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Subnatural linewidths in two-photon excited-state spectroscopy
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We investigate, theoretically and experimentally, absorption on an excited-state atomic transition in a thermal
vapor where the lower state is coherently pumped. We find that the transition linewidth can be subnatural, that
is, less than the combined linewidth of the lower and upper state. For the specific case of the 6P3/2 → 7S1/2

transition in room temperature cesium vapor, we measure a minimum linewidth of 6.6 MHz compared with the
natural width of 8.5 MHz. Using perturbation techniques, an expression for the complex susceptibility is obtained
which provides excellent agreement with the measured spectra.
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I. INTRODUCTION

Spectroscopy of excited state transitions is of growing inter-
est for a variety of applications including the search for stable
frequency references [1,2], state lifetime measurement [3],
optical filtering [4], frequency up-conversion [5], multiphoton
laser cooling [6], as well as Rydberg gases [7,8] and their appli-
cation to electro-optics [9–11] and nonlinear optics [12]. Two-
photon excited state spectroscopy can be achieved without
significant transfer of population out of the ground state using
electromagnetically induced transparency (EIT) [13] in the
ladder configuration [14]. In conventional EIT, the excited state
transition is driven by a strong coupling laser creating a trans-
parency window which is then detected using a weak probe
on the ground state transition. In thermal vapors, ladder EIT
is only possible when the lower transition is probed [15] and
the probe wavelength is greater than the coupling wavelength
[16]. Alternatively, on strong transitions such as the infrared
transitions from excited states in alkali atoms, one can probe
directly on the excited state transition and detect absorption or
fluorescence [17,18].

In this Work we develop the theory for the complex
susceptibility of excited state transitions and compare the
results to experimental observations. We consider a transition
between two states, |1〉 and |2〉 shown in Fig. 1(a). Neglecting
the effects of Doppler broadening, it is expected that the line
shape of the absorption is a Lorentzian whose full width at
half maximum (FWHM) is given by the sum of the natural
linewidths of states |1〉 and |2〉, �1 + �2, as shown in Fig. 1(b).
We show that if the population of state |1〉 is coherently pumped
from another state with a weak coupling field [Fig. 1(c)]
the absorption line shape remains a Lorentzian but its FWHM
is solely determined by the natural linewidth of the upper state
�2 as shown in Fig. 1(d) because the lower state is effectively
stable.

The paper is organized as follows. In Sec. II we develop the
equations of motion for the system and derive an expression
for the susceptibility. In Sec. III we extend the analysis to
include the effects of Doppler broadening. In Sec. IV we
compare our derived expressions to experimental data in the
limit of weak pumping. In Sec. V we compare theory and
experiment in the regime of strong coupling before concluding
in Sec. VI.

II. EXCITED STATE TRANSITION WITH COHERENT
PUMPING OF LOWER STATE

A. Equations of motion and the steady state solutions

Consider a transition between two states as shown in
Fig. 1(c), a lower state |1〉 and an upper state |2〉 with
the associated eigenenergies of h̄ω1 and h̄ω2, respectively.
Initially, states |1〉 and |2〉 are not populated. To populate
state |1〉, the system is coherently pumped by the resonant
coupling field with Rabi frequency of �c from the stable
eigenstate |0〉 whose eigenenergy is h̄ω0 and ω0 < ω1 < ω2.
For coherent pumping we assume that two-photon condition
is met and the lasers have a relative frequency stability
which is better than the width of the narrowest feature
of the system. The transmission (or absorption) line shape
of the transition is probed by scanning the frequency of
the probe field whose Rabi frequency is �p. Applying the
rotating-wave approximation and the slowly varying variables
transformation, the Hamiltonian of the system is given by
H = H0 + HI, where

H0 = −h̄�c |1〉 〈1| − h̄�R |2〉 〈2| , (1a)

HI = h̄�p

2
|2〉 〈1| + h̄�c

2
|1〉 〈0| + H.c., (1b)

with �p = ωp − (ω2 − ω1) , �c = ωc − (ω1 − ω0) , and
�R = �p + �c. Here �p,(c) is the detuning of probe (coupling)
laser, ωp,(c) is the angular frequency of probe (coupling)
laser, �R is the two-photon Raman detuning, and H.c. is the
hermitian conjugate. The first term of the total Hamiltonian
H0 represents the field-free atomic system, whereas the second
term of the Hamiltonian HI describes the interaction with both
probe and coupling fields.

