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1 Introduction

Let x = (x1, . . . , xp)
′ and z = (z1, . . . , zq)

′ be covariate vectors, and consider the partial

linear model

y = x′β + g(z) + ε,(1.1)

where both β and g(·) are unknown. The (potentially heteroscedastic) error ε =

ε(x, z) is assumed to follow an unknown distribution F (·|x, z), with E(ε|x, z) = 0 and

E(ε2|x, z) < ∞. Important subcases nested in model (1.1) are: (i) the linear model

for q = 0 and (ii) the nonparametric regression model for p = 0.

On the basis of the data {yj, xj , zj} ∈ R1+p+q, j = 1, . . . , n, we wish to test the

null hypothesis

H0 : E(y|x, z) = x′β + g(z),(1.2)

for some β ∈ Rp, and some function g : Rq 7→ R, against general alternatives. In this

general context there exist very few works on the specification problem of testing H0.

For instance, Yatchew (1992) proposed a test based on the sum of squared residuals

from a least squares fit, which also allows for heteroscedasticity but requires sample

splitting. Avoiding the latter, Fan & Li (1996) suggested a test of the null hypothesis

in (1.2) based on the limiting normal distribution of degenerate U-statistics, while Zhu

& Ng (2003) considered a resampling approach, where the test statistic is constructed

through a residual-marked cusum process.

Recently, an alternative route to the construction of hypothesis tests, employing

the empirical characteristic function of the residuals, has been successfully pursued in

related settings. These include tests for the shape of the error distribution in linear

(Hušková & Meintanis, 2007), nonparametric (Hušková & Meintanis, 2010), and semi-

parametric models (Meintanis & Einbeck, 2012). The abovementioned procedures are

conceptually simple, easy to implement, and have been found to outperform, or at

least be highly competitive to more traditional methods which employ, for instance,

the empirical distribution function of the residuals (rather than their characteristic

function).

In order to make use of this Fourier–type approach for testing (1.2), we formulate

our procedure by using the characterization of Bierens (1982): for real y and given
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a function w(v) of a k–vector v, the equation E(y|v) = w(v) holds if and only if

E[{y − w(v)}eit′v] = 0, for all t ∈ Rk. By adapting this result to the current set–up,

with v = (x′, z′)′ and w(v) = x′β + g(z), we suggest to test the null hypothesis H0 by

checking whether

E[{y − x′β − g(z)}eit′v] = 0, ∀ t ∈ R
p+q.(1.3)

Given suitable estimators (β̂n, ĝn(·)) of (β, g(·)), it is straightforward to estimate the

conditional expectation figuring in the left–hand side of (1.3) by

En(t) =
1

n

n∑

j=1

ε̂je
it′vj ,

where

ε̂j = yj − x′
jβ̂n − ĝn(zj), j = 1, ..., n.(1.4)

Consequently an omnibus procedure for specification testing is to reject the null hy-

pothesis H0 for large values of the test statistic

Tn,W =

∫

Rp+q

|En(t)|2 W (t)dt,(1.5)

where W (·) is an appropriate weight function which we discuss in detail in the following

section.

The rest of the paper is organized as follows. In Section 2 we discuss the com-

putation of the test statistics, the consistency of the test, and an approximation of

the test statistic. Bootstrap versions of the tests are introduced in Section 3, while

we consider the important task of estimation in Section 4. An extensive Monte Carlo

study is provided in Section 5. Section 6 contributes a discussion including a real data

example. Finally, in the Appendix the consistency of the proposed test under general

alternatives is proved.

To fix notation used throughout the manuscript, denote X = (x1, . . . , xn)′, y =

(y1, . . . , yn)′, and g = (g(z1), . . . , g(zn))′. Also, in what follows bold small symbols

generally denote vectors, and bold capital symbols denote matrices.
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2 Computations and asymptotics

2.1 Computation of test statistic

In order to compute the test statistic Tn,W in (1.5), first notice that

|En(t)|2 =
1

n2

n∑

j,k=1

ε̂j ε̂k cos{t′(vj − vk)}.

Hence, one may write the aforementioned test statistic as

Tn,W =
1

n2

n∑

j,k=1

ε̂j ε̂kIW (vj − vk),(2.1)

where

IW (u) =

∫

Rd

cos(t′u)W (t)dt

with d = p + q denoting the total number of covariates. Thus the computation of

Tn,W boils down to the computation of IW (·), and consequently tests which are free of

numerical integration correspond to suitable weight functions W (·) which render the

integral IW (·) in a convenient closed–form expression.

