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Abstract

Let G = (V,E) be a connected graph with |V | = n vertices. A simple random walk
on the vertex set of G is a process, which at each step moves from its current vertex
position to a neighbouring vertex chosen uniformly at random.

We consider a modified walk which, whenever possible, chooses an unvisited edge
for the next transition; and makes a simple random walk otherwise. We call such a
walk an edge-process (or E-process). The rule used to choose among unvisited edges at
any step has no effect on our analysis. One possible method is to choose an unvisited
edge uniformly at random, but we impose no such restriction.

For the class of connected even degree graphs of constant maximum degree, we
bound the vertex cover time of the E-process in terms of the edge expansion rate of
the graph G, as measured by eigenvalue gap 1 − λmax of the transition matrix of a
simple random walk on G.

A vertex v is `-good, if any even degree subgraph containing all edges incident with
v contains at least ` vertices. A graph G is `-good, if every vertex has the `-good
property. Let G be an even degree `-good expander of bounded maximum degree. Any
E-process on G has vertex cover time

CV (E-process) = O

(
n+

n log n

`

)
.

This is to be compared with the Ω(n log n) lower bound on the cover time of any
connected graph by a weighted random walk. Our result is independent of the rule
used to select the order of the unvisited edges, which could, for example, be chosen
on-line by an adversary.

As no walk based process can cover an n vertex graph in less than n − 1 steps,
the cover time of the E-process is of optimal order when ` = Θ(log n). With high
probability random r-regular graphs, r ≥ 4 even, have ` = Ω(log n). Thus the vertex
cover time of the E-process on such graphs is Θ(n).
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1 Introduction

Let G = (V,E) be a connected graph with |V | = n vertices and |E| = m edges. A simple
random walk on the vertex set of G is a process, which at each step moves from its current
vertex position to a neighbouring vertex chosen uniformly at random. At step t = 0, the walk
is located at a start vertex v ∈ V , and we write Wv(0) = v. Let N(v) = {u : {v, u} ∈ E} be
the disjoint neighbour set of v. At step t ≥ 0, if the walk is at vertex x = Wv(t), it chooses
a vertex y uniformly at random (u.a.r.) from N(x), and makes the edge transition (x, y) to
y = Wv(t+ 1). The trajectory of the walk is Wv = (Wv(t), t ≥ 0).

We consider a related walk process X = (X(t), t ≥ 0) on the vertex set of G which we call
an edge-process (or E-process). Initially all edges E of G are marked as unvisited. At each
step the edge-process makes a transition to a neighbour of the currently occupied vertex
as follows: If there are unvisited edges incident with the current vertex pick one, make a
transition along this edge and mark the edge as visited. If there are no unvisited edges
incident with the current vertex, move to a u.a.r. neighbour using a simple random walk.
We assume there is a rule A, which tells the walk how to choose among unvisited edges. In
the simplest case, A chooses u.a.r. among unvisited edges incident with the current vertex
occupied by the walk. However we do not exclude arbitrary choices of rule A. For example,
the rule could be deterministic, or decided on-line by an adversary, or could vary from vertex
to vertex.

For any process Y = (Y (t), t ≥ 0) which explores a graph G by moving from vertex to
vertex, the vertex cover time, CV (Y,G), is defined as follows. For v ∈ V , let Cv be the
expected time taken for a walk Yv starting at v, to visit every vertex of G. The vertex cover
time is defined as CV (Y,G) = maxv∈V Cv. A similar definition holds for edge cover time,
CE(Y,G). When it is clear from the context, we write GV (G) for the vertex cover time of a
simple random walk. If G is fixed we write CV (Y ) for the vertex cover time of G by process
Y , and CV (SRW ) for the vertex cover time of G by a simple random walk.

It was shown by Feige [8], that for any connected n-vertex graph G, the vertex cover time
of a simple random walk W satisfies CV (G) ≥ (1− o(1))n log n. The comparable result that
edge cover time of any connected m-edge graph is CE(G) = Ω(m logm) is due to [1], [17].

The idea that the vertex cover time of a random walk could be reduced by choosing unvis-
ited neighbour vertices whenever possible seems attractive and often arises in discussion. For
sparse graphs it seems plausible that a random walk which prefers unvisited edges might also
perform well. In the same vein, we might seek to reduce edge cover time by using a random
walk which prefers unvisited edges. The edge cover time of this version of the E-process, (in
which the next unvisited edge is chosen u.a.r.), was studied by Orenshtein and Shinkar [13],
under the name of Greedy Random Walk. A random process which generalized the idea of
choosing an unvisited vertex was studied experimentally by Avin and Krishnamachari [3].
This process, the Random Walk with Choice, (RWC(d)), selects d neighbours uniformly at
random at each step, and moves to the least visited vertex among them. Avin and Krishna-
machari investigate the process RWC(d) on geometric random graphs and the toroidal grid.
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They report reductions in cover time, and improved concentration of experimental results.

The E-process has similarities with deterministic walks such as the rotor-router, or Propp
machine model. (See [6] for an introduction to this topic.) In the case of the rotor-router
process, the graph is turned into an Eulerian digraph by replacing each edge with a pair of
oppositely directed edges. The vertex cover time of a connected graph in the rotor-router
model is O(mD), where m is the number of edges of G, and D is the diameter, (see [16]).
The analysis of the rotor-router process depends on the underlying Eulerian properties of the
graph. The E-process can be seen as a hybrid between a rotor-router and a random walk.
Other deterministic processes to explore graphs based on edge utilization were studied in [5]
under the theme of locally fair exploration. At a given vertex the process either picks the
least frequently traversed edge (Least-Used-First), or the edge which has waited the longest
time to be visited (Oldest-First). It is shown that Oldest-First can lead to exponential cover
times on some connected graphs, where Least-Used-First covers all vertices in O(m|D|) steps
and traverses all edges with the same frequency in the long run.

