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ABSTRACT

Aims. We investigate the relaxation of braided magnetic loops in order to find out how the type of braiding via footpoint motions
affects resultant heating of the loop.
Methods. Two magnetic loops, braided in different ways, are used as initial conditions in resistive MHD simulations and their subse-
quent evolution is studied.
Results. The fields both undergo a resistive relaxation in which current sheets form and fragment and the system evolves towards
a state of lower energy. In one case this relaxation is very efficient with current sheets filling the volume and homogeneous heating
of the loop occurring. In the other case fewer current sheets develop, less magnetic energy is released in the process and a patchy
heating of the loop results. The two cases, although very similar in their setup, can be distinguished by the mixing properties of the
photospheric driver. The mixing can be measured by the topological entropy of the plasma flow, an observable quantity.

Key words. magnetic fields – magnetic reconnection – magnetohydrodynamics (MHD) – plasmas – Sun: corona –
Sun: magnetic topology

1. Introduction

Coronal loops are enormously diverse in their nature, acting
as building blocks of the corona, from bright points to active
regions and flaring loops. As such, loops cover a huge range
of lengths (1–1000 Mm) and it seems likely that several coro-
nal heating mechanisms are responsible for heating loops to
the observed range of temperatures (0.1−>10 MK). Explaining
the observations remains a challenge and a number of ques-
tions are currently under debate. For example, can loops be
broadly classified as isothermal or multi-thermal (e.g., Schmelz
et al. 2009; Aschwanden & Boerner 2011)? Is heating impul-
sive or steady (e.g., Patsourakos & Klimchuk 2008; Tripathu
et al. 2010; Warren et al. 2010)? A recent review of observations
and modelling of coronal loops can be found in Reale (2010).
Furthermore, a more general coronal heating review is given by
Klimchuk (2006).

One very promising loop-heating method, following the
early ideas of Gold (1964) and Parker (1979, 1994), is mag-
netic braiding. Here photospheric motions acting on the loop
footpoints act to twist and tangle the overlying field, increas-
ing its magnetic energy. Eventually current layers (singular or
non-singular) may form in the field (e.g., Longcope & Sudan
1994; Galsgaard & Nordlund 1996; Longbottom et al. 1998; Ng
& Bhattacharjee 1998; Craig & Sneyd 2005; Wilmot-Smith et al.
2009). Magnetic reconnection will then enable a restructuring of
the field as it relaxes to a lower energy state with plasma heat-
ing a natural consequence of the energy release. Magnetic braid-
ing is also a possible explanation for the observation that coro-
nal loops have approximately constant width (Klimchuk 2000;
López Fuentez et al. 2008): a braiding of field lines within a
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loop prevents the expansion seen in simple potential or linear-
force-free models (López Fuentez et al. 2006).

Although it is well-established that there is, in principle, suf-
ficient energy in these photospheric motions for this mechanism
to be plausible (e.g., Klimchuck 2006), whether the process is
responsible for the coronal heating depends on many, often un-
kown, properties of the driver and the relaxation mechanism in
the corona. One important question is how efficient the surface
motions are at building up free energy in the magnetic field.
Another unresolved issue is whether the relaxation mechanism
in the corona can release this energy again. A theory often in-
voked to describe the energy release process is that of Taylor
relaxation. This theory was initially developed for a laboratory
plasma device (Taylor 1974, 1986) but has also been applied
to the solar case (Heyvaerts & Priest 1984; Dixon et al. 1989;
Nandy et al. 2003; Kusano 2005; Hood et al. 2009). Under this
hypothesis, the field relaxes to a particular linear force-free field
(with the same global helicity, toroidal flux and boundary con-
ditions as the initial field) so that not all the magnetic energy in
excess of that of the potential field can be released.

The aim of this paper is to show that the amount of energy
that can be released in any non-ideal relaxation depends greatly
on the topological properties of photospheric flow, which in turn
determine the way in which the magnetic field lines making up
the flux tube are braided (mixed and tangled together). To show
this we consider the resistive evolution of two contrasting mag-
netic fields, both generated through rotational motions on the
boundary. The first field has a sequence of rotational footpoint
motions of alternating sense. The comparison case is also gener-
ated by rotational footpoint motions but these are all in the same
sense.