Using standard semiclassical methods [19], the equations
of motion for the density matrix elements ρij are

ρ̇00 = �1ρ11 + i�c

2
(ρ01 − ρ10), (2a)

ρ̇11 = −�1ρ11 + �2ρ22 − i�c

2
(ρ01 − ρ10) + i�p

2
(ρ12 − ρ21),

(2b)

ρ̇22 = −�2ρ22 − i�p

2
(ρ12 − ρ21), (2c)

ρ̇01 = −(i�c + γ ′)ρ01 − i�c

2
(ρ11 − ρ00) + i�p

2
ρ02, (2d)
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ρ̇12 = −(i�p + γ ′′)ρ12 − i�p

2
(ρ22 − ρ11) − i�c

2
ρ02, (2e)

ρ̇02 = −(i�R + γ ′′′)ρ02 + i�p

2
ρ01 − i�c

2
ρ12, (2f)

where we define effective linewidths γ ′ = �1/2 + γc, γ ′′ =
(�1 + �2)/2 + γp, and γ ′′′ = �2/2 + γp + γc, and �1 and �2

are the natural linewidths of the states |1〉 and |2〉, respectively.
In addition to spontaneous decay, we include a dephasing due
to the linewidth of the probe and coupling fields of γp and γc,
respectively. Solving Eqs. (2) (with ρ̇ij = 0) together with the
constraint ρ00 + ρ11 + ρ22 = 1 using a perturbation technique
(see Appendix A), the steady state solutions of the density
matrix ρij are given by

ρ01 = i�c

2

[
γ ′ + i�c + �2

cγ
′/�1

γ ′ − i�c

]−1

, (3a)

ρ11 = �2
cγ

′/2

�1�2
c + �1γ ′2 + γ ′�2

c

, (3b)

ρ02 = 2�1(i�p + γ ′′)(i�c − γ ′)�c�p + γ ′�3
c�p

2
(
�1�2

c + �1γ ′2 + γ ′�2
c

)[
4(i�p + γ ′′)(i�R + γ ′′′) + �2

c

] , (3c)

ρ12 = i�2
c�pγ

′/4

�1�2
c + �1γ ′2 + γ ′�2

c

[
1 + γc(1 + i�c/γ

′)
γ ′′ + i�p

] [
γ ′′′ + i�R + �2

c/4

γ ′′ + i�p

]−1

. (3d)

In the weak excitation limit of �p � γ ′′, ρ22 = 0. We can
therefore assume that no population is lost from the system
via other decay channels from state |2〉, although additional
decay channels may contribute to the linewidth �2.

We consider ρ12 as it determines the complex susceptibility
of the system. It is clear from Eq. (3d) that the number of
atoms pumped into state |1〉 strongly affects the magnitude of

FIG. 1. (Color online) (a) Schematic of the energy levels of an
atom whose lower state |1〉 is incoherently populated. The natural
decay of states |1〉 and |2〉 are �1 and �2, respectively. The absorption
line shape is probed by the probe field of Rabi frequency �p. (b) The
FWHM of the line shape is �1 + �2. (c) Schematic of the energy
levels of a transition whose lower state |1〉 is coherently populated by
the coupling field of Rabi frequency �c from a state |0〉. In this case
the FWHM of the absorption line shape is �2 when �c is small, as
shown in (d).

ρ12, manifest as the multiplication factor ρ11�p/2. In our case,
the population of state |1〉 is resonantly pumped from state |0〉,
that is, �c ≈ 0, and γc is much less than γ ′′. Thus, the second
term in the first square bracket approaches unity within this
approximation.

