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Abstract

Subglacial bedforms preserved in deglaciated landscapes record characteristics of past ice-sediment

flow regimes, providing insight into subglacial processes and ice sheet dynamics. Individual forms

vary considerably, but they can often be grouped into coherent fields, typically called flow-sets,

that reflect discrete episodes of ice flow. Within these, bedform size-frequency distributions (pre-

dominantly height, width and length) are currently described by several statistics (e.g., mean,

median, and standard deviation) that, arguably, do not best capture the defining characteris-

tics of these populations. This paper seeks to create a better description based upon semi-log

plots, which reveal that the frequency distributions of bedform dimensions (drumlin, mega-scale

glacial lineation, and ribbed moraine) plot as straight lines above the mode (φ). This indicates,

by definition, an exponential distribution, for which a simple and easily calculated, yet statisti-

cally rigorous, description is designed. Three descriptive parameters are proposed: gradient (λ;

the exponent, characterising bedforms likely least affected by non-glacial factors), area-normalised

y-intercept (β0; quantifying spatial density), and the mode (φ). Below φ, small features are less

prevalent due to i) measurement: data, sampling and mapping fidelity; ii) possible post-glacial

degradation; or iii) genesis: not being created sub-glacially. This new description has the benefit

of being insensitive to the impact of potentially unmapped or degraded smaller features and better

captures properties relating to ice flow. Importantly, using λ, flow sets can now be more usefully

compared with each other across all deglaciated regions and with the output of numerical ice sheet
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models. Applications may also exist for analogous fluvial and aeolian bedforms. Identifying the

characteristic exponential and that it is typical of ‘emergent’ subglacial bedforms is a new and

potentially powerful constraint on their genesis, perhaps indicating that ice-sediment interaction

is fundamentally stochastic in nature.

Keywords: Subglacial; Bedform; Exponential; Stochastic; Flow-set; Fluvial.

1. Introduction1

Subglacial bedforms are a group of landforms created at the interface between glaciers and2

the terrain underneath (e.g., Benn and Evans, 2010). Mainly comprised of glacial sediments (e.g.,3

Stokes et al., 2011), they are often assigned to one of four categories based on their size and4

shape: (i) flutes (e.g., Boulton, 1976), (ii) drumlins (e.g., Menzies, 1979a), (iii) ribbed moraine5

(Hättestrand and Kleman, 1999) and (iv) mega-scale glacial lineations (MSGL) (Clark, 1993).6

Taken together, these range between 101 and 105 m long (Clark, 2010). Ribbed moraine form7

transverse to ice flow direction, whilst flutes, drumlins and MSGL form parallel to ice flow and8

are possibly a continuum of landforms (e.g., Aario, 1977; Rose, 1987) that are created by similar9

processes that operate under variable conditions. For example, it has been suggested that bedform10

length may be related to ice velocity (e.g., Clark, 1993; Hart, 1999; Stokes and Clark, 2002).11

Glacial bedforms are generally argued to be created directly by overriding ice flow (e.g., Benn12

et al., 2006; King et al., 2007; Clark, 2010; Ó Cofaigh et al., 2010), although an origin through13

sub-glacial floods has also been proposed (e.g., Shaw, 1983; Shaw et al., 2008). Due to their14

prevalence, drumlins have been most heavily studied, but even these remain enigmatic with their15

exact mode of formation still undetermined (e.g., Smalley and Unwin, 1968; Menzies, 1979b; Shaw,16

1983; Boulton and Hindmarsh, 1987; Hindmarsh, 1998; Fowler, 2000; Clark, 2010).17

The shapes of bedforms (e.g., height H , width W , length L, and orientation) preserve key18

information about the dynamics and mechanics of former ice sheets, an important guide as to19

how existing ice sheets will behave in the future. Observations are typically used descriptively to20

indicate properties such as ice extent or flow direction (e.g., Hollingsworth, 1931; Livingstone et al.,21

2008), for example to assess consistency with numerical ice sheet models (e.g., Evans et al., 2009),22

and only rarely to directly consider the mechanics of ice-sediment interaction and flow (Chorley,23

1959; Morris and Morland, 1976; Smalley and Piotrowski, 1987; Smalley and Warburton, 1994).24
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Indeed, few theories of subglacial bedform genesis are yet to explicitly engage with empirical data25

on their shape and size. One that has made predictions of bedform dimensions is the instability26

theory (e.g., Hindmarsh, 1998; Fowler, 2000; Stokes et al., 2013), but it only considers them as27

quantitative constraints in the broadest sense, as an order of magnitude scale ground-truth (Dunlop28

et al., 2008; Chapwanya et al., 2011). A disconnect therefore exists between glacial geomorphology29

and glaciological modelling (e.g., Bingham et al., 2010).30

As a step towards forming a link between the subglacial bedform record and the nature and31

mechanics of ice flow, this paper presents a descriptive development: a new statistical charac-32

terisation of bedform populations. The need for an improved description is two-fold. Firstly,33

population metrics should capture the signal of ice-sediment interaction, not artefacts of measure-34

ment or preservation. Secondly, individual population metrics should ideally capture key aspects35

of data allowing inter-comparison of data types, localities, and palaeo-environments. The origin36

and nature of potential artefacts and the implications of this for current metrics are considered in37

Section 2. It is demonstrated graphically in Section 3, using semi-log plots, that the size-frequency38

distributions of key properties (e.g. H , W , L, and L/W ) of subglacial landforms are exponentially39

distributed above the mode. Following this, a simpler objective parameterisation of the data is40

created in Section 4 which consists of individual metrics better suited to isolating characteristics41

of bedform populations relating to ice flow. Then, by collating data sets for a variety of areas,42

Section 5 demonstrates the general applicability of the proposed description to subglacial bed-43

forms. Finally, in Section 6, the selection of the exponential-based parameterisation is discussed44

and initial thoughts are offered on implications for the process of drumlin genesis.45