In order to investigate the spectrum of possible weight functions, suppose that

W (·) may be written as a product

W (t) =

d∏

ℓ=1

w(tℓ),(2.2)

where t = (t1, ..., td)
′ and the univariate function w satisfies w(t) = w(−t), t ∈ R. Then

by straightforward algebra we have IW (u) =
∏d

ℓ=1 Iw(uℓ) where u = (u1, ..., ud)
′ and

Iw(z) =
∫∞

−∞ cos(tz)w(t)dt, z ∈ R. Hence the test statistic in (2.1) becomes dependent

solely on w and takes the form

Tn,w =
1

n2

n∑

j,k=1

ε̂j ε̂k

{
d∏

ℓ=1

Iw(vjℓ − vkℓ)

}
,(2.3)

where vjℓ, ℓ = 1, ..., d, denotes the ℓth coordinate of vj , j = 1, ..., n. Expression

(2.3) provides considerable flexibility in choosing the weight function. In principle,

the product decomposition in (2.2) allows for any even function w(t) which renders

the integral Iw(u) finite to stand as a candidate. Standard choices are exponential
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functions of the type w(t) = e−a|t|m , a > 0, m = 1, 2, uniform–type weight func-

tions w(t) = 1, |t| ≤ a, and w(t) = 0, |t| > a, or trigonometric oscillations such as

w(t) = sin(at)/(at), t ∈ (−π/a, π/a). Some particularly important weight functions

and associated test statistics are discussed below.

Normal weight functions. Our first choice for the weight function comes from

the d–variate normal distribution with i.i.d. components each with mean zero and

variance a. The characteristic function of this distribution yields
∫

Rd

cos(t′u)e−a||t||2dt =
(π

a

)d/2

e−||u||2/4a, a > 0.

From this integral and by letting W (t) = e−a||t||2 in (2.1) we have

Tn,W =
(π

a

)d/2 1

n2

n∑

j,k=1

ε̂j ε̂ke
−||vj−vk||

2/4a := Ta(2.4)

We observe that Ta, apart from the irrelevant constant (π/a)d/2, is the weighted mean of

the cross product ε̂j ε̂k of the residuals. In turn, the weight that each term ε̂j ε̂k receives

in the sum is determined by the squared distance between the corresponding regressor

vectors vj and vk, this distance being exponentially transformed to e−||vj−vk||
2/4a.

Notice that the weight function e−a||t||2 is a particular case of the product decom-

position in (2.2). Specifically we could alternatively arrive at (2.4) by using (2.2) with

w(t) = e−at2 , (2.3) and
∫ ∞

−∞

cos(tz)e−at2dt =

√
π

a
e−z2/4a.

Laplace-like weight functions. Further, we consider the univariate weight

function w(t) = e−a|t| in (2.2). Using that
∫ ∞

−∞

cos(tz)e−a|t| dt =
2a

a2 + z2

one obtains via (2.3),

Tn,w =
(2a)d

n2

n∑

j,k=1

ε̂j ε̂k

{
d∏

ℓ=1

1

a2 + (vjℓ − vkℓ)2

}
:= Ta.(2.5)

Note that this result is not obtained when using the multivariate weight e−a||t|| in (2.1),

since
∏d

ℓ=1 e−a|tℓ| = e−a||t||1, where || · ||1 is the L1 “city-block” (but not the Euclidean!)

norm.
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2.2 Behavior for n −→ ∞

In this subsection we investigate the stochastic behavior of the test statistic Tn,W , as

n → ∞. Under fairly mild conditions, we have the following result.

Theorem 1 Under the assumptions (A1) to (A4),

lim
n→∞

Tn,W =

∫

Rp+q

|E(t)|2 W (t)dt := TW ,(2.6)

almost surely, where E(t) = E[εeit′v].

The assumptions (A1) to (A4) as well as the proof are provided in the Appendix.

In view of (1.3), the limit statistic TW in (2.6) is equal to zero under the null hypothesis

H0. On the other hand, suppose H0 is not true. Then there exists some t0 ∈ Rp+q such

that E[{y − x′β − g(z)}eit′0v] 6= 0, and due to continuity, the last relation holds not

just at t0, but in a δ–neighborhood N0(δ) := {t ∈ Rp+q : ‖t − t0‖ < δ}. Consequently

we have

TW =

∫

Rp+q

|E(t)|2 W (t)dt ≥
∫

N0(δ)

|E(t)|2 W (t)dt > 0,

which implies the consistency of the test which rejects the null hypothesis H0 for large

values of the test statistic Tn,W .

