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Abstract

In this paper, an automatic adaptive coupling procedure is proposed for the
finite element method (FEM) and the element-free Galerkin method (EFGM)
for linear elasticity and for problems with both material and geometrical non-
linearities. In this new procedure, initially the whole of the problem domain
is modelled using the FEM. During an analysis, those finite elements which
violate a predefined error measure are automatically converted to an EFG
zone. This EFG zone can be further refined by adding nodes, thus avoiding
computationally expensive FE remeshing. Local maximum entropy shape
functions are used in the EFG zone of the problem domain for two reasons:
their weak Kronecker delta property at the boundaries allows straightfor-
ward imposition of essential boundary conditions and also provides a natural
way to couple the EFG and FE regions compared to the use of moving least
squares basis functions. The Zienkiewicz & Zhu error estimation procedure
with the superconvergent patch method for strains and stresses recovery is
used in the FE region of the problem domain, while the Chung & Belytschko
error estimation procedure is used in the EFG region.
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1. Introduction

Meshless methods remain of interest in the computational mechanics com-
munity, in particular the element-free Galerkin method (EFGM) [1], because
in these methods only a set of nodes is required for the problem discreti-
sation, making them ideal for modelling problems with large deformation,
material damage, projectile penetration, fragmentation, crack growth and
moving boundaries, the details of which can be found in [2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. However it is well-known that they tend to be more computa-
tionally expensive than finite element methods (FEMs) set the same job. It
makes sense therefore to look at coupled modelling, where meshless discreti-
sation is used in regions of a domain which most benefit from their greater
accuracy and lack of a mesh, while maintaining a finite element discretisa-
tion elsewhere in the domain. In most of the coupling procedures proposed
to date it is necessary to specify FE and EFG regions in the problem do-
main at the start of simulation, in the preprocessing stage. These regions
are fixed in the problem domain, and performance is then highly user depen-
dent. For practical engineering problems, it will be very difficult, especially
for an inexperienced user, to decide on appropriate FE and EFG regions in a
given problem domain. For problems with both geometric and material non-
linearities, this problem is even more intractable, as geometry is changing
during the simulation. To overcome these problems, an automatic adaptive
FE-EFGM coupled method is proposed in this paper for linear and nonlinear
problems where initially the whole of the problem domain is modelled using
the FEM. During an analysis those finite elements which violate a predefined
error measure are automatically converted to an EFG zone. This zone can
be further refined by adding nodes, thus achieving adaptivity without any
(computationally expensive) FE remeshing.

Proper FE-EFGM coupling is an important issue in the development
of meshless methods, and different coupling strategies are available in the
literature. The most prominent at present is probably that proposed in
[13], in which interface/transition elements are used between the FE and the
EFG regions of the problem domain. In that procedure moving least squares
(MLS) shape functions are used in the EFG region of the problem domain,
while hybrid shape functions, combining both MLS and FE shape functions,
are used in the interface region. Other commonly used methods for FE-
EFGM coupling are the continuous blending method in [14, 15], methods
based on Lagrange multipliers [16, 17], on transition or bridge regions [18]
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and methods based on a collocation approach [19]. A comprehensive review
of different FE-EFGM coupling procedures up to 2005 can be found in [20].
A new coupling procedure for FE-EFGM has recently been proposed by the
authors in [21] for linear elastic and geometrically nonlinear problems. In this
coupling procedure, max-ent shape functions are used in the EFG region of
the problem domain. Their weak Kronecker delta property allows imposition
of the essential boundary conditions directly and a direct coupling of the FE
and the EFG regions without transition/interface elements or any of the other
special techniques used previously. In this paper we extend this work into
an adaptive framework as well as into materially nonlinear problems. Only
a very limited literature is available for adaptive FE-meshless coupling, for
instance references [22, 23] deal only with two-dimensional problems without
proper error estimation and with no further adaptivity in the meshless zone.

The method presented here uses a total Lagrangian formulation for mod-
elling finite deformation due to its computational efficiency, and performance
with material nonlinearity is demonstrated using the Prandtl-Reuss consti-
tutive model (the von Mises yield function with perfect plasticity and as-
sociated flow) although any similar constitutive model could be used. For
linear elastic problems, the well-established error estimation procedure of
Zienkiewicz & Zhu [24] with the superconvergent convergent patch recovery
(SPR) method for recovery of the nodal stresses [25, 26] is used in the FE
region to determine the elements requiring conversion to EFG regions. The
Chung & Belytschko [27] error estimator is used in the EFG region for fur-
ther adaptive refinement. For nonlinear problems, incremental forms of the
Zienkiewicz & Zhu error estimator [28] and the Chung & Belytschko error
estimator [29] are used. Full details of each component are given below, orga-
nized as follows. The theoretical background and detailed formulation of the
max-ent shape functions are presented in §2. These shape functions are then
used in the EFGM, for which the modified formulations are given in §3. The
details of the coupling between the FE and EFG region based on max-ent
shape function are given in §4. The adaptive FE-EFGM coupling procedure
for linear elastic and nonlinear problems is described in §5, including error
estimation procedure for both FEM and EFGM in §5.1. The correspond-
ing refinement strategy is then given in §5.2 and the full adaptively coupled
FE-EFGM algorithm is described in §5.3. Numerical examples are given in
§6 to show the implementation and performance of the proposed adaptive
FE-EFGM method. Concluding remarks follow in §7.
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2. Maximum entropy shape functions

Max-ent shape functions, based on the idea of informational entropy [30,
31] and the principle of max-ent [32, 33], were introduced in [34] to formulate
interpolants for polygons. These shape functions are not however suitable to
be directly used for meshless methods as they extend to the global problem
domain. More useful shape functions termed as ”local”, which can be defined
for a set of nodes, were first introduced in [35] , where their weak Kronecker
delta property was also highlighted. Compact support shape functions were
then derived using Gaussian weight functions (or priors) in [35], work which
was extended in [36] to any weight function (or generalized prior). First-
order consistent max-ent shape functions [36] were then extended to second
order in [37] and higher order in [38] and max-ent was used in [39] for the
automatic calculation of the nodal domain of influence within a meshless
method.

