the edge 〈u, v2〉 must form a block of

first type, otherwise ValS(v2) > ValS(v1). Therefore, no vertex except
x is attached to 〈LS(v1), v1〉. Since |S| ≥ 8, in this case we can apply
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Proposition 4.6 to x. Thus, we may assume that u is not joined with
v2.
Take any vertex y /∈ 〈LS(v1), v1, x〉 and consider S1 = S \ y with

some block decomposition. It is easy to see that v1 should be contained
in a block of type IV. Furthermore, looking at LS(v1) one can notice
that there is exactly one pair of leaves on distance two, namely w1 and
w2, which implies that vertices v1, v2, w1, w2 belong to one block, and
w1 and w2 are dead ends. Therefore, x is not joined with w1 and w2,
so only v1 and v2 are attached to w1 and w2.
Now we proceed as in Case 2.2.2.2. We consider quiver S1 = S \w1

with some block decomposition and show that w2, v1, v2 compose a
block of type II. Since neither w1 nor w2 are not joined with any
vertex of S except v1 and v2, we can replace triangle v1, v2, w2 by
block v1, v2, w1, w2 of type IV to obtain a block decomposition of S.

Case 4: ValS\x(v1) = 3.

Case 4.1: x 6⊥ v1, ValS(v1) = 4. Since ValS\x(v2) ≤ ValS\x(v1), we
have ValS\x(v2) = 3. This means that vertices of B may be joined
with x only. Thus, we may apply Proposition 4.6 to x.

Case 4.2: x ⊥ v1, ValS(v1) = 3. In this case vertex v1 is contained
either in block B only, or in block B and in second type block B1.
Consider the two cases.

Case 4.2.1: Vertex v1 is contained in one block. This implies that
v1 and v2 are joined in S, so no vertex except x is attached to B. We
apply Proposition 4.6 to x.

Case 4.2.2: Vertex v1 is contained in two blocks. In this case the
second block B1 is of type II, it contains v1, v2 and some vertex u.
The case is similar to Case 2.2.1, the difference is in orientation of B1.
The union of B and B1 has a unique outlet u. Thus, 〈LS(v1), v1〉 \u

may be joined with x only. Further, x is not joined with v1 and v2
(since ValS(v2) ≤ ValS(v1). If x is not joined with w1 and w2 either,
then we can apply Proposition 4.6 to u. Therefore, we may assume
that x is joined with one of w1 and w2, say w1. Moreover, we may
assume that some vertex y /∈ 〈B, u, x〉 is joined with u, otherwise we
can apply Proposition 4.6 to x.
Now take any z /∈ 〈B, u, x, y〉 and consider S1 = S \ z with some

block decomposition. Vertex v1 is contained either in a blocks of fourth
and second type, or in blocks of second and first type. In the first case,
due to orientations of edges (see Fig. 5.4) block of type IV should
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contain all vertices of B, which is impossible since dead end w1 is
joined with x. Hence, v1 is contained in a triangle B′ and an edge B′

1.
Again, because of orientations of edges, w1 and w2 cannot belong to
B′ simultaneously, so B′ contains u and wi. To avoid the edge (wi, u)
these two vertices should be contained in some block B′

2. Since u is
joined with v2 and y, B′

2 contains v2 and y also. Therefore, B′
2 is a

block of fourth type with outlets u, wi and dead ends v2, y. But this
implies that y attaches to wi which is impossible.

v1

v1

v1v2

v2

v2

w1 w1

w2 w2

wi

xx

yy yu

u

u

or

a) b)

Figure 5.4. To the proof of Lemma 5.5, Case 4.2.2

Case 5: ValS\x(v1) = 2. In this case vertex v1 is contained in block
B and block B1 of type I, where B1 is an edge joining v1 and v2 with
suitable orientation. The union of B and B1 has no outlets, so we
apply Proposition 4.6 to x.

Clearly, valence of v1 in S \x is at least two, so all cases are studied
and the lemma is proved.

�

Corollary 5.6.Valence of any vertex v of a minimal non-decomposable
quiver S does not exceed 4.

Proof. The proof is evident. Indeed, take any x which is not joined
with v, and consider any block decomposition of S \ x. Vertex v is
contained in at most two blocks, valence of any vertex of blocks does
not exceed two.

�

Lemma 5.7. Let v ∈ S be a vertex of valence 4. Then for any non-
neighbor x of v and any block decomposition of S \ x vertex v is not
contained in a block of third type.

Proof. Denote by v1 and w1 dead ends of block B of type III with outlet
v, and denote by v2 and w2 vertices of block B1 with outlet v. Clearly,
v1 and w1 are not joined with v2 and w2. Denote S ′ = 〈v1, v2, v, w1, w2〉.
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If no vertex of S \ 〈S ′, x〉 is joined with v2 and w2, then we apply
Proposition 4.6 to x. Thus, we may assume that some vertex u2

attaches to one of v2 and w2, say v2, see Fig. 5.5 a). In particular, this
implies that B1 is a block of type II.
Suppose that x is not joined with v1 and w1. Since ValS(v) = 4,

the quiver S \ v has at most 4 connected components. Two of them
are v1 and w1. The remaining two (or one) contain at least 5 vertices
(due to |S| ≥ 8), so at least one connected component has at least 3
vertices. Hence, we can apply Proposition 4.6 to v.
Therefore, we assume that x attaches to at least one of v1 and w1,

say w1. We want to prove that S is block-decomposable by applying
Proposition 4.8 to S=〈S1=〈v1, w1〉, b1 = v, b2 = x, S2=S \ 〈S1, v, x〉〉,
see Fig. 5.5b. For this take a1 = v1, and try to choose a2. The choice
of a2 will depend on ΘS\x(v).
If v2 and w2 are joined in S, then we choose from non-attached to

x vertices of S2 (if they do exist) those which is at maximal distance
from v in S. Clearly, such a vertex can be taken as a2. If each vertex
of S2 is joined with x, we take as a2 any vertex of S2 \ 〈v2, w2〉.

v
v

v

v1 v2v2 v2

w1w1 w1 w2w2 w2

u2
u2 u2

xx

a1 = v1a1 = v1

c)a) b)

Figure 5.5. To the proof of Lemma 5.7

Now suppose that v2 and w2 are not joined in S (in particular,
ΘS\x(v) contains also some block B2 composed by v2, w2 and probably
some other vertex of S2). B2 cannot be of first type since v2 attaches
to u2. Thus, w2 is joined with u2, see Fig. 5.5 c). Moreover, no vertex
of S \x attaches to any of v2 and w2 since both of them belong already
to two blocks of considered block decomposition of S \ x. So, S \ v2 is
connected and we may take a2 = v2.

