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Abstract

We consider the quantisation of scalar fields on a Lifshitz background, ex-
ploring the possibility of alternative boundary conditions, allowing the slow
falloff mode to fluctuate. We show that the scalar field with alternative bound-
ary conditions is normalizable for a larger range of masses than in the AdS case.
However, we then find a new instability for alternative boundary conditions,
implying that the range of masses where alternative boundary conditions define
a well-behaved dual theory is m2

BF < m2 < m2
BF + 1, analogously to the AdS

case. The instability is of a novel type, with modes of arbitrarily large momen-
tum which grow exponentially in time; it is therefore essentially a UV effect,
and implies that the dual field theory is simply not defined where it appears.
We discuss the interpretation in the dual field theory, and give a proposed lower
bound on the dimension of scalar operators.

1 Introduction

The holographic description of field theories with anisotropic scaling symmetry presents
an interesting extension of AdS/CFT, which may have valuable applications in con-
densed matter theory. The simplest example of such a dual description is the Lifshitz
metric originally constructed in [1]. The geometry is

ds2 = −r2zdt2 + r2d~x2 + L2dr
2

r2
, (1)

where L2 represents the overall curvature scale, and the spacetime has d + 1 di-
mensions, so there are ds = d − 1 spatial dimensions ~x. The asymptotically Lif-
shitz solutions of a bulk gravity theory are conjectured to provide a dual holographic
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description of a non-relativistic field theory, with the anisotropic scaling symmetry
t → λzt, xi → λxi. This duality is interesting both for its potential application
in condensed matter, and as an extension of our understanding of holography and
the relation between field theory and spacetime descriptions. The holographic dic-
tionary, relating bulk spacetime quantities to field theory observables, is now fairly
well-developed [1, 2, 3]. As in AdS/CFT, this identifies the leading asymptotic falloff
of bulk fields with sources in the dual field theory.

An interesting early observation in AdS holography [4] was that there can be
more than one conformal field theory associated to a given bulk theory, depending
on the choice of boundary conditions. As first noted in [5] for scalar fields, for some
parameter values it is possible to introduce an alternative quantisation in the bulk
spacetime, where a mode which is subleading in the asymptotic expansion of the field
is fixed and the leading piece is allowed to vary. This alternative quantisation leads
to a second conformal field theory dual to the same spacetime, with different operator
dimensions for the operators dual to the bulk fields whose boundary conditions have
been changed. One can also consider mixed boundary conditions, which are dual to
renormalisation group flows interpolating between the two conformal field theories,
generated by a double-trace deformation of the field theory. For a scalar field, the
alternative quantisation is possible when the mass of the field is in the range m2

BF <
m2 < m2

BF + 1, where m2
BF = −d2

4
is the Breitenlohner-Freedman bound [5] for d

boundary dimensions.
The importance of this possibility for holography was realised in part because

the dimension of the operator dual to the scalar with standard boundary conditions,

∆+ = d
2

+
√

d2

4
+m2, was always strictly greater than the unitarity bound, ∆ >

d
2
− 1. With the alternative boundary condition, the scalar is dual to an operator

with dimension ∆− = d
2
−
√

d2

4
+m2, which precisely saturates the unitarity bound

when m2 = m2
BF + 1.

This analysis of alternative boundary conditions in AdS deepened our understand-
ing of the correspondence, through an improved bulk understanding of unitarity and
an understanding of the relation of double-trace and more general deformations of
the field theory and boundary conditions in the bulk [6, 7]. The early work on scalar
fields was subsequently extended to consider vector fields in [8, 9], and for metric
perturbations in [10].

In the bulk spacetime, the restriction to the range m2 < m2
BF + 1 comes from

the fact that the slow fall-off mode is only normalizable with respect to the usual
Klein-Gordon norm for masses in this range. Similar restrictions arise for a vector
field [11, 9]. A deeper understanding of this restriction was obtained in [10], where it
was observed that one can define an alternative norm by adding boundary terms to
the Klein-Gordon current, such that the solution with Neumann boundary conditions
is always normalizable. However, this norm is not positive for m2 > m2

BF + 1 for
generic boundary metrics [10], and for the flat boundary metric, where the norm is
positive, an IR divergence appears enforcing the unitarity bound [12].

In this paper, we aim to address the same issues in Lifshitz. We will focus primarily
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on investigating when alternative boundary conditions are possible from the bulk
spacetime perspective. In the present paper we do this calculation for a scalar field
in a fixed Lifshitz background; a companion paper to follow will consider linearised
fluctuations in a theory including dynamical gravity. Our intention is to use this
study to shed further light on the duality. In particular, the calculation with a scalar
field will lead to a new prediction for a bound on operator dimensions in Lifshitz field
theories (or at least those with gravitational duals).

After some preliminary discussion of the equation of motion in section 2, we first
investigate the normalizability for a scalar field on a Lifshitz background in section
3. We find that the slow fall-off mode is normalizable, so that alternative boundary
conditions are possible, for a larger range of masses than in the AdS case:

m2
BF < m2 < m2

BF + z2, (2)

where m2
BF = −1

4
(z + ds)

2 and ds is the number of spatial dimensions. The lower
bound m2

BF is the analogue of the Breitenlohner-Freedman bound in this case. The
immediate source of this wider range is that the measure in the Klein-Gordon inner
product includes a factor of r−z, so slower falloffs become normalizable as z increases.
More deeply, this can be related to the perspective of [10] by observing that as z
increases the dimension of boundary counterterms involving time derivatives of the
boundary data increase, and the inner product needs to be modified by adding bound-
ary terms only when the operator dimension is small enough for these terms to be
relevant. In the field theory, the wider mass range (2) corresponds to a weaker restric-
tion on the possible dimensions of scalar operators. Thus, the spacetime calculation
predicts a reduced lower bound for the dimension of scalar operators in the field
theory.