B. The complex susceptibility of the system

The complex susceptibility of the system at the probe
frequency is obtained by comparing the polarization obtained
from classical electrodynamics with that calculated using
a density matrix treatment [13,14]. The expression of the
complex susceptibility is then given by [20]

χ = −2Nd2
21

h̄ε0�p
ρ21, (4)

where N is the atomic density and d21 is the dipole matrix
element for probe transition. For |χ | < 1 the real part and
imaginary part of the susceptibility are respectively propor-
tional to the refractive index nR and the absorption coefficient
α via the relations

nR = 1 + Re[χ ]/2, (5a)

α = kpIm[χ ], (5b)

where kp is the wave vector of the probe field. Thus the complex
susceptibility of the system is

χ = iN1d
2
21

h̄ε0

[
γ ′′′ − i�R + �2

c/4

γ ′′ − i�p

]−1

. (6)

Here N1 = Nρ11, the atomic density of state |1〉. According
to Eq. (6), the complex susceptibility is proportional to the
number of the atoms in state |1〉. As state |1〉 is coher-
ently pumped from state |0〉, the multiplication factor has a
Lorentzian profile as a function of �c. This implies that to get
a large susceptibility, one needs to resonantly pump population
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to state |1〉. The term in the square bracket is similar to the
result obtained for EIT in the three-level cascade system [14].
It indicates that, for a finite value of �c, the system will
become transparent when the probe field is scanned across
the resonance at �p = 0 due to Autler-Townes splitting [21].
When state |1〉 is weakly pumped by the coupling field,
that is, �2

c � �2(�2 + �1), the term in the square bracket of
Eq. (6) can be expanded using a Taylor expansion. Neglecting
the higher-order terms in �c, the complex susceptibility
reduces to

χ = iN1d
2
21

h̄ε0

[
1

γ ′′′ − i�R

]
. (7)

This complex susceptibility is similar to that of a two-level
system, except for the multiplication factor. The transmission
line shape of the system is simply a Lorentzian centered at
−�c with FWHM γ ′′′. For a sufficiently small laser linewidth
compared to �2, the approximation of the FWHM is solely
determined by the linewidth of the excited state �2 irrespective
of the linewidth of state |1〉 �1, that is,

�FWHM = �2. (8)

This result is different to the case in which state |1〉 is
incoherently populated. In such a case, the FWHM of the
transmission line shape is determined by the sum of the
linewidths from both the lower state and the upper state, that
is, �1 + �2 [22].

For experiments in room temperature vapors, the Doppler
effect must be included into the model and this topic will be
discussed in the next section.

III. EFFECT OF DOPPLER BROADENING

Each atomic velocity class in a thermal vapor experiences
a different laser detuning �p and �c due to the Doppler effect.
To obtain the velocity-dependent complex susceptibility,
we make changes to �p, �c, and N with the following
substitutions [14]:

�p → �p − kpv, (9a)

�c → �c + kcv, (9b)

N → N

u
√

π
exp

(
−v2

u2

)
, (9c)

where kp(c) is the wave vector of the probe (coupling) field,
u = √

2kBT/m is the most probable speed of the atoms
at a given temperature T and m is the mass of an atom.
Substituting Eqs. (9) into Eq. (6), the value of the complex
susceptibility of a particular velocity class v is then given by

χ (v)dv = − Nd2
21�

2
c

h̄ε0
√

πk2
c (kc − kp)u3

γ ′

2�1

{
e−z2

(z + β)2 + σ 2

}

×
[
z − z0 + �2

c/4

(kc − kp)kpu2(z − z1)

]−1

dz, (10)

with the change of variable z = v/u, and

γ = γ ′′′

(kc − kp)u
, (11a)

σ = 1

kcu

√
γ

′2 + �2
cγ

′

�1
, (11b)

ξ = �R

(kc − kp)u
, (11c)

β = �c

kcu
, (11d)

z0 = −ξ − iγ, (11e)

z1 = �p + iγ ′′

kpu
. (11f)

The total susceptibility is obtained by integrating Eq. (10)
over all velocity classes. The full result of the integration is
discussed in Appendix B. We consider the case in which the
coupling Rabi frequency �c is sufficiently weak that the EIT-
like third term in the square bracket of Eq. (10) is neglected.
In this case the complex susceptibility χD becomes

χD(�p) = − Nd2
21�

2
c

h̄ε0
√

πk2
c (kc − kp)u3

γ ′

2�1

∫ ∞

−∞

{
e−z2

(z + β)2 + σ 2

}

×
[

1

(z + ξ ) + iγ

]
dz. (12)

From Eq. (12), the total complex susceptibility is simply the
convolution between a Lorentzian of width γ (term in square
bracket describing the transition from lower state |1〉 to upper
state |2〉) and a product of a Lorentzian of width σ and a
Gaussian (term in curly bracket describing the atomic velocity
distribution of lower state |1〉).