�

Lemma 5.8. Let v ∈ S be a vertex of valence 4. Then for any non-
neighbor x of v and any block decomposition of S \ x the diagram
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ΘS\x(v) consists of exactly two blocks of type II having the only vertex
v in common.

Proof. Lemmas 5.7, 5.5, and 5.3 rule out blocks of types III, IV, and
V from decomposition of S \ x. The only possibility left is that v1
is contained in two blocks B1 and B2 of second type. Clearly, they
have at most 4 outlets, so ΘS\x(v) may contain at most 2 additional
blocks. Denote by v1, u1 and v2, u2 remaining vertices of B1 and B2

respectively, and consider the following cases (see Table 5.3).

Table 5.3. To the proof of Lemma 5.8

1 2

1.1

|B1 ∩B2| = 2
1.2

|B1 ∩B2| = 3

ΘS\x(v) = B1 ∪ B2

2.1

ΘS\x(v) = B1 ∪ B2 ∪ B3

2.2

ΘS\x(v) = B1 ∪B2 ∪ B3 ∪ B4

2.1.1 2.1.2 2.2.1 2.2.2 2.2.3

2.2.1.1 2.2.1.22.1.2.1 2.1.2.22.1.1.1 2.1.1.2 2.1.1.3

B3

B3

B3

B3

B3 B3
B3

B3

B3

B3

B3 B4

B4

B4
B4B4

B4

vv

w3

w3

w4

w4

B3 =B3 =B3 =
B3 =B3 =

B4 =B4 =B4 =

2.2.1.1.1 2.2.1.1.2 2.2.1.2.1 2.2.1.2.2

(w3 = w4) (w3 = w4) (w3 6= w4)(w3 6= w4)
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Case 1: B1 and B2 have at least two vertices in common.

Case 1.1: B1 and B2 have exactly two vertices in common. We may
assume that v1 = v2. Then ValS(v) = ValS(v1) = 4 is the maximal
possible valence in S, so x is not attached to v and v2. Consider all
options for ΘS\x(v) (see Fig. 5.6).

v vv

v1 = v2
w

u1 u1u1u2 u2u2

Figure 5.6. To the proof of Lemma 5.8, Case 1.1

If u1 and u2 are not joined (i.e. ΘS\x(v) consists of B1 and B2 only,
see the left picture of Fig.5.6), then S is block-decomposable by Corol-
lary 4.9 applied to S=〈S1=〈v, v2〉, b1=u1, b2=u2, S2=S \ 〈S1, u1, u2〉〉
with c1 = v.
If the edge 〈u1, u2〉 forms a block of first type (see Fig.5.6, the middle

picture), then they can be connected only with vertex x ∈ S. Hence,
all the vertices of ΘS\x(v) are dead ends, so S is block-decomposable
by Proposition 4.6 applied to x.
If u1 and u2 are contained in a block of second type with addi-

tional vertex w (see Fig.5.6, right), then u1 and u2 have valence 4, so
they are not joined with x. Therefore, S is block-decomposable by
Proposition 4.6 applied to w.

Case 1.2: B1 and B2 have three vertices in common. In this case
union of B1 and B2 has no outlets, so S is block-decomposable by
Proposition 4.6 applied to x.

Case 2: B1 and B2 intersect at v only. The quiver ΘS\x(v) consists
of two, three, or four blocks. We are going to prove that there are no
other blocks in ΘS\x(v) except B1 and B2, this will imply our lemma.
For that we consider the two remaining cases and find a contradiction.

Case 2.1: ΘS\x(v) consists of three blocks B1, B2 and B3. We go
through different types of B3 and the way it attaches to B1 and B2.

Case 2.1.1: B3 ∈ BII

Case 2.1.1.1: B3 has 3 points in common with the union of B1 and
B2. Let v1, u1, v2 be vertices of B3. Either v1 and u1 are joined by
a double edge or they are no joined at all. If they are joined by a



38 ANNA FELIKSON, MICHAEL SHAPIRO, AND PAVEL TUMARKIN

double edge, then valence of u1 equals 4, so we are in assumptions of
Case 1, which implies that S is block-decomposable. Hence, we may
assume that v1 and u1 are not joined in S. Thus, ΘS\x(v) is the quiver
shown on Fig. 5.7. The only outlet is u2. We may assume that some
y /∈ 〈ΘS\x(v), x〉 is joined with u2, otherwise S is block-decomposable
by Proposition 4.6 applied to x.

v
y

B3 v1 v2

u1

u2

Figure 5.7. To the proof of Lemma 5.8, Case 2.1.1.1

Consider any z /∈ 〈ΘS\x(v), x, y〉 and some block decomposition of
S \ z. By Lemmas 5.7, 5.5, and 5.3, v is contained in two blocks of
second type. One of these blocks contains v, v2 and one of u1, u2, v1.
Another one contains v and two remaining vertices from u1, u2, v1.
Similarly, v2 is also contained in block of second type with vertices v2
and two of u1, u2, v1. This imply that only two of u1, u2, v1 are dead
ends of 〈v, v1, v2, u1, u2〉, and only one of them is outlet.
Note that no other vertex than u1, u2, v1, v is joined with v2 other-

wise ValS(v2) > 4. If u2 is an outlet, then x may be joined with u2 only
in ΘS\x(v), so S is block-decomposable by Proposition 4.6 applied to
u2.
If u1 or v1 is an outlet, then u2 is dead end, but y is attached to u2,

so we get a contradiction.

Case 2.1.1.2: B3 has exactly 1 point in common with each of B1

and B2. We may assume that vertices of B3 are v1, v2 and w. Since
ValS(v1) = ValS(v2) = 4, no vertex of S \ 〈ΘS\x(v), w〉 is joined with
v1 or v2.
Consider the quiver S1 = S \ v1 with a block decomposition. Since

ValS1
(v) = 3 and v2 is joined with u2 in S, v is contained in one block

of second type and in one of first type. But u1 is joined neither with
v2 nor with u2, so v, v2, u2 are vertices of one block, and v, u1 compose
another one block. Looking at vertex v2 we see that v2 and w compose
a block of first type, too. Replace the block v2w by B3, and block vu1

by B1, and obtain a block decomposition of S.
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Case 2.1.1.3: B3 does not intersect one of B1 and B2. In this
case we may assume that vertices of B3 are v1, u1 and w. Simi-
larly to Case 2.1.1.1, we conclude that either this situation is already
considered in Case 1, or v1 and u1 are not joined in S. Take any
y /∈ 〈ΘS\x(v), x〉 and consider S1 = S \ y. Since v1 and u1 are not
joined with v2 and u2, vertices v, v2 and u2 compose one block (oth-
erwise in order to cancel two edges joining 〈v1, u1〉 with 〈v2, u2〉 we
have to glue in two blocks such that neither of them contains simul-
taneously u2 and v2. Then both u2 and v2 are dead ends with no
edge between them contradicting the fact u2 and v2 are joined in S).
Therefore, v, v1 and u1 compose a block, so v1, u1 and w also form a
block. In particular, v1 and u1 are dead ends of 〈u1, w, v1, v〉, and x
is not attached to v1 and u1. Recall also that no vertex except x, v,
w could be attached to v1 and u1 since v1 and u1 are dead ends of
ΘS\x(v). Hence, both u1 and v1 are joined with v and w only.
Consider S2 = S \ v1 with some block decomposition. Similarly to