The max-ent concept comes from information theory [31] where a measure
of the amount of information or uncertainty of a finite scheme is termed
information entropy and is given as

H(p1, ...., pn) = −
n∑

i=1

pi log pi, (1)

where p1, ...., pn are probabilities of n mutually independent events. The
most likely probability distribution is obtained by using Jaynes’ principle

of max-ent [33], i.e. maximising (1) subject to constraints
n∑

i=1

pi = 1 and

n∑
i=1

pigr (xi) = ⟨gr(x)⟩, where ⟨gr(x)⟩ is the expectation of a function gr(x).

The max-ent approach can be used to derive shape functions by seeing an
analogy between the probabilities above and the shape function values them-
selves. A useful local shape function formulation can be obtained [36] by in-
corporating prior distributions wi which can be regarded as weight functions
that provide compact or local support, and then maximising the following

H(ϕ,w) = −
n∑

i=1

ϕi log

(
ϕi

wi

)
, (2)

4



subject to the standard constant and linearly reproducing constraints

n∑
i=1

ϕi=1,
n∑

i=1

ϕixi = x,
n∑

i=1

ϕiyi = y and
n∑

i=1

ϕizi = z. (3)

Shape functions can be derived as

ϕi =
Zi

Z
(4)

where

Zi = wie
−λ1x̃i−λ2ỹi−λ3z̃i and Z =

n∑
j=1

Zj, (5)

in which wi is the weight function associated with node i, evaluated at point
x = (x, y)T , x̃i = xi − x, ỹi = yi − y and z̃i = zi − z are shifted coordinates.
n is the number of nodes in support at x and λ1, λ2 and λ3 are Lagrange
multipliers which can be found from

(λ1, λ2, λ3) = argminF (λ1, λ2, λ3) where F (λ1, λ2, λ3) = log(Z).
(6)

F is a convex function and Newton’s method is used to solve (6) to find the
Lagrange multipliers which can then be used in the expressions for the shape
functions. The shape function derivatives follow as [40]

∇ϕi = ϕi

(
∇fi −

n∑
i=1

ϕi∇fi

)
, (7)

where

∇fi =
∇wi

wi

+λ+ x̃i

[
H−1 −H−1A

]
and A =

n∑
k=1

ϕkx̃k ⊗
∇wk

wk

. (8)

Where H is the Hessian matrix and the dyadic product ⊗ of two vector a
and b is a second order tensor, i.e. a⊗ b defined as a⊗ b = abT .

3. Element-free Galerkin method

The element-free Galerkin method was proposed in [1], based on a global
weak form. It is one of the most commonly used meshless methods and is
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based on the earlier diffuse element method [41]. In the EFGM, moving
least squares (MLS) shape functions are used for the approximation of the
field variables, background integration cells are used for numerical integration
and Lagrange multipliers are used for the imposition of essential boundary
conditions.

Three-dimensional formulations are given here for the EFGM with max-
ent shape functions, but it is straightforward to modify for one- and two-
dimensional cases. Consider a three-dimensional problem defined in the do-
main Ω and bounded by Γ. The equilibrium equations at a point x are
written as

∇Tσ + bf = 0 in Ω, (9)

where σ =
{
σxx σyy σzz σxy σyz σxz

}T
is the Cauchy stress vector,

bf =
{
bf x bf y bf z

}T
is the body force vector, where bf x, bf y and bf z are

the body forces in x, y and z directions respectively and ∇ is the differential

operator and is written as ∇ =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x



.

The boundary conditions associated with (9) are

u = ū on Γu, (10a)

σn = t on Γt, (10b)

where (10a) is essential or Dirichlet boundary condition and (10b) is nat-

ural or Neumann boundary condition. Here u =
{
ux uy uz

}T
is the

displacement vector, where ux, uy and uz are the displacements in x, y and

z directions, and n =
{
nx ny nz

}T
is the outward unit normal to the

boundary Γ, t is the prescribed traction on the traction boundary, Γt, and ū
is the prescribed displacement on the essential boundaries, Γu. Due to the
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use of MLS shape functions, which do not posses the Kronecker delta prop-
erty, constrained Galerkin weak form with Lagrange multipliers are used in
[1] but due to the use of max-ent shape functions Galerkin weak form is used
directly, which is written as∫

Ω

δ (∇u)T D (∇u) dΩ−
∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ = 0, (11)

where D is the material stiffness matrix. After discretising the problem with
a set of nodes, displacement at a point of interest x is written as

uh (x) =


ux
uy
uz

 =
n∑

i=1

 ϕi 0 0
0 ϕi 0
0 0 ϕi


uxi
uyi
uzi

 =
n∑

i=1

ϕiui, (12)

where uh (x) is an approximation of the displacements at a point x, n is the
number of nodes in the support of point x, ϕi is a matrix of the max-ent
shape functions for node i at a point x and ui are known as fictitious nodal
values or nodal parameters. Using (12) in (11) and after simplification, the
final discrete system of linear equation is written as

Ku = f , (13)

where

Kij =

∫
Ω

BT
i DBjdΩ, (14)

fi =

∫
Γt

ϕitdΓ +

∫
Ω

ϕibfdΩ, (15)
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Bi =



∂ϕi

∂x
0 0

0
∂ϕi

∂y
0

0 0
∂ϕi

∂z
∂ϕi

∂y

∂ϕi

∂x
0

∂ϕi

∂z
0

∂ϕi

∂x

0
∂ϕi

∂z

∂ϕi

∂y



, (16)

and

D =
E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2


.

(17)
where ν is the Poisson’s ratio and E is the modulus of elasticity. To perform
the integrations in (14) and (15) numerically, the problem domain Ω and trac-
tion boundary Γt are divided into a number of non-overlapping background
cells.

In the case of nonlinear problems, a total Lagrangian formulation is used
here to model finite deformation, in which all the kinematical variables are
referred back to the original or undeformed configuration and for modelling
elasto-plasticity, the Prandtl-Reuss constitutive model is used. Here the de-
formation gradient is used, which is the fundamental measure of deformation,
providing the relationship between the current and reference configurations,
that is

F =
∂x

∂X
, (18)

where x and X are the coordinates of a point in the current and reference
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configurations respectively. The work-conjugate stress and strain measures
used in this paper are logarithmic strain ε and Kirchhoff stress τ [42], which
are given as [43]

ε =
1

2
lnb, τ = Jσ, (19)

where σ is the Cauchy stress, b is the left Cauchy-Green tensor and J is
the determinant of the deformation gradient F. In total Lagrangian formu-
lations, there is no need to update the geometry, the shape functions and
the corresponding derivatives are calculated and stored at the start of the
simulation and are used in every solution step in each Newton-Raphson it-
eration. In this case, the deformation gradient Fn+1 for increment n + 1 is
calculated from the total nodal parameters or fictitious nodal values ui and
the increment in the deformation gradient ∆F is then be calculated using
the deformation gradient Fn of the previous converged iteration, i.e.