2. Quantifying subglacial bedforms46

Subglacial bedforms have been quantified in a variety of ways, both as individuals and popu-47

lations (e.g., Gardiner, 1983; Smalley and Warburton, 1994). Individual forms vary considerably,48

even within a locality (e.g., Hollingsworth, 1931), so they are likely to best reflect flow regimes49

when grouped into spatially and temporally co-located flow-sets. Thus, quantifications for popu-50

lations (e.g., Fig. 1a) are considered here, although error bars for parameters may be large enough51

to warrant particular attention for small populations (i.e., n ! 50). For clarity we use the terms52

‘metric’ or ‘parameter’ exclusively to refer to quantification statistics such as the mean or mode,53
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as distinct from measurements to which they are applied such as L or ‘aspect ratio’ (i.e., L/W ).54

Populations of observations from which the metrics are calculated are the final products of ap-55

plication of three compounding processes. Artefacts are due to i) measurement, ii) post-glacial56

preservation and iii) the process of glaciological interest i.e., bedform genesis itself. The artefacts57

must be accounted for to reveal information about ice-sediment interaction. In light of this, each58

metric has its strengths and weaknesses as a descriptor. Consequently, in attempting to faithfully59

capture process-related characteristics of the bedform populations it is necessary to choose metrics60

that will be minimally sensitive to systematic biases.61

Measurement is the translation from the real, currently observable landscape to geometric quan-62

tities describing bedforms (e.g., H and L). In terms of size-frequency populations, this presents63

three specific issues concerning the efficacy of the measurements taken:64

1. Effect of source data on mapping (e.g., Smith and Clark, 2005): Smith and Wise (2007)65

outline the primary controls on the ‘detectability’ of landforms mapped from satellite imagery66

or visualised digital elevation models (DEMs); namely solar elevation, solar azimuth and67

sensor spatial resolution. These factors resolve to sampling issues: there exists a population68

of phenomena from which our observational method necessarily involves the selection of a69

subset. Solar azimuth can, for instance, systematically reduce all L values. Perhaps the70

best understood sampling bias is sensor resolution; small landforms are not detectable in71

coarse, low resolution data. Resolution therefore may contribute towards the low number72

of small bedforms (e.g., Fig. 1a) by imposing a threshold below which sampling becomes73

more difficult. Spagnolo et al. (2012), for instance, note this with respect to H in previous74

databases (Francek, 1991; Wysota, 1994; Hättestrand et al., 2004), although inability to75

observe in no way precludes the landforms not being there in the first place. Without knowing76

the actual population or error associated with the sampling, true values for statistics derived77

from the whole population cannot be ascertained with certainty.78

2. Quantification method: even for a given mapped outline and digital terrain model (DTM),79

a variety of algorithms exist to compute a bedform’s properties (H , W , L, and volume V )80

(e.g., Spagnolo et al., 2010; Hillier and Smith, 2012). Values will vary, e.g. for H (Spagnolo81

et al., 2012), depending upon the method selected. Identical geometries, however, will be82

affected by the same proportion at all scales. Removing post-glacial clutter (e.g., trees) to83
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create a DTM will affect H for mapped forms (Hillier and Smith, 2012). This has not been84

systematically studied, but it seems probable that bedforms with small heights will more85

commonly be rendered unmappable.86

3. Subjectivity of interpretation: Manual mapping of bedforms is subjective and reliant upon87

the expertise and experience of the mapper. Whilst the process is not objectively repeatable,88

procedures are employed to maintain consistency and minimise bias (e.g., Smith and Clark,89

2005; Hughes et al., 2010). Interpretations may, perhaps inevitably, vary more towards both90

perceived limits of the size range of a bedform, creating the largest uncertainties there. This91

subjectivity may, in future, be alleviated by automated mapping (e.g., Hillier , 2008; Saha92

et al., 2011; Kalbermatten et al., 2012; Rutzinger et al., 2012), but most benefits depend93

upon agreement being reached on an exact formal definition of each bedform (e.g., Evans,94

2012).95

After measurement, post-glacial preservation rates also affect bedform populations. If the mea-96

surement issues could all be accounted for, it would be possible to interpret frequency information97

across the size spectrum in terms of physical processes. Even then, however, a low prevalence98

for palaeo-landforms does not necessarily mean they are not abundant in active environments.99

Relative abundances could still be an artefact of post-glacial degradation that varies with size,100

e.g. diffusive hillslope-type erosion (e.g., Putkonen and Swanson, 2003). The preservation of small101

features, flutes for instance, is thought to be low. Therefore, to best interpret mapped subglacial102

bedforms in terms of subglacial processes, it is likely important to use measures least affected by103

all the issues identified above. At the very least, doing this has no detrimental effects.104

In terms of a size-frequency distribution, non-glacial distortions may be summarised as follows105

(also Fig. 1b). Artefacts affecting all sizes by a single factor do not change the distribution’s106

shape, and are a minor issue. Most seriously, there is potentially significant undersampling of small107

features due to several limitations in source data, post-glacial erosion, perhaps the quantification108

method, and potentially the views of an interpreter when mapping landforms. This latter factor109

also introduces uncertainty into the upper end of the size distribution, potentially increasing or110

decreasing detections or introducing outliers by including genetically unrelated landforms. So,111

‘good’ metrics will be insensitive to the potential absence of small landforms and either not be112

unduly influenced by outliers at the upper end of the size range or provide means to identify and113
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exclude them. They should also not, if possible, depend on sample size or arbitrary choices. For114

utility, it is also desirable to have as succinct yet complete a description of the distribution as115

possible.116

Currently both simple (H , W , and L) and derived morphometric measures such as ‘elongation’117