Case 2.1.1.2, it easy to see that v, v2, u2 compose one block of type II,
and u1, v form another block of type I. Since u1 is not joined with any
vertex except v and w, 〈u1, w〉 is a block. Notice that blocks 〈u1, w, v1〉
and 〈u1, v1, v〉 are oriented so that sides −−→v1u1 of one triangle cancels
out with the side −−→u1v1 of the other. This yields that one of the edges
〈u1, w〉 and 〈u1, v〉 is directed towards u1 while the other is directed
from u1. Replacing (u1, w) by B3, and (u1, v) by B1, we obtain a block
decomposition of S.

Case 2.1.2: B3 ∈ BI. There are two possibilities to attach B3 to B1

and B2.

Case 2.1.2.1: B3 has exactly one point in common with each of
B1 and B2. We may assume that vertices of B3 are v1 and v2
(see Fig. 5.8a). If x is not joined with v1 and v2, then S is block-
decomposable by Corollary 4.9 applied to S=〈S1=〈v, v1, v2〉, b1 = u1,
b2 = u2, S2=S \ 〈S1, u1, u2〉〉 with c1 = v1. So, we may assume that x
is joined with at least one of v1 and v2, say v1.
Take any y /∈ 〈ΘS\x(v), x〉 and consider S1 = S \ y. Valence of v1

is equal to four, which means that v1 is contained in two blocks of
second type. Since v1 is joined with v, one of these blocks (call it B′)
contains both v1 and v. The third vertex of B′ is either v2 or u1 (since
ValS(v) = ValS(v1) = 4 is the maximal possible and only u1 and v2
are joined with both v1 and v).
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If B′ contains v2, then vertices u1, v1, x compose one block. The
second block containing v is composed by v, u1, u2. In particular, u1

is joined with u2, which contradicts the assumption, see Fig. 5.8 b) .
Therefore, B′ is composed by u1, v1 and v. The second block contain-
ing v is composed by v, v2, u2, and the second block containing v1 is
composed by v1, v2, x, see Fig. 5.8 c) We obtain a quiver considered
above in Case 2.1.1.2.

a) b) c)

v1

v1

v1v2 v2v2
x

x

u1 u1

u1

u2 u2
u2

Figure 5.8. To the proof of Lemma 5.8, Case 2.1.2.1

Case 2.1.2.2: B3 does not intersect one of B1 and B2. The proof
repeats the proof of Lemma 5.7.

Case 2.2: ΘS\x(v) consists of four blocks B1, B2, B3, and B4. We
go through all the different types of B3 and B4 and all the ways to
assemble ΘS\x(v) from them.

Case 2.2.1: Both B3 ∈ BII and B4 ∈ BII. There are two possibilities
to attach B3 and B4 to B1 and B2.

Case 2.2.1.1: Each of B3 and B4 has exactly one vertex in common
with each of B1 and B2. Denote by w3 and w4 the remaining vertices
of B3 and B4 respectively, and consider two possibilities.

Case 2.2.1.1.1: Vertices w3 and w4 coincide. In this case valences of
all the 6 vertices of ΘS\x(v) are equal to 4 yielding that 〈ΘS\x(v)〉 ⊥
(S \ 〈ΘS\x(v)〉) and S is not connected.

Case 2.2.1.1.2: Vertices w3 and w4 do not coincide. We may assume
that B3 contains vertices w3, u1 and u2. Consider S1 = S \ u1 with
some block decomposition. Since valences of v, v1, u1, v2, u2 are equal
to 4, no vertex from S \ ΘS\x(v) attaches to any of these 5 vertices.
We want to prove that edges 〈w3, u2〉 and 〈v1, v〉 are blocks of first
type of S1, see Fig. 5.9. Then replacing (w3, u2) and (v1, v) by B3 and
B1 respectively we get a block decomposition of S.
Since ValS1

(u2) = 3, u2 is contained in one block of second type and
one of first type. The edge 〈v2, u2〉 belongs to block of type II because
of ValS1

(v2) = 4. By the same reason, w3 and v2 are not contained in
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a) b)

v1v1 v2v2

w4w4

w3w3

u1 u2u2

Figure 5.9. To the proof of Lemma 5.8, Case 2.2.1.1.2

one block. Therefore, v2, v, u2 compose one block, and w3, u2 compose
another one block. Looking at vertex v2 we see that the second block
containing v2 is spanned by v2, v1 and w4. Recall that vertices v and
v1 are not joined with any vertex of S1 except w3, v2 and u2. Thus, v
and v1 compose a block, which completes the case.

Case 2.2.1.2: One of B3 and B4 (say B3) does not intersect B2 and
the other (namely, B4) does not intersect B1. Denote by w3 and w4

the remaining vertices of B3 and B4 respectively. Taking into account
Case 1, we may assume that u2 is not joined with v2 in S, and u1 does
not attach to v1. We consider two possibilities.

Case 2.2.1.2.1: Vertices w3 and w4 coincide. Notice that each ver-
tex of ΘS\x(v) is already contained in two blocks, so no vertex of
S \ 〈ΘS\x(v)〉 except x is attached to 〈ΘS\x(v)〉. To show that x is not
joined with 〈ΘS\x(v)〉 either, take any y /∈ 〈ΘS\x(v), x〉 (such y does
exist since |S| ≥ 8) and consider S \y with some block decomposition.
Valences of v and w3 are equal to 4, so they belong to two blocks
of second type each. Further, suppose that some pair of u1, u2, v1, v2
compose a block with w3. To avoid an edge between this pair of ver-
tices, they should compose also a block with v. Therefore, each vertex
of ΘS\x(v) is contained in two blocks, so no vertex of S \ 〈ΘS\x(v)〉
except y attaches to 〈ΘS\x(v)〉. In particular, x ⊥ 〈ΘS\x(v)〉.
Thus, S \ 〈ΘS\x(v)〉 ⊥ 〈ΘS\x(v)〉, and S is not connected.