∆F = Fn+1 F
−1
n , Fn+1 = I+

n∑
i=1

ui


∂ϕ

∂X
∂ϕ

∂Y
∂ϕ

∂Z



T

i

, (20)

where I is a 3× 3 identity matrix, n is the number of nodes in support and
the shape function derivatives are calculated with reference to the original
geometry. The trial elastic left Cauchy-Green strain matrix be

tr is written as

be
tr = ∆Fbe

n ∆FT , (21)

where be
n is the value of the elastic left Cauchy-Green strain matrix at the end

of previous increment and is obtained by rearranging (19) in terms of b and
using ε = εen, where ε

e
n is the elastic strain from the previously converged load

step. (21) can be used in (19) to calculate the trial elastic strain εetr, which
is input to the constitutive model, the output of which includes elastic strain
εe, stress σ and consistent or algorithmic tangent Dalg. A Newton-Raphson
incremental-iterative procedure is used, i.e. load is applied incrementally in
steps and convergence is sought for each increment, using

f intn+1 (un+1)− f extn+1 = oobfn+1 = 0, (22)
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where n + 1 is the global Newton-Raphson iteration counter, f intn+1 and f extn+1

are the global internal and external force vectors respectively, oobfn+1 is the
residual or out-of-balance force and un+1 is a vector of nodal parameters or
fictitious nodal values. The expression for the internal forces for an increment
n+ 1 are given as

f intn+1 =

∫
Ω

GTPdΩ =

ng∑
i=1

GT
i Pi |Ji|wi, (23)

where ng are the total number of Gauss points in the problem domain, Ji

and wi are the Jacobian and weights associated with each Gauss points re-
spectively, G is the 9-component strain-displacement matrix, consisting of
the shape function derivatives with respect to the original configuration and
is written as

Gi =



∂ϕi

∂X
0 0

0
∂ϕi

∂Y
0

0 0
∂ϕi

∂Z
∂ϕi

∂Y
0 0

0
∂ϕi

∂X
0

0
∂ϕi

∂Z
0

0 0
∂ϕi

∂Y

0 0
∂ϕi

∂X
∂ϕi

∂Z
0 0



(24)

and P is the nine component non-symmetric first Piola-Kirchhoff stress and
is given as

P = JσF−T = τF−T . (25)
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The equation for the global stiffness matrix in this case is written as

K =

∫
Ω

GT ÃGdΩ, (26)

where Ã is the isotropic material stiffness tangent and is written as

Ã =
∂P

∂F
=
∂τF−T

∂F
, (27)

The partial derivative is expressed as (index notation is used here for better
presentation)

Ãijkl =
∂τipF

−1
jp

∂Fkl

=
∂τip
∂Fkl

F−1
jp − PikF

−1
jk . (28)

After using the chain rule, the partial derivative
∂τip
∂Fkl

is written as

∂τip
∂Fkl

=
∂τip

∂ (εet)ab

∂ (εet )ab
∂ (bet)cd

∂ (bet )cd
∂Fkl

, (29)

where
∂τip

∂(εet )ab
= Dalg

ipab is infinitesimal consistent or algorithmic tangent and
∂(εet )ab
∂(bet )cd

= Labcd is the the partial derivative of logarithm of bet with respect to

its components and is written as

∂ (bet )cd
∂Fkl

= δck
((
F−1
n

)
lw
(ben)wv ∆Fdv

)
+ δck

(
∆Fcw (ben)wv

(
F−1
n

)
lv

)
. (30)

Effective plastic strain is used as one of the measures to evaluate the perfor-
mance of the proposed model and is given as

εp =

√
2

3
(εp)T (εp), (31)

where εp is plastic strain.

4. FE-EFGM Coupling using max-ent shape functions

In the FE-EFGM coupling based on the interface elements [13], MLS
shape functions are used in the EFG zone for the approximation of the field
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variables. The MLS shape functions do not possess the Kronecker delta
property like the FE shape functions and due to this reason interface elements
are introduced between the FE and the EFG zones [13], to properly couple the
two regions. The shape functions for the interface elements are hybrid shape
functions of the FE and the EFG shape functions to make the displacement
continuous across the FE-EFGM interface. The details of the FE-EFGM
coupling based on the interface elements is not given here and can be found
in the relevant literature. In this paper, max-ent shape functions are used
in the EFG region of the problem domain, which provide a natural way to
couple the FEM and the EFGMwithout using interface elements or transition
regions between the FE and EFG zones because of their weak Kronecker delta
property at the boundaries. A sample mixed FE and EFG discretization is
shown in Figure 1, where ΩE and ΩF are the EFG and the FE regions and
Γ is the boundary between these two regions. The nodes on the boundary
Γ between the EFG and FE regions, shown in green in Figure 1, are used
in the displacement approximation for both the EFG and the FE regions.
Displacement can be approximated at point x in a similar way in the two

Figure 1: FE-EFGM coupling using max-ent shape functions
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regions, i.e.

uh (x) =
n∑

i=1

Ñi (x)ui, (32)

where uh (x) is the approximate displacement component at point x, Ñi (x)
is either the FE or the EFG shape function for node i evaluated at point
x, n is the number of nodes in support of point x and ui are either nodal
displacements in the case of the FEM, or nodal parameters in case of the
EFGM.

5. Adaptive FE-EFGM

All analyses using this method start with a domain discretised entirely
with finite elements. An error estimator is used to flag elements which require
conversion to EFG zones. The refinement strategy then comprises changing
the nodes on these elements to become EFG nodes, and the original finite
element regions become the integration cells for the EFGM. By this pro-
cess the method uses the finite element grid to form the integration cells
and avoids generating a separate cell layout. Refinement is not confined to
this conversion from FE to EFG: further refinement of EFG regions is also
included.