2.3 Behavior for a −→ ∞

We now consider the limit value of the statistics Ta and Ta, as a → ∞. Clearly such

an approximation is equivalent to replacing of the corresponding weight function by

a Dirac type function. To this end expand the exponential function, and notice that

after some further algebra we may write

πd/2 1

n2

n∑

j,k=1

ε̂j ε̂k − ad/2Ta =
πd/2

4a

1

n2

n∑

j,k=1

ε̂j ε̂k||vj − vk||2 + o

(
1

a

)
, a → ∞,(2.7)

for the test statistic in (2.4). From (2.7) it clearly follows that,

lim
a−→∞

(a

π

)d/2

Ta =
1

n2

n∑

j,k=1

ε̂j ε̂k := T∞(2.8)
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so that one may consider using the right hand side of this expression as an approximate,

limit test statistic. A further scaling in (2.7) yields the limit

lim
a→∞

a

(
1

n2

n∑

j,k=1

ε̂j ε̂k −
(a

π

)d/2

Ta

)
=

1

4

1

n2

n∑

j,k=1

ε̂j ε̂k||vj − vk||2.(2.9)

Consequently we conclude that the test statistic Ta when scaled and centered prop-

erly, attains a limit value as a → ∞, which coincides with the weighted mean of the

cross product of the residuals with weights equal to the squared distance between the

corresponding covariate–vectors. This quantity is rather of theoretical than practical

interest — it does not perform well as a test statistic, since, though resembling (2.4) at

first glance, the residuals are now associated with weights which increase, rather than

decrease, with distances ||vj − vk||2. The test statistic (2.8) can be seen as a middle

ground between these two extremes, which does not make use of the distances at all.

Analogously, it follows from (2.5) that

lim
a→∞

(a

2

)d

Ta =
1

n2

n∑

j,k=1

ε̂j ε̂k,

which along with (2.8) shows that, in first order approximation, the test statistics based

on Gaussian and Laplacian weights are equivalent.

3 Bootstrap procedures

The limit null distribution of the test statistic Tn,W is highly non–trivial and depends

on unknown quantities; see Bierens (1990). Therefore it is not practical to use this

distribution for calculating critical points and actually performing the test. However

there exists a suitable resampling procedure which is specifically tailored for the test-

ing problem (1.2) and circumvents this drawback. The consistency of this resampling

scheme has been shown by Zhu (2005, §5), Delgado & González–Manteiga (2001) and

Härdle et al. (1998), with different testing procedures for the partial linear model

hypothesis (1.2). In practical terms the resampling is implemented as follows: Con-

ditionally on the observations {yj, xj, zj}n
j=1, fit the model according to H0, yielding

residuals {ε̂j}n
j=1, and calculate the corresponding value, say T , for the test statistic.

Then,

7



(i) Generate independent random variables {ej}n
j=1 with mean zero and unit vari-

ance, and let ε∗j = ej ε̂j, j = 1, ...n.

(ii) Compute the bootstrap responses y∗
j = x′

jβ̂n + ĝn(zj) + ε∗j , j = 1, ..., n.

(iii) On the basis of the observations {y∗
j , xj, zj}n

j=1 refit the model in (1.1), compute

the residuals and the corresponding value of the test statistic, say T ∗.

(iv) Repeat steps (i) to (iii) a number of times, say B, and obtain {T ∗
b }B

b=1.

(v) Calculate the p–value as p̂ = k/(B + 1) where k :=
∑B

b=1 1{T ∗

b
≥T} denotes the

number of times that T ∗
b , b = 1, ..., B, was greater than or equal to T .

(vi) Reject the null hypothesis H0 if p̂ ≤ α, where α denotes the designated level of

significance.

Note that this bootstrap method is a version of the wild bootstrap which is em-

ployed when heteroscedasticity is present, and may also be found under the name

‘external bootstrap’; see for instance Delgado & Fiteni (2002).