The graphs we consider in this paper are connected n vertex, m edge graphs of even degree.
We will henceforth always assume this is the case unless explicitly stated otherwise. We
define a local expansion property of vertices on even degree graphs. We say a vertex v is
`-good, if any even degree subgraph containing all edges incident with v contains at least `
vertices. A graph G is `-good, if every vertex has the `-good property. Let the eigenvalues
of the transition matrix of a simple random walk on G be ordered λ1 ≥ λ2 ≥ · · · ≥ λn, and
let λmax = max(λ2, |λn|). We bound the cover time of the E-process in terms of the edge
expansion rate of G, as measured by eigenvalue gap 1 − λmax . We will assume henceforth
that λmax = λ2. If this is not the case (e.g. the graph is bipartite), we can make the random
walk lazy, at most doubling the cover time.

We use the notation with high probability (whp) to mean with probability 1 − ε(n), where
ε(n)→ 0 as the size of the vertex set n→∞. We often round real values to integers in our
proofs. We do this without mention, as long as no significant error is introduced.

Vertex cover time of E-process

Any walk-based process must take at least n − 1 steps to visit every vertex, so if we can
find a process and a structural property of a graph which gives an O(n) upper bound on the
cover time of the graph, this result is of optimal order.

The following theorem is a general statement on the vertex cover time for any E-process.

Theorem 1 Let G be a connected n vertex even degree graph, with finite maximum degree,
and with the additional property that that G is `-good. Then, any E-process on G has cover
time

CV (E-process) = O

(
n+

n log n

`(1− λmax)

)
.
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We briefly list a series of remarks and corollaries which arise from Theorem 1

The upper bound on the cover time given in Theorem 1 is independent of the rule A used
to select unvisited edges, even if this choice is decided on-line by an adversary.

For expander graphs, which have positive constant eigenvalue gap, Theorem 1 becomes

CV (E-process) = O

(
n+

n log n

`

)
. (1)

In particular, for `-good even degree expanders where ` = Ω(log n), the E-process covers the
graph in Θ(n) steps, which is best possible.

The lower bound on the vertex cover time of G by any reversible random walk W is
CV (W,G) = Ω(n log n). A proof of the Ω(n log n) lower bound on the cover time of re-
versible random walks, due to T. Radzik [14], is given in Section 2.2. For expander graphs,
the comparable vertex cover time of the E-process is given by (1). This gives a speed up of
Ω(min(log n, `)) compared to any reversible random walk.

Examples of `-good graphs where ` = Ω(log n) whp include random r-regular graphs of even
degree, and fixed degree sequence random graphs, with all vertex degrees d(v) ≥ 4, even and
finite. The following corollary, proved in Section 4 is typical.

Corollary 2 Let r ≥ 4 even. Let Gr denote the class of random r-regular graphs. Let G be
sampled uniformly at random from Gr, then with high probability CV (E-process) = Θ(n).

In the case of random r-regular graphs, r ≥ 3 odd, there is good reason to believe that the
cover time of the u.a.r. E-process is Θ(n log n). A further discussion of the reasons for this,
and of experimental results are given in Section 5.

Edge cover time of E-process

A version of the E-process, in which the next unvisited edge is chosen u.a.r., was studied
by Orenshtein and Shinkar [13], under the name of Greedy Random Walk. They give the
following upper bound for the edge cover time CE(GRW ) of m edge, n vertex r-regular
graphs G using a Greedy Random Walk:

CE(GRW ) = m+O

(
n log n

1− λmax

)
. (2)

For an expander with 1− λmax > 0 constant, and r = Ω(log n) the expected edge cover time
of the Greedy Random Walk is Θ(m) and hence linear in the number of edges. The result
of [13] holds for any r, and not just r even.

For any even degree graph, a general bound on the edge cover time of any E-process can be
found a follows. Let CV (SRW ) denote the cover time of graph G by a simple random walk,
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then
m ≤ CE(E-process) ≤ m+ CV (SRW ). (3)

These bounds are explained as follows. Clearly m steps are need to cover the edges. The
embedded random walk of the E-process visits every vertex in CV (SRW ) expected time.
Whenever the random walk first visits a vertex u with unexplored edges, the E-process
begins an edge exploration which completes when all edges incident with u are explored.
The formal details of this argument are given in Section 3.1.

An example where the upper bound in (3) is tight but (2) is not, is an E-process on the
n-vertex hypercube Hr. The E-process on Hr has edge cover time Θ(n log n) which improves
on the Θ(n log2 n) edge cover time for Hr obtained by a simple random walk. This can be
argued as follows. Hr has degree r = log2 n so 2m = n log2 n. The vertex cover time of the
Hr is CV (SRW ) = Θ(n log n) ([12]). The second eigenvalue of the hypercube is 1−2/ log2 n,
so the upper bound in (2) is O(n log2 n). We note that the edge cover time of Hr by a simple
random walk is Θ(m logm) = Θ(n log2 n).

An upper bound for the cover time of the E-process on any connected graph can be obtained
using a result of Ding, Lee and Peres [7] on the the blanket time of a simple random walk.
Let πv = d(v)/2m be the stationary probability of v. For any δ ∈ (0, 1) define τbl(δ) to be the
first step t when every vertex v of G has been visited Nv ≥ δπvt times. Let tbl(δ) = Eτbl(δ).
It follows from Theorem 1.1 of [7] that tbl(δ) = O(CV (SRW )).