Our approach differs from studies (e.g., Gudiksen &
Nordlund 2002; Peter et al. 2004; Bingert & Peter 2011) in
which quasi-stationary processes of continuous driving and
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Fig. 1. Cartoons showing the way in which the fields E3 (left) and S 3 (right) can be built up by rotational footpoint motions acting on initially
straight strands.

relaxation are modelled in that we first assume an ideal process
where the photospheric driver braids a coronal loop to a certain
level before a resistive evolution is allowed. This has the ad-
vantage that the more complex structures we aim to study can
be built up without being quickly dissipated by high numerical
resistivities. By contrast the present study involves a less sophis-
ticated treatment of certain physical effects such as heat conduc-
tion and radiative losses, with results not yet suitable for forward
modelling. As such we view the two approaches as being com-
plementary.

An outline of the work is as follows: in Sect. 2 we introduce
the two magnetic fields (E3 and S 3) whose MHD evolution will
be studied throughout. Tools for measuring the level of braid-
ing are discussed. In Sect. 3 we describe the numerical methods
used for the simulations. Results are presented in Sect. 4 and are
broken down into two parts, firstly an examination of the basic
properties of the resistive relaxation and secondly energetic con-
siderations including estimates for coronal heating. We conclude
in Sect. 5.

2. Model magnetic loops

Throughout this work, we employ an idealised representation of
the coronal geometry, with nearly straight coronal fields running
between two parallel places, which represent the photosphere.
The first of our two magnetic fields, E3, is based on the pigtail
braid. It may be built up from a uniform vertical field by rota-
tional stirring motions on the boundary (the photosphere). The
manner in which these motions act on uniform strands to create
the braid E3 is illustrated in Fig. 1 (left). Two regions of rota-
tional footpoint motion are present. As viewed from the direction
shown in the figure, the right-hand motion acts in a clockwise di-
rection and the left-hand motion in an anti-clockwise direction.
Each motion rotates the strands about each other by a relative
angle of π radians. The rotations are applied in the sequence
σ1, σ

−1
2 , σ1, σ

−1
2 , σ1, σ

−1
2 , which is also the braid word (Birman

1975) representing this braid (the power negative one indicates
the change of orientation of the rotation). Since the number of
left and right hand rotations is the same the total magnetic helic-
ity of the configuration is zero. While the cartoon image shows

just three field lines of the braid, the motions on the boundary
will affect all field lines within a certain range and generate a
continuum of braid patterns. Those field lines lying outside the
domain of the rotational motions will remain straight and undis-
turbed.

Our second magnetic field, labelled S 3, is built up by
a very similar sequence of motions on the boundary but
with rotations all acting in the same, clockwise direction
(σ−1

1 , σ
−1
2 , σ

−1
1 , σ

−1
2 , σ

−1
1 , σ

−1
2 ). The braid representation of this

field is shown in Fig. 1 (right) where we see that the correspond-
ing three strands have each undergone exactly 2π rotation. Again
a continuum of braiding patterns will be found in all field lines
making up the loop but the total helicity of the field no longer
vanishes.

We now construct an explicit magnetic field representation
of these idealised pictures. Assuming a Cartesian geometry, we
take a uniform background field (1ez) and superimpose six flux
rings, evenly spaced in z and located alternately at (x, y) = (1, 0)
or (x, y) = (−1, 0). Each ring has components only in the ex and
ey directions and is localised in all three dimensions. Together
this creates six localised regions of twist in an otherwise uni-
form field. The closed form expression which generates such
magnetic fields is given in Wilmot-Smith et al. (2009). For E3

we take exactly the same parameter set as given in that paper
while for S 3 we simply change the sign of the twist parame-
ter (k) to be the same (k = 1) for each twist region (rather than
alternating, as for E3).

The aspect ratio of both loops is high (1:8). This is broadly
consistent with observations of coronal loops whose elemen-
tary strands (width �2 Mm, Aschwanden 2005) are much longer
than they are wide. Both initial magnetic fields contain the same
amount of magnetic energy (

∫
V

B2/2μ0 dV). The braiding has
been applied in a conservative manner with the magnetic energy
being only a small amount (3.08%) above that of the uniform
background field. In other respects the two braids are very dif-
ferent, as detailed in the following paragraphs.

To understand these differences consider the nature of the
field line connectivities. An established method for doing so is
to examine the squashing factor Q (Titov et al. 2002). This is
shown on the lower boundary of both fields in Fig. 2. While the
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Fig. 2. Distribution of log10(Q) on the lower boundary for the initial
state of E3 (left) and S 3 (right).