5.1. Error estimation

The Zienkiewicz & Zhu [25] error estimator with the SPR method for
recovery of stresses and strain are used in the FE region of the problem do-
main, while the Chung & Belytschko [27] error estimation is used in the EFG
region of the problem domain. The basic idea of both of these error estima-
tion procedures are to use the difference between projected and the direct
numerical solutions and are similar to the conventional recovery type error
estimation method in the FEM [26]. Despite the calculation of nodal stresses
and strains, the error estimation procedures for the FE and EFG regions work
similarly, i.e. in FE and EFG regions the procedure goes element-wise and
background cells-wise respectively.

The exact error in stress or strain fields at a point x is the difference
between the exact and numerical values, i.e.

σe (x) = σ (x)− σh (x) and εe (x) = ε (x)− εh (x) , (33)
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where σe (x) and εe (x) are the exact error in the stress and strain at a point
x respectively, σ (x) and ε (x) are the exact stress and strain at a point x
while σh (x) and εh (x) are the numerical stress and strain at a point x. The
error for the individual cell and for the whole domain can then be found using
an appropriate norm; error in energy norm is used in this paper. In this case,
the exact local error in energy norm ∥ee∥ and the corresponding exact local
energy norm ∥Ue∥ for either an individual FE or EFG background cell Ωe

are given by

∥ee∥ =

∫
Ωe

(σe (x))T D−1 (σe (x)) dΩe

 1
2

and ∥Ue∥ =

∫
Ωe

(σ (x))T D−1 (σ (x)) dΩe

 1
2

, (34)

where subscript e shows an individual FE or EFG background cell with
domain Ωe. As the exact stresses and strains are not available for real-
life problems, so the projected stress σp (x) and projected strain εp (x) are
used in (33) and (34) instead of the exact stress and exact strain respectively
and the calculated error in energy norm ∥epe∥ is then know as the estimated
error in energy norm. Equations for the global error in energy norm and
the corresponding global energy norm for the problem domain Ω are then
written as

∥ep∥2 =
ne∑
i=1

∥epe∥
2
i and ∥U∥2 =

ne∑
i=1

∥Ue∥2i , (35)

where for linear elastic problems ne is the number of FEs in the first iteration
and the number of EFG background cells in the consecutive iterations. Global
relative percentage error η and permissible local error in an individual FE or
EFG background cells ∥ee∥ are then written as

η =
∥ep∥
∥U∥

× 100 and ∥ee∥ =
η

100

(
∥U∥2

ne

) 1
2

, (36)

where η is the global permissible relative error for the whole problem domain.
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The adaptive procedure is triggered by the global relative error, i.e. when η >
η and the conversion of FEs to EFG background cells or further refinement

of EFG background cells is performed when
∥epe∥
∥ee∥

> 1.

Recovery type error estimation procedures have already been used by
other researchers in the literature for nonlinear problems in adaptive analysis.
The Zienkiewicz & Zhu error estimation procedure was extended to nonlinear
problems for the first time in [28] and was used for two-dimensional problems
subjected to small strain elasto-plasticity, in which for each solution step, in-
cremental error in energy norm was calculated from nodal stresses and nodal
incremental strains recovered using the recovery by equilibrium in patches
[44] and SPR method respectively. Further applications of the Zienkiewicz &
Zhu error estimation procedure in two-dimensional nonlinear problems can
be found in a number of references, e.g. in [45], the SPR method was used
to estimate error for two-dimensional footings on soil problems, subjected
to large deformation with elasto-plasticity. 6-node triangular elements with
three Gauss points per element were used to discretise the problems and the
L2 norm of error in strain was used for the adaptive analysis. In [46], recovery
of the Cauchy stress was performed by the SPR method for two-dimensional
problems with large deformation using hyperelasticity as a material model.
The improved SPR method was introduced for two-dimensional large defor-
mation problems in [47], in which integration points were used as sampling
points and bilinear 4-node quadrilateral elements with (2× 2) Gauss points
were used in the analysis. It was shown in [48, 49] that the SPR method can
perform well, even if the sampling points used for stress recovery are not the
superconvergent points. This information is very helpful to extend the SPR
method originally proposed for linear problems to nonlinear problems, where
most of the path dependent variables are available at the integration points,
which are generally not superconvergent. The use of integration points as
sampling points also allows the inclusion of more terms in the polynomial of
the least squares fitting over the patch of elements, which is normally im-
possible with the superconvergent points, because they are few in number.
The nonexistence of superconvergent points in the case of nonlinear problems
was also mentioned in [46], where it was concluded that using (2 × 2) inte-
gration points in linear 4-node quadrilateral elements as sampling points led
to better performance than using one superconvergent Gauss point. Gauss
points were also used as sampling points in [47] for problems subjected to
large deformation.
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The Zienkiewicz & Zhu error estimation procedure with the SPR method
for stress recovery has been used in a number of linear and nonlinear three-
dimensional problems. In [50], the SPR method was used to calculate error in
three-dimensional h-adaptive analysis for linear-elastic problems. Adaptive
FEA based on the modified SPR method was used to model curved cracks
in three-dimensional problems in [51]. In [52], the SPR method was used
for error estimation in three-dimensional nonlinear problems, involving liq-
uefaction of soil due to seismic effects. The incremental L2 norm of error in
strain for each solution step was used here in h-adaptive analysis, while linear
8-node hexahedral elements were used to discretise the problems’ domains.
The SPR method was extended to three-dimensional nonlinear problems,
and its applications were explored in the transferring of the path dependent
variables in [53, 54, 55]. Tetrahedral elements were used in the analysis,
and different polynomials were used in the least squares fitting for the SPR
method, possessing C0, C1 and C2 continuity. In [56], an improvement of the
SPR method, i.e. minimal patch recovery (MPR), was introduced in which
there was no need to calculate the nodal stresses. The recovered solutions at
Gauss points were calculated directly from the least squares projection of the
Gauss points belong to the neighbouring elements. The method was applied
to three-dimensional elasticity and metal forming problems with tetrahedral
elements.