(i.e., L/W ) are collated for populations (e.g., Hoppe and Schytt, 1953; Boulton, 1976; Stokes and118

Clark, 2002; Dunlop and Clark, 2006; Clark et al., 2009; Smith et al., 2009; Phillips et al., 2010).119

Up to eight parameters or metrics (e.g., Clark et al., 2009) are used to describe each measure (e.g.,120

Fig. 1a): minimum, maximum, mean, standard deviation, modal class, median, skewness and121

kurtosis. Whilst undoubtedly useful for initial assessment, the number and nature of these metrics122

is not necessarily ideal for describing populations. Problems include: (i) extreme values depend123

upon the number of observations (unless estimated using appropriate statistical techniques e.g.,124

van der Mark et al. 2008), observational completeness, and distribution shape, (ii) modal class is125

dependent upon the selection of a bin width, and (iii) the use of all of four moments (i.e., mean,126

standard deviation, skew and kurtosis) to describe the shape of the distribution; comparisons127

between shapes are more straightforward for single characteristic shape parameters. Lastly, (iv)128

the mean is affected in the first order by the steepness and length of the right-hand tail (e.g.,129

Fig. 1a), the location of the ‘roll-over’ at the mode, φ, and any outliers. Thus, this ensemble130

of metrics is somewhat unsatisfactory, primarily because smaller bedforms may be substantively131

under-represented (Fig. 1b), perhaps leaving larger bedforms best reflecting glacial processes (Fig132

1b). A simpler description may be possible, however, whose parameters likely better relate to ice–133

sediment interaction and only requires the assumption that larger features are accurately observed.134

This would be a weaker requirement than that of accurate quantification at all sizes implicit in135

present analyses.136

3. Graphical investigation137

Appropriate parameterisation of a distribution requires knowledge of its form. Many univariate138

statistical distributions contain exponential or power-law elements (e.g., Leemis and McQueston,139

2008). Exponential functions or forms plot as straight lines on semi-log plots, as do power law140

relationships on log–log ones. These plots are therefore useful in preliminary investigations of141

the characteristics of observed data. This section illustrates the utility of these approximations142
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to subglacial bedform data through different plots of L for one data set relating to one type of143

bedform.144

Through the production of a semi-log histogram (Fig. 1b) and plotting a linear fit through the145

data (see Section 4) above the modal ‘roll over’, it is possible to visually demonstrate that counts146

of drumlin lengths above the mode conform to an exponential distribution. Though being non-147

linear, Fig. 1c clearly demonstrates that no large part of the the distribution is power-law. Power-148

law segments in distributions are typical of fractals such as topography (e.g., Mandlebrot, 1983;149

Weissel et al., 1994; Cheng and Agterberg, 1996), natural phenomena (e.g., floods, earthquakes, and150

wildfires) (e.g., Main et al., 1999; Malamud et al., 2005; Kidson et al., 2006; Malamud and Turcotte,151

2006), and linked to the notion of self-organising criticality in systems (e.g., Bak, 1996; Tebbens152

et al., 2001). Importantly, Haschenberger (1999) empirically relate the observed exponent of153

exponential distributions for fluvial bedforms to estimates of basal shear stress in that environment.154

Gradients of the fitted lines such as that in Fig. 1b may therefore not only capture an important155

property related to flow but also encapsulate it in a single value, facilitating easy intercomparison156

between data sets. Descriptively, e.g., in Fig. 1b, the exponential only applies to data above157

the mode. There are no grounds for plotting it at smaller sizes other than extrapolation. In the158

simplest possible model, continuing the trend may be seen as a continuation of the signature of159

a subglacial process, but there is no evidence here to support this. As noted in Section 2, the160

difference between data and extrapolation due to i) measurement: data, sampling and mapping161

fidelity, ii) possibly post-glacial preservation or iii) the roll-over being a signature of the processes162

of ice-sediment interaction resulting in smaller features not being created subglacially in the first163

place i.e., their genesis. Insufficient work has been published to make definitive, comprehensive164

comments upon which one dominates, but there are strong hints that commonly observed bedforms165

lack numerous smaller versions. For instance, in extension of the results of Smith and Wise (2007),166

Clark et al. (2009) suggest that a clear lower bound for W in UK drumlins is unlikely to be167

an artefact of imagery resolution, attributing it to glacial processes (i.e., smaller forms are less168

commonly created). For the smallest bedforms this is very probably true, and the exponential169

should certainly not be extended to the y-axis. Consider drumlins; size observations from recently170

deglaciated terrain (Johnson et al., 2010) conform with palaeo data, and very small drumlins are171

not reported. However, measurement and preservation issues seem to affect significant fractions172
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of drumlins that are larger and yet below the mode (Smith et al., 2006). So, speculatively, the173

existence of a well-defined modal peak is a signature of physical processes. However, its location174

is not yet necessarily well determined, with the possibility that smaller features are not recorded.175

As such, non-glacial factors may have a large effect on measures such as the mean, particularly for176

mapping in areas where high-resolution DEMs are not available.177

4. Objective parameterisation178

Given that bedform size-frequency distributions appear well described by a right-hand expo-179

nential decay above the mode and a roll-over to low numbers below it (Fig. 1), a description180

using three parameters is proposed that is designed to best represent subglacial processes, facili-181

tate comparison between regions and data sources, and whose computation is readily accessible to182

geomorphologists. The selected metrics to approximate the distributions, (see Fig. 2c), are:183

1. Gradient (λ): magnitude of the gradient of the fitted line (e.g., Fig. 1b), which is the exponent184

of the decay (Eq. 2 in Appendix). This characterises the part of the distribution that is185

least likely affected by non-glacial factors. Larger bedforms will have greater endurance in186

the landscape and the observed frequency should be close to the expected frequency. No187

disproportionate weight in the fit is placed on the largest features whose interpretation may188

be uncertain (e.g., Fig. 2f), and features unrelated to the distribution can be identified and189

excluded.190

2. Mode (φ): estimates the point at which bedforms are no longer representatively sampled,191

non-glacial factors become dominant, or ice-flow related behaviour somehow changes in its192

nature or effect. If many smaller features are missed, it will be influenced (e.g. Smith and193