The result of the integration in Eq. (12) involves the Faddeva
function [23] (the exact result of the integration is described
in Appendix C). However, the integration can be simplified
by replacing the product between a Gaussian and a Lorentzian
with a Lorentzian, that is,

e−z2

(z + β)2 + σ 2
→ e−β2

(z + β)2 + σ 2
. (13)

This approximation is valid since at room temperature the
width of the Lorentzian σ is much smaller than the width
of the Gaussian. Hence the product of the Gaussian and the
Lorentzian approximately vanishes when |z| > σ and we can
approximate the product by the Lorentzian of width σ . In
other words, the range of velocity classes involved in the
integration around the position where the Lorentzian of width
σ is centered is much smaller than the most probable speed
of the atoms v � u. Hence we can expand the Gaussian
around the position where the Lorentzian is centered, that is,
exp(−z2) ≈ exp(−β2).

Using this approximation, the total susceptibility is simply
given by

χD(�p) = −Nd2
21�

2
c

√
π

h̄ε0k2
c uσ

γ ′

2�1

1

�R + i�FWHM/2
, (14)
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with

�FWHM

2
= γ ′′′ +

(
kc − kp

kc

)√
γ ′2 + �2

cγ
′

�1
. (15)

It is clear from Eqs. (14) and (15) that the absorption
line shape remains Lorentzian with the FWHM of �FWHM

even when the Doppler effect is included. It is worth noting
that the total susceptibility in this case is different from
the total susceptibility calculated for the case of incoherent
pumping. The total susceptibility for incoherent pumping is the
convolution between a Lorentzian and a Gaussian, resulting in
a Voigt profile [24].

In the limit where �c/�1 � 1, the linewidth of the
absorption profile is simply

�FWHM = �2 +
(

kc − kp

kc

)
�1 (16)

(neglecting γp and γc). It contains the sum of two terms:
the first term is the linewidth of the absorption line shape
in the case in which the Doppler effect is neglected and the
latter is the linewidth of the lower state scaled by the ratio
obtained from the wave vectors. Physically the second term
originates from the fact that the atoms are velocity selected
by the Doppler effect for the atom-field interaction. Only
atoms whose velocities are between −�1/2kc and �1/2kc are
coherently pumped into the lower state when the coupling field
is on resonance. Since �1/kc is very small compared to the
width of the Doppler broadening, all atoms pumped into state
|1〉 have approximately the same velocity distribution, that is,
the distribution is independent of velocity, and given by

f (v) = 1

u
√

π
e−β2

. (17)

However, the distribution of the atoms is also determined by the
Lorentzian of width �1/kc. Thus the final velocity distribution
of the pumped atoms is a Lorentzian of width �1/kc and the
height is scaled by Eq. (17). In the two-photon interaction
process, the width of �1/kc in velocity space is equivalent
to the width of (kc − kp)�1/kc in frequency space. Hence the
total linewidth of the final absorption line shape is the sum of
(kc − kp)�1/kc with the unaffected linewidth �2.