The same incremental procedure for the error estimation, used for the
adaptive FEM in [28] and for the adaptive EFGM in [29] is used here, i.e.
incremental global relative error in energy norm is calculated for each solution
step, and checked against a permissible value. For solution step n, equations
for the incremental error in energy norm and the corresponding energy norm
for either an individual FE or EFG background cell Ωe are given as

∥epe∥ =

∫
Ωe

∣∣∣(τ p
n (x)− τ h

n (x)
)T (

∆εpn (x)−∆εhn (x)
)∣∣∣ dΩe

 1
2

and

∥Ue∥ =

∫
Ωe

∣∣∣(τ p
n (x))

T (∆εpn (x))
∣∣∣ dΩe

 1
2

, (37)

where the subscript e shows an individual FE or EFG background cell, τ p
n (x)

and τ h
n (x) are the projected and numerical Kirchhoff stresses respectively at
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a Gauss point x for solution step n, while ∆εpn (x) and ∆εhn (x) are the
projected and numerical incremental logarithmic strains at a Gauss point
x for the solution step n. Projected Kirchhoff stresses and the projected
logarithmic strains in this case are calculated using the Zienkiewicz & Zhu
and Chung & Belytschko procedures in the FE and the EFG region of the
problem domain respectively. Equations for the error in energy norm and
the corresponding energy norm for the problem domain Ω are then written
as

∥ep∥2 =
nFE∑
i=1

∥epFE∥
2
i+

nEFG∑
j=1

∥epEFG∥
2
j and ∥U∥2 =

nFE∑
i=1

∥UFE∥2i+
nEFG∑
j=1

∥UEFG∥2j ,

(38)
where nFE and nEFG are the total numbers of FEs and EFG background
cells respectively in the problem domain. Incremental global relative per-
centage error and incremental permissible error in an individual FE or EFG
background cell are written as

η =
∥ep∥
∥U∥

× 100 and ∥ee∥ =
η

100

(
∥U∥2

n

) 1
2

, (39)

where n = nFE + nEFG and η is a permissible relative error for the whole
problem domain.

5.1.1. Calculation of nodal stresses

The procedures to calculate nodal strains and stresses are now given sep-
arately for both FE and EFG region.

Finite element

For the FEM, the SPR method was developed by Zienkiewicz & Zhu [25]
to calculate the nodal stresses and strains from the nodal displacements. In
this procedure stresses and strains are initially calculated at the superconver-
gent points, which are then used to calculate stresses and strains at the nodes.
It was shown that, in the cases of linear and cubic elements the recovered
nodal stresses and strains are superconvergent (one order higher accurate or
O(hP+1)), where h is the element size wheras ultraconvergence, i.e. O(hP+2))
or two orders higher accuracy was obtained in the case of quadratic elements.
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The directly calculated nodal stresses and strains from the nodal displace-
ments using the shape functions derivatives are however less accurate and
discontinuous. Different strategies have been suggested in the literature to
calculate accurate nodal stresses. One of the commonly used methods is av-
eraging or local projection techniques, in which stresses are calculated at the
nodes by extrapolation from the superconvergent sampling points, which are
then averaged to get a single value. The accuracy of the stresses from this
method is highly dependent on the existence of the superconvergent points in
the FEs. Further detail and theoretical background of the superconvergent
points within FEs and the averaging or local projection method can be found
in, e.g. [57]. Other procedures for nodal stress recovery can also be found
in the literature, including global projection [58] and extraction and other
alternatives [59]. In all the above-mentioned nodal stress recovery methods,
the nodal stresses obtained, are generally not superconvergent. In the SPR
method, nodal stresses are calculated by using a discrete or local least square
fitting over a set of superconvergent points in a patch of elements, assembled
at a common node. The SPR method is superior to other stress recovery
procedures because the recovered stresses are generally superconvergent or
even ultraconvergent for the case of quadratic elements as stated above.

The objective of the SPR method is to find the nodal stresses σ∗
i such

that a continuous and accurate stress field σ∗ is obtained, i.e.

σ∗ =
n∑

i=1

Niσ
∗
i , (40)

where Ni is the same elemental shape function used in the displacement inter-
polation. Here the stress field σ∗ is smooth throughout the problem domain
and is more accurate than the corresponding directly calculated stress field
σh. In the SPR method, nodal stresses σ∗

i are obtained by the least squares
fitting of the complete basis as used in the displacement approximation over a
patch of elements surrounding an assembly node. The polynomial expansion
of the stress component σ∗

p is written as

σ∗
p = P (x) a (41)

where P (x) is the monomial basis function, x are spatial coordinates and a is
a vector of unknown coefficients. For three-dimensional linear and quadratic
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elements P (x) and corresponding a are

P (x) =
{

1, x, y, z
}
, a =

{
a1, · · · , a4

}T
, (42a)

P (x) =
{

1, x, y, z, xy, yz, zx, x2, y2, z2
}
, a =

{
a1, · · · , a10

}T
.

(42b)

In (41), unknown coefficients a are determined separately for each patch by
least squares fitting to the stresses at the superconvergent points. For the
least squares fitting, the following equation is minimized w.r.t. a

F(a) =
n∑

i=1

(
σh (xi)− σ∗

p (xi)
)2

=
n∑

i=1

(
σh (xi)−P (xi) a

)2
, (43)

where n is the total number of superconvergent points in a single patch of
elements, xi are the spatial coordinates of superconvergent points, σ

h (xi) are
the stresses calculated directly by the FEM at the superconvergent points and
σ∗
p (xi) are the recovered stresses at the same points using least square fitting.

Minimization of (43) w.r.t. a gives

Aa = b or a = A−1b, (44)

where

A =
n∑

i=1

PT (xi)P (xi) and b =
n∑

i=1

PT (xi) σ
h (xi) . (45)

After calculating a, nodal stresses are calculated from (41), i.e. using the
nodal coordinates. The size of matrices A and b are very small and depend
on P. b should be determined separately for each stress component, while
A−1 is the same for all stress components and is determined only once.