Fig. 3. Colour maps in the initial states of E3 (left) and S 3 (right).

maximum value of Q in both fields is comparable (specifically,
Q(E3)max = 2.3 × 105 and Q(S 3)max = 2.4 × 105), it is clear that
there are many more layer-like regions of high Q for E3 than for
S 3. These regions arise from the property that field lines mak-
ing up E3 have a more complex connectivity than those of S 3,
there being many more regions in which neighbouring field
lines diverge as they are traced up through the corresponding
braids. Overall this gives a “mixing” of field lines with respect
to their connectivities on the lower boundary. Simplistically,
the efficiency of the field line mixing could be quantified by,
for example, integrating Q over the surface. Calculating Q =∫

A
log10(Q)dA (where A is the surface [−3, 3]× [−3, 3] shown in

Fig. 2) for both fields we find QE3 = 89.5 while QS 3 = 68.0.
These values confirm the qualitative picture given in Fig. 2 that
the field line mixing is better for E3.

A second way to examine field line connectivity and mixing
is by way of colour maps (Polymilis et al. 2003) as shown in
Fig. 3. These will be particularly instructive later when consid-
ering how the systems relax to lower energy states. To explain
how these images are generated, consider a field line threading
the domain, and let the points of intersection of the field line
with the lower and upper boundaries be (x0, y0) and (X, Y), re-
spectively. We make a plot over the lower boundary, colouring
the point (x0, y0) red if X > x0 and Y > y0, green if X < x0
and Y < y0, blue if X > x0 and Y < y0 and yellow if X < x0
and Y > y0. In this way each point on the boundary is coloured,
excepting those periodic orbits (X = x0, Y = y0) which (generi-
cally, as in these fields) lie at the intersection of all four colours.
The complex colour maps for the initial states of E3 and S 3 show
the braided nature of the fields, E3 being more complex with
small-scale structures filling a greater portion of the domain.

The colour map is a visual representation of the complex-
ity in field line connectivity. A more precise, formal measure, is
given by a quantity known as the topological entropy. Somewhat
like our integrated squashing factor, this is a global measure

that gives a single number for the whole magnetic field. It has
the advantages both of a firm theoretical grounding and of be-
ing a robust quantity insensitive to small changes in the mag-
netic field. There are several equivalent definitions of the topo-
logical entropy, but a convenient one is the asymptotic growth
rate (with z) of horizontal loops stretched around the magnetic
field lines (Newhouse & Pignataro 1993; Thiffeault 2010). While
the exact entropy depends on the full pattern of magnetic field
lines, a good estimate may be obtained by ensemble averaging
over finite sets of field lines. Applying the numerical method
of Moussafir (2006), as implemented by Thiffeault (2010), and
with sets of 40 field lines, we find T (E3) ≈ 3.3 and T (S 3) ≈ 2.3.

In summary, while the two magnetic fields E3 and S 3 may be
generated by the same amount of boundary motion, the details
of the pattern of boundary motions is crucial in determining the
braiding pattern of the resulting fields. From the measures pre-
sented above we see that E3 has a significantly higher degree of
complexity than S 3. With these differences in mind we now wish
to use these two magnetic fields as initial conditions for resistive
MHD relaxations. We aim to show that the ability to effectively
heat large regions of the loop depends on the nature of the pho-
tospheric driver. Before presenting results of these experiments
we first proceed to detail our numerical methods.

3. Methods

The magnetic fields corresponding to the closed-form expres-
sions for E3 and S 3 are not force-free. However, the corona itself
is thought to be a largely force-free environment, i.e. one with
magnetic fields B and associated currents (J = (∇ × B)/μ0) sat-
isfying J ×B ≈ 0. The first stage of our experiments is therefore
to use an ideal Lagrangian relaxation code (Craig & Sneyd 1986)
to relax the fields towards a force-free equilibrium whilst exactly
preserving their topology. In the scheme, details of which may be
found in Craig & Sneyd (1986), an artificial frictional evolution
is taken to minimize J × B. The relevant output is then the final
state of relaxation while the path to this state is not important.