IV. COMPARISON BETWEEN THEORY
AND EXPERIMENTAL RESULTS

To test the result derived above we used the experimental
setup described by Carr et al. [25]. The experiment was
performed in a 7.5 cm vapor cell containing Cs at room temper-
ature. The 1470 nm weak probe beam (with horizontal linear
polarization) and the 852 nm coaxial, counterpropagating
coupling beam (with horizontal linear polarization) are applied
along the vapor cell axis. The probe and coupling beams have
1/e2 radii of 1.2 and 1.6 mm, respectively. The coupling beam
was stabilized to the 6S1/2,F = 4 → 6P3/2,F

′ = 5 transition
while the probe beam was scanned across the 6P3/2,F

′ =
5 → 7S1/2,F

′′ = 4 transition. The scan is calibrated using a
wavemeter to better than 1% accuracy. The transmission signal
measured from the experiment is shown as the solid black line
in Fig. 2(a).
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FIG. 2. (Color online) (a) Comparison between the observed
spectra, shown by a black solid line, for a relatively small �r

c =
0.6 MHz, and the theoretical model. The gray (blue) solid line is
the theoretical prediction, taking into account the absorption of the
coupling field across the vapor cell. (b) The residual plot between the
observed data and the theoretical model.

To model the transmission line shape, the complex sus-
ceptibility is calculated for each magnetic sublevel and the
total complex susceptibility is the average of all complex
susceptibilities over all possible magnetic sublevels. This is
given by

χtot(�p) = 1

16

4∑
mF =−4

χ
mF

D (�p), (18)

where χ
mF

D (�p) is the complex susceptibility corresponding
to the mF magnetic sublevel of 6S1/2,F = 4 state. χ

mF

D is
calculated using Eq. (14), where the coupling Rabi frequency
is sufficiently weak. The factor of 1/16 in the equation
accounts for the fact that the initial population is evenly
distributed among the magnetic sublevels of 6S1/2,F = (3,4).
The coupling Rabi frequency of the transition 6S1/2,F =
4 → 6P3/2,F

′ = 5 and the dipole matrix element of the
transition 6P3/2,F

′ = 5 → 7S1/2,F
′′ = 4 corresponding to

each magnetic sublevel �mF
c and d

mF

21 are given by

�mF

c = �r
c × √

11

(
5 1 4

mF ′ 0 −mF

)
, (19a)

d
mF

21 = 5.63ea0 × √
11/3

(
5 1 4

mF ′ 0 −mF

)
, (19b)

where the reduced dipole matrix element of the transition
6S1/2,F = 4 → 6P3/2,F

′ = 5 is absorbed into �r
c, that is,

�r
c ≡ eEc〈6P3/2‖r‖6S1/2〉/h̄, a0 is Bohr radius, and mF and

mF ′ are the magnetic sublevels of the 6S1/2 and 6P3/2,
respectively.

The comparison between the experimental data and the the-
oretical model is shown in Fig. 2(a). The theoretical transmis-
sion shown as the solid gray (blue) line was calculated using
Eqs. (5b) and (18) for a known temperature of T = 22 ◦C.
The fit parameters �r

c/2π = 0.6 MHz, γp/2π = 0.2 MHz are
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FIG. 3. (Color online) The values of the FWHM are plotted as
a function of �r

c. The dashed curve is the theoretical prediction
calculated using the weak coupling model, whereas the solid (red)
curve is the theoretical prediction calculated using the full model. As
expected the data are in agreement with the weak coupling model
when �r

c is relatively small. However, for a large �r
c, the weak

coupling model fails to predict the FWHM. This difference at large
�r

c can be recovered when using the full model. The combined lower
and upper state linewidth �1 + �2 is shown by the dotted line.

in good agreement with the experimental values taking into
account the variation of the coupling intensity across the vapor
cell. The residual plot in Fig. 2(b) shows that the theoretical
model is in good agreement with the experimental data.
Figure 3 shows the transmission line shape FWHM as a
function �r

c. The dashed line shows the FWHM as a function of
�r

c for the weak coupling field approximation. The dependence
on �r

c shows good agreement when �r
c is small. However,

when �r
c is large, the disagreement between the model and

the experimental data increases. The agreement between the
theory and the experiment can be recovered when the complete
solution (see Appendix B) is used to calculate the FWHM as a
function of �r

c (shown as the solid line). Note that the FWHM
is used so that the width of a spectral feature can be defined
when the line shape is non-Lorentzian. Note also that both
curves approach the same value of 2π× 6.6 MHz when �r

c
approaches zero. This is subnatural and less than the combined
linewidth �1 + �2 = 5.2 + 3.3 = 8.5 MHz [26] (shown as the
dot dash horizontal line). The difference between the model
and the experiment at large �r

c arises from Autler-Townes
splitting [21] and is described by the EIT-like term in Eq. (6).
The comparison between experiment and theory for large �r

c
will be the topic of the next section.