For the three-dimensional case, patches are shown in Figures 2(a) and 2(b)
for 8-node and 20-node hexahedral elements respectively. In both patches,
eight elements are joined at a common patch assembly node. In Figures 2(a)
there is only one superconvergent point per element, and the patch is used
to recover the stresses only at patch assembly nodes. In Figure 2(b) there
are eight superconvergent points per element and patch are used to recover
stresses at the patch assembly nodes as well as internal nodes, which are
inside these patches, shown as solid circles. In Figure 2(b), internal nodes
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normally belong to more than one patch, and stresses are recovered at these
nodes from each patch, and the final stresses are then calculated by averag-
ing. To recover stresses at boundary nodes, including essential/traction as
well as interface between FE and EFG regions, internal or boundary patches
can be used. Accuracy is the same, if stresses are recovered either from the
boundary or internal patches [25]. In some situations, however, sufficient
elements and superconvergent points are not available to construct patches
at the boundary. Even if sufficient elements and superconvergent points are
available, the construction of these boundary patches involves extra unnec-
essary work, as the stresses at boundary nodes can be recovered from the
already constructed internal patches. To avoid these complications, in this
paper internal patches are used to recover stresses at the boundary nodes.

Figure 2: SPR three-dimensional elements patches

Element-free Galerkin method

As there are no elements in the EFGM, so there is no issue of strain
and stress discontinuity, and the procedure used for the FEM is not directly
applicable to the EFGM, because the derived stress and strain fields are
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already smooth. The error estimation procedure proposed for the EFGM
in [27] is used, in which projected stresses are calculated from the nodal
stresses based on reduced domains of influence. It was also shown in [27]
that the error estimator performs well when the domain of influence for
stress projection is as small as possible but at the same time must be large
enough to have sufficient nodes in support of each Gauss point required for
the shape functions calculation. In the case of the EFGM, the stress and
strain vector returned at any point x is written as

σh (x) =
na∑
i=1

DBiui and εh (x) =
na∑
i=1

Biui, (46)

where na is the number of nodes in the support of point x based on the
domain of influence for analysis and ui are fictitious nodal values for node i.
The projected stress and strain vector at x are recovered from nodal stress
and strain using

σp (x) =

np∑
j=1

ψj (x)σ
h (xj) and εp (x) =

np∑
j=1

ψj (x) ε
h (xj) . (47)

Here ψj (x) is the shape function of a node j at a point x based on a reduced
domain of influence and np is the number of nodes in the support of point x
based on that reduced domain of influence and σh (xj) and εh (xj) are the
nodal stresses and strains respectively.

5.2. Refinement strategy

The two-dimensional step-by-step refinement strategy (which is straight-
forward to modify for the three-dimensional case) used here is almost the
same as used for the adaptive EFGM given in [60, 29] and is shown in Figure
3. The direct use of the adaptive EFGM refinement strategy here in the
EFG region of the problem domain creates complications in the FE region
of the problem domain, which requires further consideration. In this new
strategy, refinement of the EFG background cells is the same as used in the
original adaptive EFGM case, i.e. five new nodes are added in each back-
ground cell, which is then divided into four new cells. A sample coupled
FE-EFGM discretisation is shown in Figure 3(a), in which columns A, B
and C are the EFG background integration cells and columns D, E and F
are FEs. The refinement of background cells in column A, B and C creates
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hanging nodes in FEs, i.e. columns D in the FE region of the problem do-
main as shown in Figure 3(b). To avoid the complication of dealing with
FEs with hanging nodes, the strategy used here is to convert all those FEs
to the corresponding EFG background integration cells as shown in Figure
3(c). In the case of nonlinear problems due to the total Lagrangian formu-

Figure 3: Step by step refinement strategy for the adaptive coupled FE-EFGM

lation, undeformed discretisations are refined as compared to the current or
deformed discretisations refinements in the updated Lagrangian formulation.
The same refinement strategy suggested originally for the two-dimensional
linear elastic case, is also extended to three-dimensions. A major task in the
nonlinear adaptive analysis is an accurate transfer of path dependent vari-
ables between the old and new discretisations. In this paper, the max-ent
shape functions are used to transfer data from the old nodes and Gauss points
to their new counterparts. The path dependent parameters for the nodes are
displacement u and elastic logarithmic strain. For the Gauss points the vari-
ables are the same except for the omission of displacement. Writing any of
these path dependent variables as ξ, transfer occurs using

ξ (xnew) =

nold∑
i=1

ψi (xnew) ξ (xold)i , (48)

where xnew is the position of the new node or Gauss point, xold is the position
of old nodes or Gauss points, nold is the number of old nodes or Gauss points
in the support of xnew and ψj (xnew) are the max-ent shape functions.

5.3. Adaptive FE-EFGM coupling algorithm
The full adaptively coupled FE-EFGM algorithm for linear elastic prob-

lems is shown in Figure 4, which has been implemented in Matlab. At the
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start of analysis, the whole of the problem domain is modelled with the FEM,
which includes specification of geometry, material properties and meshing.
Here four-node iso-parametric quadrilateral elements with (2×2) integration
(or Gauss) points per element are used in the analysis. In this algorithm,
itr is the current iteration and max itr is the maximum number of itera-
tions specified by the user at the start of analysis. During each iteration,
stiffness matrix is assembled, essential and traction boundary conditions are
implemented and after solution of the final system of equations nodal dis-
placements or fictitious nodal values are calculated for the FE and the EFG
regions respectively. During the first iteration, nodal stresses are calculated
using the standard SPR method and local and global relative errors are then
calculated using the Zienkiewicz & Zhu error estimation procedure. This
global relative error is then used to trigger the refinement algorithm, which
converts FEs to EFG background cells.

From the second iteration onward, the problem domain consists of com-
bined FE and EFG discretisations with (2 × 2) Gauss points per element
in the FE region and (4 × 4) Gauss points in each background cell in the
EFG region. After this point, error is only calculated for the EFG region,
as FEs with high errors already converted into EFG background cells in the
first iteration. After solution of the final system of equations, nodal stresses,
local and global relative errors are calculated for the EFG region of the prob-
lem domain using the approach of Chung & Belytschko [27]. The global
relative error is then used to decide further adaptive refinement in the EFG
region, and those background cells, where error is more than the permissible
error are automatically refined. As compared to the two-dimensional linear
elastic counterpart, in which error in the FE region of the problem domain
is calculated only in the first discretisation, in nonlinear case the error in
the FE region of the problem domain is calculated during each evolving dis-
cretisation. Due to the incremental loading, it is expected in the subsequent
discretisations that more elements will be converted to corresponding EFG
background integration cells. The three-dimensional nonlinear adaptively
coupled FE-EFGM algorithm has been implemented in FORTRAN90.