However, in section 4, we show that the scalar field on a Lifshitz background with
alternative boundary conditions can be unstable even when m2 > m2

BF . In the AdS
case, an instability for conformally-invariant boundary conditions is kinematically
forbidden: conformal symmetry implies that the dispersion relation is ω = ±k. How-
ever for Lifshitz boundary conditions, the scaling symmetry only fixes the dispersion
relation to be ω = αkz for some dimensionless parameter α. If there is a family of
modes where α has a positive imaginary part, they represent an instability.

We will first consider the question analytically for z = 2, where the solution of
the scalar equation can be written in terms of confluent hypergeometric functions.
We show that the theory with Dirichlet boundary conditions is stable, but that the
theory with Neumann boundary conditions is unstable if

m2 > m2
BF + 1. (3)

We note that the instability is a UV effect, as if there is any instability then there will
be exponentially growing modes for all values of k, and the dominant instability is
associated with arbitrarily large values of k. Thus, we would expect this instability to
appear for any asymptotically Lifshitz spacetime when we take Neumann boundary
conditions for the scalar. We confirm this expectation analytically by considering the
scalar field on the z = 2 Lifshitz black hole solution introduced in [13], where the
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wave equation can be solved in terms of hypergeometric functions. This makes it
clear that the instability we are seeing here is not associated with the singularity in
the interior of the spacetime for the pure Lifshitz solution [1, 14, 15]; this is a new UV
pathology in these solutions. We complete our analytic discussion by giving a general
argument for stability of black hole solutions with Dirichlet boundary conditions,
following arguments previously given in [16, 13].

We then extend our discussion to arbitrary values of z by solving the wave equation
numerically. We do numerical analysis both for the pure Lifshitz spacetime and for a
spacetime with an IR cutoff, which is easier to treat numerically, using both a spectral
method and shooting. We verify that the IR cutoff does not alter the instability for
high momentum. We find that the theory with Neumann boundary conditions is
unstable if m2 > m2

BF + 1 for all z.
In the field theory dual to the alternative quantisation, the dimension is given by

∆− = 1
2
(ds + z)− 1

2

√
(ds + z)2 + 4m2, so m2 < m2

BF + 1 corresponds to

∆ ≥ 1

2
(ds + z)− 1. (4)

This generalises the result ∆ ≥ d
2
− 1 in the relativistic case (where d = ds + 1 is the

number of spacetime dimensions). In the Lifshitz field theory, there is no independent
derivation of such a bound; in the absence of the usual state-operator map for such
non-relativistic theories, there is no direct analogue of the usual argument for the
unitarity bound. However, it is certainly surprising that the bound is so high; if
we consider a free scalar field theory with kinetic term (∂tφ)2, Lifshitz scaling would
require the scalar to have dimension ∆ = 1

2
(ds + z)− z. This matches the bound that

would be obtained from normalizability considerations alone, but the instability we
find suggests that for interacting Lifshitz field theories the bound on the dimension is
higher. We will discuss the field theory interpretation a little more in the conclusions
in section 5.

Note added: While this paper was in preparation [17] appeared, which has con-
siderable overlap with our analysis of normalizability in section 3.

2 Scalar wave equation

We consider a scalar field satisfying the Klein-Gordon equation �φ−m2φ = 0 in the
Lifshitz spacetime (1) with m2 < 0, and we neglect back-reaction on the spacetime
metric1. The wave equation in the Lifshitz geometry (1) is

r1−z−ds∂r(r
z+ds+1∂rφ)− (r−2z∂2

t − r−2∂2
i +m2)φ = 0. (5)

As in AdS, the derivatives along the boundary direction have a subleading effect at
large r, and the asymptotic behaviour of the solutions is

φ ∼ φ+r
−∆+ + φ−r

−∆− , (6)

1Extending the analysis to include back-reaction might be an interesting project for the future.
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where

∆± =
1

2
(z + ds)±

√
m2 +

1

4
(z + ds)2. (7)

The analogue of the Breitenlohner-Freedman bound [5] for Lifshitz spacetimes is thus
m2
BF = −1

4
(z + ds)

2. We will also write m2 = m2
BF + ν2, so ∆± = 1

2
(z + ds)± ν, with

ν > 0 by convention. The usual boundary condition is to fix the slow fall-off mode φ−
and let φ+ fluctuate. We will generally refer to this as a Dirichlet boundary condition,
and to the converse condition of fixing φ+ and letting φ− fluctuate as a Neumann
boundary condition, although this terminology is really only valid for m = 0 where
∆− = 0.

To solve the equation (5) explicitly, we use a boundary plane wave basis, writing

φ = e−iωt+i
~k·~xψ(r). (8)

The wave equation then becomes

r1−z−ds∂r(r
z+ds+1∂rψ)− (−r−2zω2 + r−2k2 +m2)ψ = 0. (9)

The ds dependence here can be simplified by writing ψ(r) = r−
ds+z

2 χ(r); then

r∂r(r∂rχ)− (−r−2zω2 + r−2k2 + ν2)χ = 0. (10)

The asymptotic behaviour of χ is then easily seen to be χ ∼ r±ν as r →∞, with the
plus (minus) sign corresponding to Neumann (Dirichlet) boundary conditions, and
χ ∼ e±i

ω
zrz as r → 0. For real ω both behaviours at r → 0 are regular. For complex

ω one grows exponentially and the other decays; we select the exponentially damped
mode.

We can also note that either ω or k can be absorbed by a redefinition of r, so the
equation can be rewritten as

r∂r(r∂rχ)−
(
r−2 + ν2 − r−2z ω

2

k2z

)
χ = 0. (11)

This makes manifest the fact that the physics on the pure Lifshitz background can
depend only on the dimensionless combination ω/kz.

