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Abstract

The goal of this paper is to give a conjectural census of complex hyperbolic sporadic groups. We prove

that only finitely many of these sporadic groups are lattices.

We also give a conjectural list of all lattices among sporadic groups, and for each group in the list we give

a conjectural group presentation, as well as a list of cusps and generators for their stabilisers. We describe

strong evidence for these conjectural statements, showing that their validity depends on the solution of

reasonably small systems of quadratic inequalities in four variables.

1 Introduction

In [ParPau], Parker and Paupert considered symmetric triangle groups ∆ in SU(2, 1) generated by three complex
reflections through angle 2π/p for p > 3 (the case of p = 2 was studied by Parker in [Par3]). By symmetric we
mean that the group in question is generated by three complex reflections R1, R2 and R3 with the property
that there exists a regular elliptic isometry J of order 3 so that Rj+1 = JRjJ

−1 (where j is taken mod 3). In
fact we study the group Γ generated by R1 and J , which contains ∆ with index 1 or 3.

This type of group was first studied by Mostow in [M1] (for p = 3, 4, 5), where an additional condition
was imposed on the Rj (namely the braid relation RiRjRi = RjRiRj); these provided the first examples of
non-arithmetic lattices in SU(2, 1).

Following that, Deligne–Mostow and Mostow constructed further lattices in SU(n, 1), n 6 9, as monodromy
groups of certain hypergeometric functions, in [DM] and [M2]. Some of these lattices turn out not to be
arithmetic, although this happens only for n ≤ 3, only one 3-dimensional example being non-arithmetic.

The lattices from [DM] in dimension 2 were known to Picard (who did not consider their arithmetic nature).
These are (commensurable with) groups generated by complex reflections Rj with other values of p; see [M2]
and [Sa]. Subsequently no new non-arithmetic lattices have been constructed.

In [ParPau] the last two authors stated necessary conditions for symmetric complex reflection triangle groups
∆ = 〈R1, R2, R3〉 to be discrete, under the assumption that R1R2R3 is elliptic, and R1R2 is elliptic or parabolic.
They show that the discrete triangle groups of this kind come in three flavors: Mostow’s lattices, a specific kind of
subgroups of Mostow’s lattices, and a third class which they called “sporadic groups”(see Section 2 for a precise
definition). Our main motivation was that these new groups are candidates for new non-arithmetic lattices
in SU(2, 1). In [Pau] the third author proved that all but one of the sporadic groups are non-arithmetic (i.e.
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not contained in an arithmetic lattice in SU(2, 1)) and most of them are not commensurable to the previously
known lattices (the Picard, Mostow and Deligne-Mostow lattices).

It then became quite natural to use the first author’s computer program (see [De1] for instance), and to
go through an experimental search for Dirichlet domains for sporadic groups. The goal of the present paper is
to report on the results of this search, which turned out to be quite satisfactory. We shall prove among other
things that there are only finitely discrete groups among the sporadic groups (see section 7).

More specifically we prove the following (see section 7, in particular Table 3):

Theorem 1.1 • For p > 7, Γ(2π
p , σ1) is not discrete.

• For p = 3, 5, 6, 7, Γ(2π
p , σ1) is not discrete.

• For p > 6, Γ(2π
p , σ2) is not discrete.

• For 6 6 p 6 19, Γ(2π
p , σ2) is not discrete.

• For p = 4, 5, 6, Γ(2π
p , σ4) is not discrete.

• For p 6= 2, 3, 4, 5, 6, 8, 12, Γ(2π
p , σ4) is not discrete.

• For p 6= 2, 3, 4, 5, 6, 8, 12, Γ(2π
p , σ5) is not discrete.

• Γ(2π
4
, σ5) is not discrete.

• Γ(2π
5
, σ6) and Γ(2π

5
, σ6) are not discrete.

• For p 6= 2, 3, 4, 7, 14, Γ(2π
p , σ7) is not discrete.

We also give a list of groups that have a very good chance of being lattices (some cocompact, some not), but
we shall not give a detailed proof that these groups really are lattices. Indeed, we have obtained outstanding
evidence that Conjecture 1.1 is correct, but this evidence was obtained by doing numerical computations using
floating point arithmetic, and it is conceivable (though very unlikely) that the results are flawed because of issues
of precision, in a similar vein as the analysis in [De1] of the results in [M1]. Instead, we will prove Conjecture 1.1
in [DPP] by using more direct geometric methods.

We summarise the results of our computer experimentation in the following (see section 2 for notation):

Conjecture 1.1 The following sporadic groups are non-arithmetic lattices in SU(2, 1):

• (cocompact): Γ(2π
5
, σ4), Γ(2π

8
, σ4), Γ(2π

12
, σ4).

• (non cocompact): Γ(2π
3
, σ1), Γ(2π

3
, σ5), Γ(2π

4
, σ1), Γ(2π

4
, σ4), Γ(2π

4
, σ5), Γ(2π

6
, σ1), Γ(2π

6
, σ4).

Note that the only part of Conjecture 1.1 that really is conjectural is the fact that the groups in question
are lattices. The fact that these groups, if lattices, cannot be arithmetic follows from the results in [ParPau]
and [Pau]; the groups indicated in bold are known to not be commensurable to Deligne-Mostow-Picard lattices
by [Pau] (in fact, for Γ(2π

4
, σ4) and Γ(2π

6
, σ4) this follows from non-cocompactness by the arguments in [Pau]).

Computer experiments suggest that the sporadic groups that do not appear in the statement of the Conjec-
ture are in fact not discrete, apart from

Γ

(

2π

3
, σ4

)

, Γ

(

2π

2
, σ5

)

, Γ

(

2π

2
, σ5

)

, Γ

(

2π

2
, σ7

)

, Γ

(

2π

3
, σ7

)

and Γ

(

2π

2
, σ7

)

. (1.1)

The groups Γ(2π
2
, σ5) and Γ(2π

2
, σ5) turn out to be both isomorphic to the lattice studied in [De2] (see [Par3]).

The groups Γ(2π
2
, σ7) and Γ(2π

2
, σ7) are isomorphic and are discrete, see [Par3]. It seems that these two groups,

and also Γ(2π
3
, σ7), have infinite covolume, according to our computer experiments. The group Γ(2π

3
, σ4) is

understood, partly thanks to work in [ParPau]:

Theorem 1.2 Γ(2π
3
, σ4) is a cocompact lattice in SU(2, 1).
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The fact that this group is discrete was proved in [ParPau] (Proposition 6.4), the point being that all non-trivial
Galois conjugates of the relevant Hermitian form are definite. In fact it is the only sporadic group that is
contained in an arithmetic lattice, by [Pau].

In order to check that it is cocompact, one uses the same argument as in [De2]. More specifically, one needs to
verify that the Dirichlet domain is cocompact, and this can be done without knowing the precise combinatorics
of that polyhedron (it is enough to check study a partial Dirichlet domain, and to verify that all the 2-faces of
that polyhedron are compact).