Each of the fields E3 and S 3 detailed in Sect. 2 is used
as an initial condition for this ideal relaxation, over a domain
x, y ∈ [−6, 6], z ∈ [−24, 24] with a uniformly spaced grid of
1013 points. The result of this procedure was described in de-
tail for E3 in Wilmot-Smith et al. (2009). A smooth near-force-
free field is obtained with large-scale current distributions in
the form of two tubes of current running through the domain
(see Fig. 4). By “near-force-free” we mean that the maximum
Lorentz force in the domain is (J × B)max ≈ 0.059 where both
O(J) and O(B) ∼ 1. Numerical difficulties, as documented by
Pontin et al. (2009) prevent possible relaxation to a field arbitrar-
ily close to J × B = 0. For our purposes it is enough to be close
to (rather than exactly at) a force-free state since this is also the
relevant case in the solar corona. The ideal relaxation procedure
for S 3 also results in a smooth approximately force–free field
(with (J × B)max ≈ 0.057). A large-scale current distribution is
present, now with one twisted current tube running through the
domain (see Fig. 4). In both cases the magnetic energy of the
ideally relaxed field is reduced, the amount of energy in excess
of potential now being 1.286% for E3 and 1.178% for S 3. This
will be discussed further in Sect. 4.2.

These approximately force-free fields are now used for the
main body of our work in which they are taken as initial
conditions in 3D resistive MHD simulations. In order to cre-
ate the initial conditions on the regular grid required, an inter-
polation procedure must be followed. The procedure is detailed
in Wilmot-Smith et al. (2010) and ensures the interpolated field
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Fig. 4. Isosurfaces of |J | in the initial state of the resistive MHD simu-
lations for E3 (left) and S 3 (right). The isosurfaces are taken at 25% of
the domain maximum in both cases.

remains divergence-free to accuracies of the order of the trun-
cation errors for sixth-order finite differences (|∇ · B|max ≈ 10−6

within the domain). We use the colour-map technique to check
the conservation of field line connectivity in this interpolation
step and find the conservation to be good.

The computational setup for our MHD simulations is de-
scribed below. The experiments are conducted using the 3D non-
ideal MHD code of Nordlund & Galsgaard (1997). This is a
high order finite difference code solving the following set of
equations:

∂B
∂t
= −∇ × E, (1)

E = − (u × B) + ηJ , (2)

J = ∇ × B, (3)
∂ρ

∂t
= −∇ · (ρu) , (4)

∂

∂t
(ρu) = −∇ ·

(
ρuu + τ

)
− ∇P + J × B, (5)

∂e
∂t
= −∇ · (eu) − P ∇ · u + Qvisc + QJ , (6)

where B is the magnetic field, E the electric field, u the plasma
velocity, η the resistivity, J the electric current density, ρ the
density, τ the viscous stress tensor, P the pressure, e the internal
energy, Qvisc the viscous dissipation and QJ the Joule dissipa-
tion. An ideal gas is assumed, and hence P = (γ − 1) e = 2

3 e.
These equations have been made dimensionless by setting the
magnetic permeability μ0 = 1, and the gas constant (R) equal
to the mean molecular weight (M). Accordingly time units are
such that, for a volume with |ρ| = |B| = 1, an Alfvén wave would
travel one space unit in one unit of time.

We solve the equations over a grid with 2563 nodes over
x, y ∈ [−6, 6], z ∈ [−24, 24], though during the simulations we

find the dynamics to be confined approximately within x, y ∈
[−4, 4]. The magnetic field is line-tied on all boundaries through-
out, and the plasma velocity is fixed to zero at these boundaries.
We obtain our initial magnetic field for the simulations via the in-
terpolation method described above. The dimensionless plasma
density is initialised as ρ = 1 and the thermal energy as e = 0.1.
A spatially uniform resistivity model is taken, with η = 0.001
for both simulations.

In the energetic considerations of Sect. 4.2 dimensional
quantities are recovered in order to demonstrate the implications
of our results for the solar corona. In order to do this three char-
acteristic values (here B0, l0 and ρ0) should be chosen and the
following relations taken:

v0 =
l0
t0
, B0 = v0

√
μ0ρ0, J0 =

B0

μ0l0
, E0 = v0B0,

e0 = ρ0v
2
0, T0 =

μ̄v20
R
,

with μ0 = 4π × 10−7 H m−1, μ̄ = 0.6 and R = 8.3 ×
103 m2 s−2 K−1 (we use mks units throughout). For clarity we
initially present results in the dimensionless units to allow the
reader to adjust the chosen solar parameters as desired.