Wise, 2007), but is much more robust than the mean or median.194

3. Intercept (β0): intercept of the exponential with the y-axis represents the spatial density of195

the landforms (i.e., number per unit area) in a way that is insensitive to the efficiency with196

which small ones are detected, unlike the mean (e.g., Smalley and Unwin, 1968; Miller, 1972;197

Menzies, 1979b). Whilst the area, A, of a bedform field remains inexactly defined, the use198

of this for subglacial bedforms is limited at present, but is a key parameter compared for199

seamount distributions (e.g., Jordan et al., 1983; Scheirer and Macdonald, 1995; Hillier and200

Watts, 2007) illustrating its potential.201
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It is anticipated that λ values, either individually or when plotted against each other for H , W202

or L (e.g., x–y or ternary diagrams), will be a powerful means of characterising landforms. This203

could, for example, contribute to the debate as to whether bedforms constitute a continuum (e.g.,204

Rose and Letzer, 1977; Rose, 1987; Clark, 1993; Clark et al., 2009), with data points for localities205

for each bedform type either forming separate domains or a merging in a progression from one to206

the other. Using λ should make such analyses robust to the dataset or resolution used. Note also207

that λ will not vary with the size of the data set. φ is a natural measure of unimodal bedform208

distributions and is a useful metric whatever it is thought to represent. For instance, φ is a good209

indicator of the size at which imperfect detection arises perhaps due to data type where this210

dominates (e.g., Smith and Wise, 2007), and will reflect glacial processes where measurement is211

not an issue.212

The question then is how to estimate values for these metrics. Various methods to estimate213

parameters of plotted data exist (e.g., Cornell and Speckman, 1967); fitting a line (e.g., by ordinary214

least squares – OLS) to counts from a selected portion of a histogram considered to be linear may215

be done for simplicity (e.g., Wessel, 1997), but is not optimal (e.g., Smith and Jordan, 1988;216

Solow et al., 2003; Bauke, 2007). OLS fits of power-laws to log–log frequency plots, for instance,217

are known commonly to introduce significant, systematic, unpredictable biases into estimates of218

gradient (e.g., Newman, 2005; Clauset et al., 2009). The results also depend on i) bin width219

and construction (e.g., Newman, 2005) and ii) range chosen. An insight into the limitations of220

applying OLS to plots such as Fig. 2 may be gained by considering that it fits to the x–y plot221

rather than the underlying data, and each point on the plot is assigned equal weight and accuracy222

despite containing a different number of data, although larger counts tend to be less variable. An223

objective, statistically valid method based upon the underlying data (i.e., not fitting a frequency224

plot) that minimises arbitrary choices is proposed to estimate λ, φ and β0. The method of moments225

(e.g., Freund and Walople, 1980, p. 325) is used to estimate the mode using a Gamma distribution,226

then the gradient obtained through a maximum likelihood fit (e.g., Freund and Walople, 1980, p.227

327) of an exponential distribution for data larger than φ. This may be performed without any228

specialist statistical software, requiring only the calculation of the mean and standard deviation229

(i in Appendix). Not only is this approach relatively straightforward, but with minor adaptation230

it allows parameter estimation from the published literature using data presented in histograms231
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(iii in Appendix), although it is not able to recover information lost during binning. In fact, data232

digitised from published histograms were deliberately used in Fig. 2 to specifically illustrate this233

point.234

The fitted lines (solid lines in Figs. 1 and 2) show the efficacy of the method, and whilst the235

Gamma distribution shown by dashed lines provides a poorer fit to the population, it is able to236

estimate φ particularly well. In Fig. 2a, φ is estimated as 424 m (3 s.f.), inside the range of the 393–237

441 of the modal bin of Clark et al. (2009). The same is true forW andH with 177 m inside 173-183238

and 3.7 m inside 3.5–4.0, respectively (Fig. 2b,c). Note that no selection of a bin width is necessary.239

This approach of fitting a line to data larger than an objectively determined value for φ overcomes240

ad hoc criteria previously used to determine the range of data fitted (e.g., n in bin > 5; Rappaport241

et al., 1997). Furthermore the method outlined here avoids the systematic overestimation of242

λ that occurs when it is estimated by fitting a Gamma distribution (ii in Appendix). Once243

the exponential distribution is fitted, β0 is calculated by simple geometry. A worked example244

detailing the procedure is provided in a Microsoft Excel spreadsheet as Supplementary Material245

accompanying this paper. In anticipation that readers may want to compare bedform populations,246

a method of statistically evaluating whether λ is significantly different for those populations is247

given in iv) in Appendix248

5. Prevalence of the exponential tail249

Fig. 2 demonstrates that a form of size-frequency distribution with roll-over and right-hand250

exponential tail is typical of subglacial bedforms and derived measurements. Data for Fig. 2 were251

selected to demonstrate this via a number of specific points. Fig. 2a,d depicts an exponential tail252

for large samples (n > 10, 000) of the same measure, L, of a particular bedform (i.e., drumlins) in253

two discrete study areas. Evidence for the form is therefore not location dependent, and it may254

occur wherever bedforms do. Fig. 2a,e,g,h shows the output of at least four independent mappers255

demonstrating that the form is not a result of an individual’s style or preference. Independent256

mapping of a sub-area of Fig. 2c is shown in Fig. 2e for the same measure of UK drumlins,257