For generic ω and z, (10) has no solution in terms of known special functions. For
ω = 0, we can solve it in terms of Bessel functions, but for both the normalizability
and instability discussions our interest is in solutions with non-zero ω. More helpfully,
for z = 2, the equation reduces to a confluent hypergeometric equation; this was
previously analysed in [1], and we will use this solution in studying the instability in
section 4.

3 Normalizability for scalars

In this section, we consider the normalizability of the probe scalar field. We first give a
simple consideration of normalizability with respect to the normal Klein-Gordon inner
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product, showing that the range of masses for which alternative boundary conditions
are possible is enlarged as we increase z. We then do a more detailed analysis of
the inner product and counterterms, following [10, 12] closely. This allows us to
understand the result better from the spacetime point of view, seeing the relation
to kinetic counterterms in the action. We verify that inside our mass range, the
standard Klein-Gordon inner product without any explicit boundary contributions is
an appropriate inner product; in particular it is finite and positive definite for real ω.

We assume we use the standard Klein-Gordon inner product,

(φ1, φ2) =
i

2

∫
Σ

ddsxdr
√
hnµ(φ∗1∂µφ2 − φ2∂µφ1), (12)

where Σ is a spacelike surface, which we will take to be a surface of constant t. The
wave equation (9) can be written as a Sturm-Liouville (SL) problem with eigenvalue
λ = ω2 for the operator

L = w(r)−1

[
− d

dr

(
p(r)

d

dr

)
+ q(r)

]
, (13)

with p = r(ds+z+1), w = rds−z−1 and q = r(ds+z−1)(m2 + r−2~k2). The inner product
(12) then becomes

(φ1, φ2) = (2π)dsδ(ds)(~k1 − ~k2)ei(ω1−ω2)t (ω1 + ω2)

2
〈ψ1, ψ2〉SL, (14)

where 〈·, ·〉SL is the corresponding SL inner product

〈ψ1, ψ2〉SL =

∫ ∞
0

rds−z−1ψ∗1ψ2dr. (15)

With the standard Dirichlet boundary conditions φ− = 0, the fields fall off as
φ ∼ r−∆+ , and the large r behaviour of the integral is

∫∞
r−2ν−2z−1dr, so the fast fall

off modes are normalizable for any ν. If we consider instead the Neumann bound-
ary condition φ+ = 0, then φ ∼ r−∆− , and the large r behaviour of the integral
is
∫∞

r2ν−2z−1dr, so the slow fall off modes are normalizable with respect to this
standard inner product if ν < z, that is if

m2
BF < m2 < m2

BF + z2. (16)

Increasing z thus increases the mass range for which the Neumann boundary condi-
tions are allowed. In this range, we could also consider mixed boundary conditions;
the flux through infinity vanishes, so that the inner product is conserved, for any
linear boundary condition φ+ = fφ− for real f .

The theory with Neumann boundary conditions is dual to a field theory with
Lifshitz scaling with an operator of dimension

∆− =
1

2
(z + ds)− ν. (17)
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The more general mixed boundary conditions are dual to non-scale invariant theories,
which should interpolate between the Neumann boundary conditions in the UV and
Dirichlet boundary conditions in the IR. We note that for z > ds, ∆− could formally
take negative values. We will find an instability in the next section before we reach
such values, however, so we will confine ourselves to considering ν < 1

2
(z+ ds), where

a linearised analysis of the asymptotics is possible.

3.1 Inner product and counterterms

To gain a better understanding of the origins of the extended region of normalizability,
we should consider a more careful analysis of the inner product, following [10, 12]. The
argument above assumed that we could use the standard Klein-Gordon inner product.
However, [10] made it clear that the presence of kinetic boundary counterterms in the
action for fields in AdS implies that we generally need to add corresponding boundary
terms to the inner product to ensure that it is conserved. The correct inner product
is always finite, as the boundary terms cancel any divergence from the bulk, but these
terms may spoil positivity. The correct question to ask is then when we need to add
boundary contributions to the Klein-Gordon inner product, and to check that the
inner product is positive and conserved. We will see below that m2 < m2

BF + z2

is precisely where no explicit boundary contribution is required to have a conserved
inner product.

The terms φ± in (6) can be expanded in a double power series in r−2, r−2z,

φ− = φ(0) + r−2φ(1) + r−4φ(2) + r−2zφ(z) + r−2−2zφ(z+1) + . . . , φ+ = φ(ν) + . . . , (18)

where the terms which involve powers of r−2 are local functions of φ(0) and its spatial
derivatives, while the terms which involve powers of r−2z are functions of temporal
derivatives of φ(0).2 For example,

φ(1) =
1

4(ν − 1)
∂2
i φ

(0), (19)

while

φ(z) =
1

4z(z − ν)
∂2
t φ

(0). (20)

If ν < z, the terms involving temporal derivatives of φ(0) are subleading compared to
φ(ν) in the asymptotic expansion of φ:

φ ∼ r−
1
2

(z+ds)+ν(φ(0) + r−2φ(1) + r−4φ(2) + . . .+ r−2νφ(ν) + r−2zφ(z) + . . .). (21)

To obtain a finite on-shell action, one needs to add counterterms to the bare action
to cancel divergences associated to the terms φ(0) and φ(i) for i < ν. For example,

2We don’t write the subleading terms involving derivatives of φ(ν) explicitly because they don’t
enter the calculation.
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if 1 < ν < 2, there will be divergences in the on-shell action involving both φ(0) and
φ(1),

Ibare = −1

2

∫
r=r0

ddsxdt
√
−γnµφ∂µφ (22)

=
1

2

∫
r=r0

ddsxdtr2ν
0 [∆−φ

(0)2 + (∆− + 2)φ(0)φ(1)r−2
0 + ∆+φ

(0)φ(ν)r−2ν
0 + . . .],

The divergences are cancelled by adding appropriate counterterms. The leading di-
vergence is cancelled by a φ2 counterterm, and the φ(0)φ(1) divergence can be cancelled
by a (∂iφ)2 counterterm.