Isosurfaces of current in the initial states for the resistive
MHD simulations of E3 and S 3 are shown in Fig. 4. The cur-
rent isosurfaces are at |J | = 0.441 for E3 and |J | = 0.489 for
S 3. These values may be compared with typical magnetic field
strengths of |B| = 1 showing that, in both cases, these current
ribbons are weak.

4. Results

The basic properties of the resistive relaxation of E3 have been
described in Wilmot-Smith et al. (2010) and Pontin et al. (2011).
The braided field is found to be unstable (although the precise
nature of the instability is yet to be determined) and in the early
stages of the resistive evolution two main thin current layers are
formed in the central regions of the domain. These fragment into
an increasingly complex pattern of current layers as the relax-
ation proceeds. The lower energy end-state of the relaxation is
found to consist of two unlinked twisted flux tubes of opposite
twist.

A resistive relaxation is also found to take place for the field
S 3. In this paper we aim to compare the two relaxation events
in order to determine how the initial field configuration affects
the quantity and spatial distribution of energy released and the
final equilibrium state reached. We begin by discussing the basic
nature of the relaxation events and final states (Sect. 4.1) before
discussing findings related to energy and heating in Sect. 4.2.

4.1. Topological properties

In qualitative terms the resistive MHD evolutions of E3 and S 3

are somewhat similar. The large-scale currents of the initial state
(Fig. 4) collapse towards two thin current layers for E3 and one
thin current layer for S 3. This process is shown in Figs. 5–7.
It is at this early stage that the strongest currents are present in
the system (see Fig. 8, upper panel). As time progresses more
current layers are found which are, individually, weaker in their
intensity. For E3 a large number of current layers appear and
they have a volume-filling effect (see, for example, t = 50 in the
relevant figures). For S 3, by contrast, a smaller number of cur-
rent layers are present and these are mainly located in the central
regions of the domain (with respect to x and y). To quantify this
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Fig. 5. Isosurfaces of current at 50% of the domain maximum for E3 (upper panel) and S 3 (lower panel) at times t = 10, 50, 80, 120 and 350.

difference we show in Fig. 8 (lower panel) the fraction of the
volume (in [−4, 4]2 × [−24, 24]) for which |J | > 0.5 for both
E3 (solid line) and S 3 (dashed line). The quantity is consistently
larger for E3, reaching a maximum of 8.1%, compared with only
2.8% for S 3. In the later stages of the evolution the systems move
towards equilibria containing only large-scale, weak currents. In
the case of E3 these form two vertical tubes of current while
for S 3 only one current tube is present. Note that we have run
these simulations for a long time (up to t = 650) and find the
state reached at t = 350 represents the end-state since after this
time only slow changes in the magnetic field take place and these
are due to global diffusion.

Considering the final states of the resistive relaxations, al-
though the number of current tubes present in each case is the
same as in the respective initial states, the structure of the mag-
netic fields is very different. The end state for E3 consists of two
unlinked magnetic flux tubes of opposite sign of twist, as shown
in the left-hand image of Fig. 9. The end state for S 3, by con-
trast, consists of a single magnetic flux tube of positive twist as
shown in the right-hand image of Fig. 9. The particular field lines
plotted have been chosen because they portray the nature of the

corresponding continuous magnetic fields. We show this nature
in two ways, firstly in Fig. 10 using the colour-map technique de-
scribed in Sect. 2. The corresponding colour maps for the initial
states of both fields are shown in Fig. 3. The first, striking, fea-
ture seen is the simplicity of the colour-maps in the final states in
comparison to the initial states. This simplification comes from
the un-braiding of the coronal loops to form two flux tubes for
E3 and one for S 3. The difference in number of flux tubes may
also be seen in the colour maps, there being two distinct in-
tersections of all four colours (periodic orbits) for E3 and only
one for S 3. These intersections mark the centre of the flux tube
axes.

A second feature of the colour map tells us why we cannot
relax to a single flux tube in the E3 simulation (as determined by
Yeates et al. 2010; Yeates & Hornig 2011). If we walk around
the boundary of the domain for E3 then we meet each of the four
colours twice (and in the order red-yellow-green-blue). This is
because the overall topological degree of the state is +2. This is
the same boundary pattern that was present in the initial state of
E3 since the relaxation only affects the interior of the domain;
mathematically, the topological degree of the field is conserved
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Fig. 6. Contours of the vertical (ez) component of current in the z = 0
plane for E3 at times as indicated in each individual image.
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Fig. 7. Contours of the vertical (ez) component of current in the z = 0
plane for S 3 at times as indicated in each individual image.