Provided a vertex v of graph G is visited at least d(v) times by the embedded random walk of
the E-process, then all edges incident with v must be explored. For any connected r-regular
graph, r ≥ 3, r = O(log n), the blanket time tbl(δ) = O(CV (SRW )). This, and the facts that
πv = 1/n, CV (SRW ) = Ω(n log n), imply that the time T (r) for a random walk to visit all
vertices at least r times has expected value ET (r) = O(CV (SRW )). Thus

CE(E-process) = O(m+ CV (SRW )). (4)

The upper bounds given in (2), (3), (4) are never better than O(n log n). For m = Θ(n)
an o(n log n) upper bound can be given for some classes of even degree graphs, such as high
girth expanders and random regular graphs. The following general result, based on girth,
holds for any even degree graph.

Theorem 3 Let G be a connected n vertex even degree graph, with maximum degree ∆, girth
g and m edges Then, any E-process on G has edge cover time

CE(E-process) = O

(
m+

m

(1− λmax)2

(
log n

g
+ log ∆

))
.

Thus even degree expanders of constant maximum degree have edge cover time CE = O(n+
(n log n)/g). See [11] for the construction of high girth expanders.

Better results for sparse random graphs can be obtained by an inspection of the graph
structure. For example, random regular graphs have constant girth whp, but the total
number of small cycles can be bounded above to give the following result.
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Corollary 4 Let r ≥ 4 even. Let Gr denote the class of random r-regular graphs. Let
G be sampled uniformly at random from Gr, then for any ω → ∞, with high probability
CE(E-process) = O(ωn).

Outline of the paper

It is helpful to think of the E-process re-colouring the edges of the graph as it proceeds. We
consider unvisited edges as coloured blue, and explored edges as coloured red. Suppose at
some point all edges incident with the vertex currently occupied by the walk are red (pre-
viously explored). It can be shown that any remaining blue edges in the graph (unexplored
edges) form even degree edge induced components (blue components). Any unvisited vertex
must be part of such a blue component. However not every blue component need contain
unvisited vertices.

For connected graphs of even degree, our method to upper bound the vertex cover time of
the E-process can be summarized as follows.

The E-process walk starts at some vertex and follows unexplored edges. This continues until
the walk returns to the start vertex. This follows from the even degree assumption, and a
simple parity argument. See Section 3.1 for details.

If all edges at the currently occupied vertex are red, the process makes a random walk. As
soon as this random walk visits some blue component C, it will begin to follow unexplored
edges with the possibility of reaching an unvisited vertex. If a blue component C contains
at least ` vertices, and the graph is an expander, it can be proved that whp a random walk
visits this component in O(n log n/`) random walk steps. This is established in Section 3.2.
Unfortunately, the E-process walk on unexplored edges of C may only re-colour part of this
component before exit, and never reach an unvisited vertex. To get around this, we prove
that there is no edge induced subgraph of size Θ(`) rooted at any unvisited vertex which is
left untouched by the random walk in O(n log n/`) steps.

In Section 2 we establish some general bounds on the time taken by a random walk to visit
sets of vertices S of a given size. In particular the exponentially strong bound given in
Lemma 8 can be used to ensure that no edge induced subgraph of size Θ(`) is left untouched
by the walk in O(n log n/`) steps.

2 Properties of random walks

In this section we give various results on random walks needed for our proofs.
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2.1 Convergence to stationarity

Let G = (V,E) denote a connected graph, |V | = n, |E| = m, and let d(v) be the degree
of a vertex v. A simple random walk Wu, u ∈ V , on graph G is a Markov chain modeled
by a particle moving from vertex to vertex according to the following rule. The probability
of transition from vertex v to vertex w is equal to 1/d(v), if w is a neighbour of v, and 0
otherwise. The walk Wu starts from vertex u at t = 0. Denote by Wu(t) the vertex reached
at step t; Wu(0) = u.

Let P be the transition matrix of a simple random walk on a graph G. Thus Pi,j = 1/d(i) if

and only if there is an edge between i and j in G. Let P
(t)
u (v) = Pr(Wu(t) = v) be the t-step

transition probability. We assume the random walk Wu on G is ergodic with stationary
distribution π, where πv = d(v)/(2m). If this is not the case, e.g. G is bipartite, then the
walk can be made ergodic, by making it lazy. A random walk is lazy, if it moves from v to
one of its neighbours w with probability 1/(2d(v)), and stays where it is (at vertex v) with
probability 1/2.

Let 1 ≥ λ2 ≥, ... ≥ λn, be the eigenvalues of P , and let λmax = min(|λ2|, |λn|). We henceforth
assume that λ2 = λmax. This can be achieved by making the chain lazy, which has no
significant effect on our analysis.

The convergence to stationarity of a simple random walk is bounded by

|P (t)
u (x)− πx| ≤ (πx/πu)

1/2λtmax. (5)

2.2 Lower bound on cover time for reversible random walks

For a random variable Z depending on W , define EuZ as the expectation of Z for the walk
Wu started from u at time t = 0. For a walk Wu, started from vertex u, the first return
time to u is defined as T+

u = min(t ≥ 1 : Wu(t) = u). The expected first return time EuT
+
u

is given by EuT
+
u = 1/πu. (See e.g. [2] Chapter 2, Lemma 5 for a proof of this.) The first

visit time from u to v is similarly defined as Tuv = min(t ≥ 1 : Wu(0) = u,Wu(t) = v). The
(expected) hitting time of vertex v is EuTuv and the commute time K(u, v) between vertices
u and v, is the expected time taken to go from vertex u to vertex v and then back to vertex
u. Thus K(u, v) = EuTuv + EvTvu.

A reversible weighted random walk W is defined by a set of weights w(e) > 0 on the edges
e ∈ E(G), and transition probabilities p(x, y) from x to y ∈ N(x) given by

p(x, y) =
w(x, y)∑

z∈N(x) w(x, z)
.