In [10], it was shown that derivative counterterms in the action naturally lead
to boundary contributions to the symplectic structure. At the level of the inner
product, we can understand these terms as being required to ensure conservation
of the inner product: we add boundary terms to the Klein-Gordon current so that
the flux through the boundary at large r vanishes. The key difference in our case is
that the counterterm in the action only involves spatial derivatives. As a result, the
usual Klein-Gordon current will be conserved despite the appearance of a φ(1) term
in the flux through the boundary. The flux of the Klein-Gordon current through the
boundary is

F =
i

2

∫
r=r0

ddsxdt
√
−γnµ(φ∗1∂µφ2 − φ2∂µφ

∗
1) (23)

=
i

2

∫
r=r0

ddsxdtr2ν
0 [2r−2

0 (φ
(1)∗
1 φ

(0)
2 − φ

(0)∗
1 φ

(1)
2 ) + (∆+ −∆−)r−2ν

0 (φ
(ν)∗
1 φ

(0)
2 − φ

(0)∗
1 φ

(ν)
2 )].

If we work in the plane-wave basis, the divergent term is

i

∫
r=r0

ddsxdtr2ν−2
0

k2
1 − k2

2

4(1− ν)
ei(ω1−ω2)t−i(~k1−~k2)·~xψ

(0)∗
1 (r)ψ

(0)
2 (r), (24)

and if we integrate over the region between two surfaces t = constant, the integral
over the spatial directions will introduce an overall momentum delta-function, so that
this divergent term vanishes.3 As claimed earlier, the finite piece will vanish for any
mixed boundary condition φ+ = fφ− with a real coefficient f . Thus, for ν < 2, the
Klein-Gordon inner product is conserved for any such mixed boundary conditions;
in particular it is conserved for both Dirichlet and Neumann boundary conditions,
without adding an explicit boundary term to the inner product.

This argument can easily be extended to general ν < z. The key point is that
the subleading terms appearing in the asymptotic expansion for φ will all involve
only spatial derivatives of φ(0), so they make vanishing contributions to the total flux
through the boundary at infinity between two surfaces t = constant.

Once we know that the inner product is conserved, it is easy to see that it is

orthogonal in the plane wave basis φ = e−iωt+i
~k·~xψ(r). We saw already in (14) that

3One can add a local counterterm to cancel this divergence; this counterterm will not affect the
value of the inner product.
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the spatial integral makes the inner product vanish if ~k1 6= ~k2. Now the fact that it
is independent of the spatial slice t = constant we choose to evaluate it on implies it
must vanish if ω1 6= ω2 for real ω, as otherwise it would be time dependent. We are
therefore left with the inner product of the plane wave modes with themselves,

(φ1, φ1) = (2π)dsV ol(x)ω1

∫ ∞
0

drrds−z−1|ψ1|2, (25)

where V ol(x) is the spatial volume. This is manifestly positive if ω1 > 0.
We can therefore understand the condition ν < z as arising from requiring that

the free data φ(ν) appears in the asymptotic expansion before the first term which
involves time derivatives of φ(0). That is, it is precisely because we do not require
counterterms in the action involving time derivatives that the standard Klein-Gordon
norm remains appropriate for more general boundary conditions.

4 Instability for Neumann boundary conditions

We would now like to consider the spectrum for the different possible boundary con-
ditions, to check if there are any instabilities, looking for regular solutions which grow
exponentially in time. From the point of view of the dual field theory, instabilities
appear as poles in the two-point function in the upper half frequency plane.4

For the AdS case, the symmetries imply that the two-point function is a function
of the Lorentz invariant ω2 − k2. Instabilities can then occur only in the case of
mixed boundary conditions, where they correspond to tachyonic poles in the two-
point function with ω2 − k2 = −m2

bdy.
5 For the conformally invariant pure Dirichlet

or Neumann boundary conditions, by contrast, no such instability is possible, as there
is no scale to provide a value for m2

bdy.
In the Lifshitz case however, the symmetry is less restrictive, and the two-point

function for general boundary conditions can depend separately on ω and k. For con-
formally invariant boundary conditions, the two-point function (up to overall scaling)
must be a function of the invariant ω/kz, but this still admits the possibility of in-
stability, if the two-point function has a pole at

ω

kz
= α, Im α > 0. (26)

We will see below that such unstable modes appear for Neumann boundary conditions
when ν > 1. The existence of such instabilities in the conformally invariant case is
perhaps surprising. Moreover, as a result of the scale invariance, the instability has no
associated timescale. Unlike the relativistic case, when an instability occurs, there are
exponentially growing modes for all momenta, and the modes of high momenta have

4Since our situation is time-translation invariant, poles at complex ω will appear in complex
conjugate pairs.

5The mixed boundary conditions correspond to the field theory deformed by a multi-trace opera-
tor, and a bulk instability can be interpreted as this deformation making the field theory Hamiltonian
unbounded from below [18, 19].
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arbitrarily high growth rates. Thus, this instability indicates the complete breakdown
of the expansion around the putative background, which is not valid even in an open
neighbourhood in time. We therefore interpret this instability as saying that no dual
field theory exists for the boundary conditions where the instability is present.

Because there are unstable modes of arbitrarily high momentum, this is essentially
a UV effect in the field theory. That is, this instability will affect not just the pure
Lifshitz spacetime, but any solution which asymptotically approaches this solution
with the Neumann boundary conditions.