2 Sporadic groups

In this section we recall the setup and main results from [ParPau] and [Pau]. The starting point is that groups
Γ = 〈R1, J〉 as defined above can be parametrised up to conjugacy by τ = Tr(R1J); we denote by Γ(ψ, τ) the
group generated by a complex reflection R1 through angle ψ and a regular elliptic isometry J of order 3 such
that τ = Tr(R1J). In what follows, we always suppose that R1J is elliptic and that R1R2 = R1JR1J

−1 is
either elliptic or parabolic. The generators for this group were given in the following explicit form:

J =





0 0 1
1 0 0
0 1 0



 (2.1)

R1 =





e2iψ/3 τ −eiψ/3 τ
0 e−iψ/3 0

0 0 e−iψ/3



 (2.2)

These preserve the Hermitian form 〈z,w〉 = w∗Hτz where

Hτ =





2 sin(ψ/2) −ie−iψ/6τ ieiψ/6τ
ieiψ/6τ 2 sin(ψ/2) −ie−iψ/6τ

−ie−iψ/6τ ieiψ/6τ 2 sin(ψ/2)



 . (2.3)

This always produces a subgroup Γ of GL(3,C), but the signature of Hτ depends on the values of ψ and τ .
For any fixed value of ψ, the parameter space for τ is described in Sections 2.4 and 2.6 of [ParPau]. When Γ
preserves a Hermitian form of signature (2, 1) we will say that Γ is hyperbolic.

A basic necessary condition for a subgroup of PU(2, 1) to be discrete, is that all elliptic elements must have
finite order. Hence, in order for the groups 〈R1, J〉 as above to be discrete, one needs R1J to have finite order,
and R1R2 to have finite order or be parabolic. The list of parameters where the latter necessary condition holds
was obtained in [ParPau] (see also [Par3]). We recall the result in the following.

Theorem 2.1 Let R1 be a complex reflection of order p and J a regular elliptic isometry of order 3 in PU(2, 1).
Suppose that R1J is elliptic, and R1R2 = R1JR1J

−1 is elliptic or parabolic. If the group Γ = 〈R1, J〉 is discrete
then one of the following is true:

• Γ is one of Mostow’s lattices.

• Γ is a subgroup of one of Mostow’s lattices.

• Γ is one of the sporadic groups listed below.

Mostow’s lattices correspond to τ = eiφ for some angle φ; the subgroups of Mostow’s lattices arising here
correspond to τ = e2iφ+e−iφ for some angle φ, and sporadic groups (this can be taken as a definition) are those
for which τ takes one of the 18 values {σ1, σ1, ..., σ9, σ9} where the σi are given in the following list:

σ1 := eiπ/3 + e−iπ/6 2 cos(π/4) σ2 := eiπ/3 + e−iπ/6 2 cos(π/5) σ3 := eiπ/3 + e−iπ/6 2 cos(2π/5)

σ4 := e2πi/7 + e4πi/7 + e8πi/7 σ5 := e2πi/9 + e−iπ/9 2 cos(2π/5) σ6 := e2πi/9 + e−πi/9 2 cos(4π/5)

σ7 := e2πi/9 + e−iπ/9 2 cos(2π/7) σ8 := e2πi/9 + e−iπ/9 2 cos(4π/7) σ9 := e2πi/9 + e−iπ/9 2 cos(6π/7).
(2.4)
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Therefore, for each value of p > 3, we have a finite number of new groups to study, the Γ(2π/p, σi) and
Γ(2π/p, σi) which are hyperbolic. The list of sporadic groups that are hyperbolic is given in the table of
Section 3.3 of [ParPau] (and we given them below in Table 3); for the sake of brevity we only recall the
following:

Proposition 2.1 For p > 4 and τ = σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8 or σ9, Γ(2π/p, τ) is hyperbolic.

It was also shown in [ParPau] that some of the hyperbolic sporadic groups are non-discrete (see Corollary
4.2, Proposition 4.5 and Corollary 6.4 of [ParPau]):

Proposition 2.2 For p > 3 and (τ or τ = σ3, σ8 or σ9), Γ(2π/p, τ) is not discrete. Also, for p > 3, p 6= 5 and
(τ or τ = σ6), Γ(2π/p, τ) is not discrete.

The main results of [Pau] are the following two statements:

Theorem 2.2 For p > 3 and τ ∈ {σ1, σ1, ..., σ9, σ9}, Γ(2π/p, τ) is contained in an arithmetic lattice in SU(2, 1)
if and only if p = 3 and τ = σ4.

Theorem 2.3 The sporadic groups Γ(2π/p, τ) (p > 3 and τ ∈ {σ1, σ1, ..., σ9, σ9}) fall into infinitely many
distinct commensurability classes. Moreover, they are not commensurable to any Picard or Mostow lattice,
except possibly when:

• p = 4 or 6 • p = 3 and τ = σ7 • p = 5 and τ or τ = σ1, σ2

• p = 7 and τ = σ4 • p = 8 and τ = σ1 • p = 10 and τ = σ1, σ2, σ2

• p = 12 and τ = σ1, σ7 • p = 20 and τ = σ1, σ2 • p = 24 and τ = σ1

3 Dirichlet domains

Given a subgroup Γ of PU(2, 1), the Dirichlet domain for Γ centred at p0 is the set:

FΓ =
{

x ∈ H2
C : d(x, p0) 6 d(x, γp0), ∀γ ∈ Γ

}

.

A basic fact is that Γ is discrete if and only if FΓ has nonempty interior, and in that case FΓ is a fundamental
domain for Γ modulo the action of the (finite) stabiliser of p0 in Γ.

The simplicity of this general notion, and its somewhat canonical nature (it only depends on the choice of
the centre p0), make Dirichlet domains convenient to use in computer investigation as in [M1], [Ri], [De1] and
[De2]. Note however that there is no algorithm to decide whether the set FΓ has non-empty interior, and the
procedure we describe below may never end (this is already the case in the constant curvature setting, i.e. in
real hyperbolic space of dimension at least three, see for instance [EP]).

Our computer search is quite a bit more delicate than the search for fundamental domains in the setting of
arithmetic groups. The recent announcement that Cartwright and Steger have been able to find presentations for
the fundamental groups of all so-called fake projective planes mentions the use of massive computer calculations
in the same vein as our work (see [CS]), but there are major differences however.

They use Dirichlet domains, but their task is facilitated by the fact that the fundamental groups of fake
projective planes are known to be arithmetic subgroups of PU(2, 1) (see [K] and [Y]). In particular, all the
groups they consider are known to be discrete from the very beginning (which is certainly not the case for
most complex hyperbolic sporadic groups). Cartwright and Steger also use the knowledge of the volumes of the
corresponding fundamental domains (the list of arithmetic lattices that could possibly contain the fundamental
group of a fake projective plane is brought down to a finite list by using Prasad’s volume formula [Pra]). This
allows one to check whether a partial Dirichlet domain

FW =
{

x ∈ H2
C : d(x, p0) 6 d(x, γp0), ∀γ ∈W

}

determined by a given finite set W ⊂ Γ is actually equal to FΓ.

4



For an arbitrary discrete subgroup Γ ⊂ PU(2, 1) and an arbitrary choice of the centre p0, the set FΓ is
a polyhedron bounded by bisectors (see [M1] and [G]), but it may have infinitely many faces, even if Γ is
geometrically finite (see [B]).

Moreover, the combinatorics of Dirichlet domains tend to be unnecessarily complicated, and one usually
expects that simpler fundamental domains can be obtained by suitable clever geometric constructions. This
general idea is illustrated by Dirichlet domains for lattices in R2; when the group is not a rectangular lattice,
i.e. not generated by two translations along orthogonal axes, the Dirichlet domain centred at any point is a
hexagon (rather than a parallelogram).