For an introduction to weighted random walks see [2] Chapter 3.

The following proof that the cover time of any weighted random walk W is Ω(n log n), is due
to T. Radzik [14].
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Theorem 5 For any weighted random walk W and n vertex graph G,

Cv(W,G) ≥ n

4
log

n

2
.

Proof Any walk starting from u either visits v before returning to u or it does not.
Thus ET+

u is at most the commute time K(u, v) between u and v.

Let S be the subset of vertices with πu ≤ 2/n. Thus |S| ≥ n/2. This follows because∑
u∈V πu = 1. As ET+

u = 1/πu, it follows that for u ∈ S, ET+
u ≥ n/2.

Let KS = mini,j∈SK(i, j) then, KS ≥ ET+
u ≥ n/2. From [10], we have the following lower

bound on the vertex cover time

CV (W,G) ≥ (max
A⊆V

KA log |A|)/2.

However for the set S given above we have KS log |S| ≥ (n/2) log(n/2). 2

Visits to a Single Vertex Let Hv be the first visit time of vertex v by a random walk W .
For a walk Wu starting from vertex u, let Eu(Hv) denote the expected value of Hv. If v = u
then Hv = 0. If the distribution of the random walk at some step t ≥ 0 is ρ = (ρ(u), u ∈ V ),
we define the hitting time from starting distribution ρ as Eρ(Hv) =

∑
u∈V ρ(u)Eu(Hv).

In particular, for a random walk starting at a vertex chosen according to the stationary
distribution π, let Eπ(Hv) denote the expected hitting time of vertex v from stationarity.

The quantity Eπ(Hv) can be expressed in the following way, (see e.g. [2], Chapter 2.2)

Eπ(Hv) = Zvv/πv, (6)

where

Zvv =
∞∑
t=0

(P (t)
v (v)− πv). (7)

Using (5), we can upper bound Eπ(Hv) as follows.

Lemma 6

Eπ(Hv) ≤
1

(1− λmax)πv
. (8)

Proof Using (5) with x = u = v, then

|P t
v(v)− πv| ≤ (λmax)t,

and

Zvv =
∑
t≥0

(P t
v(v)− πv) ≤

∑
t≥0

(λmax)t =
1

1− λmax

.

2
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Lemma 7 Let G be an n vertex (multi)-graph with eigenvalue gap (1−λmax), and maximum
degree ∆ ≤ n2. Let

T = K log n/(1− λmax). (9)

For K ≥ 6, T is a mixing time for a random walk on G, such that, for t ≥ T ,

max
u,x∈V

|P (t)
u (x)− πx| ≤

1

n3
. (10)

Proof

For λ ≤ 1, λ ≤ e−(1−λ). It follows from (5), for given u, x that

|P t
u(x)− πx| ≤ ∆1/2e−(1−λmax)t, (11)

Let
T = K log n/(1− λmax),

where K ≥ 6. As there are at most n2 pairs u, x, and ∆ ≤ n2, then using (11)∑
u,x

|P t
u(x)− πx| ≤ n2∆1/2e−T (1−λmax) ≤ 1

n3
. (12)

2

Let At,u(v) denote the event that Wu does not visit vertex v in steps 0, ..., t. Lemma 8 gives
an upper bound on Pr(At,u(v)) for any start vertex u in terms of Eπ(Hv) and the mixing
time T .

Lemma 8 Let TG be a mixing time of a random walk Wu on G satisfying (10). Then for
any start vertex u

Pr(At,u(v)) ≤ e−bt/(TG+3Eπ(Hv))c.

Proof Let ρ = (ρw) be the distribution of Wu on G after T = TG steps, where ρw =

P
(T )
u (w). Let Eρ(Hv) be the expected time to hit v starting from ρ. As T satisfies (10), and
πx ≥ 1/n2 for any connected graph, then ρw = (1 + o(1))πw. It follows that

Eρ(Hv) = (1 + o(1))Eπ(Hv). (13)

Let Hv(ρ) be the time to hit v starting from ρ, then

Pr[Hv(ρ) ≥ 3Eπ(Hv)] ≤
(1 + o(1))

3
≤ 1

e
. (14)

Let τ = T + 3Eπ(Hv). By considering the walk Wu for intervals of τ steps starting at
s = 0, τ, 2τ, · · · , bt/τcτ , and applying (14) to each interval gives

Pr(At,u(v)) ≤ e−bt/τc.

2
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Visits to Vertex Sets We extend the results presented above to any nonempty subset S
of vertices in the following way. Let d(S) =

∑
v∈S d(v) be the degree of set S ⊆ V . From G

we obtain a (multi)-graph Γ = ΓS by contracting S to a single vertex γ. We retain multiple
edges and loops in Γ, so that d(S) = d(γ), and |E(Γ)| = |E(G)| = m. Let π̂ be the stationary
distribution of a random walk on Γ. If v 6∈ S then π̂v = πv, and π̂γ = πS ≡

∑
x∈S πx.

For u 6∈ S let Wu be a walk starting from u in G, and let Ŵu be the equivalent walk starting
in Γ. Let At,u(S,G) be the event that Wu does not visit S in t steps, and let At,u(γ,Γ) be

the event that Ŵu does not visit γ in t steps. Up to the first visit to S the walks Wu and
Ŵu have the same transition probabilities and can be identically coupled. Thus,

Pr(At,u(S,G)) = Pr(At,u(γ,Γ)).