Fig. 8. Upper panel: maximum value of the current density |J | in the
domain with time. Lower panel: fraction of the volume over which |J | >
0.5. In both cases the solid line corresponds to E3 and the dashed line
to S 3.

Fig. 9. Some illustrative field lines in the final states for E3 (left) and
S 3 (right). The field lines have been chosen to show the fundamental
structure of the states, two flux tubes of opposite twist for E3 and a
single twisted flux tube for S 3.

Fig. 10. Colour maps in the final states of the resistive MHD simulations
for E3 (left) and S 3 (right).
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Fig. 11. Contours of the quantity ᾱ∗ averaged along field lines in the
initial (left) and final (right) states for E3 (upper panel) and S 3 (lower
panel).

in the relaxation. Furthermore, a topological degree of +2 is in-
consistent with a single flux tube. Considering S 3, the boundary
of the domain shows each colour appearing only once (but in
the same sequence, topological degree +1) and so relaxation to
a single flux tube is possible.

A second way to examine the nature of the final state is
to look at the mean value along field lines, ᾱ∗, of the quantity
α∗ = J · B/B · B. Figure 11 shows ᾱ∗ on the lower boundary
of the domain for both the initial and final states of the resistive
MHD simulations. For a perfectly force-free field, ᾱ∗ is simply
the force-free parameter α. In our simulations the initial state is
only approximately force-free and the finite gas pressure gives
relaxed fields that are also not perfectly force-free. In both cases
ᾱ∗ is the appropriate quantity to consider. The images in the ini-
tial state further illustrate the complexity of the magnetic field
while the images for the final state confirm them as being much
simpler. The basic un-braiding into two (E3) or one (S 3) flux
tubes is clearly shown in ᾱ∗.

Neither final state could be considered as a globally linear-
force-free field but the individual twisted flux tubes do lie in re-
gions of approximately constant ᾱ∗. Thus while E3 is clearly in
contradiction to a “Taylor-like” relaxation (the Taylor state in
that case being the uniform field), one could argue that the final
state for S 3 has similarities with a Taylor state if we restrict our-
selves to a domain over which significant current fragmentation
occurs. For further considerations on the relevant Taylor state for
S 3 we must consider the value of the total helicity for the field
since this quantity is invoked as the constraint determining that
state.

Total helicity is used as a constraint under Taylor relaxation
theory since, although it is not an invariant in a resistive MHD
evolution, it is thought to be approximately conserved on the
relaxation timescales. To confirm this for these simulations we
calculate the total relative helicity in the initial and final states
for both fields. Here we use the reference field 1ez, which is the
potential field satisfying the same boundary conditions. (Note
that this is equivalent to calculating the total helicity in the torus
obtained by identifying the top and bottom boundaries of our do-
main and assuming no flux links the hole of the torus.) In the ini-
tial states we find H(E3, t = 0) = 0.0 and H(S 3, t = 0) = 349.6.

while for the final states we find H(E3, t = 350) = 1.2 and
H(S 3, t = 350) = 350.9. Thus the conservation in both cases is
excellent with only a small production of helicity (by magnetic
reconnection) in each case.

To see whether the final state for S 3 can be considered a
Taylor state on the domain on which the current fragmentation
occurs (see Fig. 7) we calculate the Taylor state on a cylindrical
domain with the relevant parameters (radius r = 3, vertical flux
of 9π and total helicity 350.8). The result is an axially symmetric
Lundquist solution (Lundquist 1951) with constant α = 0.114 so
providing a reasonable qualitative and quantitative match to our
results.

Having described the basics of the resistive relaxations we
proceed to consider the energetics of the process. This is of inter-
est for determining whether and how relaxation processes such
as these may heat the solar corona.