In particular, this implies that the theories with mixed boundary conditions will
also be unstable, as these approach the Neumann boundary condition in the UV. That
is, the field theories dual to the mixed boundary conditions are relevant deformations
of the scale-invariant theory dual to the Neumann boundary conditions, so the non-
existence of this UV theory implies that the theories dual to the mixed boundary
conditions will also not be well-defined.

4.1 Analytic calculation for z = 2

We first consider the case z = 2, where it is possible to write the solution explicitly
in terms of confluent hypergeometric functions, as discussed in [1]. For z = 2, the
generic solution of (9) is

ψ(u) = eiu
2ω/2[φ+u

(ds+2)
2

+ν
1F1(a, b,−iu2ω) + φ−u

(ds+2)
2
−ν

1F1(a− b+ 1, 2− b,−iu2ω)],
(27)

where u = 1/r,

a =
1

2
(1 + ν) + i

k2

4ω
, b = 1 + ν, (28)

and 1F1(α, γ, z) is the confluent hypergeometric function, whose series expansion is

1F1(α, γ, z) = 1 + α
γ
z+ . . .. The first term in (27) corresponds to the fast falloff mode

at infinity, and the second term to the slow falloff.
For complex ω, the solution which is regular at r = 0 is the one which is ex-

ponentially damped. The solution which is regular for Im ω > 0 can be written
as

ψ = eiu
2ω/2u

(ds+2)
2

+νU
(
a, b,−iωu2

)
(29)

where u = 1/r, the constants a, b are given in (28), and U(a, b, z) is Tricomi’s confluent
hypergeometric function, which is given in terms of the confluent hypergeometric
function by

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b, z) +

Γ(b− 1)

Γ(a)
z1−b

1F1(a− b+ 1, 2− b, z). (30)

We then want to ask for values of ω such that this also satisfies the boundary condition
at u = 0. Using (30), the solution near u = 0 is

ψ = u
ds+2

2
−ν (−iω)−νΓ(ν)

Γ
(

1+ν
2

+ i k
2

4ω

)(1 + . . .) + u
ds+2

2
+ν Γ(−ν)

Γ
(

1−ν
2

+ i k
2

4ω

)(1 + . . .), (31)
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and it will satisfy Dirichlet (Neumann) boundary conditions if the first (second) term
vanishes, which is when the corresponding Gamma functions have a pole. This implies
that the frequencies must satisfy

ω = −i k2

2(1 + 2n± ν)
for n = 0, 1, 2, 3, . . . (32)

where the plus (minus) sign corresponds to Dirichlet (Neumann) boundary conditions.
With Dirichlet boundary conditions this condition cannot be satisfied with Im ω > 0
for any n. There are thus no solutions which satisfy Dirichlet boundary conditions
and are regular on the horizon for Im ω 6= 0. But for Neumann boundary conditions
and ν > 1, there are solutions of (32) with Im ω > 0. These are therefore unstable
modes which satisfy the boundary conditions both at infinity and the horizon. We
see that the number of unstable modes increases as ν crosses integer values.

Note that ω is pure imaginary; unlike the usual quasi-normal modes in the rela-
tivistic case which have decaying oscillations, the unstable mode simply grows expo-
nentially with no oscillatory component. We can thus also view this as the analytic
continuation of a mode of real frequency on the Euclidean Lifshitz solution.

4.1.1 Black hole for z = 2

As we argued above, this instability should appear in any asymptotically Lifshitz
spacetime. One simple case where we can check this explicitly is for the black hole
considered in [13]6. The geometry is

ds2 = −r4

(
1−

r2
+

r2

)
dt2 +

dr2

r2
(

1− r2+
r2

) + r2d~x2. (33)

This metric can be obtained as a solution of a higher-derivative theory of gravity
[13], but for our present purposes the point is that it provides an example of an
asymptotically Lifshitz spacetime where the wave equation can be solved analytically.
For this metric the wave equation in the boundary plane wave basis becomes

r−ds−1∂r(r
ds+1(r2 − r2

+)∂rψ)−
(
m2 +

k2

r2
+

ω2

r2(r2 − r2
+)

)
ψ = 0. (34)

Introducing a radial variable y =
r2−r2+
r2

, this becomes a hypergeometric equation [20].
The solution which is well-behaved at the black hole horizon y = 0 for Im ω > 0 is

ψ = y
−i ω

2r2+ (1− y)
1
4

(ds+2)+ 1
2
νF (α, β, γ; y), (35)

where F (α, β, γ; y) is the hypergeometric function and

α, β =
1

2

(
1 + ν − iω

r2
+

±

√
d2
s

4
− ω2

r4
+

− k2

r2
+

)
, γ = 1− iω

r2
+

. (36)

6The ds = 2 version of this metric was previously found in [20] as a solution of Einstein gravity
coupled to various matter fields. The scalar quasi-normal mode spectrum was discussed also in [20]
for particular values of the couplings, and then generalized in [21].
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Analytically continuing the hypergeometric function to y = 1 gives

F (α, β, γ; y) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
F (α, β, α + β − γ + 1, 1− y) (37)

+(1− y)γ−α−β
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
F (γ − α, γ − β, γ − α− β + 1, 1− y).