6. Numerical examples

Numerical examples are now given to demonstrate the correct implemen-
tation and performance of the full adaptively coupled FE-EFGM algorithm.
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The first two numerical examples are linear elastic, while the last two are
nonlinear.

6.1. Square block problem

The first numerical example is a plane stress square block subjected to
uniform unit traction on the left edge and fully fixed on the bottom edge.
The geometry, boundary conditions and loading for this problem are shown
in Figure 5. The problem is solved with E = 1 × 103, ν = 0.3, damax =
1.5, dpmax = 1.2 and η = 6.0%, all in compatible units, where damax and
dpmax are the scaling parameters for the domain of influence for analysis and
projection respectively. The evolving step by step adaptively coupled FE-
EFGM discretisations in this case are shown in Figure 6. The FE mesh at
the start of analysis with 225 (15 × 15) elements and 256 (16 × 16) nodes is
shown in Figure 6(a). The converted FEs to corresponding EFG background
cells based on the Zienkiewicz & Zhu error estimation at the end of first
iteration are shown in Figure 6(b). During this first FEs to EFG background
cells conversion the number of nodes is constant. Subsequent refinements in
the EFG regions of the problem domain, based on the Chung & Belytschko
error estimation procedure, are shown in Figure 6(c). It can also be seen
in Figure 6(c) that in the EFG zone on the right-hand side, all new nodes
are added within the EFG region and there is no issue of hanging nodes in
the FE region of the problem domain. However, in the EFG zone on the
left-hand side, four more FEs at the top of EFG zone are converted to EFG
background cells, to avoid hanging nodes in the FE region of the problem
domain. As expected, the adaptively coupled FE-EFGM algorithm, initially
converts the high-stress zones in the problem domain to the corresponding
EFG zones and then adds nodes to the high-stress EFG zones. The contours
of the von Misses stress over the problem domain after the first FE iteration
are shown in Figure 7, which are obtained from the SPR method’s recovered
nodal stresses using the following equation

σVM =
[
σ2
xx + σ2

yy − σxxσyy + 3σxy
] 1

2 , (49)

where σxx and σyy are the normal stresses in x and y directions and σxy is the
shear stress. For comparison, the same problem is also solved with uniformly
refined FE meshes with almost the same number of nodes as shown in Figures
6(a) and 6(c). The uniformly refined meshes in this case with 256 (16× 16)
and 400 (20 × 20) nodes are shown in Figures 8(a) and 8(b) respectively.
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Comparison of the relative error (η) for the adaptively coupled FE-EFGM
case and uniformly refined FEM case are shown in Figure 9, in which three
data points are available for the adaptively coupled FE-EFGM case and only
two data points are available in the uniformly refined FEM case. In Figure 9,
it is clear that the decrease in the relative error is greater in the case of the
adaptively coupled FE-EFGM as compared to the uniformly refined FEM
case.

6.2. L-shaped plate

The second two-dimensional linear elastic numerical example is a plane
stress L-shaped plate subjected to uniform pressure on the left edge, for
which the geometry, boundary conditions and loading are shown in Figure
10 and is a standard numerical example to test the performances of adaptive
algorithms. Here point A in Figure 10 is a point of high stress concentration
due to the loading and boundary conditions. This problem is solved with
E = 1 × 103, ν = 0.25 , damax = 1.4, dpmax = 1.1 and η = 7.0%, all in
compatible units. The step by step evolving discretisations in this case are
shown in Figure 11. The FE mesh at the start of analysis with 341 nodes is
shown in Figure 11(a) and the first and second adaptively coupled FE-EFGM
discretisation with 341 and 406 nodes are shown in Figure 11(b) and 11(c)
respectively. The number of nodes is the same in the first two discretisations.
In 11(c) two more FEs are converted to the corresponding EFG background
cells, to avoid hanging nodes in these elements. As expected, near the corner
A in Figure 11, the adaptively coupled FE-EFGM algorithm converts the FE
elements to EFG background cells and adds more nodes in the EFG region.
The contours of von Mises stress after the first FE iteration over the problem
geometry are also shown in Figure 12, which shows maximum stress near
corner A. For comparison the same problem is also solved with the FEM
with uniformly refined meshes with almost the same number of nodes as
shown in Figure 11. The first and second uniformly refined meshes with 341
and 408 nodes are shown in Figure 13(a) and 13(b) respectively. Comparison
between the relative error (η) for the adaptively coupled FE-EFGM case and
uniformly refined FEM case is shown is Figure 14, in which the adaptively
coupled FE-EFGM case clearly performs better than the uniformly refined
FEM.
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6.3. Three-dimensional plate with a hole
The first three-dimensional nonlinear numerical example is a plate with a

central hole subjected to unidirectional tension; the same numerical example
is also given in [61]. Geometry and loading for this problem are shown in Fig-
ure 15. Due to symmetry only the one-eighth of the problem shown in gray
in Figure 15 is modelled with the material properties E = 1.0× 105, ν = 0.3
and σy = 1.0×103, all in compatible units. A total displacement of 0.15 units
is applied to the top face in 15 equal steps. The scaling parameters used here
for the domains of influence for analysis and projection in the EFG zone are
damax = 1.5 and dpmax = 1.1 respectively and permissible relative error used is
25%. At the start of analysis, the whole of the problem domain is modelled
using the FEM with 325 nodes as shown in Figure 16(a). For this first dis-
cretisation, the standard SPR method is used to recover the nodal stresses
and incremental strains, which are then used in the Zienkiewicz & Zhu er-
ror estimation procedure. After first conversion, the second discretisation
consists of both FEs and EFG background cells as shown in Figure 16(b), in
which the number of nodes remains the same. From the second discretisation
onward, both Zienkiewicz & Zhu and Chung & Belytschko error estimation
procedures are used in the FE and the EFG regions of the problem domain
respectively. Subsequent discretisations after further conversion of the FEs
to the EFG background cells and refinement in the EFG background cells
are shown in Figures 16(c) and 16(d). The number of nodes in the third and
fourth discretisations are 929 and 4119 respectively. The adaptively coupled
FE-EFGM algorithm based on the combined Zienkiewicz & Zhu and Chung
& Belytschko error estimation procedures add nodes automatically in the
thinning section of the plate as expected.