Let HS be the first visit time to set S, by a random walk. For a walk starting from u ∈ S,
define HS = 0. For any u 6∈ S the above coupling gives

Eπ(HS) = Eπ̂(Hγ). (15)

It is a known result that contracting vertex sets increases the eigenvalue gap. (For a proof
see e.g. [2] Chapter 3, Corollary 27.) Thus

1− λmax(G) ≤ 1− λmax(Γ). (16)

Thus Lemma 6 applies equally to Γ with λmax = λmax(G). The choice of K ≥ 6 for the
mixing time T in Lemma 7 ensures that (10) holds in both G and Γ. The upper bound in
Lemma 8 also holds in Γ with this mixing time T . We note the following consequence of
(15) and Lemma 6.

Corollary 9 Let G = (V,E), let |E| = m. Let S ⊆ V , and let d(S) be the degree of S.
Then EπHS, the expected hitting time of S from stationarity satisfies

EπHS ≤
2m

d(S)(1− λmax(G))
.

3 Proof of main results

3.1 Properties of the edge-process on even degree graphs

Let X(t) be the position at step t of a particle moving according to an E-process. It is
helpful to think of the progress of the E-process as a re-colouring of the edges of the graph
G. We consider unvisited edges as coloured blue, and visited edges as coloured red.

Initially, the particle is at X(0) = u, the start vertex, and all edges of the graph G are
coloured blue (unvisited). Given X(t) = v, X(t+1) is chosen as follows. If all edges incident
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with v are red (previously visited) the walk chooses X(t + 1) u.a.r. from N(v). If however,
there are any blue (unvisited) edges incident with v, then the walk picks a blue edge (v, w)
according to the rule A. The walk then moves to X(t + 1) = w, and re-colours the edge
(v, w) red (visited). We assume that the edge (v, w) is re-coloured red at the start of step
t + 1, the instant at which the walk arrives at w. Thus we regard the transition (v, w) as
being along a blue edge.

At each step t the next transition is either along a blue or a red edge. We speak of the
sequence of these edge transitions as the blue (sub)-walk and the red (sub)-walk. The walk
thus defines red and blue phases which are maximal sequences of edge transitions when the
walk is the given colour. For any vertex v, and step t, the blue (resp. red) degree of v is the
number of blue (resp. red) edges incident with v at the start of step t.

Observation 10 Assume all vertices of G are of even degree. Then a blue phase of the
E-process which starts at a vertex u (at some step t), must end at u (at some step t+ τ).

Proof This follows from a simple parity argument. The first blue phase starts at t = 0,
at the start vertex X(0) = u. At t = 0 every vertex has even blue degree. Suppose that at
step t we have X(t) = w, where w 6= u. Inductively every vertex, apart from the start vertex
u and the current position w have even blue degree, whereas the blue degree of u and w is
odd, and hence greater than zero. The particle can thus exit w along a blue edge. When
the particle leaves w = X(t) making the transition (X(t), X(t+ 1)), then the blue degree of
w = X(t) becomes even. If X(t + 1) = u, then the degree of u is even and the particle has
returned to the start. If X(t+ 1) 6= u, then the blue degree of X(t+ 1) and u is odd.

If the particle returns to u at step t, and the blue degree of u is zero, then the blue phase
at u is completed at (the start of) step t. The particle now leaves u along a red edge
(u, v) = (X(t), X(t + 1)), and this is the beginning of a red phase. Inductively, the blue
degree of v is even when the particle arrives at v. If v has blue edges incident with it, then
a blue phase begins. Otherwise the red phase continues. 2

Note that it is possible that all edges incident with a vertex v are coloured red by transitions
made during the blue sub-walk, and but that v has not yet been visited by a red sub-walk.

Let G[S] denote the subgraph of G induced by the set of vertices S ⊆ V . The following
summarizes the consequences of Observation 10.

Observation 11 Assume vertex v is unvisited at step t, and that the E-process is in a red
phase.

1. All edges incident with v are blue at step t.

2. The blue degree of all vertices at step t is even.

11



3. Let S∗v be the maximal blue (unvisited), edge induced subgraph obtained by fanning out
in a breadth first manner from v using only blue edges. Let U∗ be the vertex set of S∗v .
Then

(a) The degree of v in S∗v is d(v), the degree of vertex v in G. All vertices of S∗v have
positive even degree.

(b) All edges between U∗ and G \ U∗ are red.

(c) G[U∗] may induce red edges, but these are not part of S∗v .

In the simplest case S∗v consists of d(v)/2 blue cycles with common root vertex v, but
otherwise vertex disjoint.

It follows from Observation 10, that if we ignore the blue phases of the E-process X, then
the resulting red phases describe a simple random walk W on the graph G. If the E-process
X starts at X(0) = u, then W must also start at vertex u after the completion of the first
blue phase. Each step tR of the walk Wu(tR) corresponds to some step Xu(s), s > tR of the
E-process Xu.

At step t of the E-process, we have t = tR + tB, where tR, tB are the (unknown) number
of red and blue edge transitions. One thing is certain however; the length of the blue walk
can be at most the number of edges m of G. Moreover, no vertex which is visited at step tR
of the red sub-walk can have unvisited edges at the start of step tR + 1 of the red sub-walk.
These observations are formalized as:

Observation 12 Let Xu(t) be the walk defined by an E-process starting from vertex u. Let
Wu(tR) be the corresponding simple random walk on the graph G defined by the red phase of
the E-process. Then tR < t < tR +m.

In particular the edge cover time of the E-process is bounded by

m ≤ CE(E-process) ≤ m+ CV (SRW ),

where CV (SRW ) is the vertex cover time of a simple random walk on G.