V. COMPARISON BETWEEN EXPERIMENT
AND THEORY FOR LARGE �r

c

We now apply the same method to model the transmission
line shape, except that we are no longer in the weak pumping
regime and the third term in Eq. (10) can no longer be
neglected. Equation (B8) is now used to calculate the complex
susceptibility.

Figure 4(a) shows the comparison between the observed
transmission line shape, shown by a black solid line, and the
theoretical transmission line shapes calculated using both the
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FIG. 4. (Color online) (a) Comparison between the observed
spectra, shown by a black solid line, for �r

c/2π = 3.0 MHz, and
the theoretical model. The gray (blue) dotted line is the theoretical
prediction calculated using the weak coupling model, whereas the
gray (red) solid line is the theoretical prediction calculated using
the full model. (b) The residual plot between the observed data and
the theoretical model calculated using the full model.

weak coupling approximation, shown by a gray (blue) dashed
line, and the full model, shown by a gray (red) solid line. The
theoretical curves were calculated with �r

c/2π = 3.0 MHz.
The transmission calculated using the full model shows good
agreement with observed data, resulting in the small residual
as shown in Fig. 4(b). It is observed that the weak coupling
approximation is in good agreement with the observed data,
except at the region around the resonance.

Figure 5(a) shows the transmission line shape, shown
by a black solid line, in a case where �r

c is large enough
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FIG. 5. (Color online) (a) Comparison between the observed
spectra, shown by a black solid line, for �r

c/2π = 15 MHz, and
the theoretical model. The gray (red) solid curve is the theoretical
prediction calculated using the full model. (b) The residual plot
between the observed data and the theoretical model.
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to Autler-Townes split the absorption resonance. The value
of �r

c/2π in this case is 15 MHz. The gray (red) solid
line is the theoretical prediction calculated using the full
model in the region |�p/2π | � 20 MHz. Both the theoretical
prediction and the observed data are in good agreement
around resonance. Figure 5(b) shows the residual between
the theoretical prediction and the observed data.

VI. CONCLUSION

We have developed the theory of absorption line shapes on
excited state transitions where the lower state is coherently
populated. We show that for an atom at rest, in the limit of
weak pumping, the line shape is a Lorentzian and the linewidth
of the transition reduces to the linewidth of the upper state.
Including the effect of Doppler broadening the linewidth is
still subnatural and we find that the predicted line shape is in
very good agreement with experimental data over a wide range
of coupling field parameters.
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APPENDIX A: STEADY STATE SOLUTIONS
BY PERTURBATION TECHNIQUE

Since the probe field is sufficiently weak (it will be shown
later that the weak probe condition is fulfilled when �p/γ

′ �
1), one can consider the expansion of the density matrix ρij in
the power of �p, namely,

ρij = ρ
(0)
ij + ρ

(1)
ij �p + ρ

(2)
ij �2

p + ρ
(3)
ij �3

p + · · · , (A1)

where ρ
(n)
ij is the nth order correction of the expansion of ρij .

To solve for ρij , we substitute Eq. (A1) into Eqs. (2), equate
the terms of the same power in �p, and then solve for ρ

(n)
ij from

n = 0 to all n [27].