H . So, the occurrence of the form over large areas is not purely the result of aggregation, but258

is directly related to and applicable to individual flow sets. Furthermore, Fig 2e illustrates the259

form’s utility for even a relatively small sample (n < 200), although the error bars for descriptive260
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parameters are larger; λ = 0.209 ± 0.003 m−1 2σ and λ = 0.238 ± 0.024 2σ for Fig. 2c and Fig.261

2e, respectively, using the estimation method in Section 4. To be explicit, Fig. 2 demonstrates262

that the form applies to all glacial bedforms considered in this paper for which adequate data are263

available for assessment with drumlins in Fig. 2a–f, ribbed moraine in Fig. 2g and MSGL in Fig.264

2h. Tentatively, this description may also apply to flutes (e.g., H), but evidence is limited (i.e.,265

n ∼ 50) (e.g., Hoppe and Schytt, 1953; Boulton, 1976) leading to much scatter in semi-log plots.266

Despite the weight of evidence presented in Fig. 2, it is important to note that the fit to the267

right hand tail is neither perfect nor ubiquitous. Firstly, then, it is notable that the plots (Fig.268

2) show some scatter for large bedforms, and exponentials fit imperfectly. Most data were, quite269

deliberately, digitised from published histograms, but its presence in Fig. 2h demonstrates that270

errors due to this re-use of data are not the main cause. Perhaps it originates from uncertainty271

in categorising and thus selecting larger forms. Secondly, some data sets show distinct deviations272

from a linear trend on semi-log plots. Height data from northern Sweden (Hättestrand et al.,273

2004; data pers. comm.), where ‘crag-and-tail’ bedrock-influenced drumlins dominate, show a274

distinct bend in their trend on a semi-log plot (Fig. 3a). Why? Few published bedform frequency275

plots exist to assess this. Elongation ratio (i.e., L/W ) data digitised and re-plotted from Fig. 2276

of Phillips et al. (2010) also shows trends of two distinct gradients. These data, however, come277

from neighbouring regions in which Phillips et al. (2010) consider the influence of bedrock in278

creating landforms. Fig. 3b shows a steep trend (blue line) in Zone 1 ‘dominated by an extensive279

drumlin field’ and a shallower one in Zone 2 (red line) where landforms are of ‘ice moulded bedrock’.280

Speculatively, it seems possible that bedrock influence can create geometric extremes beyond those281

of till-dominated landforms consistent with local formational conditions. Thus, the Swedish data282

may be exhibiting the signature of bedrock influence. Note the contrasting studies in Fig. 2 (e.g.,283

Clark et al., 2009; Spagnolo et al., 2012) pointedly seek to exclude bedrock influenced landforms284

from their drumlin catalogues, as do most studies (cf. Stokes et al., 2011). More generally, distinct285

trends will likely exist if a plot contains data aggregated from distinctly different flow regiemes,286

perhaps forms attributed to streaming ice (e.g., Fig. 2h) and ‘typical’ drumlins (e.g., Fig. 2d).287

In summary, an exponential right-side tail is typical, and perhaps characteristic, of till-dominated288

‘emergent’ subglacial bedforms (Clark, 2010), and the spread of observations is sufficient to suggest289

that this is a general characteristic. The consistency of form is remarkable considering the gradient290
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and perhaps mode likely change with local conditions.291

292

6. Discussion293

6.1. Choice of parameterisation294

This paper concerns the description of subglacial bedforms and, in particular, how to most295

usefully quantify populations within an area. The approach taken is that size-frequency distribu-296

tions may contain information not best captured by currently used metrics. Primary difficulties297

for current statistical metrics in reflecting ice-sediment interaction are that many are not natural298

descriptors of heavily skewed distributions and are sensitive in the first order to imperfect detec-299

tion rates for smaller features. Additional computational issues exist for some in that they are300

dependent upon sample size (e.g., min., max., range) or bin selection for aggregation (e.g., mode).301

Size-frequency data for measures of co-located subglacial bedforms display linearly on semi-log302

plots (Figs. 1 to 3). This demonstrates that they are commonly distributed exponentially, at least303

above their modal values. Noting this form creates the possibility to design a simpler description.304

The simplest description would be an exponential probability density function. This has been305

used to characterise domains of submarine volcanoes (e.g., Jordan et al., 1983; Scheirer and Mac-306

donald, 1995; Hillier and Watts, 2007) and fluvial scour depths (Haschenberger, 1999), but fre-307

quencies of these do not roll-over at small sizes. The single parameter, the exponent λ, could308

not capture this. In fluvial geomorphology a variety of two-parameter distributions (e.g., Gamma,309

Gaussian, Gumbel, Log-normal, and Weibull) have been evaluated for their potential to describe310

bedform size-frequency populations (Leemis and McQueston, 2008; van der Mark et al., 2008).311

The distributions approximate, with variable degrees of success, the shape of the size-frequency312

distributions of the populations including a roll-over. Whilst entirely statistically valid, their utility313

when applied to subglacial landforms may suffer as both their parameters are influenced by data314

across the whole size range. Ideally, for the purposes of description, the characteristics of the right-315

hand tail that likely best represent subglacial processes should not be influenced by potentially316

unmapped small features.317

The method proposed here minimises the influence by fitting an exponential distribution, λ, to318

only data above the mode, φ: two shape parameters. Admittedly, λ and φ incompletely describe319

observations below the mode, giving only its starting point, but this is where observations are least320

12



securely related to glacial processes. λ represents a part of the distribution least likely affected by321

factors unrelated to ice-sediment interaction, and φ ensures that data selection for its calculation is322

objective. If features larger than the mode are unreliably detected it may not be entirely accurate,323

but biases due to this will be no worse than for other parameterisations. Synthetic landscapes324

(Hillier and Smith, 2012) may allow this to be quantified. β0 is an additional scaling factor325

normalised for area to make it a useful measure i.e., of landform spatial density.326