3.2 Vertex cover time of the E-process

Lemma 13 Let Wu be a random walk starting from u in G. Let λmax = λmax(G). Let S be
a set of vertices of G. Let d(S) be the sum of the degrees of the vertices in S. Suppose that

d(S) ≤ m/6 log n,

and that
t ≥ 7m/d(S)(1− λmax). (17)

Then
Pr(S is unvisited by Wu at step t) ≤ e−td(S)(1−λmax)/14m.

12



Proof Contract S to a single vertex γ = γ(S), retaining all loops and parallel edges.
Denote the resulting graph by Γ. Let ∆ be the maximum degree in G or Γ as appropriate.
In either case, ∆ ≤ 2m ≤ n2. Let

T = 6 log n/(1− λmax(G)).

From (16) and Lemma 7, we have that T is a mixing time satisfying (10) in both G and Γ.

For u 6∈ S let Wu be a walk starting from u in G, and let Ŵu be the equivalent walk starting
at u in Γ. Provided Wu does not visit S in t steps, (the event At(S,G)), then Ŵu does not
visit γ (the event At(γ,Γ)), and the walks have the same probabilities. Thus

Pr(At(S,G)) = Pr(At(γ,Γ)).

From Lemma 8 we have

Pr(At(γ,Γ)) ≤ exp (−bt/(T + 3Eπ̂(Hγ))c) .

Assuming d(S) ≤ m/6 log n, we have that T ≤ m/(d(S)(1−λmax). From Lemma 6 and (16)

Eπ̂(Hγ)) ≤
2m

d(S)(1− λmax)
,

which gives

T + 3Eπ̂(Hγ) ≤
7m

d(S)(1− λmax)
.

Provided t ≥ τ then bt/τc ≥ t/2τ . As t satisfies (17) we have

Pr(At(S,G)) ≤ exp

(
−td(S)(1− λmax)

14m

)
.

2

Lemma 14 Let G be a graph of maximum degree ∆. Let β(s, v) be the number of connected
edge induced subgraphs containing s vertices, and rooted at vertex v in G. Then

β(s, v) ≤ 2s∆.

Proof We make a crude estimate for β(s, v) by building a digraph Hv in a breadth first
manner as follows. Initially Hv = ∅ and all adjacent edges of v in G are labeled unvisited.
Mark v as processed and add it to Hv. For each edge incident with v, we label it as retained
or excluded. Starting from v there are d(v) unvisited edges, and so at most 2d(v) choices
for the subset of edges incident with v to retain. We process each retained edge (v, u) in
increasing endpoint label order. Mark u as processed and add the retained edge (v, u) to
Hv. There are at most 2d(u)−1 choices for labels (retained, excluded) of any unvisited edges
incident with u.

13



Thus we fan out from v in a breadth-first manner using only retained edges, (u,w). We
add w to Hv, and also any retained edges (x,w), where x was processed earlier than w. In
general there are some number of retained and excluded edges incident with w in G, resulting
from processing earlier vertices; and the remaining at most (d(w) − 1) edges are unvisited.
We continue until Hv has s processed vertices, and the choices at these vertices have been
evaluated. The vertices of Hv and any retained edges between them define a connected
subgraph of size s rooted at v, and every subgraph of size s rooted at v is found by this
construction. 2

Lemma 15 Let G be an `-good even degree graph of minimum degree δ and maximum degree
∆. With probability 1−O(n−3), after

τ ∗ = m

(
1 +

14(∆ + 4) log n

δmin(`, log n)(1− λmax)

)
steps of the E-process, no vertex of G remains unvisited. The value of τ ∗ is independent of
the choice of rule A used by the E-process.

In particular, if G has constant maximum degree, there exists a constant B > 0 such that

τ ∗ = Bn[1 + (log n)/min(`, log n)(1− λmax)].

Proof Let S∗v be the maximal connected even degree blue subgraph rooted at v, as
described in Observation 11. Let Sv be any connected subgraph of S∗v of vertex size

s = min(`, log n),

rooted at v. By Lemma 14, there are at most 2∆s such possible subgraphs.

Suppose some vertex v is unvisited at step t of the embedded random walk on red (visited)
edges. The event that v is unvisited occurs if and only if there exists a blue (unvisited) edge
induced subgraph Sv of vertex size s rooted at v, none of whose vertices have been visited.
For a random walk Wu starting from vertex u, let Pv(s, t) be the probability of this event.
Let d(S) be the minimum degree of any subgraph Sv. From Lemmas 13 and 14,

Pv(s, t) ≤ 2∆se−t
d(S)(1−λmax)

14m .

As s = min(`, log n), on choosing

t∗ = (∆ + 4) log n
14m

δs(1− λmax)
,

we find that ∑
v

Pv(s, t
∗) = O(1/n3). (18)

From Observation 12, the length of the E-process walk on unvisited edges is at most m, the
number of edges of G, and the step τ ∗ = τ(t∗) in the E-process corresponding to the step t∗
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in the red phase random walk Wu is bounded by τ ∗ ≤ m+ t∗. In particular, if ∆ is constant
then m = cn, and

τ ∗ ≤ m+ t∗ = B(n+ (n log n)/(min(`, log n)(1− λmax))).

Suppose some vertex v is unvisited at τ ∗. Then a blue (unvisited) edge induced subgraph
S∗v rooted at v exists at τ ∗. However, from (18), whp any Sv ⊆ S∗v of size s, contains a
vertex z already visited by the red sub-walk W at t∗. Suppose this visit occurs at t ≤ t∗, but
that, at step t∗, some edges incident with z are unvisited, a necessary condition for z ∈ S∗v .
On arriving at z, the E-process completes the exploration of all edges incident with z, after
which the random walk W (t) continues up to step t∗. Thus at τ ∗ all edges adjacent to z are
red, which is a contradiction. 2

The probability of a failure to reach an unvisited (blue) component after t∗ steps is O(n−3)
(see (18)). To complete the proof of Theorem 1, we note that

CV (G) ≤ m+ t∗ +
∑
k≥1

kt∗O(n−3k) = O(τ ∗).