In H2
C
, Dirichlet domains typically contain digons (pairs of vertices connected by distinct edges), see Figure 1.

In particular the skeleton is not piecewise totally geodesic. One can also check that the 2-faces of a Dirichlet
domain can never be contained in a totally real totally geodesic copy of H2

R
, which makes this notion a little

bit unnatural (this was part of the motivation behind the constructions of [DFP], where fundamental domains
with simpler combinatorics that those in [M1] were obtained).

4 Experimental results

4.1 The G-procedure

In order to sift through the complex hyperbolic sporadic groups, we have run the procedures explained in [De1]
and [De2] in order to explore the Dirichlet domains centred at the centre of mass of the mirrors of the three
generating reflexions.

In terms of the notation in Section 2, we take p0 to be the unique fixed point in H2
C

of the regular elliptic
element J (this point is given either by (1, 1, 1), (1, ω, ω) or (1, ω, ω) for ω = (−1 + i

√
3)/2, depending on the

parameters p and τ .
We start with the generating set W0 = {R±1

1 , R±1

2 , R±1

3 } for Γ, and construct an increasing sequence of
sets W0 ⊂ W1 ⊂ W2 ⊂ . . . by the G-procedure (named after G. Giraud, see [De1] for the explanation of this
terminology).

First define a G-step of the procedure by:

G(W ) = W ∪ {α−1β : α, β ∈ W yield a non-empty generic 2-face of FW }

Here “yielding a non-empty 2-face of FW ” means that the set of points of FW that are equidistant from
p0, αp0 and βp0 has dimension two (i.e. it has non-empty interior in the corresponding intersection of two
bisectors). “Generic” means that this 2-face is not contained in a complex geodesic (see [De1]).

Definition 4.1 The set W is called G-closed if G(W ) = W .

The sequence Wk is defined inductively by

Wk+1 = G(Wk).

The hope is that this sequence stabilises to a G-closed set W = WN after a finite number of steps. In particular,
this procedure is probably suitable only to the search for lattices (not for discrete groups with infinite covolume).

4.2 Issues of precision

The determination of the sequence of sets Wk described in Section 4.1 depends on being able to determine the
precise list of all nonempty 2-faces of the polyhedron W , for a given finite set W ⊂ Γ. The difficult part is to
prove that two bisectors really yield a subset of FW of dimension smaller than 2, when they appear to do so
numerically.

Recall that the polyhedron FW is described by a (possibly large) set of quadratic inequalities in 4 variables
(the real and imaginary parts of the ball coordinates, for instance), where the coefficients of the quadratic
polynomials are obtained from matrices which are possibly very long words in the generators R1, R2, R3.

The computation of these matrices can be done without loss of precision, since it can be reduced to arithmetic
in the relevant number field (see Section 2.5 of [ParPau]).
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It is not clear how to solve the corresponding system of quadratic inequalities. In order to save computational
time, and for the lack of having better methods, we have chosen to do all the computations numerically, with
a fixed (somewhat rough) precision, essentially the same way as described in [De2]. We now briefly summarise
what our computer program does.

For a given (coequidistant) bisector intersection B, we need a method to test whether B∩FW has dimension
two. In order to do this, We work in spinal coordinates (see [De1]), and fit the disk B into a rectangular N ×N
grid. The 2-face is declared non-empty whenever we find more than one point in a given horizontal and in a
given vertical line in the grid. For the default version of the program, we take N = 1000.

In particular, the above description suggests that whenever the polyhedron FW becomes small enough, our
program will not find any 2-face whatsoever. If this happens at some stage k, the program will consider Wk as
being G-closed and stop.

When fed a group that has infinite covolume, one expects that the program would often run forever, since
in that case Dirichlet domains have tend to infinitely many faces. In practice, after a certain number of steps,
the sets Wk are too large for the computer’s capacity, and the program will crash.

For the groups we have tested (namely all sporadic groups with p 6 24), we have found these three behaviours:

A: The program finds a G-closed set WN = G(WN ), and the set of numerically non-empty two-faces is non-
empty.

B: The program finds a set WN for which it does not find any nonempty 2-face whatsoever (in particular WN

is Giraud closed, so the program stops).

C: The program exceeds its capacity in memory and crashes.

As a working hypothesis, we shall interpret Behaviour B as meaning that the group is not discrete, and
Behaviour C meaning that the group has infinite covolume (the latter behaviour is of course also conceivable
when the group is actually not discrete, or when we make a bad choice of the centre of the Dirichlet domain).

4.3 Census of sporadic groups generated by reflections of small order

The computer program available on the first author’s webpage at

http://www-fourier.ujf-grenoble.fr/∼deraux/java

was run for all sporadic groups (see Section 2) with 2 6 p 6 24.
The groups with p = 2 were analysed by Parker in [Par3], and our program confirms his results; in that case

τ and τ give the same groups, and only τ = σ5 or σ7 appear to be discrete. Both exhibit behaviour A, but
the first one gives a compact polyhedron; as mentioned in the introduction, this lattice is actually the same as
the (4, 4, 4; 5)-triangle group, i.e. the group that is studied in [De2], see [Par3] and [Sc]). The Giraud-closed
polyhedron obtained for σ7 has infinite volume.

For 3 6 p 6 24, there are few groups that exhibit Behaviour A (as defined in Section 4.2), namely: all groups
with τ = σ4, those with τ = σ1, p = 3, 4, 5, 6, and finally those with τ = σ5, p = 3, 4 or 5.

Pictures of the (isometry classes of) 3-faces of the Dirichlet domain for Γ(2π/3, σ4) are given in Figure 1.
We chose to display the faces for that specific group because its combinatorics are particularly simple among
all sporadic groups (Dirichlet domains for sporadic lattices can have about a hundred faces).

In case of Behaviour A, the program provides a list of faces for the polyhedron FW , and checks whether
it has side-pairings in the sense of the Poincaré polyhedron theorem (once again, we choose to check this only
numerically).

There is a minor issue of ambiguity between the side pairings, due to the fact that most groups Γ(2π
p , τ)

actually contain J , which means that the centre of the Dirichlet domain has non-trivial stabiliser. Possibly after
adjusting the side-pairings by pre-composing them with J or J−1, all the groups exhibiting Behaviour A turn
out to have side-pairings (or at least they appear to, numerically).

Another way to take care of the issue of non-trivial stabiliser for the centre of the Dirichlet domain is of
course simply to change the centre (within reasonably small distance to the centre of mass of the mirrors, since
we want the side-pairings obtained from the Dirichlet domain to be related in simple terms to the original
generating reflections).
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(a) 1 (b) 12

(c) 121 (d) 121 (e) 123

(f) 1212 (g) 12131

Figure 1: Faces of the Dirichlet domain for Γ(2π/3, σ4), drawn in spinal coordinates.
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In either case, either after adjusting the side-pairings by elements of the stabiliser, or after changing the
centre, we are in a position to check the cycle conditions of the Poincaré polyhedron theorem. The general
philosophy that grew out of [De1] (see also [M1], or even [Pic]) is that the only cycle conditions that need to
be checked are those for complex totally geodesic 2-faces, where the cycle transformations are simply complex
reflections.

Our program goes through all these complex 2-faces, and computes the rotation angle of the cycle transfor-
mations (as well as the total angle inside the polyhedron along the cycle).

Table 1 gives the list of sporadic groups that exhibit Behaviour A and whose complex cycles rotate by an
integer part of 2π (possibly after changing the centre of the Dirichlet domain).