6.2. Utility of the parameterisation327

Typically, in parameterising data, there is a trade-off between computational simplicity and328

ease (e.g., requirement for statistical software), and objectivity and rigour. This is optimised in329

the method suggested here as no subjective choices (e.g., bin width) exist: it fits underlying data,330

not a plot, and the whole calculation is possible without specialist software. It requires only the331

calculation of means and standard deviations (see i in Appendix or the accompanying worked332

example using Excel. These calculations may be biased by large, mis-identified outliers, but these333

are rare and the exponential form provides a mechanism for assessing if observations are consistent334

with the bulk of a population, leading to an iterative fitting solution if necessary. The method to335

estimate λ, φ and β0 demonstrably (Fig. 2) works on both raw data and those already derived336

from published histograms.337

The parameterisation proposed is entirely descriptive and non-genetic in that it is not neces-338

sarily related to any formational process: the description will be valid whether or not future work339

identifies it as a signature of any particular ice-sediment process. Its non-genetic nature is useful340

in a characterisation as it avoids tying it to process-related debates. It, and particularly λ, not341

only has the power to present a single, generally applicable measure of bedforms, but also apply it342

to a wide range of published size catalogues, mapped from data of various types and ages, allowing343

inter-comparison. For instance, flow sets can now be more usefully compared with each other344

across all deglaciated regions and with the output of numerical ice sheet models (e.g., flow veloc-345

ity or basal shear stress). A method of determining whether λ is significantly different between346

flow sets is also given. With the same governing equations proposed to control the evolution of347

bedforms created by ice, water or wind (e.g., Fowler, 2002), and a similarity between glacial (e.g.,348

Fig. 2) and fluvial size-frequency distributions (e.g., van der Mark et al., 2008), applications for349

the parameterisation may also exist for analogous fluvial and aeolian bedforms.350
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6.3. Bedform genesis351

Perhaps the most exciting aspect of the work is the future potential to use the explanatory352

power of the exponential characterisation in terms of understanding physical processes that are353

operating. Some insights, however, are feasible now. The caveat is that caution is necessary as354

multiple processes or histories can lead to the same statistical distributions (e.g., Tuckwell, 1995;355

Beven, 2006; Newman, 2005).356

Tentatively, it is possible to suggest that the similarity between distributions for different357

bedforms indicates some commonalities between processes creating them and progressions in the358

processes between the bedform types. In depth modelling of the underlying processes of bedform359

genesis is beyond the scope of this work, but the few indicators available suggest that λ may360

directly reflect aspects of physical processes. Specifically, Haschenberger (1999) empirically relate361

λ for fluvial scour depths to basal shear stress in that environment. Furthermore another simple362

form of size-frequency distribution, the power-law, has been interpreted and modelled in terms363

of process (e.g. Newman, 2005), for instance ‘self-organised criticality’ (e.g. Bak, 1996; Tebbens364

et al., 2001). ‘Self-organised critically’ involves a set of simple rules and randomness acting at365

multiple locations that combine to produce characteristic size-frequency distributions. Subglacial366

bedforms originating in the presence of random variations at multiple locations may have a similar367

ability to produce characteristic distributions. Indeed, fluvial bedforms with similar heavy-tailed368

size-frequency distributions (e.g., van der Mark et al., 2008; Singh et al., 2011) are considered369

to originate in random fluctuations in turbulent flow (e.g., Fredø se, 1996; McElroy and Mohrig,370

2009; Coleman and Nikora, 2011) with H and L described there as ‘stochastic variables’ (van der371

Mark et al., 2008). Similarly, ice-sediment interaction may be fundamentally stochastic in nature372

i.e., bedform growth may be a process involving the convolution of randomness with simple rules373

about the rate of growth. This is consistent with geophysical studies that have revealed spatio-374

temporally variable bed conditions (Vaughan et al., 2003; Smith, 2006; Murray et al., 2008) and375

subglacial landforms (King et al., 2007; Smith and Murray, 2009) that evolve rapidly on sub-376

decadal timescales (Smith et al., 2007; King et al., 2009) under Antarctic ice streams. It is unclear,377

however, whether this variability at the bedform scale originates dominantly in the dynamics of378

ice-sediment-water interactions (e.g., water incursions or basal stick-slip events) or those between379

bedforms. This stochastic approach contrasts to a deterministic view whereby proto-bedforms of380
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known size and shape always evolve similarly with time to a predictable final morphology; perhaps,381

each bedform’s size may be individually limited by local physical conditions that vary in space such382

that an exponential distribution is created. It is not immediately clear, however, how neighbouring383

bedforms of dramatically different sizes, as commonly observed, originate in this theory, although384

it is likely that bedforms are ‘born’ at different times (cf. Smith et al., 2007), even within a single385

flow-set. So for this reason, and by a loose analogy with the processes creating exponential tails386

for fluvial bedform populations, we suspect that conditions that give rise to subglacial bedforms387

are fundamentally variable and stochastic.388

Many possible processes can be conceived in which bedforms are created and destroyed under389

ice using randomness and growth with various rate characteristics. A limited number, however,390

will produce exponential size-frequency distributions. The observations are therefore a constraint391

on models of bedform genesis. For instance, can stochastic variability be incorporated into till392

instability theory of Hindmarsh (1998)? Considering the stability or otherwise of bedform pop-393

ulations with respect to time may also prove valuable. Are bedforms in steady state dynamic394

equilibrium? If so, λ values may relate to properties of ice flow, such as velocity. Alternatively, if395

size-frequency distributions continue to evolve with time, φ and λ might combine to provide some396

constraint upon both the rate and duration of bedform growth. Finally, note that for accurately397

measured and well-preserved size-frequency distributions, a different two-parameter distribution398