3.3 Edge cover time of the E-process

The conductance Φ of a graph G is defined as

Φ(G) = min
X⊆V

d(X)≤m(G)

e(X : X)

d(X)
,

where m(G) = |E(G)| is the number of edges of G, d(X) is the degree of set X, and e(X : X)
is the number of edges between X and X = V \X. For a simple random walk on a graph
G, the second eigenvalue λ2 of the Markov chain satisfies

1− 2Φ ≤ λ2 ≤ 1− Φ2

2
. (19)

Using a lazy walk, we can assume that λmax = λ2.

Recall that Γ = Γ(S) is the graph obtained from G by contracting the set of vertices S to a
vertex γ. From the construction of Γ it follows that Φ(Γ) ≥ Φ(G); every set of vertices in VΓ

corresponds to a set in VG, and edges and degrees of vertices are preserved on contraction.

The proof of Theorem 3 is based on the following construction. Let G be a graph of girth g.
Suppose there is an unvisited (blue) edge incident with a vertex v of G. There must be an
unvisited cycle of length at least g passing through v. We examine the breadth first search
tree of depth at most half the girth rooted at v for the existence of blue paths from leaf to
leaf of this tree which pass through v.

For a given vertex v let B`(v) be the subgraph induced by the vertices at distance at most
` = min(bg/2c − 1, log n) from v, and let L(v) be the vertices at distance `. The set B`(v)
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induces a tree, of which L(v) are the leaves. For x, y ∈ L(v) let xPy be the unique path
from x to y in B`(v), and let Qv = {xPy : xPy passes through v}.

Let Wu be a random walk starting from u in G. We say xPy is unvisited at t, if the edge
transitions (W (s− 1),W (s)) of the walk up to step t are disjoint from the edges of xPy.

Lemma 16 Let Wu be a random walk starting from u in G. For vertex v and xPy ∈ Q, if
t = Ω(m/`(1− λmax)2), then

Pr(xPy is unvisited by Wu at step t) = O
(
e−t`(1−λmax)2/128m

)
.

Proof Subdivide the edges of xPy by inserting a vertex zi of degree 2 in each edge
ei, i = 1, ..., 2` of xPy. This gives a path xP ′y, with an extra set of vertices S = {z1, ..., z2`}.
The rest of G unaltered. Let G′ be the resulting graph. Note that |S| = 2`, and d(S) = 4`.
The edge set of G′ has size m+ 2`. Let Γ be obtained from G′ by contracting S to a single
vertex γ.

Let At(xPy,G) be the event that a walk Wu[G] has not visited any edge of xPy at or before
step t. Let At(S,G

′) be the event that a walk Wu[G
′] has not visited any vertex of S at

or before step t. Let At(γ,Γ) be the event that a walk Wu[Γ] has not visited vertex γ at
or before step t. The walks which start from u ∈ V (G) and satisfy these conditions are
identically coupled, so

Pr(At(xPy,G)) = Pr(At(S,G
′)) = Pr(At(γ,Γ)).

From here, the proof follows that of Lemma 13. As π̂γ = d(γ)/(2(m + 2`)), and d(γ) = 4`
we upper bound Eπ̂(Hγ) by

Eπ̂(Hγ) ≤
m+ 2`

2`(1− λmax(Γ))
= C(γ),

say. As ` ≤ log n = o(m) this gives τ = TΓ + 3Eπ̂(Hγ) ≤ 4C(γ). Provided t ≥ τ

Pr(At(γ,Γ)) ≤ exp

(
−t`(1− λmax(Γ))

4m

)
.

Using d(xPy) ≥ 4` and d(γ) = 4` we find that ΦG′ ≥ ΦG/2. Finally (16) and (19) give

1− λmax(Γ) ≥ 1− λmax(G′) ≥ Φ2(G)

8
≥ 1

32
(1− λmax(G))2.

2

Lemma 17 Let G be an graph of maximum degree ∆ and girth g With probability 1−O(n−1),
after

τ ∗ = O

(
m+

m

(1− λmax)2

(
log n

min(g, log n)
+ log ∆

))
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steps of the E-process, no edge of G remains unvisited. The value of τ ∗ is independent of
the choice of rule A used by the process.

In particular, if G has constant maximum degree, there exists a constant B > 0 such that

τ ∗ = Bn[1 + (log n)/min(g, log n)(1− λmax)2]. (20)

Proof

For C ≥ 260 let t∗ be given by

t∗ = C
m

(1− λmax(G))2

(
log n

`
+ 2 log ∆

)
.

At any vertex v, the number of choices |Qv| for paths xPy from leaf to leaf of B`(v) passing
through v is at most |Qv| = ∆2`. Thus

Pr(There exists a vertex v and path xPy ∈ Qv unvisited by Wu at t∗)

≤ n∆2`e−t
∗`(1−λmax)2/128m = O(n−1).

Let τ ∗ = m + t∗. If the edge cover time of G is not O(τ ∗), there exists an induced cycle
U, |U | ≥ g all of whose edges are unvisited. Let v be some vertex of this cycle, and x, y
vertices at distance ` from v in U . Then the corresponding path xPy is unvisited, an event
of probability O(n−1). 2

4 Results for random regular graphs

Random r-regular graphs, Gr, with r ≥ 4 even, are an example of a class of graphs for which,
with high probability CV (E-process) = Θ(n). Let G ′r be the subset of Gr with the following
properties.

(P1) G is connected, and the second eigenvalue of the adjacency matrix of G is at most
2
√
r − 1 + ε, where ε > 0 is an arbitrarily small positive constant.