Case 2.2.1.2.2: Vertices w3 and w4 do not coincide. Clearly, no
vertex of (S \ x) \ ΘS\x(v) is joined with v or any of its neighbors,
see Fig. 5.10 a). Suppose that x is joined with any of neighbors of v,
say with u1. Consider S1 = S \ w4 with some block decomposition.
Since u1 does not attach to any of neighbors of v and ValS1

(u1) = 3,
the edge 〈u1, v〉 is not contained in block of second type. However,
ValS1

(v) = 4 so the edge 〈u1, v〉 should be contained in some block of
second type. The contradiction shows that x ⊥ u1. Similarly, x is not
joined with any other neighbor of v (and with v itself, of course).
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a) b)

v v

x

v1 v1v2 v2

w3w3 w4w4

u1 u2 u2

Figure 5.10. To the proof of Lemma 5.8, Case 2.2.1.2.2

Now consider S2 = S \ u1, see Fig. 5.10 b). Since v1 ⊥ v2, v1 ⊥ u2

and v is the only common neighbor of v1 and v2 (or v1 and u2), a
block containing the edge 〈v, v1〉 contains neither v2 nor u2. Therefore,
v1 and v compose a block of first type. As we have proved above,
ValS(v1) = 2 so v1 and w3 also compose a block of first type. Now
replacing the edge (v1, v) by B1, and (v1, w3) by B3, we obtain a block
decomposition of S.

Case 2.2.2: B3 ∈ BII, and B4 ∈ BI. Denote by w3 the remaining
vertex of B3. If B4 does not intersect one of B1 or B2 (say B1), then
it must coincide with the edge 〈u2, v2〉 of B2, and we get a situation
described in Lemma 5.7 (notice that we did not use orientations of
edges while proving Lemma 5.7). Hence, we may assume that B4

intersects both B1 and B2. This implies that B3 does the same. Let u1

and u2 be vertices of B4. Then ΘS\x(v) is a quiver shown on Fig. 5.11.
Consider ΘS\x(v2). Notice, that ValS\x(v2) = 4 and ΘS\x(v2) was
treated in Case 2.1.1.2.

v1 v2

w3

u1 u2

Figure 5.11. To the proof of Lemma 5.8, Case 2.2.2

Case 2.2.3: Both B3, B4 ∈ BI. In this case all the vertices of ΘS\x(v)
are dead ends, so S is block-decomposable by Proposition 4.6 applied
to x.

Since all possibilities are exhausted, the lemma is proved.
�
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Lemma 5.9. Let v ∈ S be a vertex of valence 3. Then for any non-
neighbor x of v and any block decomposition of S \ x the diagram
ΘS\x(v) consists of exactly two blocks, one of type II and the other of
type I having only vertex v in common.

Proof. Since valence of v equals 3, v is contained in block B1 of second
or third type with two other vertices v1 and u1, and in block B2 of
first type with second vertex v2. We consider both types of B1 and all
possible quivers ΘS\x(v) below (see Table 5.4).

Case 1: B1 ∈ BIII. In this case v1 and u1 are dead ends of the
union of B1 and B2, so {v1, u} ⊥ (S \ {x, v}), and ΘS\x(v) consists of
B1 and B2 only. If x is not joined with v1 and u1, then S is block-
decomposable by Proposition 4.6 applied to v2. Therefore, we may
assume that x is joined with at least one of v1 and u1, say u1. If v2 ⊥
S\〈ΘS\x(v), x〉, then again S is block-decomposable by Proposition 4.6
applied to x. Thus, we can assume that v2 is joined with some vertex
distinct from v and x, see Fig. 5.12. Now we can apply Corollary 4.9 to
S = 〈S1 = 〈u1, v1, v〉, b1 = v2, b2 = x, S2 = S \ 〈S1, x, v2〉〉 with c1 = v1
to show that S is block-decomposable.

v

v1

v2

u1

x

Figure 5.12. To the proof of Lemma 5.9, Case 1

Case 2: B1 ∈ BII. Consider the following cases.

Case 2.1: B1 and B2 have two points in common. We may assume
that v1 = v2. Since ValS(v) = 3 and v ⊥ x, v2 and v are joined by a
double edge. By Lemma 5.8, no vertex of valence 4 may be incident
to a double edge. Thus, S \ 〈u1, v, v2〉 ⊥ 〈v, v2〉 and S \ u1 is not
connected. Since valence of u1 in S does not exceed 4, at least one
connected component of S\u1 has more than 2 vertices (as in the proof
of Lemma 5.7). Therefore, S is block-decomposable by Proposition 4.6
applied to u1.
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Table 5.4. To the proof of Lemma 5.9

1

B1 =B1 =

2

2.1

|B1 ∩B2| = 2

2.2

|B1 ∩B2| = 1

(No B3) 2.2.1 2.2.2

B3 =B3 =

2.2.1.1

2.2.1.2

2.2.2.1

2.2.2.2

2.2.2.3

B1 B1

B1B1

B1

B1B1

B2

B2

B2B2

B2

B2B2

B3

B3

B3B3

B3

v

vv

v

v1 v1

v1v1

v1

v2 v2

v2

v2v2

w

u1 u1

u1u1

u1

Case 2.2: Vertex v is the only common vertex of B1 and B2. ΘS\x(v)
may consist of two or three blocks. To prove the statement we need to
exclude the option of three blocks. It is done in remaining part of the
proof. Assume that ΘS\x(v) contains an additional block B3. Clearly,
B3 is either of the first or of the second type.

Case 2.2.1: B3 ∈ BI. There are two ways to attach B3 to B1 and
B2.

Case 2.2.1.1: B3 does not intersect B2. In this case v1 and u1

are either joined by a double edge or are not joined in S at all. If
they are not joined, then both v1 and u1 are dead ends of ΘS\x(v)
and S is block-decomposable (as in Case 1). If they are joined by
a double edge, then all three vertices v1, u1 and v have valence 3 in
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S, so 〈v1, u1, v〉 ⊥ x, and S is block-decomposable by Proposition 4.6
applied to v2.

Case 2.2.1.2: B3 has one point in common with each of B1 and B2.
We can assume that B3 consists of v1 and v2. Since LS(v1) contains
a connected component of order at least 3, Lemma 5.8 yields that
ValS(v1) < 4, so ValS(v1) = 3. Hence, S \ 〈ΘS\x(v)〉 ⊥ 〈v, v1〉. We
apply Corollary 4.9 to S = 〈S1 = 〈v, v1〉, u1, v2, S2 = S \ 〈S1, u1, v2〉〉
with c1 = v to show that S is block-decomposable.

Case 2.2.2: B3 ∈ BII. There are three ways to attach B3 to B1 and
B2.

Case 2.2.2.1: B3 contains all the three vertices v1, u1, v2. Then all
the vertices of ΘS\x(v) are dead ends, so S is block-decomposable by
Proposition 4.6 applied to x.

Case 2.2.2.2: B3 has one point in common with each of B1 and B2.
We can assume that B3 contains v1. Then ValS(v1) = 4, and LS(v1)
is connected contradicting Lemma 5.8.