(see Section 6.1) may assist in providing further constraints by describing the roll-over as well as399

the exponential tail. So, we suggest that future progress will come through understanding the400

observed exponential in terms of the statistics and mechanics of ice flow.401

7. Conclusions402

This paper presents a simple yet robust descriptive parameterisation that can be used to sum-403

marise and compare populations of subglacial bedforms, e.g. in flow-sets. Whilst a variety of404

distributions have been used in other disciplines, an exponential characterisation is appropriate in405

this area and offers potential explanatory power in terms of the processes in operation. Through406

plotting observations of landform size, specifically for ribbed moraine, drumlins and MSGL, and407

for populations of different sizes, the following main conclusions may be drawn:408

• Till-dominated subglacial bedform size-frequency distributions characteristically have an ex-409
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ponential right-hand tail.410

• Semi-log plots are a useful tool with which to initially assess this since exponentials plot as411

straight lines.412

• The distributions may be rigorously, objectively and practically approximated by using the413

method of moments and the Gamma distribution to estimate the mode φ, and then using a414

maximum likelihood method to estimate the exponent λ (i.e. gradient of the semi-log plot)415

for measurements larger than the mode.416

• For observations below the mode, a combination of possible sampling error and probable417

absence means that there is some uncertainty here depending upon the data type used for418

mapping.419

• λ is likely to reflect glacial processes significantly better than previously used metrics.420

This description uses three parameters, rather than the selection of up to eight currently used.421

This simplicity makes it a preferable approach to developing understanding in unresolved areas422

such as the subglacial bedform continuum or spatial patterns of palaeo-flow. Future insights may423

come through the comparison of the spatial distribution of observed λ with the output of numerical424

ice sheet models, or through creating statistical models to link the mechanics of physical processes425

to observable characteristics of bedform populations. Indeed, it is consistent with the observed426

exponentially-tailed distribution that the growth and development of subglacial bedforms may be427

fundamentally stochastic in nature and involve the convolution of randomness with some, as yet428

unknown, simple rules about the rate of growth.429
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Appendix434

i) Parameterisation Method435

The method proposed below is not the only possible solution (e.g., Fraile and Garcia-Ortega,436

2005), but is objective, statistically valid, and easily implemented. Firstly, determine the range437
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of the measured variable, x, that conforms to the exponential distribution: the linear part of the438

semi-log plot (Section 3). The mode is a visually reasonable, objective, estimate of the lower end439

of this range. Despite some previous practice to the contrary (e.g., Abers et al., 1988; Smith and440

Cann, 1992; Rappaport et al., 1997), all data of larger x are included here. To calculate the mode,441

based on the underlying data xi where i = 1 . . . n and n is the number of individual observations, a442

Gamma distribution is used. A Gamma distribution is a two-parameter distribution (α,λg) which443

tends to an exponential at large x, but which rolls over to zero at small x, with a probability444

density function (pdf) (Tuckwell, 1995, , p. 62):445

f(x) =
λα
g

Γ(α)
xα−1e−λgx , x > 0 ;λg,α > 0 (1)

Fig. 2 shows that the Gamma distribution approximates φ well. Maximum likelihood estimators446

(MLEs) of α and λg require numerical techniques, but may also be estimated by the method of447

moments as α̂ = (x̄/sx)
2 and λ̂g = x̄/ (sx)

2 where x̄ is the sample mean, and sx is the sample448

standard deviation (Tuckwell, 1995, , p. 326). The mode of the Gamma distribution, φ, is then449

(α̂− 1)/λ̂g . For length, L, of UK drumlins this is shown in red on Fig. 2a, as 424 m (3 s.f.) and450

is inside the range of the 393–441 modal bin of Clark et al. (2009).451

Now, determine the gradient and intercept based upon data of size greater than φ. Data are452

fitted as a left-truncated exponential, which is equivalent to an exponential shifted by φ. Let453

ki = xi−φ, and then for k > 0 the MLE estimator of the gradient of the exponential, λ̂, is λ̂ = 1/k̄454

where k̄ is the mean of the data (Tuckwell, 1995, , p. 329). This fully describes the pdf of the455

exponential distribution, which is defined by the following equation and has an area of 1 unit under456

its curve (Tuckwell, 1995, , p. 86 and 196).457

458

f(x) = λe−λx (2)

459

Histograms and frequency plots are considered inferior to pdfs by many statisticians, but are460

common in the wider literature. So, how are the results related to the more familiar histogram461

(Figs. 1 and 2) deliberately used in this paper? The short answer is the line to be plotted on a462

histogram is given by the following equation463
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y = λ̂x+ ln(nφλ̂wb) + λ̂φ (3)

where λ̂ and φ have been calculated as above, wb is bin width, nφ is the number of measurements464

greater than φ, and x and y are the variables relating to the axes of the semi-log plot.465

To calculate the equation of the best-fit line for a frequency plot, firstly obtain the x-intercept466

x0 through setting the exponential distribution equal to zero. Scaled up to an area of nφ under467

its curve, the equation for the linear part of the histogram becomes f(x) = nφλe−λx. Taking468

logs and setting this to zero gives a horizontally shifted x-intercept of ln(nφλ̂)/λ̂. This becomes469

x0 = [ln(nφλ̂wb)/λ̂] + φ when bin width wb is used to multiply up for the conversion from count470

density (per unit x) to count within bins and the line is un-shifted and put back to its original471

location. With x0 and λ estimated for the line, y0, the y-intercept (i.e. y at x = 0) is by simple472

geometry λ̂x0. The equation of the line is therefore y = λ̂x+ λ̂x0 or y = λ̂x+ ln(nφλ̂wb) + λ̂φ.473