τ p
σ1 p = 3, 4, 6
σ4 p = 3, 4, 5, 6, 8, 12
σ5 p = 3, 4

Table 1: Sporadic groups with 3 6 p 6 24 whose Dirichlet domain satisfies the hypotheses of the Poincaré
polyhedron theorem, at least numerically. For τ = σ4, p = 8, one needs to use a centre for the Dirichlet domain
other than the centre of mass of the mirrors of the three reflections.

For groups that exhibit behaviour A but whose cycle transformations rotate by angles that are not integer
parts of 2π, all one can quickly say is that the G-closed polyhedron cannot be a fundamental domain for
their action (even modulo the stabiliser of p0), but the group may still be a lattice. This issue is related
to the question of whether the integrality condition of [DM] is close to being necessary and sufficient for the
corresponding reflection group to be a lattice (see the analysis in [M3]).

There is of course a natural refinement of the procedure described in Section 4.1 to handle this case. Suppose
a given cycle transformation g rotates by an angle α, and 2π/α is not an integer. If that number is not rational,
the group is not discrete (the irrationality can of course be difficult to actually prove). If α = 2πm/n for
m,n ∈ Z, then some power h = gk rotates by an angle 2π/n, and it is natural to replace the G-closed set of
group elements W by

W ∪ hWh−1. (4.1)

One then starts over with the G-procedure as described in Section 4.1, starting from W0 = W ∪ hWh−1.
The groups with problematic rotation angles are

Γ

(

2π

5
, σ1

)

,Γ

(

2π

5
, σ5

)

,

and all groups with τ = σ4, p 6= 3, 4, 5, 6, 8, 12. The ones with τ = σ4 are known not to be discrete, see
Theorem 1.1.

The groups Γ(2π
5
, σ1) and Γ(2π

5
, σ5) do not seem to be discrete. Indeed, their Giraud-closed sets have

problematic rotation angles, see Table 2. In both cases, after implementing the refinement of (4.1), the G-

Group cycle transformation angle
Γ(2π

5
, σ1) (R1R2)

2 4π/5
Γ(2π

5
, σ5) ((R1J)5R−1

2 )2 4π/15

Table 2: Some problematic rotation angles in Giraud-closed polyhedra.

procedure exhibits behaviour B.

5 Group presentations

From the geometry of the Dirichlet domains for sporadic lattices, one can infer explicit group presentations.
Indeed one knows that the side-pairings generate the group, and the relations are normally generated by the
cycle transformations, see [EP] for instance.
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Given that there are many faces, it is of course quite prohibitive to write down such a presentation by hand.
It is reasonably easy however to have a computer do this. Our program produces files that can be passed to GAP
in order to simplify the presentations (it is quite painful, even though not impossible, to do these simplifications
by hand). It turns out that the presentations coming from the Dirichlet domains can all be reduced to quite a
simple form.

Note that the results of this section are just as conjectural as the statement of Conjecture 1.1, since they
depend on the accuracy of the combinatorics of the Dirichlet domains.

The groups with τ = σ1, σ4 are generated by R1, R2 and R3, that is J can be expressed as a product of the
Rj ’s. For τ = σ5 this not the case, and 〈R1, R2, R3〉 has index 3 in 〈J,R1〉.

Γ(2π
3
, σ1) : J = 12312312 = 23123123 = 31231231;

13 = Id; (123)8 = Id;
(12)3 = (21)3; [1(232)]2 = [(232)1]2; 1(23232)1 = (23232)1(23232).

Γ(2π
4
, σ1) : J = 12312312 = 23123123 = 31231231;

14 = Id; (123)8 = Id; (12)12;
(12)3 = (21)3; [1(232)]2 = [(232)1]2; 1(23232)1 = (23232)1(23232).

Γ(2π
6
, σ1) : J = 12312312 = 23123123 = 31231231;

16 = Id; (123)8 = Id; (12)6; [1(232)]12 = Id;
(12)3 = (21)3; [1(232)]2 = [(232)1]2; 1(23232)1 = (23232)1(23232);

Γ(2π
3
, σ4) : J−1 = 1231231 = 2312312 = 3123123;

13 = Id; (123)7 = Id;
(12)2 = (21)2;

Γ(2π
4
, σ4) : J−1 = 1231231 = 2312312 = 3123123;

14 = Id; (123)7 = Id;
(12)2 = (21)2;

Γ(2π
5
, σ4) : J−1 = 1231231 = 2312312 = 3123123;

15 = Id; (123)7 = Id; (12)20;
(12)2 = (21)2;

Γ(2π
6
, σ4) : J−1 = 1231231 = 2312312 = 3123123;

16 = Id; (123)7 = Id; (12)12;
(12)2 = (21)2;

Γ(2π
8
, σ4) : J−1 = 1231231 = 2312312 = 3123123;

18 = Id; (123)7 = Id; (12)8; [1(232)]24;
(12)2 = (21)2;

Γ(2π
12
, σ4) : J−1 = 1231231 = 2312312 = 3123123;

112 = Id; (123)7 = Id; (12)6; [1(232)]12;
(12)2 = (21)2;

Γ(2π
3
, σ5) : J3 = Id; J1J−1 = 2; J2J−1 = 3; J3J−1 = 1;

13 = Id; (123)10;
(12)2 = (21)2; 1(232)1(232)1 = (232)1(232)1(232).

Γ(2π
4
, σ5) : J3 = Id; J1J−1 = 2; J2J−1 = 3; J3J−1 = 1;

14 = Id; (123)10; (13231232)12;
(12)2 = (21)2; 1(232)1(232)1 = (232)1(232)1(232).
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6 Description of the cusps of the non-compact examples

The geometry of the Dirichlet domains for sporadic lattices gives information about the isotropy groups of any
vertex. Rather than giving a whole list, we gather information about the cusps in the Dirichlet domain and in
M = Γ \H2

C
, by giving the number of cusps, as well as generators and relations for their stabilisers. All of the

relations follow directly from the conjectural presentations given above. Some follow directly but others with
slightly more work.

Once again, the results of this section are conjectural (they depend on the accuracy of the combinatorics of
the Dirichlet domains).

p τ # cusps # cusps in M Generators Relations

3 σ1 3 1 1, 2 13 = 23 = Id, (12)3 = (21)3

4 σ1 6 1 1, 232 14 = (232)4 = Id, [1(232)]2 = [(232)1]2

6 σ1 6 2 1, 23232 16 = (23232)6 = Id, 1(23232)1 = (23232)1(23232)

1, 3 2323 16 = (32323)6 = Id, 1(32323)1 = (32323)1(32323)

4 σ4 3 1 1, 2 14 = 24 = Id, (12)2 = (21)2

6 σ4 6 1 1, 232 16 = (232)6 = Id, 1(232)1 = (232)1(232)

3 σ5 3 1 232, (1J)5 (232)3 = [(IJ)5]6 = Id, [(232)(1J)−5]2 = [(1J)−5(232)]2

4 σ5 3 1 1, 2 14 = 24 = Id, (12)2 = (21)2

7 Non-discreteness results

In this section we prove some restrictions on the parameters for the group Γ(2π/p, τ) to be discrete. The main
tools are Knapp’s theorem and Jørgensen’s inequality. The former gives a necessary and sufficient condition
for a two-generator subgroup of PU(1, 1) to be discrete, assuming both generators as well as their product are
elliptic. The reference for Knapp’s theorem is [Kna], see also [KS]. The full list of possible rotation angles for
A, B and AB will not be needed here. In fact we shall only use the following special case of Knapp’s theorem,
that applies to isosceles triangles.