Applying this technique to Eqs. (2), the set of equations
corresponding to the zeroth power of �p is given by

�1ρ
(0)
11 + i

2
�c

(
ρ

(0)
01 − ρ

(0)
10

) = 0, (A2a)

�2ρ
(0)
22 = 0, (A2b)

(i�c + γ ′)ρ(0)
01 + i

2
�c

(
ρ

(0)
11 − ρ

(0)
00

) = 0, (A2c)

(i�p + γ ′′)ρ(0)
12 + i

2
�cρ

(0)
02 = 0, (A2d)

(i�R + γ ′′′)ρ(0)
02 + i

2
�cρ

(0)
12 = 0, (A2e)

ρ
(0)
00 + ρ

(0)
11 + ρ

(0)
22 = 1. (A2f)

We find that the zeroth order corrections of ρij vanish, except
ρ

(0)
00 , ρ

(0)
11 , and ρ

(0)
01 . The expressions for ρ

(0)
01 and ρ

(0)
11 are given

by

ρ
(0)
01 = i�c

2

[
γ ′ + i�c + �2

cγ
′/�1

γ ′ − i�c

]−1

, (A3a)

ρ
(0)
11 = �2

cγ
′/2

�1�2
c + �1γ ′2 + γ ′�2

c

. (A3b)

Similarly, the set of equations corresponding to the nth power
of �p (for n � 1) is given by

�1ρ
(n)
11 + i

2
�c

(
ρ

(n)
01 − ρ

(n)
10

) = 0, (A4a)

�2ρ
(n)
22 + i

2

(
ρ

(n−1)
12 − ρ

(n−1)
21

) = 0, (A4b)

(i�c + γ ′)ρ(n)
01 − i

2
ρ

(n−1)
02 + i

2
�c

(
ρ

(n)
11 − ρ

(n)
00

) = 0, (A4c)

(i�p + γ ′′)ρ(n)
12 + i

2
�cρ

(n)
02 + i

2

(
ρ

(n−1)
22 − ρ

(n−1)
11

) = 0, (A4d)

(i�R + γ ′′′)ρ(n)
02 − i

2
ρ

(n−1)
01 + i

2
�cρ

(n)
12 = 0, (A4e)

ρ
(n)
00 + ρ

(n)
11 + ρ

(n)
22 = 0. (A4f)

Using Eqs. (A3) and (A4), all of ρ
(1)
ij again vanish, except ρ

(1)
02

and ρ
(1)
12 , whose expressions are given by

ρ
(1)
02 = 2�1(i�p + γ ′)(i�c − γ ′)�c + γ ′�3

c

2
(
�1�2

c + �1γ ′2 + γ ′�2
c

)[
4(i�p + γ ′′)(i�R + γ ′′′) + �2

c

] , (A5a)

ρ
(1)
12 = i�2

cγ
′/4

�1�2
c + �1γ ′2 + γ ′�2

c

[
1 + γc(1 + i�c/γ

′)
γ ′′ + i�p

] [
γ ′′′ + i�R + �2

c/4

γ ′′ + i�p

]−1

. (A5b)

It can be shown that ρ
(2)
12 = ρ

(2)
02 = 0. The solutions of the

coherence ρ02 and ρ12, to second order, are then

ρ02 = �pρ
(1)
02 , (A6a)

ρ12 = �pρ
(1)
12 . (A6b)

Thus far we have assumed only that the probe Rabi fre-
quency is sufficiently weak without quantifying this condition.
To quantitatively determine the weak probe condition, let us
consider the steady state of ρ01 as this quantity is strongly
related to ρ11 and hence also to ρ12. Using Eq. (2d) with the
substitution ρ00 = 1 − ρ11 − ρ22, the expression of the steady
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state of ρ01 is given by

ρ01 = − i�cρ11

i�c + γ ′ − i�cρ22/2

i�c + γ ′ + i�c/2

i�c + γ ′ + i�pρ02/2

i�c + γ ′ .

(A7)

The first approximation is to neglect the contribution to ρ01

from ρ22 as ρ22 vanishes up to the second order correction.
This approximation is justified as the probe laser is weak
and the upper state population is negligible. Thereafter we
consider the last term which contains the product between
(�p/2)/(i�c + γ ′/2) and ρ02. The first term is of order �p/γ

′
at resonance �c = 0. The second term ρ02 is also of order
�p/γ

′ at resonance [see Eqs. (A5a) and (7a)]. Thus the
product of these two terms is of order (�p/�1)2, which can
be neglected if �p/γ

′ is much less than one. It follows that
these approximations lead to the same results for ρij given
by Eqs. (8). Hence, the weak probe condition is valid when
�p/γ

′ � 1.