Case 2.2.2.3: B3 does not intersect B2. Denote by w the third
vertex of B3. Let us prove first that v2 is not joined with w in S. If
they are contained in a block of the first type in S \ x, then all the
vertices of 〈v, v1, u1, w, v2〉 are dead ends, so S is block-decomposable
by Proposition 4.6 applied to x. If w and v2 are contained in a block of
second type, then ValS(w) = 4, but LS(w) consists of three connected
components contradicting Lemma 5.8. Therefore, v2 ⊥ w. Observing
that v1 and u1 are dead ends of ΘS\x(v), we see that they are joined
only with v, w, and probably x.
Take any y /∈ 〈ΘS\x(v), x〉 and consider S1 = S \ y with a block

decomposition. We will prove that x is joined with neither of v1 and
u1. This implies that S is block-decomposable by Corollary 4.9 applied
to S = 〈S ′

1 = 〈v1, u1〉, v, w, S
′
2 = S \ 〈S ′

1, v, w〉〉 with c1 = v1.
Suppose that x 6⊥ v1. Since ValS(v) = 3 and v ⊥ 〈x, w〉, v is not

contained in one block with any of x and w. Thus, v1, x and w compose
a block of second type and v, v1 is a block of first type. This implies
that v, v2, u1 is a block of second type.
Since v2 ⊥ u1 in S, in order to avoid the edge (v2, u1) there is

another block containing v2 and u1. Since u1 6⊥ w, this block should
contain w also. But then v2 6⊥ w, which is already proved to be false.

By exhausting all cases we completed the proof of the lemma.
�
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Corollary 5.10. Minimal non-decomposable quiver S does not con-
tain double edges.

Proof. Let v and u be joined by a double edge. Take any non-neighbor
x of v and consider S \ x with some block decomposition. By Lem-
mas 5.8 and 5.9, valences of u and v do not exceed 2. Thus, they are
joined with each other only and disconnected from the rest of S.

�

Proof of Theorem 5.2. Consider a quiver S satisfying assumptions of
the theorem and having at least 8 vertices. By Lemmas 5.3 and 5.5,
valence of any vertex of S does not exceed 4. By Lemmas 5.8 and 5.9,
link of any vertex of valence 4 consists of two disjoint edges, and link
of any vertex of valence 3 consists of one edge and one vertex. By
Corollary 5.10, S does not contain double edges.
Now take all cycles of order 3 in S and paint all their edges and

vertices in red (we assume all the remaining edges and vertices to be
black). By Lemmas 5.8 and 5.9, any red edge belongs to a unique
cycle of order 3. Any red vertex is contained either in four red edges,
or in two red edges and at most one black edge. Notice also that due
to Lemmas 5.8 and 5.9 each cycle of order 3 is cyclically oriented.
Denote by S1 the quiver obtained by deleting all red edges from S.

Let us show that S1 is a forest. Indeed, S1 does not contains vertices
of valence 3 or more. Further, if S1 contains a cycle C, then each
vertex of this cycle is contained in two black edges, so the cycle does
not contain any red vertex. This implies that no vertex of S \ C is
joined with C in S, so either S is not connected or S = C. In the
latter case S is block-decomposable.
Take a block decomposition of S1: any edge is a block. It is well

defined since there are no vertices of valence 3 or more. Clearly, any
red vertex is an outlet. Now consider each cycle of order 3 as a block
of second type, and glue it to S1. We obtain a block decomposition of
S, which contradicts the assumptions of the theorem.

�

Now we are able to prove the main results of the section.

Theorem 5.11. The only mutation-finite quivers satisfying assump-
tions of Theorem 5.2 are ones mutation-equivalent to one of the two
quivers X6 and E6 shown on Figure 5.13.

Remark 5.12. We recall that the property of quiver S to be block-
decomposable is preserved by mutations. Indeed, according to [FST],
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E6 X6

Figure 5.13. Minimal non-decomposable mutation-
finite quivers

S is block-decomposable if and only if it corresponds to an ideal tri-
angulation of a punctured bordered surface, and any mutation cor-
responds to a flip of the triangulation. Thus, any quiver mutation-
equivalent to S arises from some triangulation, too. In particular, this
implies that the set of non-decomposable quivers is invariant under
mutations either. At the same time, the property to be minimal non-
decomposable may not be preserved by mutations a priori. However,
while proving Theorem 5.11, we see that minimal non-decomposable
quivers are invariant anyway.

Proof of Theorem 5.11. The two quivers shown on Figure 5.13 are
mutation-finite and not-decomposable (see [DO, Propositions 4 and
6]). To prove the theorem, it is sufficient to show that all other
mutation-finite quivers on at most 7 vertices either are block-decompos-
able, or contain subquivers which are mutation-equivalent to one of
X6 and E6. In particular, this will imply that all the quivers mutation-
equivalent to X6 or E6 are also minimal non-decomposable.
Let S be a minimal non-decomposable mutation-finite quiver. By

Theorem 5.2, |S| ≤ 7. Since the mutation class of S is finite, multi-
plicities of edges of S do not exceed 2 (see Theorem 2.6). The number
of quivers on at most 7 vertices with bounded multiplicities of edges
is finite. This means that we can use a computer to list all quiv-
ers, choose mutation-finite ones, and check which of them are block-
decomposable. However, the number of quivers in consideration is
large. To reduce the time required for computations, we organize the
check as follows.
First, we list all mutation classes of connected mutation-finite quiv-

ers of order 3, there are three of them (see [DO, Theorem 7]), and
choose one representative in each class. They all are block-decompos-
able. Clearly, any connected mutation-finite quiver of order 4 contains
a proper subquiver mutation-equivalent to one of these 3 quivers of
order three.
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Next, we add a vertex and join it with each of the 3 quivers by
edges of multiplicities at most 2 in all possible ways (we use C++

program [FST1]). For each obtained quiver we check if its mutation
class is finite, and choose one representative from each finite mutation
class (here we use Java applet for quivers mutations [K1]). The result-
ing list contains 5 quivers of order 4, they all are block-decomposable.
Continuing in the same way we get 7 finite mutation classes of order

5, again all are block-decomposable. Then we get 13 classes of order
6, exactly two of them consist of non-decomposable quivers, namely
quivers mutation-equivalent to X6 and quivers mutation-equivalent to
E6 . Since all mutation-finite quivers with at most 5 vertices are block-
decomposable, all quivers mutation-equivalent X6 or E6 are minimal
non-decomposable. Attaching a vertex to representatives of all classes
of order 6, we get 15 finite mutation classes of quivers of order 7,
three of them consist of non-decomposable quivers, namely classes

containing E7, or Ẽ6, or X7. These three mutation classes consist of
416, 132, and 2 quivers respectively. Each quiver from the first two
classes contains a subquiver mutation-equivalent to E6, each quiver
from the third class contains a subquiver mutation-equivalent to X6.
Therefore, none of them is minimal non-decomposable.