Theorem 7.1 (Knapp) Consider a triangle in H2
R

with angles α, α, β, and let ∆ be the group generated by the
reflections in its sides. If ∆ is discrete then one of the following holds:

• α = π
q and (β = 2π

r or 4π
q ) with q, r ∈ N∗

• α = 2π
r and β = 2π

r with r ∈ N∗.

Remark 7.1 In a few cases, we also use the spherical geometry version of Knapp’s theorem, which is a result
of Schwarz (see [ParPau]).

Basic hyperbolic trigonometry gives a relationship between the angles and the length of the base of the
triangle. Indeed, if the length of the base is 2δ, then

cosh δ sinα = cos
β

2
(7.1)

This gives a practical computational way to check whether the conditions of Knapp’s theorem hold.
Note also that the statement of Knapp’s theorem implies that if α = π/q for q ∈ N∗, and if the angle β is

larger than 2π/3, then the group cannot be discrete. In view of formula (7.1), the latter statement is that same
as one would obtain from Jørgensen’s inequality (see [JKP]):

10



Theorem 7.2 (Jiang-Kamiya-Parker) Let A be a complex reflection through angle 2α = 2π
q with q ∈ N∗, with

mirror the complex line LA. Let B ∈ PU(2, 1) be such that B(LA) and LA are ultraparallel, and denote their
distance by 2δ. If

| cosh δ sinα| < 1

2
(7.2)

then 〈A,B〉 is non-discrete.

In certain cases we need to deal with groups generated by vertical Heisenberg translations. In this case we
need results that generalise the above version of Jørgensen’s inequality and Knapp’s theorem. These results are
complex hyperbolic versions of Shimizu’s lemma, Proposition 5.2 of [Par1] and a lemma of Beardon, Theorem
3.1 of [Par2]. We combine them in the following statement which is equivalent to the statements given in [Par1]
and [Par2].

Theorem 7.3 (Parker) Let A ∈ SU(2, 1) be a parabolic map conjugate to a vertical Heisenberg translation with
fixed point zA. Let B ∈ SU(2, 1) be a map not fixing zA. If 〈A,B〉 is discrete then either tr(ABAB−1) ≤ −1 or
tr(ABAB−1) = 3 − 4 cos2(π/r) for some r ∈ N with r ≥ 3. In particular, if

2 < tr(ABAB−1) < 3 (7.3)

then 〈A,B〉 is non-discrete.

7.1 Summary of results

τ p with Hτ hyperbolic p where non-discrete Result used
σ1 [3,∞) 7, 8, [10,∞) Proposition 7.4

9 Proposition 7.9
σ1 [3, 7] 5, 7 Proposition 7.5

3, 6, 7 Proposition 7.10
σ2 [3,∞) [6, 9], [11,∞) Proposition 7.6

10 Proposition 7.11
σ2 [3, 19] [6, 9], [11, 19] Proposition 7.7

10 Proposition 7.11
σ3 [3,∞) [3,∞) Proposition 4.5 of [ParPau]
σ3 [3, 6] [3, 6] Proposition 4.5 of [ParPau]
σ4 [4, 6] [4, 6] Proposition 7.3
σ4 [3,∞) 7, [9, 11], [13,∞) Proposition 7.1
σ5 [2,∞) 7, [9, 11], [13,∞ Proposition 7.2
σ5 {2, 4} 4 Proposition 7.3
σ6 [3,∞) 3, 4, [6∞) Proposition 4.5 of [ParPau]

5 Proposition 7.3
σ6 [3, 29] 3, 4, [6∞) Proposition 4.5 of [ParPau]

5 Proposition 7.3
σ7 [2,∞) 5, 6, [8, 13], [15,∞) Proposition 7.8
σ7 {2}
σ8 [4, 41] [4, 41] Corollary 4.2 of [ParPau]
σ8 [4,∞) [4,∞) Corollary 4.2 of [ParPau]
σ9 [3,∞) [3,∞) Corollary 4.2 of [ParPau]
σ9 [4, 8] [4, 8] Corollary 4.2 of [ParPau]

Table 3: Values of the parameter where Knapp or Jørgensen show non-discreteness.

Table 3 summarises our result on non-discreteness of sporadic groups. The second column gives the values of
p for which the Hermitian form has signature (2, 1) (taken from [ParPau]). The third and fourth columns give
values of p for which a well chosen subgroup fails the Knapp test or the Jørgensen test (and hence the group
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is not discrete). If this was done in [ParPau] we give the reference. For some values of τ we apply Knapp and
Jørgensen to two different complex reflections in the group (in which case the results are listed on two separate
lines).

7.2 Using Knapp and Jørgensen with powers of R1R2

7.2.1 The general set up

Recall from [ParPau] that for any sporadic value τ , there is a positive rational number r/s so that

|τ |2 = 2 + 2 cos(rπ/s), (7.4)

which corresponds to the fact that R1R2 should have finite order. The values of these r and s are clearly the
same for σj and σj , and are given by

τ σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

r/s 1/3 1/5 3/5 1/2 1/2 1/2 1/7 5/7 3/7
(7.5)

Straightforward calculation shows

R1R2 =





e2iπ/3p(1 − |τ2|) e4iπ/3pτ τ2 − τ
−τ e2iπ/3p e−2iπ/3pτ

0 0 e−4iπ/3p





which has eigenvalues −e2iπ/3periπ/s, −e2iπ/3pe−riπ/s, e−4iπ/3p. Therefore (R1R2)
s has a repeated eigenvalue.

An e−4iπ/3p-eigenvector of R1R2 is given by

p12 =





e−2iπ/3pτ2 + e4iπ/3pτ − e−2iπ/3pτ
e2iπ/3pτ2 + e−4iπ/3pτ − e2iπ/3pτ

2 cos(2π/p) + 2 cos(2rπ/s)



 .

For most values of p and τ this vector is negative, in which case its orthogonal complement with respect to H
gives a complex line in the ball. Hence (in most cases) it is a complex reflection, and one checks easily that it
commutes with both R1 and R2.

Likewise, for most values of p, τ , (R2R3)
s is a complex reflection that commutes with R2 and R3, and it

fixes a complex line whose polar vector is p23 = J(p12). If the distance between these two lines is 2δp then

cosh2(δp) =
〈p12,p23〉〈p23,p12〉
〈p12,p12〉〈p23,p23〉

=

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣

2

(

2 cos(2π/p) + 2 cos(rπ/s)
)2
. (7.6)

The eigenvalues of (R1R2)
s are (−1)r+1e2sπ/3p, (−1)r−1e2sπ/3p, e−4sπ/3p. Therefore the rotation angle of

(R1R2)
s is (r − 1)π + 2sπ/p. This may or may not be of the form 2π/c. When it is not, we can find a positive

integer k so that (R1R2)
sk is a complex reflection whose angle has the form 2π/c. We define 2αp to be the

smallest positive rotation angle among all powers of (R1R2)
s.