The contours of the displacements ux and uy are shown in Figures 17(a)
and 17(b) respectively, in which as expected the total deformation is concen-
trated next to the hole. The contours of the effective plastic strain are also
shown in Figure 17(c), in which a shear band of finite thickness next to the
hole is clearly evident. Reaction versus displacement plot for this problem is
given in Figure 18. For comparison, the same problem is also solved without
adaptivity, using different initial FE and coupled FE-EFGM discretisations
shown in Figure 16 for which the reaction versus displacement plots are shown
in Figure 18 for comparison. In this case, the solution obtained with final
adaptively coupled FE-EFGM discretisation shown in Figure 16(d) is consid-
ered as a reference. As compared to the coupled FE-EFGM cases, the FEM
response is relatively rigid without obvious geometric softening behaviour.
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The convergence of the reaction versus displacement curves to the reference
solution, with an increasing the number of nodes can also be observed in
Figure 18, which shows the correct implementation and effectiveness of the
proposed adaptively coupled FE-EFGM algorithm.

6.4. Three-dimensional footing loaded on a vertical cut

The second three-dimensional nonlinear numerical example solved by the
proposed approach is a three-dimensional footing loaded near the unsup-
ported faces of a vertical cut. The geometry and loading for this problem
are shown in Figure 19(a). This problem was solved with material properties
E = 2.0×104, ν = 0.3 and σy = 30 all in compatible units. Here only the soil
section of the problem is modelled with the adaptively coupled FE-EFGM
with total vertical displacement of 0.1 units applied to nodes beneath the
footing in 15 equal steps. The scaling parameters used here for the domains
of influence for analysis and projection in the EFG zone are damax = 1.5 and
dpmax = 1.1 respectively and permissible relative error used is 25%. The FE
mesh at the start of the analysis is shown in Figure 19(b) and the step by
step conversion of the FEs to the EFG background cells and subsequent re-
finements of the EFG background cells are shown in Figures 19(c), 19(d) and
19(e). The number of nodes used in first two discretisations is 729, while in
the subsequent discretisations, the number of nodes increases to 1215 and
2950. For this problem, failure is expected in the soil below the footing,
where FEs are automatically converted to the EFG background cells, which
are refined in the subsequent discretisations. The contours of uy and effective
plastic strain are also shown in Figures 20(a) and 20(b) respectively. It can
be seen in Figure 20(a), that the total displacement is concentrated below
the footing and a very clear shear band of finite thickness can also be seen in
Figure 20(b). A reaction versus displacement plot for this problem is shown
in Figure 21. For comparison, the same problem is also solved with different
starting discretisations shown in Figure 19 without adaptivity and plots for
the reaction versus displacement are shown also in Figure 21. The solution
with discretisation 19(e) is considered as a reference solution in this case.
Convergence of the adaptively coupled FE-EFGM case and all other cases
to the reference solution is clear in Figure 21. It is obvious from the plot
that the adaptive solution has a number of jumps in the curve. The jumps
represent points where rediscretisation is taking place and mapping has been
carried out. These changes are due to recalculation of the equilibrium state
of the domain due to the altered discretisation. They should not be con-
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fused with jumps in displacements. These plots show results from successive
analysis not a single calculation.

7. Concluding remarks

In this paper, a new numerical method is developed for solid mechanics in
which initially, the whole of the problem domain is modelled using the FEM
and during the analysis adaptive refinement changes FE regions to EFG re-
gions. Two established error estimation procedures have been adapted for
use here, one for FEs and the other for the EFGM regions. Refinement
of the created EFG regions is also included. The full implementation and
performance of the linear elastic adaptively coupled FE-EFGM algorithm
is demonstrated with the help of two two-dimensional numerical examples.
Results are also compared with the FEM uniform refinement case, and it is
shown that the proposed method performs better in terms of decrease in the
relative error. The adaptively coupled FE-EFGM algorithm is also extended
to challenging three-dimensional cases with both material and geometrical
nonlinearities. Total Lagrangian formulations are used instead of updated
Lagrangian formulations to model finite deformation due to computational
efficiency. Incremental forms of the Zienkiewicz & Zhu error estimation pro-
cedure and the Chung & Belytschko’s error estimation procedures are used
in this case in the FE and EFG region of the problem domain. The imple-
mentation and performance of the nonlinear adaptively coupled FE-EFGM
algorithm is also demonstrated with two three-dimensional numerical exam-
ples.
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Figure 4: Adaptively coupled FE-EFGM algorithm for linear elastic problems
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Figure 5: Geometry, boundary condition and loading for the square block problem

Figure 6: Step by step discretisations for the square block problem
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Figure 7: Von Misses stress contours for the square block problem

(a) FE mesh-1 (256 nodes) (b) FE mesh-2 (400 nodes)

Figure 8: Step by step FE uniform refinement for the square block problem
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Figure 9: Relative error (η)% for the square block problem

Figure 10: Geometry, boundary condition and loading for the L-shaped plate problem
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Figure 11: Step by step discretisations for the L-shaped plate problem

Figure 12: Von Misses stress contours for the L-shaped plate problem
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(a) FE mesh-1 (341 nodes) (b) FE mesh-2 (408 nodes)

Figure 13: Step by step FE uniform refinement for the L-shaped plate problem
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Figure 14: Relative error (η)% for the L-shaped plate problem
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Figure 15: Geometry, boundary condition and loading for the 3D plate with a hole problem

Figure 16: Step by step discretisations for the three-dimensional plate with a hole problem
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(a) ux contours (b) uy contours (c) effective plastic
strain

Figure 17: Displacements and effective plastic strain contours for the three-dimensional
plate with a hole problem
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Figure 18: Reaction versus displacement for the three-dimensional plate with a hole prob-
lem
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Figure 19: Step by step discretisations for the three-dimensional vertical cut problem
problem

(a) uy contours (b) Effective plastic strain

Figure 20: Displacement uy and effective plastic strain contours for the three-dimensional
vertical cut problem
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Figure 21: Reaction versus displacement for the three-dimensional vertical cut problem
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