�

The following immediate corollary of Theorem 5.11 is the main tool
in the classification of mutation-finite quivers.

Corollary 5.13. Every non-decomposable mutation-finite quiver con-
tains a subquiver mutation-equivalent to E6 or to X6.

6. Classification of non-decomposable quivers

In this section we use Corollary 5.13 to classify all non-decomposable
mutation-finite quivers.

Theorem 6.1. A connected non-decomposable mutation-finite quiver
of order greater than 2 is mutation-equivalent to one of the eleven

quivers E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, X6, X7, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 shown

on Figure 6.1.

All these quivers have finite mutation class [DO] and are non-decom-
posable since each of them contains a subquiver mutation-equivalent
to E6 or X6. We need only to prove that this list is complete.
We prove several elementary preparatory statements first.
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E6

E7

E8

Ẽ6

Ẽ7

Ẽ8

E
(1,1)
6

E
(1,1)
7

E
(1,1)
8

X6

X7

Figure 6.1. Non-decomposable mutation-finite quiv-
ers of order at least 3

Lemma 6.2. Let S be a non-decomposable quiver of order d ≥ 7 with
finite mutation class. Then S contains a non-decomposable mutation-
finite subquiver S1 of order d− 1.

Proof. According to Corollary 5.13, S contains a subquiver S0 mutation-
equivalent to E6 or X6. Let S1 be any connected subquiver of S of
order d − 1 containing S0. Clearly, S1 is non-decomposable, and its
mutation class is finite.

�

Corollary 6.3. Suppose that for some d ≥ 7 there are no non-de-
composable mutation-finite quivers of order d. Then order of any
non-decomposable mutation-finite quiver does not exceed d− 1.

A proof of the following lemma is evident.
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Lemma 6.4. Let S1 be a proper subquiver of S, let S0 be a quiver
mutation-equivalent to S1. Then there exists a quiver S ′ which is
mutation-equivalent to S and contains S0.

Proof of Theorem 6.1. According to Theorem 5.11, there are exactly
two finite mutation classes of non-decomposable quivers of order 6,
namely classes of E6 and X6. Due to Corollary 5.13, all other non-
decomposable mutation-finite quivers have at least 7 vertices. By
Lemma 6.4, in each finite mutation class of non-decomposable quivers
there is a representative containing a subquiver E6 or X6.
Therefore, to find all finite mutation classes of non-decomposable

quivers of order 7 we need to attach a vertex to E6 and X6 in all
possible ways (i.e. by edges of multiplicity at most two, with all
orientations), and to choose amongst obtained 7-vertex quivers all
mutation-finite classes. This has been done by using Java applet [K1]
and an elementary C++ program [FST1] (in fact, the same algorithm
was used in the proof of Theorem 5.11). In this way we get 3 finite
mutation classes of quivers of order 7 with representatives X7, E7, and

Ẽ6.
Now, Lemmas 6.4 and 6.2 allow us to continue the procedure. To

list all finite mutation classes of non-decomposable quivers of order 8

we attach a vertex to X7, E7, and Ẽ6 in all possible ways, and choose
again all mutation-finite classes. The result consists of 3 mutation

classes with representatives E8, Ẽ7, and E
(1,1)
6 .

In the same way we analyzed the quivers of order 9 and obtained 2

mutation classes with representatives Ẽ8 and E
(1,1)
7 . To find all finite

mutation classes of non-decomposable quivers of order 10, we apply

the same procedure to Ẽ8 and E
(1,1)
7 . The result is a unique mutation

class containing E
(1,1)
8 .

Finally, the same procedure applied to E
(1,1)
8 gives no mutation-

finite quivers at all. This implies that there are no non-decomposable
mutation-finite quiver of order 11. Now Corollary 6.3 yields immedi-
ately the Theorem statement.

�

7. Minimal mutation-infinite quivers

The main goal of this section is to provide a criterion for a quiver
to be mutation-finite, namely to prove Theorem 7.5. For given quiver
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S, this criterion allows to check if S is mutation-finite in a polynomial
in |S| time.

Definition 7.1. Aminimal mutation-infinite quiver S is a quiver that

• has infinite mutation class;
• any proper subquiver of S is mutation-finite.

Example 7.2. Any mutation-infinite quiver of order 3 is minimal.
This is caused by the fact that any quiver of order at most 2 is
mutation-finite.

Clearly, any minimal mutation-infinite quiver is connected. Notice
that the property to be minimal mutation-infinite is not mutation
invariant. Indeed, any mutation-infinite class contains quivers with
arbitrary large multiplicities of edges. If |S| > 3, then taking a con-
nected subquiver of S of order 3 containing an edge of multiplicity
greater than 2 we get a proper subquiver of S which is mutation-
infinite (see Theorem 2.6). Note also that minimal mutation-infinite
quiver of order at least 4 does not contain edges of multiplicity greater
than two.
We will deduce the criterion from the following lemma.

Lemma 7.3. Any minimal mutation-infinite quiver contains at most
10 vertices.

The bound provided in the lemma is sharp: there exist numerous
minimal mutation-infinite quivers of order 10. We show some of them
below. One source of such examples are simply-laced Dynkin diagrams
of root systems of hyperbolic Kac-Moody algebras with any orienta-
tions of edges. There are two such diagrams of order 10 (e.g., see [K]),
examples of corresponding quivers are shown on Fig. 7.1.

Figure 7.1. Minimal mutation-infinite quivers of order
10 coming from Dynkin diagrams

Remark 7.4. There is no general algorithm to determine if two infinite-
mutational quivers are mutation-equivalent. However, for acyclic quiv-
ers (i.e., containing no oriented cycles) the following result is known
(see [CK, Corollary 4]): if two acyclic quivers are mutation-equivalent,
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then there exists a sequence of mutations from one of them to another
via acyclic quivers only. In particular, this implies that two quivers
shown on Fig. 7.1 are not mutation-equivalent. Indeed, they both are
trees, but it is easy to see that the only way to change the topological
type of tree by mutation is to create an oriented cycle.

Another series of examples can be obtained from the quiver shown
on Fig. 7.2.

Figure 7.2. Minimal mutation-infinite quiver of order 10

Note that it is not clear if the quiver shown on the Fig. 7.2 is not
mutation-equivalent to one of the quivers shown on Fig. 7.1.

Proof of Lemma 7.3. Let S be a minimal mutation-infinite quiver.
First, we prove a weaker statement, i.e. we show that |S| ≤ 11.