APPENDIX B: COMPLETE SOLUTION OF THE COMPLEX
SUSCEPTIBILITY OF THE SYSTEM

The complete solution of the complex susceptibility can be
found by evaluating the integral∫ ∞

−∞

e−z2

(z + β)2 + σ 2

[
z − z0 + �2

c/4

(kc − kp)kpu2(z − z1)

]−1

dz.

(B1)

To evaluate the integral, one rewrites the integrand, using
partial fractions as

e−z2

(z + β)2 + σ 2

[
z − z0 + �2

c/4

(kc − kp)kpu2(z − z1)

]−1

= − (z1 − φ+)

[(β + φ+)2 + σ 2](φ+ − φ−)

e−z2

z − φ+

+ (z1 − φ−)

[(β + φ−)2 + σ 2](φ+ − φ−)

e−z2

z − φ−

− i(z1 + β + iσ )

2σ (β + φ+ + iσ )(β + φ− + iσ )

e−z2

z + β + iσ

+ i(z1 + β − iσ )

2σ (β + φ+ − iσ )(β + φ− − iσ )

e−z2

z + β − iσ
, (B2)

where

φ± = 1

2
(z0 + z1) ± 1

2

√
(z0 − z1)2 − �2

c

kp(kc − kp)u2
. (B3)

The integrand has four poles in the complex plane, that is, at
φ+, φ−, −β − iσ , and −β + iσ . Clearly this complex integral
reduces to the integral of the form∫ ∞

−∞

e−z2

z − zp
dz, (B4)

where zp is the pole in the complex plane. The solution of the
integration is given by∫ ∞

−∞

e−z2

z − zp
dz = isπW (szp), (B5)

where s = sgn[Im(zp)] and sgn is known as the signum
function and its value is +1 when the argument is positive
and −1 when the argument is negative. W (z) is known as
Faddeva function and it is defined as

W (z) = e−z2
erfc(−iz). (B6)

Hence the complex susceptibility is given by

χD = − iNd2
21�

2
c

√
π

h̄ε0k2
c (kc − kp)u3

γ ′

2�1

×
[
− (z1 − φ+)

[(β + φ+)2 + σ 2](φ+ − φ−)
s+W (s+φ+)

+ (z1 − φ−)

[(β + φ−)2 + σ 2](φ+ − φ−)
s−W (s−φ−)

− i(z1 + β + iσ )

2σ (β + φ+ + iσ )(β + φ− + iσ )
W (−β − iσ )

+ i(z1 + β − iσ )

2σ (β + φ+ − iσ )(β + φ− − iσ )
W (−β + iσ )

]
,

(B7)

where s+ = sgn[Im(φ+)] and s− = sgn[Im(φ−)].
One can use the same approximation as discussed in

the article to approximate Eq. (B7) and the approximated
expression of Eq. (B7) is given by

χD = − Nd2
21�

2
c

h̄ε0
√

πk2
c (kc − kp)u3

γ ′

2�1
e−β2

×
[
π (β + z1)(φ− − φ+) + is+πσ (φ+ + φ− − 2z1)

σ (φ+ − φ−)(β + φ+ + is+σ )(β + φ− − is+σ )

]
.

(B8)

APPENDIX C: THE EXACT RESULT OF EQ. (13)

To evaluate the integral in Eq. (13), the integrand can be
rewritten using partial fractions as

e−z2

(z2 + σ 2)(z + ξ + iγ )

= − e−z2
/2

σ (σ − γ + iξ )(z + iσ )
− e−z2

/2

σ (σ + γ − iξ )(z − iσ )

+ e−z2

[σ 2 + (ξ + iγ )2](z + ξ + iγ )
. (C1)

Using Eq. (B5) and rearranging the expression, the complex
susceptibility is given by

χD(�p) = − iNd2
21�

2
c

√
π

4h̄ε0k2
c (kc − kpu3)

1

σ 2 + (ξ + iγ )2

×
[
e−z2

0 erfc(−iz0) + iz0

σ
eσ 2

erfc(σ )

]
, (C2)

where z0 = ξ + iγ .
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[8] H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat.
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