4.2. Energy and heating

In order to provide a solar coronal interpretation for these two
relaxation events we present our results in dimensional terms.
To do so we choose characteristic values for the magnetic field
strength as B0 = 10 G, the unit of length as l0 = 1 Mm and
the electron number density as 1015 m−3. Accordingly we have
a unit of time as t0 = 1.45 s, temperature as T0 = 3.44 × 107 K
and velocity as v0 = 689.7 km s−1. This gives our initial mag-
netic loops for both E3 and S 3 a temperature of 2.30 × 106 K
and a loop length of 48 Mm. Although the overall time of the re-
laxation then corresponds to 507 s, in considering this timescale
it is important to note that the time taken for the full relaxation
has previously (Pontin et al. 2011) been shown to be dependent
on the value of the resistivity, with relaxation time increasing
with decreasing resistivity. The resistivity taken as within reach
of computing resources available to us remains several orders of
magnitude too high when compared to assumed coronal values.
Accordingly, the timescale for a real relaxation is likely to be
greater than 500 s.

The first thing that we note is that during the initial ideal
relaxation process, the field S 3 is able to decrease its magnetic
energy by more than E3. Specifically, both E3 and S 3 begin with
3.76 × 1019 J of excess energy prior to the ideal relaxation but,
after this ideal phase, E3 has 1.25×1019 J remaining in excess of
the potential field while S 3 has 1.06×1019 J. This is a result of the
higher topological complexity of E3 – the highly braided field
line mapping places a greater constraint on the ideal relaxation.
Only once the resistive relaxation is begun, and the field begins
to simplify, can this energy be liberated.

The decay of magnetic energy in excess of potential during
the resistive relaxation is shown in Fig. 12 (upper image). While
in the initial states for these resistive simulations E3 contained
marginally more magnetic energy, over the course of the relax-
ation it releases 8.27 × 1018 J of magnetic energy while S 3 re-
leases only 4.85×1018 J. In terms of the fraction of free magnetic
energy present at the start of each of the resistive simulations,
66.2% is released for E3 but only 45.88% for S 3. That is, E3

has been much more efficient at releasing energy. We claim this
is because the higher degree of complexity in its initial state (as
measured by the topological entropy) results in a much more
fragmented, volume filling, system of current sheets (Figs. 5–7)
and so for a more efficient relaxation.

Much of the magnetic energy released is converted into ther-
mal form. The evolution of this quantity is shown in Fig. 12
(lower image); we find an increase in thermal energy of 8.01 ×
1018 J for E3 and 4.68 × 1018 J for S 3. The remaining energy
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Fig. 12. The total magnetic energy in excess of potential (upper image)
and the total thermal energy above that of the initial state (lower image).
In both cases the solid line is for E3 while the dashed line is for S 3.

takes the form of some residual non-zero kinetic energy in the
final states of both systems. This is a result of large-scale weak
oscillations in the flux tubes.

We now examine changes in the temperature of both the E3

and S 3 loop systems during the relaxations. In doing so we must
bear in mind that the initial plasma beta, β(t = 0) = 0.133, is rel-
atively high and so temperature increases will be lower than if a
lower plasma beta were used. Another factor is the lack of cool-
ing terms in the energy equation which gives a competing effect
in maintaining an artificially high temperature. Nevertheless we
consider it useful to examine features of the temperature evolu-
tion in order to determine general trends.

The initial temperature in both cases is 2.30 × 106 K. In E3

the peak temperature increases to 2.76 × 106 K and in S 3 to
2.92× 106 K. These are increases of factors 1.2 and 1.27 respec-
tively. We have re-run the E3 simulation for an initial plasma
beta an order of magnitude lower (β(t = 0) = 0.0133) and found
an increase in maximum temperature of a factor 3.1 in that case.
While the lack of realistic energy transport or loop stratification
prevents us from making more realistic statements about heat-
ing along the loops, we can analyse the integrated temperature
along field lines. This is justified by the excellent heat conduc-
tion along the magnetic field lines in the corona compared to
the almost zero heat conduction perpendicular to the field. The
quantity provides insight into the space-filling nature of the heat-
ing. The field line average temperature is shown in Fig. 13 in the
z = 0 plane and for various stages of the evolution where the
colour-scale for all images is normalised to the same maximum
value (the end-state of S 3). Some clear findings emerge here. The
spatial distribution of high temperature is much more homoge-
nous for E3. Nevertheless two brighter features are seen in the
end-stages, corresponding to the two separated flux tubes in the
end-state. In the early evolution several “hot-spots” are present
in the loop and these change location in time. We assert that the
heating would be even more homogenous for lower resistivity
as more current sheet fragmentation would be achieved (as doc-
umented in Pontin et al. 2011). For S 3 heating primarily takes
place in a thin layer in the centre of the domain with the temper-
ature here being slightly higher than anywhere in the domain for
E3 since the heating is less distributed.