(P2) Let s = O(log n), and let a = b2s(log re)/ log nc. No set of vertices S of size s induces
more than s + a edges. In particular, for s ≤ (log n)/(4 log re) no set of vertices S of
size s induces more than s edges.

Lemma 18 Let G ′r ⊆ Gr be the r-regular graphs satisfying (P1), (P2). Then |G ′r| ∼ |Gr|.

Proof Friedman [9], shows the deep result that (P1) holds whp for random regular
graphs. It is straightforward to establish that (P2) holds whp. 2
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4.1 Proof of vertex cover time (Corollary 2)

Let ` = ε log n for some ε > 0. Property (P2) implies the graph is `-good as follows. For any
vertex v of the graph G, let U∗ be the smallest non-trivial connected, even degree, vertex
induced subgraph rooted at v. As r ≥ 4, this subgraph contains at least two cycles. Let
|U∗| = k, then U∗ induces at least k + 1 edges. By property (P2), no subgraph on less than
` = log n/(4 log re) vertices induces more than ` edges, and we conclude that |U∗| ≥ `.

4.2 Proof of edge cover time (Corollary 4)

If a graph contains small cycles, these cycles can occur as unvisited even degree edge induced
components, and the methods of Section 3.3 cannot be used unmodified.

Define a cycle as small if it is of length less than ` = ε log n for some ε > 0 constant.
Suppose vertex v is contained in exactly one small cycle C. For the edges ex = {v, x} of
v not contained in C, there is no even degree edge induced component of girth less than
` containing ex, and (20) of Lemma 17 applies. Suppose that after some step t the only
unvisited cycles remaining are those of length less than `. We assume this is the case. (By
Lemma 17 this will occur after at most τ ∗ = Θ(n) expected steps.) If the E-process is in
a red-phase, and the random walk arrives at a vertex v on a small unvisited cycle C, the
E-process will traverse C before resuming the random walk at v.

Referring to property (P2) above, let ε ≤ 1/4 log re. This implies that whp all cycles of
length k in G, for 3 ≤ k ≤ ε log n, are vertex disjoint. We estimate how long it takes a
random walk to visit all isolated cycles of size at most ε log n.

Let Nk denote the number of cycles of length k in G. Then ENk = θkr
k/k for some θk > 0

constant, and
Pr(Nk > 2kENk) ≤ 2−k.

Let ω →∞ arbitrarily slowly. For all ω ≤ k ≤ ε log n, with probability 1−O(2−ω) we have
Nk ≤ 2kENk. Using Lemma 13, and (P1), we have that the probability some cycle length k
is not visited by a random walk before step t = cn is at most∑

k≥ω

θk(2r)
ke−akt/n ≤ e−a

′ω = o(1),

for some a′, a, c > 0 constant.

Let 3 ≤ k < ω. Then Pr(Nk ≥ ω2ENk) ≤ 1/ω2. The probability some cycle is not visited
by a random walk before step t = nω′ is at most

ω∑
k=3

ω2θkr
ke−akt/n → 0,

provided aω′ ≥ 2ω log r + 3 logω.
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Figure 1: Normalised cover time of E-process on d-regular graphs as function of n = |V |

5 Removing the even degree constraint?

The only place where we used the even degree assumption we in Observation 10 which proves
that a walk on unvisited edges must terminates at the start vertex. How important is the
even degree constraint?

We consider the experimental evidence for the performance of the E-process on both even
degree, and odd degree regular graphs. In our experiments unvisited edges are chosen uni-
formly at random. For a wider range of experimental results on the cover time of regular
graphs by random walks which prefer unvisited edges or vertices see [4].

To conduct our experiments, we generated graphs of size up to half a million vertices, using
the random regular graph generator from the NetworkX package (http://networkx.lanl.gov/)
for the programming language Python. This package implements the Steger/Wormald ap-
proach, see [15]. We used Python’s built-in random number generator which is based upon
the Mersenne Twister. Each data point is the average of five actual experiments.

In Figure 1 we plot the normalised cover time of the E-process, in the case where the choice
of unvisited edges is random. The normalised cover time is the actual cover time divided by
n, as a function of n. Thus, linear functions of n appear flat. The labeling on the graphs is
as follows: The first letter indicates an E-process, and this is followed by the degree d = r of
the graph. In the case where the plot appears to be non-linear, a curve of the form c log n,
is drawn behind the normalised experimental data, and labeled [cn ln(n)]. The constant c
used to draw the curve was determined by inspection.

It would appear the plots for even degrees 4 and 6 are constant, i.e. the cover time is O(n).
On the basis of experimental evidence, the normalised cover time of 3-regular graphs is ω(n);
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see Figure 1. This ω(n) growth appears to be 0.93n log n. For degrees 5 and 7 the plot also
appears to show logarithmic growth. We note, however, that it is notoriously difficult to
quantify such growth on the basis of finite n, and we make no claims other than to present
our experiments.

We give an intuitive argument to suggest why the cover time is Ω(n log n) when r is odd. We
use the notation blue walk, to mean the walk on unvisited edges, and red walk to mean the
random walk on visited edges. When r = 3 there is a set of isolated vertices I of expected
size |I| ∼ n/8, left behind by the blue walk. This can be seen as follows. Fix a vertex v, and
assume that v is tree-like to some fixed depth. All but o(n) vertices satisfy this condition
whp. The probability that a random blue walk turns away from v each time it visits N(v)
is (1/2)3. If this occurs then v is at the center of an isolated blue star {v, w, x, y}. Let I be
the set of such stars. By a coupon collecting argument, it should take Ω(n log n) steps for
the red walk to visit all of I.
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