Thus, the solution will satisfy Dirichlet boundary conditions at infinity if the second
term vanishes, which is to say if there are poles in the Gamma functions in the
denominator, α = −n or β = −n for some integer n. Rearranging and squaring gives

2iω(1 + ν + 2n) = k2 + r2
+

(
(1 + ν + 2n)2 − d2

s

4

)
. (38)

We see that for large k, the term proportional to r2
+ becomes negligible, and the

spectrum reduces to the one found in (32), as expected. There is thus no instability
at large k; however it is interesting to note that for ds > 2, the black hole can produce
instabilities for small k if ν is small enough. The black hole will have at least one

exponentially growing mode if (1 + ν)2 − d2s
4
< 0.7

The solution (35) will satisfy Neumann boundary conditions if the first term in
(37) vanishes, that is if γ − α = −n or γ − β = −n for some integer n. As in the
pure Lifshitz spacetime this simply corresponds to ν → −ν in the Dirichlet analysis
above. The spectrum of such modes is given by

2iω(1− ν + 2n) = k2 + r2
+

(
(1− ν + 2n)2 − d2

s

4

)
. (39)

Again, this reduces to (32) at large k. We see explicitly that the unstable modes at
large k are present for the black hole solution as well.

4.2 Stability for Dirichlet boundary conditions for general z

For general z, we cannot solve the wave equation analytically. However, for Dirichlet
boundary conditions, we can give a general argument that no such instability can
occur. This argument does not consider the pure Lifshitz spacetime directly; instead
it is convenient to regulate the IR behaviour by considering an asymptotically Lifshitz
black hole solution and using an argument for stability originally developed for AdS
black holes in [16] and extended to the Lifshitz case in [13]. The absence of an
instability for large k on the black hole spacetime will then imply the absence of any
instability on the pure Lifshitz spacetime.

We consider the black hole in ingoing Eddington-Finkelstein coordinates, where
we assume the metric is of the form

ds2 = −r2zf(r)dv2 + 2rz−1dvdr + r2d~x2, (40)

7This instability was missed in [13] because they only considered Dirichlet boundary conditions
with m2 ≥ 0, corresponding to ν ≥ 1

2 (ds + 2).
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where f(r) is some emblackening function with f(r+) = 0, f ′(r) > 0 for r ≥ r+, and
f(r)→ 1 as r →∞. As we are introducing the black hole simply as a convenient IR
regulator, we do not specify a precise form for f(r) or consider the equations of motion

for the metric. We will take the scalar field to be of the form φ = e−iωv+i~k·~xr−
ds
2 R(r).

Then the wave equation becomes

(rz+1f(r)R′)′ − 2iωR′ − V (r)R = 0, (41)

where

V (r) = k2rz−3 +

(
ν2 − z2

4
− ds(2z + ds)

4
(1− f(r)) +

ds
2
rf ′
)
rz−1. (42)

To argue for stability, we want to see that Im ω ≤ 0. By multiplying (41) by R∗

and integrating, we can see that∫ ∞
r+

dr[R∗(rz+1f(r)R′)′ − V (r)|R|2 − 2iωR∗R′] = 0. (43)

Thus, integrating by parts gives that

X =

∫ ∞
r+

dr[rz+1f(r)|R′|2 + V (r)|R|2] = −2iω

∫ ∞
r+

drR∗R′ + rz+1f(r)R∗R′|∞r+ . (44)

Now f(r+) = 0 ensures that the boundary term at the horizon vanishes (this is why
it is useful to introduce a black hole in the bulk), and at r →∞, the solution of (41)
asymptotically behaves as R ∼ r−

z
2
±ν . The lower sign is the fast fall-off mode which

is retained for Dirichlet boundary conditions, so for Dirichlet boundary conditions,
the boundary term at infinity also vanishes. Thus,

X = −2iω

∫ ∞
r+

drR∗R′. (45)

Since X is real, taking the imaginary part of this equation gives (ω− ω̄)
∫∞
r+
drR∗R′ =

ω̄|R|2r=r+ , so

X = − |ω|
2

Im ω
|R|2r=r+ . (46)

So if X ≥ 0, Im ω ≤ 0 and the mode is stable.
For sufficiently large ν, V (r) is positive everywhere, and X is obviously positive.

However, we wish to give an argument for all positive ν. This is possible because we
are concerned only with instabilities which continue to appear for arbitrarily large k:
only such instabilities can correspond to instabilities of the pure Lifshitz spacetime.
We can therefore focus on the region at large r in the integral defining X; if there is
a problem at large k it must come from this part where the k2 contribution in V is
suppressed relative to the other terms. The large r part of X is approximately

X ∼
∫ ∞

dr[rz+1|R′|2 + rz−1(ν2 − z2

4
)|R|2]

∼
∫ ∞

dr[(ν +
z

2
)2 + (ν2 − z2

4
)]r−2ν−1

∼
∫ ∞

dr[2ν2 + νz]r−2ν−1, (47)
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where we used the falloff R ∼ r−
z
2
−ν for Dirichlet boundary conditions again in the

second line. Thus this large r contribution is positive and bounded, and at least
for sufficiently large k, X ≥ 0 and there will be no instability. We do not exclude
the possibility of an instability at finite k -we saw in the previous section that such
instabilities can in fact occur - but the absence of instability at arbitrarily large
k implies the pure Lifshitz solution with Dirichlet boundary conditions cannot be
unstable.

4.3 Numerical analysis for Neumann boundary conditions
for general z

Having seen that the theory with Dirichlet boundary conditions is stable, we now
turn to a numerical analysis to determine when the theory with Neumann boundary
conditions is unstable. The numerical determination of the spectrum is conceptually
the same as the analytic calculation for z = 2: we choose a solution which is regular in
the interior and look for values of ω which satisfy the asymptotic Neumann boundary
conditions. This defines an eigenvalue problem for ω, which we can solve either by
spectral methods or by shooting.