In fact, this bound follows immediately from Theorems 5.2 and 6.1.
Indeed, either all the proper subquivers of S are block-decomposable,
or S contains a proper finite mutational non-decomposable subquiver
of order |S| − 1 (we can assume that this quiver is connected: if it is
not connected but non-decomposable, it contains a non-decomposable
connected component S0, and any connected subquiver of S of order
|S|−1 containing S0 is non-decomposable). In the former case |S| ≤ 7
according to Theorem 5.2 (again, we emphasize that we did not require
S to be mutation-finite in the assumptions of Theorem 5.2). In the
latter case |S| − 1 ≤ 10 due to Theorem 6.1, which proves inequality
|S| ≤ 11.
Now suppose that |S| = 11. Then S contains a proper finite mu-

tational non-decomposable subquiver S ′ of order 10. According to

Theorem 6.1, S ′ is mutation-equivalent to E
(1,1)
10 . The mutation class

of E
(1,1)
10 consists of 5739 quivers, which can be easily computed using

Keller’s Java applet [K1]. In other words, we see that S contains one
of 5739 quivers of order 10 as a proper subquiver.
Hence, we can list all minimal mutation-infinite quivers of order

11 in the following way. To each of 5739 quivers above we add one
vertex in all possible ways (we can do that since the multiplicity of
edge is bounded by two; the sources of the program can be found
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in [FST1]). For every obtained quiver we check whether all its proper
subquivers of order 10 (and, therefore, all the others) are mutation-
finite. However, the resulting set of the procedure above is empty:
every obtained quiver has at least one mutation-infinite subquiver of
order 10, so it is not minimal.

�

As a corollary of Lemma 7.3, we get the criterion for a quiver to be
mutation-finite.

Theorem 7.5. A quiver S of order at least 10 is mutation-finite if
and only if all subquivers of S of order 10 are mutation-finite.

Proof. According to Definition 7.1, every mutation-infinite quiver con-
tains some minimal mutation-infinite quiver as a subquiver. Thus,
a quiver is mutation-finite if and only if it does contain minimal
mutation-infinite subquivers. By Lemma 7.3, this holds if and only if
all subquivers of order at most 10 are mutation-finite. Since a sub-
quiver of a mutation-finite quiver is also mutation-finite, the latter
condition, in its turn, holds if and only if all subquivers of order 10
are mutation-finite, which completes the proof.

�

8. Growth of skew-symmetric cluster algebras

We recall the definition of growth of cluster algebra [FST, Sec-
tion 11].

Definition 8.1. A cluster algebra has polynomial growth if the num-
ber of distinct seeds which can be obtained from a fixed initial seed by
at most n mutations is bounded from above by a polynomial function
of n. A cluster algebra has exponential growth if the number of such
seeds is bounded from below by an exponentially growing function
of n.

In [FST, Proposition 11.1] a complete classification of block-decom-
posable quivers corresponding to algebras of polynomial growth is
given. It occurs that growth is polynomial if and only if the surface
corresponding to a quiver is a sphere with at most three punctures
and boundary components in total.
We prove the following theorem.

Theorem 8.2. Any mutation-infinite skew-symmetric cluster algebra
has exponential growth.
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Combining these two results, we see that to classify all cluster al-
gebras of polynomial growth we need only to determine the growth of
11 exceptional mutation-finite algebras listed in Theorem 6.1. Three
of them, namely E6, E7 and E8 are of finite type, so they have finite

number of seeds. Other three (Ẽ6, Ẽ7 and Ẽ8) are of affine type, so
they have linear growth (according to H. Thomas). Therefore, there
are still 5 algebras for which the growth is unknown.
In other words, to complete the classification of cluster algebras

by the growth rate it remains to ascertain the rates of growth in the

following five cases X6, X7, E
(1,1)
6 , E

(1,1)
7 , and E

(1,1)
8 .

A sequence of cluster transformations preserving the exchange ma-
trix defines a group-like element. The set of all group-like elements
form generalized modular group.
Using ideas similar to the proof of famous Tits alternative, it can be

proved that in all five cases the growth rate of the generalized modular
group is exponential. More precisely, studying the attracting points
of some induced action it can be proved that the generalized modular
group contains as a subgroup the free group of rank two.
Details on the study of growth rates in exceptional cases will be

published elsewhere.

Corollary 8.3. A skew-symmetric cluster algebra of rank at least 3
has a polynomial growth if and only if

• it is associated with triangulation of either a sphere with three
punctures, either a disk with two punctures, either an annulus
with one puncture, or a pair of pants;

• it is one of the following exceptional affine cases: Ẽ6, Ẽ7, Ẽ8.

Remark 8.4. Note that by construction any cluster algebra of rank 2
is either of finite type of has a linear (i.e., polynomial) growth rate.

The rest of this section is devoted to the proof of Theorem 8.2.

Remark 8.5. It is sufficient to prove Theorem 8.2 for cluster algebras
corresponding to mutation-infinite quivers of order 3. Indeed, any
mutation-infinite quiver S has a mutation-equivalent quiver S ′ with
an edge of weight at least 3. According to Theorem 2.6, any connected
subquiver S0 ⊂ S of order 3 containing that edge is mutation-infinite.
Therefore, it is enough to show that the algebra corresponding to S0

grows exponentially.
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In fact, we prove some stronger result. Denote by S(n) the set of
quivers which can be obtained from a quiver S by at most nmutations.
According to Remark 8.5, the following lemma implies Theorem 8.2.

Lemma 8.6. Let S be a mutation-infinite quiver of order 3. Then the
order |S(n)| grows exponentially with respect to n.

The proof of Lemma 8.6 splits into two steps. We start by proving
the following lemma. By saying that a quiver is oriented we mean that
all the cycles are oriented.

Lemma 8.7. For any mutation-infinite quiver S of order 3 there exists
a sequence of at most 4 mutations taking S to S ′ such that
(1) S ′ is oriented;
(2) all the weights of edges of S ′ are greater than 1;
(3) an edge of maximal weight is unique.

Proof. First, we make S oriented without empty edges. For this, we
need at most 2 mutations. Indeed, if S is non-oriented without empty
edges, then the mutation in a unique vertex which is neither sink nor
source leads to an oriented quiver. If S has an empty edge, then by
at most one mutation we put sink and source to the ends, and then,
mutating in the middle vertex, we get a required quiver.
Thus, we can assume now that S is oriented without empty edges,

and we have two mutations left to satisfy conditions (2) and (3). De-
note the weights of S by (a, b, c) with a ≥ b ≥ c. Since S is mutation-
infinite, S does not coincide with any of the three mutation-finite
quivers of order 3 shown on Fig. 8.1. In particular, a ≥ b ≥ 2. We

Figure 8.1. Oriented mutation-finite quivers of order
3 without empty edges

may assume that either a = b or c = 1. If c = 1, then making a mu-
tation preserving a and b, we obtain an oriented quiver with weights
(a, b, c′ = ab− c). Clearly, c′ = ab− c ≥ 3, so the condition (2) holds.
Now we have a quiver satisfying the first two conditions, and one

mutation left to satisfy condition (3). Again, let the weights of S be
(a, a, c) with a ≥ c. If c = 2, then we make a mutation changing c
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to get a quiver with weights (a, a, c′ = a2 − c). Since S is mutation-
infinite, a > 2 = c, therefore c′ = a2 − 2 > a, so the third condition is
satisfied. If c > 2, then mutating in any of the two other vertices, we
get a quiver with weights (a, b = ac − a, c). Clearly, b = ac − a > a
since c > 2.