These contrasting behaviours in temperature distribution
arise from a basic property of the initial configurations, namely,
the difference in topological entropy. With higher topological en-
tropy, E3 evolves through a highly fragmented system of cur-
rent layers which allow for a uniform loop heating. The field S 3,
with lower topological entropy, evolves with fewer current lay-
ers which are more patchy in their distribution. The temperature
profile is then correspondingly less homogeneous.

5. Conclusions

In this paper we have shown that the ability of non-ideal pro-
cesses to heat coronal loops via magnetic reconnection is cru-
cially dependent on the nature of photospheric motions at the
footpoint of the loops. Even for photospheric motions injecting
the same amount of magnetic energy into loop systems, the mag-
netic field configurations generated can lead to quite different
amounts of energy being released in a relaxation event.

Two effects influence the amount and the distribution of
heating. Firstly the heating is affected by the amount of en-
ergy that can be released in a relaxation on dynamic time-scales.
Relaxation preserves the total helicity (Taylor 1974) and pos-
sibly also further topological constraints (Yeates et al. 2010).
Here, large amounts of magnetic helicity prove to be counter-
productive as they raise the energy of the allowable end-state. In
general more complex, non-coherent, braiding of the field lines
allows for greater subsequent energy release. Secondly, the abil-
ity to release stored magnetic energy relies on a sufficiently frag-
mented, volume-filling system of current layers. Fragmentation
is more efficient with more complex braiding, and also increases
the homogeneity of the heating.

Note that the braid complexity (measured here by the topo-
logical entropy) is not entirely independent of the total helicity.
High values of total helicity over a domain require a coherence
in the structure that limits the topological entropy. Conversely,
any non-trivial magnetic field on a closed or periodic domain
must have a non-vanishing helicity density and so one can al-
ways find a sub-domain of such a field over which the total he-
licity is non-zero. Formalising a relationship between the two
effects is beyond the scope of the present study.

In order to support our claims we have presented simula-
tions of the resistive MHD evolution of two magnetic loops.
Both loops can be generated by pairs of rotational photospheric
motions acting on footpoints of a uniform field and contain the
same amount of magnetic energy. For our first field, E3, the two
basic motions are in opposite directions while for our second
field, S 3, both motions are in the same direction. The boundary
motions for E3 lead to a field that is highly braided. The com-
plexity in the field line mapping is visually apparent in a map
of the squashing factor, Q (Fig. 2) and can be quantified by the
topological entropy. The boundary motions for S 3 lead to a sim-
pler pattern of field line connectivity with a simpler Q-structure
(but similar maximum Q) and a lower topological entropy.

The fields both undergo resistive relaxations on a fast,
Alfvénic timescale. The relaxation for E3 is more efficient; more
current sheets are generated which have a greater volume fill-
ing tendency. By the end of the relaxation the free magnetic en-
ergy of the field has been reduced by ∼65% with this being con-
verted primarily to thermal energy. The entire loop is heated in a
relatively homogenous manner. The efficiency of the relaxation
arises from the high topological entropy of the initial state. The
relaxation for S 3, with its lower topological entropy, is less effi-
cient. A smaller number of current sheets result and these have a
lower volume filling tendency. The free magnetic energy of the
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Fig. 13. Average temperature along field lines at their intersection with the z = 0 plane (x, y,∈ [−3, 3]) for E3 (upper panel) and S 3 (lower panel)
at dimensionless times t = 40, 80, 120, 180 and 350.

field is reduced by only ∼45%. The heating of the loop takes
place less uniformly, in one central location.

Extrapolating to the solar corona, this mechanism provides a
way to deposit heat in a spatially uniform way throughout the en-
tire body of a coronal loop since complex braiding patterns of the
field lead to a relaxation through a complex, space-filling set of
current sheets. In order to determine how important this mecha-
nism might be in practice, it would be useful to look at very high
resolution data of surface motions (by way of fragment track-
ing) to consider the topological entropy of photospheric motions
in different regions of the Sun over the solar cycle. Furthermore,
a number of extensions to the models presented here should be
made to allow for more detailed predictions relating to energet-
ics. These include a realistic stratification of the model atmo-
sphere and additional physics to the energy equation.
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