For integer z, we can apply spectral methods to solve the problem in the pure
Lifshitz geometry, as the solution is analytic even near r = 0 after appropriate redefi-
nitions. For non-integer values of z, we need to modify the problem, as the numerical
analysis for pure Lifshitz is difficult because of the behaviour near the horizon. For-
tunately, we have seen that the instability that we are interested in is essentially a
UV effect in the field theory, so we can modify the geometry in the interior of the
spacetime without affecting the instability. We could consider a black hole solution,
as we did previously, but for numerical studies it is more convenient to simply cut
off the spacetime at a hard wall. We introduce a radial cutoff, rescaling the radial
coordinate so that the cutoff is at r = 1 and consider the region r > 1. For simplicity,
we focus on Dirichlet or Neumann boundary conditions at the wall; these two choices
lead to similar results, and give the same region of instability in ν.

We have done the numerical analysis for the theory with an IR wall using both
spectral methods and shooting. As the wall breaks the radial scaling symmetry, we
have to consider varying ω and k separately. We are interested in solutions at large
k, giving instabilities of the pure Lifshitz spacetime. We solve the eigenvalue problem
for ω2 for fixed k, and check that kz/ω is invariant as we vary k, for relatively large
k. Failure to satisfy this property is interpreted as a sign that the numerics are
inaccurate.

As an illustration, the values obtained by shooting for z = 2 are plotted in figure
1.8 We see that k2/ω does indeed become constant at large k, and that for large values
of k, the relation (32) is accurately reproduced. In particular, as we decrease ν towards
ν = 1, the approximately invariant quantity k2/ω goes to zero. Representative plots

8Note that even though the radial equation can be solved analytically in this case, the spectrum
for the hard wall must be determined numerically since the boundary condition at the wall involves
(roughly speaking) determining zeros of the confluent hypergeometric function.
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Figure 1: Unstable modes for z = 2 for Neumann boundary conditions at the IR wall,
as a function of k for various values of ν. The lines of data correspond to ν = 1.1,
ν = 1.15, ν = 1.20 and ν = 1.25, with ν increasing as we move up the plot. We
observe that for sufficiently large k, the relation (32) is reproduced.

for different values of z using spectral methods are given in figure 2. Plots obtained
by shooting are given in figure 3. We see clearly that there is an instability for ν > 1.

A significant difference between the numerical results and the behaviour of the
analytic solution for z = 2 is the behaviour when ν ≥ z for z < 2. We find that as
ν → z, the invariant ω/kz calculated for large k goes to zero. This can clearly be seen
in the plots generated by shooting in figure 3: kz/ω diverges as ν → z (similar results
are obtained by spectral methods for z = 1.5). The general behaviour we find is that
there are no complex frequency modes at large k for ν > z, the only mode solutions
are those with real frequencies. There are however complex frequency unstable modes
at small k in the IR wall geometry.

In the limit as z → 1, all the frequencies smoothly approach those in the IR wall
cutoff version of AdS; in particular, there is a tachyonic instability in the IR cutoff
AdS with Neumann boundary conditions whose scale is set by the location of the wall,
and this is reproduced by the behaviour of the complex frequency unstable solutions
at small k for ν > z. Some representative large k values are plotted in figure 4.

This explains the relation to the relativistic case: if we were to consider varying z
at fixed ν, the UV instability will disappear at ν = z, and in the region near z = 1 the
qualitative behaviour is similar to the AdS case. Note that while the UV instability
disappears, since ν > z, we are violating the normalizability bound and there will be
pathologies for Neumann boundary conditions along the lines of the analysis in [12].
In particular, there will be ghosts in the spectrum in the IR wall geometry.

5 Discussion

In this paper, we have considered the possibility of alternative boundary conditions
for scalar fields in the Lifshitz spacetime. We found that the usual normalizability
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Figure 2: Scale invariant combination ikz/ω for the first unstable mode as a function
of ν. The top (black) data is z = 3/2, the dotted curve (green) is the analytic result
for z = 2, the lower data are z = 5/2 (red) and the lowest line of data (blue) is z = 3.
The numerics become inaccurate for large ν, problems appearing roughly for ν > 1.4
for z > 2. These are identified by varying the size of the grid and noticing that the
eigenvalues change considerably.

condition implied that Neumann boundary conditions are possible for a larger range
of masses than in the AdS case. However, we found that there is a new instability
for scalar fields with Neumann boundary conditions on Lifshitz, which implies that
there is a well-defined dual field theory only for m2 < m2

BF + 1. This instability is
a UV effect; we saw explicitly that it is not tied to the presence of a singularity at
r →∞ in the Lifshitz geometry as the same instability appears in an asymptotically
Lifshitz black hole and in a spacetime with an IR hard wall cutoff.

This led to the proposed lower bound (17) on the dimension of scalar operators
in strongly-coupled field theories with Lifshitz scaling symmetry. It would be very
interesting to understand this bound better from the dual field theory perspective.
The bound is non-trivial: the field theory of a free scalar field, with the kinetic term∫
dtddsx(∂tφ)2, will be invariant under a Lifshitz scaling with dynamical exponent z

if the scalar field has dimension ∆φ = 1
2
(ds − z). This free scalar value violates our

bound (17),9 so if the proposed bound is to be valid, the interacting nature of the
theory must play a central role.