�

The last step in proving Lemma 8.6 is Lemma 8.8. We say that a
sequence of mutations is reduced if it does not contain two consecutive
mutations in the same vertex. Note also that we differ quivers with
the same weights but different orientations.

Lemma 8.8. Let S be mutation-infinite quiver of order 3 satisfying
conditions (1) − (3) of Lemma 8.7, denote by (a, b, c) the weights of
edges of S, a > b ≥ c. Let S1 and S2 be quivers obtained from S by
different reduced sequences of mutations, such that the first mutation
in each sequence preserves the weight a of S. Then S1 and S2 are
distinct.

Clearly, Lemma 8.8 together with Lemma 8.7 imply Lemma 8.6.
Before proving Lemma 8.8, we provide the following auxiliary state-
ment.

Lemma 8.9. Let S fit into assumptions of Lemma 8.8. Suppose that
S ′ is obtained from S by mutation preserving the weight a. Then
1) the maximal weight of S ′ is greater than a;
2) S ′ satisfies conditions (1)− (3) of Lemma 8.7.

Proof. To prove the first statement, compute the weights of S ′. If we
preserve weights a and b, then weights of S ′ are (a, b, c′ = ab − c), so
c′ > a since b ≥ 2 and c < a. If we preserve weights a and c, then
weights of S ′ are (a, b′ = ac− b, c), so b′ > a since c ≥ 2 and b < a.
Now the second statement is evident.

�

The following immediate corollary of Lemma 8.9 is a partial case of
Lemma 8.8.

Corollary 8.10. Let S fit into assumptions of Lemma 8.8, and let
µn . . . µ1 be a reduced sequence of mutations, where µ1 preserves the
maximal weight of S. Denote by Si the quiver µi . . . µ1S. Then all the
quivers S, S1, . . . , Sn are distinct.
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Proof of Lemma 8.8. Suppose S1 and S2 coincide. We may assume
that any two quivers S ′

1 and S ′
2 in the sequences of quivers from S to

S1 and S2 respectively are distinct. Consider preceding quivers S ′
1 and

S ′
2 in the sequences of quivers from S to S1 and S2. By Lemma 8.9,

both S1 and S2 satisfy the following property: the edge of the max-
imal weight is opposite to the vertex in which the last mutation was
made. Therefore, S ′

1 and S ′
2 coincide also. The contradiction proves

the lemma.
�

9. Quivers of order 3

The structure of mutation classes of quivers of order 3 was described
in [ABBS] and [BBH]. These papers provide complete classification of
mutation classes containing quivers without oriented cycles given in
different terms.
Define the total weight of a quiver as the sum of the weights of

edges. It is proved in [ABBS] (see also [BBH, Lemma 2.1]) that if a
mutation class does not contain quivers without oriented cycles, then
the mutation class contains a unique (up to duality) quiver of minimal
total weight, and any other mutation-equivalent quiver can be reduced
to that one in a unique way.
We complete the description of mutation classes containing quiv-

ers without oriented cycles by a similar statement. We use notation
from [BBH]: a quiver S of order 3 is called cyclic if it is an oriented
cycle, and acyclic otherwise; S is called cluster-cyclic if any quiver
mutation-equivalent to S is cyclic, and cluster-acyclic otherwise.

Theorem 9.1. Let S be a connected cluster-acyclic quiver of order 3.
Then
1) mutation class of S contains a unique (up to change of orienta-

tions of edges) quiver S0 without oriented cycle;
2) the total weight of S0 is minimal amongst all the mutation class;
3) any sequence of mutations decreasing total weight at each step

applied to S ends in S0.

We use the following notation. By (a, b, c)− we mean a non-oriented
cycle with weights (a, b, c). We may not fix orientations of edges
since any two such quivers are mutation-equivalent under mutations
in sources or sinks only. Similarly, by (a, b, c)+ we mean an oriented
cycle with weights (a, b, c).
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Proof of Theorem 9.1.Consider a connected acyclic quiver S0=(a,b,c)−

with a ≥ b ≥ c. Denote by S the set of quivers satisfying conditions
(1)–(3) of Lemma 8.7.
Suppose first that none of the weights is equal to 1. If c = 0,

then the only quiver we can get by one mutation different from S0 is
(a, b, ab)+, which is contained in S. If c ≥ 2, then we can obtain three
possibly different quivers (a, b, ab+c)+, (a, ac+b, c)+ and (bc+a, b, c)+

all belonging to S. According to Lemma 8.9, all other quivers from
mutation class of S0 also belong to S, which proves the first statement.
Moreover, Lemmas 8.8 and 8.9 imply that for any quiver from the
mutation class of S0 belonging to S there is a unique reduced sequence
of mutations decreasing the total weight at each step, and the minimal
element is in S if and only if the entire mutation class is contained
in S (this is also proved in [BBH, Lemma 2.1]). Since S0 is the only
quiver not contained in S, all the statements are proved.
Now suppose that at least one of the weights of S0 is 1. We may

assume that S0 is mutation-infinite (there are exactly two acyclic

mutation-finite quivers of order 3, namely Ã2 and A3, and the the-
orem is evident for them). Our aim is to show that almost all quivers
mutation-equivalent to S0 belong to S, then looking at the remain-
ing quivers all the statements become evident. Indeed, S0 is of one
of the following three types: (a, 1, 0)−, (a, 1, 1)−, or (a, b, 1)−, where
a ≥ b ≥ 2. We list the quivers which can be obtained from that three
by mutations.
The only way to change (a, 1, 0)− is to obtain (a, a, 1)+, from which

we may get (a, a, a2 − 1)+ only which is in S.
The quiver (a, 1, 1)− can be mutated into (a + 1, 1, 1)+ and (a +

1, a, 1)+. The first one then can be mutated into the second one only,
and the latter into the first one or into (a, a+ 1, a2 + a− 1)+ ∈ S.
The quiver (a, b, 1)− can be mutated either into (a, b, ab+ 1)+ ∈ S,

or into (a+ b, b, 1)+ or (a+ b, a, 1)+. These two can be mutated either
one into another or into quivers belonging to S.
Therefore, in the mutation class of S0 there is at most 3 quivers

not belonging to S, and S0 has minimal total weight amongst them.
Applying the same arguments as in the first case, we complete the
proof.

�
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