In order to prove non-discreteness using the Jørgensen inequality, we now need to find values of p such that

cosh δp sinαp =

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ sinαp
∣

∣2 cos(2π/p) + 2 cos(rπ/s)
∣

∣

<
1

2
. (7.7)

In order to prove non-discreteness using Knapp’s theorem we must find values of p for which

cosh δp sinαp =

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ sinαp
∣

∣2 cos(2π/p) + 2 cos(rπ/s)
∣

∣

6= cos(π/q) or cos(2αp) (7.8)

for a natural number q.
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Since (R1R2)
s is a complex reflection that rotates through angle (r − 1)π + 2sπ/p, we can apply the test

of Jørgensen’s inequality simply to (R1R2)
s. As

∣

∣sin
(

(r − 1)π + 2sπ/p
)∣

∣ =
∣

∣2 sin(2sπ/p)
∣

∣ this involves finding
values of p for which

∣

∣

∣
cosh(δp) sin(2sπ/p)

∣

∣

∣
=

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ | sin(2sπ/p)|
|2 cos(2π/p) + 2 cos(2rπ/s)| <

1

2
. (7.9)

For fixed r and s, as p tends to infinity, the left hand side tends to zero. This shows at once that there can be
only finitely many discrete groups among all sporadic groups; the rest of the paper is devoted to the proof of
Theorem 1.1, which is a vast refinement of that statement.

In the next few sections, we shall apply Knapp or Jørgensen to various powers of R1R2 (other elements in
the group as well) in order to get the better non-discreteness results.

7.2.2 Cases where |τ |2 = 2

From (7.4), for any τ with |τ |2 = 2, we have r/s = 1/2 and so

cosh δp =

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣

∣

∣2 cos(2π/p)
∣

∣

.

This happens for τ = σ4, σ4, σ5, σ5, σ6 or σ6. For all these values we have

(R1R2)
2 =





−e4iπ/3p 0 e2iπ/3pτ + e−4iπ/3pτ2 − e−4iπ/3pτ

0 −e4iπ/3p e−2iπ/pτ + τ2 − τ
0 0 e−8iπ/3p



 ,

which is a complex reflection commuting with both R1 and R2, and whose rotation angle is (p − 4)π/p. Note
that (p− 4)π/p = 2π/c for some c ∈ Z ∪ {∞} if and only if p and c are as given in the following table:

p 2 3 4 5 6 8 12
c −2 −6 ∞ 10 6 4 3

(When p = 4, and hence c = ∞, we find that (R1R2)
2 is parabolic.) For other values of p, by choosing an

appropriate power k, we can arrange that (R1R2)
2k rotates by a smaller angle than (R1R2)

2:

Lemma 7.1 Let (R1R2)
2 be as above. There exists k ∈ Z so that (R1R2)

2k has rotation angle 2αp where

αp =
gcd(p− 4, 2p)π

2p
.

In particular

• If p ≡ 1 (mod 2), then gcd(p− 4, 2p) = 1, and so αp = π
2p .

• If p ≡ 2 (mod 4), then gcd(p− 4, 2p) = 2, and so αp = π
p .

• If p ≡ 4 (mod 8), then gcd(p− 4, 2p) = 8, and so αp = 4π
p .

• If p ≡ 0 (mod 8), then gcd(p− 4, 2p) = 4, and so αp = 2π
p .

Proof. We want to find k so that k(p − 4)π/p reduced modulo 2π is “minimal”. More precisely, we write
this as

k(p− 4)π/p− 2πl = 2αp

for k ∈ N∗, l ∈ N, and we want to find αp of the form π/c for some c ∈ N. The optimal value of k depends on
arithmetic properties of p. Let d = gcd(p− 4, 2p) then we can find integers k and l so that k(p− 4)− l(2p) = d.
This means that k(p− 4)π/p− 2πl = dπ/p and so αp = dπ/2p. This proves the first assertion.
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If we write (p− 4) = ad and 2p = bd then, eliminating p, we have 2ad+ 8 = bd and so d = 1, 2, 4 or 8. It is
easy to check which values of p correspond to which value of d. �

In the case where c = ∞ the map (R1R2)
2 is parabolic. Up to multiplying by a cube root of unity, we have

tr
(

(R1R2)
2J(R1R2)

2J−1

)

= tr
(

(R1R2)
2(R2R3)

2

)

= 3 −
∣

∣τ2 + e−2iπ/pτ − τ
∣

∣

2
.

Thus applying Theorem 7.3 with A = (R1R2)
2 and J = B we see can prove non-discreteness by showing that

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ < 1 or
∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ 6= 2 cos(π/r) (7.10)

with r a natural number at least 3.
Checking (7.7), (7.8) or (7.10) is best done by a computer.

Proposition 7.1 Let τ = σ4 = (−1 − i
√

7)/2 and so r/s = 1/2. Then:

• If p is odd then (7.7) holds for p > 7;

• If p ≡ 2 (mod 4) then (7.7) holds for p > 10;

• If p ≡ 4 (mod 8) then (7.8) holds for p = 20 and (7.7) holds for p > 28;

• If p ≡ 0 (mod 8) then (7.7) holds for p > 16.

Thus for all the values of p given above 〈(R1R2)
2, J〉 and hence Γ(2π

p , σ4) is not discrete.

Proof. For the sake of concreteness, we list some of the values in the following table

p αp cosh(δp) sin(αp)
7 π/14 0.4257 . . . (7.7)
9 π/18 0.2650 . . . (7.7)
10 π/10 0.4423 . . . (7.7)
14 π/14 0.2774 . . . (7.7)
20 π/5 0.6748 . . . (7.8)
28 π/7 0.4754 . . . (7.7)
16 π/8 0.4601 . . . (7.7)
24 π/12 0.2889 . . . (7.7)

�

Proposition 7.2 Let τ = σ5 = e2iπ/9 + e−iπ/92 cos(2π/5) and so r/s = 1/2. Then:

• If p is odd then (7.7) holds when p > 7;

• If p ≡ 2 (mod 4) then (7.7) holds when p > 10;

• If p ≡ 4 (mod 8) then (7.8) holds when p = 20 and (7.7) holds when p > 28;

• If p ≡ 0 (mod 8) then (7.7) holds when p > 16.

Thus for all the values of p given above 〈(R1R2)
2, J〉 and hence Γ(2π

p , σ5) is not discrete.

Proof. Some values are given in the following table:

p αp cosh(δp) sin(αp)
7 π/14 0.4977 . . . (7.7)
9 π/18 0.3011 . . . (7.7)
10 π/10 0.4974 . . . (7.7)
14 π/14 0.3032 . . . (7.7)
20 π/5 0.7202 . . . (7.8)
28 π/7 0.4988 . . . (7.7)
16 π/8 0.4980 . . . (7.7)
24 π/12 0.3053 . . . (7.7)
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Recall from [ParPau] that Γ(2π
p , σ4) has signature (2, 1) exactly when 4 6 p 6 6; that Γ(2π

p , σ5) has signature

(2, 1) exactly when p = 2 or 4, and that Γ(2π
p , σ6) and Γ(2π

p , σ6) are not discrete except possibly when p = 5.
Hence for each of these values of τ we only have finitely many things to check. We gather these cases into a
single result.