By plotting this equation it appears that the data are well-approximated (Fig. 2), and no474

arbitrary upper cut-off is required unless data clearly outlying from the distribution are known475

e.g. L > 4 km; an iterative technique may be used, perhaps excluding data by the probability that476

they could exist in the fitted distribution, calculated from the pdf of the exponential. The spatial477

density of landforms, β0 is y0/A, where A is the area of the study (km2), although rigorous use of478

this will require work to define criteria by which to calculate A.479

ii) Using Gamma distribution480

Paola and Borgman (1991) estimated λ for fluvial bedforms by fitting a Gamma distribution.481

This assumed that fitted Gamma distributions become linear on semi-log plots after the mode;482

Fig 2b illustrates that this is not the case. The fitted distribution (dashed line) systematically483

increases with x and λg and so the gradient at large x is not reached on the plot; λ is systematically484

overestimated (λg = 0.00589 whilst λ= 0.00313 for calculations as in Section (i) of this Appendix).485

Furthermore, this approach was not preferred since Fig. 2 a–c show that the gamma distribution486

(dashed line) fits more poorly than the exponential (x > φ) and the fit gets poorer as α increases487

from 1 (exponential distribution): αL =3.58, αW = 6.68, αH = 2.11. Namely, the extent of488

over-estimation depends upon the overall shape of the distribution, which is not desirable.489

iii) Parameterising histogram data490
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Using, n underlying data points, xi, the mean, x̄, and standard deviation, sx, of the sample are491

calculated using standard formulae. For n data with counts, cj , of bins at xj the related equations492

used are:493

x̄ =
1

n

∑

cjxj (4)

494

495

sx =

√

1

n− 1

∑

cj (xj − x̄)2 (5)

496

iv) Comparing populations or sub-populations497

Confidence intervals can be determined for λ̂. Strictly, λ̂ is distributed as 2nλx̄ ∼ χ2
2n, assuming498

φ correctly delimits the linear portion of the size-frequency distribution. However, with large499

n, usually > 30, (i.e. using the central limit theorem) the sampling distribution of λ̂ becomes500

approximately normal (Tuckwell, 1995, , p. 255–9). So, for large n an asymptotic unbiased501

approximation to the variance of a MLE estimate of a parameter may be determined using the502

Cramer-Rao lower bound (Tuckwell, 1995, , p. 313–4), giving503

504

λ ∼ N(λ̂,
λ̂2

nφ

). (6)

Stated more fully, the exponent of the observed sample (the gradient of the linear part of the505

semi-log plot) is distributed according to the normal distribution with a mean of λ̂ and variance506

of λ̂2/nφ. The standard error of the sampling distribution of λ̂ for an exponential distribution is507

508

s #

√

λ̂2

nφ

(7)

509

which, using standard tabulations for the normal distribution (Tuckwell, 1995, , p. 520), gives510

a 95% confidence interval of511

512

±1.96

√

λ̂2

nφ

. (8)

513
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This then allows the difference between two sub-populations with estimated gradients to be514

assessed using a standard t-test. If independent random samples, of sizes n1φ and n2φ values above515

modes φ1 and φ2, are drawn from distributions N(λ1, σ2
1) and N(λ2, σ2

2), with standard deviations516

unknown a priori, H0 : λ1 = λ2 can be tested using the test statistic517

518

tn1φ+n2φ−2 =
λ̂1 − λ̂2

sp
√

1
n1φ

+ 1
n2φ

(9)

519

where sp is the pooled variance520

521

sp =
(n1φ − 1)s21 + (n2φ − 1)s22

n1φ + n2φ − 2
(10)

522

within which s1 and s2 are estimated by Eq. 7 (Tuckwell, 1995, , p. 348). tn1φ+n2φ−2 is the t523

statistic for n1φ+n2φ−2 degrees of freedom, and can be compared to critical values obtained from524

standard tables or elsewhere. Note that this is a two-tailed test, so for 95% confidence the 0.025525

tabulated value is the critical one. A z statistic may also be useful because samples are relatively526

large.527
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Figure captions743

Fig. 1:. Frequency plots of the lengths, L, of UK drumlins. Black dots are data digitised744

from Fig. 8 of Clark et al. (2009); bin width ∼50 m. Larger drumlins (L > φ) are, to a good745

first approximation, fit (see text) by a straight line in b), an exponential distribution. They are746

not power law, i.e. linear in c). Mode, φ, in b) estimated by fitting gamma distribution. Crosses747

indicate zero counts, placed at a nominal value of 1 in b) and c).748

Fig. 2:. Semi-log plots for subglacial bedform properties (H , W , L and L/W ) and types749

(drumlin, ribbed moraine, MSGL). Data (black dots) are exact (e, h) and digitised (a, b, c, d, f and750

g). Bin widths vary, and crosses indicate zero counts, placed at a nominal value of 1 if n > 10, 000.751

Solid lines are the exponential distributions fitted to data above the mode φ. The exponent is the752

plotted gradient, λ. The red bars indicate φ, estimated from fitted gamma distributions, shown753

as dashed lines in a) to c) only. Hiller and Smith data are for ‘best’ isolation technique. Spagnolo754

et al. (2012) discard superimposed (i.e. cross-cutting) (e.g., Rose and Letzer, 1977) or slightly755

overlapping drumlins of Clark et al. (2009). MSGL are from Dubawant Lake ice stream flow-set756

(Stokes and Clark, 2003).757

Fig. 3:. Size-frequency data possibly exhibiting the influence of bedrock. a) Swedish drumlin758

observations. H categorised discretely as 2 ,5, 7, 10, 20, 30 ... 80 m, so the number of drumlins759

per unit bin width (count density) is plotted. Lines fitted manually. b) Frequencies of drumlins760

(black dots) and streamlined bedrock forms (open circles) for L/W from neighbouring regions in761

Anglesey, UK. Lines fitted as in Section 4.762

28



Figure 1:

763

764

765

29



Figure 2:

30



Figure 3:

31