The bound for z = 1 corresponds to the unitarity bound in the field theory.
Could there be a similarly general derivation for z > 1? The usual argument for
the unitarity bound is based on considering the radial Hamiltonian and relating the
dimensions of operators to the norms of states. With Lifshitz symmetry there are
no special conformal transformations, so we cannot construct such a state-operator

9Although intriguingly it precisely saturates the bound at which normalizability fails to apply,
when m2 = m2

BF + z2 in the bulk.
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Figure 3: We plot ikz/ω for large k as a function of ν for z = 1.3 (top), z = 1.4
(center) and z = 1.5 (bottom), using shooting with an IR wall. Note that ikz/ω
diverges as ν approaches z from below.

mapping. However, a different derivation of the unitarity bound which uses the optical
theorem, and does not rely directly on a state-operator mapping, was given in [22].
This argument could in principle be extended to the Lifshitz case to obtain a bound
directly from the field theory point of view, as was recently done for time-dependent
cases in [23]. Unfortunately, to do this in practice seems technically challenging. The
argument was based on relating the imaginary part of the two-point function of an
operator O to the optical theorem for some external field coupled to O. It is possible
to calculate the two-point function in momentum space for the case z = 2. But to
apply the argument of [22], we need to control the overall normalisation of this two-
point function, as function of m2 and z. In [22], the overall normalisation is fixed by
requiring that 〈O†(x)O(y)〉 is positive definite at spacelike separation. Unfortunately,
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Figure 4: We plot the frequencies of the first two modes for ν = 1.3, k = 3.0 as a
function of z with z < ν. All the frequencies are real and they approach the relativistic
values as z → 1.
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it is not possible to analytically compute the integral required to evaluate the two-
point function obtained for z = 2 in position space. Further exploration of the field
theory is left as an open problem for the future.

It would also be interesting to explore these questions of alternative boundary
conditions and instability for the full theory with dynamical gravity. We intend to
explore these issues for linearised fluctuations of the metric and matter fields in the
context of the massive vector model of [24] in the future.

Acknowledgements

We are grateful for useful conversations with Shamit Kachru, Don Marolf, Mukund
Rangamani, Jorge Santos, Eva Silverstein, David Tong and Benson Way. This work is
supported in part by the STFC, by the National Science Foundation under Grant No.
NSF PHY11-25915 and Grant No PHY08-55415, and by funds from the University
of California. T.A. is also pleased to thank DAMTP, Cambridge, for their hospitality
during the completion of this work.

References

[1] S. Kachru, X. Liu, and M. Mulligan, “Gravity Duals of Lifshitz-like Fixed
Points,” Phys.Rev. D78 (2008) 106005, 0808.1725.

[2] S. F. Ross and O. Saremi, “Holographic stress tensor for non-relativistic
theories,” JHEP 0909 (2009) 009, 0907.1846.

[3] S. F. Ross, “Holography for asymptotically locally Lifshitz spacetimes,”
Class.Quant.Grav. 28 (2011) 215019, 1107.4451.

[4] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry
breaking,” Nucl.Phys. B556 (1999) 89–114, hep-th/9905104.

[5] P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended
Supergravity,” Annals Phys. 144 (1982) 249.

[6] E. Witten, “Multitrace operators, boundary conditions, and AdS / CFT
correspondence,” hep-th/0112258.

[7] M. Berkooz, A. Sever, and A. Shomer, “’Double trace’ deformations, boundary
conditions and space-time singularities,” JHEP 0205 (2002) 034,
hep-th/0112264.

[8] E. Witten, “SL(2,Z) action on three-dimensional conformal field theories with
Abelian symmetry,” hep-th/0307041.

[9] D. Marolf and S. F. Ross, “Boundary Conditions and New Dualities: Vector
Fields in AdS/CFT,” JHEP 0611 (2006) 085, hep-th/0606113.

18



[10] G. Compere and D. Marolf, “Setting the boundary free in AdS/CFT,”
Class.Quant.Grav. 25 (2008) 195014, 0805.1902.

[11] A. Ishibashi and R. M. Wald, “Dynamics in nonglobally hyperbolic static
space-times. 3. Anti-de Sitter space-time,” Class.Quant.Grav. 21 (2004)
2981–3014, hep-th/0402184.

[12] T. Andrade and D. Marolf, “AdS/CFT beyond the unitarity bound,” JHEP
1201 (2012) 049, 1105.6337.

[13] A. Giacomini, G. Giribet, M. Leston, J. Oliva, and S. Ray, “Scalar field
perturbations in asymptotically Lifshitz black holes,” Phys.Rev. D85 (2012)
124001, 1203.0582.

[14] K. Copsey and R. Mann, “Pathologies in Asymptotically Lifshitz Spacetimes,”
JHEP 1103 (2011) 039, 1011.3502.

[15] G. T. Horowitz and B. Way, “Lifshitz Singularities,” Phys.Rev. D85 (2012)
046008, 1111.1243.

[16] G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and
the approach to thermal equilibrium,” Phys.Rev. D62 (2000) 024027,
hep-th/9909056.

[17] C. Keeler, “Scalar boundary conditions in Lifshitz spacetimes,” 1212.1728.

[18] T. Hertog and G. T. Horowitz, “Designer gravity and field theory effective
potentials,” Phys.Rev.Lett. 94 (2005) 221301, hep-th/0412169.

[19] T. Hertog and S. Hollands, “Stability in designer gravity,” Class.Quant.Grav.
22 (2005) 5323–5342, hep-th/0508181.

[20] K. Balasubramanian and J. McGreevy, “An Analytic Lifshitz black hole,”
Phys.Rev. D80 (2009) 104039, 0909.0263.

[21] P. Gonzalez, J. Saavedra, and Y. Vasquez, “Quasinormal modes and Stability
Analysis for 4-dimensional Lifshitz Black Hole,” Int.J.Mod.Phys. D21 (2012)
1250054, 1201.4521.

[22] B. Grinstein, K. A. Intriligator, and I. Z. Rothstein, “Comments on
Unparticles,” Phys.Lett. B662 (2008) 367–374, 0801.1140.

[23] X. Dong, B. Horn, E. Silverstein, and G. Torroba, “Unitarity bounds and RG
flows in time dependent quantum field theory,” Phys.Rev. D 86 (2012) 025013,
1203.1680.

[24] M. Taylor, “Non-relativistic holography,” 0812.0530.

19