Proposition 7.3 • If τ = σ4 = (−1 + i
√

7)/2, and so r/s = 1/2, and p = 4 then (7.10) holds;

• If τ = σ4 = (−1 + i
√

7)/2, and so r/s = 1/2, and p = 5 then (7.7) holds;

• If τ = σ4 = (−1 + i
√

7)/2, and so r/s = 1/2, and p = 6 then (7.8) holds;

• If τ = σ5 = e−2iπ/9 + eiπ/92 cos(2π/5), and so r/s = 1/2, and p = 4 then (7.10) holds;

• If τ = σ6 = e2iπ/9 + e−iπ/92 cos(4π/5), and so r/s = 1/2, and p = 5 then (7.8) holds;

• If τ = σ6 = e−2iπ/9 + eiπ/92 cos(4π/5), and so r/s = 1/2, and p = 5 then (7.8) holds.
Thus for these values of τ and p then 〈(R1R2)

2, J〉 and hence Γ(2π
p , τ) is not discrete.

Proof. Suppose τ = σ4 = (−1 + i
√

7)/2. If p = 4 we have

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ =

√

3 −
√

7 = 0.595 . . .

If p = 5 then αp = π/10 and cosh(δp) sin(αp) = 0.445 . . .. If p = 6 then αp = π/6 and cosh(δp) sin(αp) =
0.550 . . . ∈

(

cos(π/3), cos(π/4)
)

.

If τ = σ5 = e−2iπ/9 + eiπ/92 cos(2π/5) and p = 4 then

∣

∣τ2 + e−2iπ/pτ − τ
∣

∣ =

√

7 +
√

5 − 3
√

3 −
√

15

2
= 0.289 . . . .

If τ = σ6 = e2iπ/9 + e−iπ/92 cos(4π/5) and p = 5 then cosh(δp) sin(αp) = 0.937 . . . ∈
(

cos(π/8), cos(π/9)
)

.

If τ = σ6 = e−2iπ/9 + eiπ/92 cos(4π/5) and p = 5 then cosh(δp) sin(αp) = 0.750 . . . ∈
(

cos(π/4), cos(π/5)
)

. �

7.2.3 Cases where |τ |2 = 3

We now consider the case |τ |2 = 3, which happens for τ = σ1 or σ1. In this case r/s = 1/3 and

(R1R2)
3 =





e2iπ/p 0 (e−2iπ/p − 1)
(

e−2iπ/3pτ2 + e4iπ/3pτ − e−2iπ/3pτ
)

0 e2iπ/p (e−2iπ/p − 1)
(

e2iπ/3pτ2 + e−4iπ/pτ − e2iπ/3pτ
)

0 0 e−4iπ/p



 .

This is a complex reflection commuting with both R1 and R2, with angle 6π/p. As above, we want to check
whether (7.7) holds for αp the smallest possible rotation angle of powers of (R1R2)

3.

• If p ≡ 1 or 2 (mod 3), then we can find k, l ∈ N so that 6kπ/p− 2πl = 2π/p. Hence αp = π/p.

• If 3 divides p then 6π/p is already in the form 2π/c, hence αp = 3π/p.

Proposition 7.4 Let τ = σ1 = eiπ/3 + e−iπ/62 cos(π/4) and so r/s = 1/3. Then

• If p ≡ 1 or 2 (mod 3) then (7.8) holds when p = 7 and (7.7) holds when p > 8;

• If p is divisible by 3 then (7.8) holds when p = 12, 15 or 18 and (7.7) holds when p > 21.

Thus for all the values of p given above 〈(R1R2)
3, J〉 and hence Γ(2π

p , σ1) is not discrete.
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Proof. Some values are given in the following table

p αp cosh(δp) sin(αp)
7 π/7 0.6510 . . . (7.8)
8 π/8 0.4969 . . . (7.7)
12 π/4 0.8134 . . . (7.8)
15 π/5 0.6510 . . . (7.8)
18 π/6 0.5416 . . . (7.8)
21 π/7 0.4631 . . . (7.7)

�

From [ParPau] we know that if τ = σ1 = e−iπ/3+eiπ/62 cos(π/4) then the only values of p that give signature
(2, 1) are those with 3 6 p 6 7.

Proposition 7.5 Let τ = σ1 = e−iπ/3 + eiπ/62 cos(π/4) and so r/s = 1/3.

• If p = 5 then (7.8) holds;

• If p = 7 then (7.7) holds.

Thus for p = 5 or 7 we see that 〈(R1R2)
3, J〉 and hence Γ(2π

p , σ1) is not discrete.

7.2.4 Cases where |τ |2 = 2 + 2 cos(π/5)

This happens for τ = σ2 or σ2. In that case r/s = 1/5 and (R1R2)
5 is a complex reflection with eigenvalues

e10iπ/3p, e10iπ/3p, e−20iπ/3p, thus it has rotation angle 10π/p.

• If p is not divisible by 5, then we can find k, l ∈ N such that 10kπ/p− 2πl = 2π/p. Hence αp = π/p.

• If p is divisible by 5, then 10π/p is already in the form 2π/c, hence αp = 5π/p.

Proposition 7.6 Let τ = σ2 = eiπ/3 + e−iπ/62 cos(π/5) and so r/s = 1/5.

• If p is not divisible by 5 then (7.8) holds when p = 6 or 7 and (7.7) holds when p > 8;

• If p is divisible by 5 then (7.8) holds when 15 6 p 6 30 and (7.7) holds when p > 35.

Thus for for these values of p we see that 〈(R1R2)
5, J〉, and hence, Γ(2π

p , σ2) is not discrete.

Proof. Some values are given in the following table

p αp cosh(δp) sin(αp)
6 π/6 0.631 . . . (7.8)
7 π/7 0.516 . . . (7.8)
8 π/8 0.438 . . . (7.7)
15 π/3 0.908 . . . (7.8)
20 π/4 0.729 . . . (7.8)
25 π/5 0.601 . . . (7.8)
30 π/6 0.508 . . . (7.8)
35 π/7 0.440 . . . (7.7)

�.

From [ParPau] we know that if τ = σ2 = e−iπ/3 + eiπ/62 cos(π/5) then the Hermitian form has signature
(2, 1) only when 3 ≤ p ≤ 19.

Proposition 7.7 Let τ = σ2 = e−iπ/3 + eiπ/62 cos(π/5) and so r/s = 1/5.
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• If p is not divisible by 5 then (7.8) holds when p = 6 and (7.7) holds when 7 6 p 6 19;

• If p is divisible by 5 then (7.8) holds when p = 15.

Thus for for these values of p we see that 〈(R1R2)
5, J〉, and hence Γ(2π

p , σ2), is not discrete.

Proof. Some values are given below

p αp cosh(δp) sin(αp)
6 π/6 0.5660 (7.8)
7 π/7 0.4713 (7.7)
15 π/5 0.8718 (7.8)

�

7.2.5 Cases where |τ |2 = 2 + 2 cos(π/7)

This happens for τ = σ7 or σ7. In this case r/s = 1/7. The only group with τ = σ7 and signature (2, 1) is
p = 2. This group is a relabelling of the group with τ = σ7 and p = 2. It is discrete. So for the remainder of
this section we consider the case when τ = σ7 = e2iπ/9 + e−iπ/92 cos(2π/7).

Then (R1R2)
7 is a complex reflection with eigenvalues e14iπ/3p, e14iπ/3p, e−28iπ/3p; thus it has rotation angle

14π/p.

• If p is not divisible by 7, then we can find k, l ∈ N so that 14kπ/p− 2πl = 2π/p. Hence αp = π/p.

• If p is divisible by 7, then 14π/p is already in the form 2π/c, hence αp = 7π/p.

Proposition 7.8 Let τ = σ7 = e2iπ/9 + e−iπ/92 cos(2π/7) and so r/s = 1/7.

• If p is not divisible by 7 then (7.8) holds for p = 5 or 6 and (7.7) holds when p > 8;

• If p is divisible by 7 then (7.8) holds for 21 6 p 6 42 and (7.7) holds when p > 49; with p > 49.

Thus for for these values of p we see that 〈(R1R2)
7, J〉, and hence Γ(2π

p , σ7), is not discrete.

Proof. Some values are given below

p αp cosh(δp) sin(αp)
5 π/5 0.929 . . . (7.8)
6 π/6 0.702 . . . (7.8)
8 π/8 0.476 . . . (7.7)
21 π/3 0.921 . . . (7.8)
28 π/4 0.739 . . . (7.8)
35 π/5 0.608 . . . (7.8)
42 π/6 0.514 . . . (7.8)
49 π/7 0.444 . . . (7.7)

�

7.3 Using Knapp and Jørgensen with powers of R1R2R3R
−1
2

7.3.1 The general set up

Painful calculations show

R1R2R3R
−1

2 =





e2iπ/3p(1 − |τ2 − τ |2) e−2iπ/3p(τ − (τ2 − τ )τ ) −τ2 + (τ2 − τ )(|τ |2 − e2iπ/p)

τ(τ − τ2) e−4iπ/3p(1 − |τ |2) e−2iπ/3pτ(|τ |2 − 1 + e2iπ/p)

e−2iπ/3p(τ − τ2) −e−2iπ/pτ e2iπ/3p + e−4iπ/3p|τ |2



 ,
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hence tr(R1R2R3R
−1
2 ) = e2iπ/3p(2 − |τ2 − τ |2) + e−4iπ/3p. An e−4iπ/3p eigenvector of R1R2R3R

−1
2 is given by

p1232 =





e−4iπ/3p
(

τ(1 − e2iπ/p) − (τ2 − τ)τ
)

|τ |2(1 − e−2iπ/p) − τ(τ2 − τ) − |1 − e2iπ/p|2
e−2iπ/p

(

τ (1 − e−2iπ/p) − (τ2 − τ)τ
)



 .

Suppose that |τ2 − τ |2 = 2 + 2 cos(r′π/s′). Then (R1R2R3R
−1

2 )s is a complex reflection. The values of r′ and
s′ are clearly the same for σj and σj . They are (see [ParPau]):

τ σ1 σ2 σ3 σ4 σ5 σ6

r′/s′ 1/2 1/3 1/3 2/3 2/5 4/5
(7.11)

Let 2δ′p denote the distance from its mirror to the image of its mirror under J (with polar vector p2313 =
J(p1232)). Then:

cosh(δ′p) =
|〈p2313,p1232〉|
|〈p1232,p1232〉|

=

∣

∣(1 − e2iπ/p)τ + |τ |2(τ2 − 2τ) + e−2iπ/pτ2
∣

∣

2 cos(2π/p) + 2 cos(r′π/s′)
.

Let α′
p be the smallest non-zero angle that a power of (R1R2R3R

−1

2 )s rotates by. Let δ′p, r
′ and s′ be as

above. In order to prove non-discreteness using the Jørgensen inequality, we need to find values of p such that

cosh δ′p sinα′

p =

∣

∣(1 − e2iπ/p)τ + |τ |2(τ2 − 2τ) + e−2iπ/pτ2
∣

∣ sinα′
p

∣

∣2 cos(2π/p) + 2 cos(r′π/s′)
∣

∣

<
1

2
. (7.12)

In order to prove non-discreteness using Knapp’s theorem we must find values of p for which

cosh δ′p sinα′

p =

∣

∣(1 − e2iπ/p)τ + |τ |2(τ2 − 2τ) + e−2iπ/pτ2
∣

∣ sinα′
p

∣

∣2 cos(2π/p) + 2 cos(r′π/s′)
∣

∣

6= cos(π/q) or cos(2αp) (7.13)

for a natural number q.

7.4 When |τ 2 − τ |2 = 2

In this case τ = σ1 or σ1, and r′/s′ = 1/2. Moreover, (R1R2R3R
−1

2 )2 is a complex reflection with angle
(p− 4)π/p. So we proceed as in the section with |τ |2 = 2. In particular, α′

p is given by Lemma 7.1.

Using Proposition 7.4, we already know that when p = 7, 8 or p ≥ 10 then Γ(2π
p , σ1) is not discrete.

Therefore, we restrict our attention to p ≤ 9.

Proposition 7.9 Let τ = σ1 = eiπ/3 +e−iπ/62 cos(π/4) and so r′/s′ = 1/2. Then (7.13) holds for p = 9. Thus
〈(R1R2R3R

−1
1 )2, J〉, and hence also Γ(2π

p , σ1), is not discrete.

Proof. In this case α′
p = π/18 and cosh(δ′p) sin(α′

p) = 0.686 . . . ∈
(

cos(π/3), cos(π/4)
)

. �

For σ1, recall from [ParPau] that Γ(2π
p , σ1) has signature (2, 1) exactly when 3 6 p 6 7.

Proposition 7.10 Let τ = σ1 = e−iπ/3 + e+iπ/62 cos(π/4) and so r′/s′ = 1/2. Then

• If p = 3 or p = 6 then (7.13) holds;

• If p = 7 then (7.12) holds.

Thus for p = 3, 6 or 7 the group 〈(R1R2R3R
−1
1 )2, J〉, and hence also Γ(2π

p , σ1), is not discrete.

Proof. The values of cosh(δ′p) sin(α′
p) are:

p αp cosh(δ′p) sin(α′
p)

3 π/6 0.982 . . . (7.13)
7 π/14 0.269 . . . (7.12)
6 π/6 0.859 . . . (7.13)

�
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7.5 Cases where |τ 2 − τ |2 = 3

We only consider the case τ = σ2 or σ2 (since σ3 or σ3 were already handled in [ParPau]). In this case
r′/s′ = 1/3. Then (R1R2R3R

−1

1 )3 is a complex reflection with angle 6π/p. So we proceed as in the section with
|τ |2 = 3. Namely,

• if p is not divisible by 3, some power gives an angle αp = π/p;

• if p is divisible by 3, some power gives αp = 3π/p.

In order to use Jørgensen, we check whether cosh δ′p sinαp <
1

2
.

For τ = σ2, using Propositions 7.6 and 7.7 we only need to consider the cases where p ≤ 5 or p = 10. This
method yields nothing new for p ≤ 5.

Proposition 7.11 Let p = 10.

• If τ = σ2 = eiπ/3 + e−iπ/62 cos(π/5), and so r′/s′ = 1/3, then (7.13) holds;

• If τ = σ2 = e−iπ/3 + eiπ/62 cos(π/5), and so r′/s′ = 1/3, then (7.12) holds.

Thus for p = 10 and τ = σ2 or σ2, the group 〈(R1R2R3R
−1
2 )3, J〉 is not discrete. Hence Γ(2π

10
, σ2) and Γ(2π

10
, σ2)

are not discrete.

Proof. When p = 10 and τ = σ2 we have

cosh(δ′p) sin(α′

p) = 0.6181 . . . ∈
(

cos(π/3), cos(π/4)
)

.

When p = 10 and τ = σ2 we have cosh(δ′p) sin(α′
p) = 0.3871 . . . < 1/2. �
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