In order to assess the sensitivity of the proposed test to the choice of the weight

parameter a, we have carried out a small simulation study resembling the design of

that one in Meintanis & Einbeck (2012). We consider two different data-generating

mechanisms, namely

(M0) y = x + sin(2πz) + 0.5ǫ

and

(M1) y = x2 + 0.5ǫ

with ǫ ∼ N(0, 1), x ∼ N(1/2, 1/2), and z ∼ U [0, 1]. As the null hypothesis we use

H0 : y = βx + g(z) + ε,

i.e. for model (M0) H0 is true and for model (M1) H0 is false. The sample size of

the simulated data sets is n = 100, of which we produce B = 200 bootstrap replicates

each, with Gaussian ej in step (i). We use the test statistic Ta in (2.4), experimenting

with a wide range of values for the weight parameter a; specifically these are: a =
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0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 103, 104, 105, 106, 107, and 108. Further we consider

the asymptotic version T∞ in (2.8). The model is fitted using R function gam in R

package gam, using smoothing splines and the default bandwidth (corresponding to

5 degrees of freedom including the intercept) at all occasions. The null hypothesis is

rejected if the bootstrapped p−value falls below the target significance level, which we

take to be either α = 0.05 or α = 0.10. The entire bootstrap routine is repeated 2000

times.

The resulting proportions of rejection under (M0) and (M1) are depicted in Figure

1. We observe that (i) when H0 is true, the tests attain throughout a rejection rate

which is very close to the target significance level; (ii) the performance of the tests is

largely independent of the weight parameter in a wide range of values from a = 0.1 to

about a = 100000; (iii) however, a cannot be arbitrarily increased, as from ca. a ≈ 107

on the test power falls dramatically, rendering the asymptotic version infeasible in

practice. (iv) Otherwise, the test powers under (M1) achieve excellent values which

are very close to 1.

We also experimented with a range of possible values for the number of bootstrap

replicates, B. Increasing the number beyond 200 led to similar results to those obtained

for B = 200, at large computational cost. Decreasing the number B led naturally

to an increased variability of the observed powers, though we still obtained sensible

simulation results for values as small as B = 50. Overall, the setting B = 200 appears

to be a good compromise between computational efficiency and test accuracy.

4 Estimation

It remains the important task of how to find suitable estimators β̂n and ĝn(·) for

the partial linear model (1.1). Concerning the nonparametric term, it is sufficient

for our purposes to estimate g only at the location of the predictors zj, j = 1, . . . , n.

Hence, we seek estimators of type (β̂, ĝ) ∈ Rp+n, with ĝ = (ĝn(z1), . . . , ĝn(zn))′, where

the dependence on n is now suppressed for notational ease. There exists quite large

number of different estimators proposed in the literature, many of which make use of
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Figure 1: Proportion of rejection of H0 when (M0) [left] and (M1) [right] is true, in

dependence of a. The two rightmost symbols refer to the limiting statistic (2.8). The

bottom line (◦) and the top line (△) correspond to the target significance levels

α = 0.05 and α = 0.10, respectively.
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the following simple idea. Noting that

E(y|z) = E(x|z)′β + g(z),(4.1)

one finds by subtraction of (4.1) from (1.1)

ỹ = x̃′β + ǫ,(4.2)

where ỹ = y − E(y|z) and x̃ = x − E(x|z). Now the vector β can be consistently

estimated by LS if equation (4.2) is viewed as a linear regression of ỹj on x̃j, j = 1, ..., n.

The unknown expectations in ỹ and x̃ are estimated as

Ê(ỹ|z) =
n∑

j=1

wj(z)yj(4.3)

and

Ê(x̃|z) =
n∑

j=1

wj(z)xj(4.4)

respectively, where wj(z), j = 1, . . . , n are weight functions corresponding to a suitable

linear smoother. The most common choice, suggested by Robinson (1988), is to use a
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simple kernel-weighted estimator, which, in the case q = 1, can be written as

wj(z) =
K((zj − z)/h)∑n
i=1 K((zi − z)/h)

.(4.5)

We will use this estimator of (β, g) in Section 5 and denote it by (I). Alternatively,

it has been proposed to use smoothers based on piecewise polynomials (Chen, 1988),

or least squares tensor product splines (Schick, 1996). A variant, (II), of Robinson’s

method, which has arisen mainly out of the necessity to cross-validate the estimator

in order to select a suitable bandwidth h for (4.5), is to replace, for estimation at

z = zℓ, all sums
∑n

j=1 in (4.3), (4.4), and (4.5) by their leave-one-out versions,
∑

j 6=ℓ

(Zhu & Ng, 2003). Furthermore, Bianco & Boente (2004) suggested to replace the

(non–robust) weighted expectations in (4.3) and (4.4) by (robust) medians weighted

via (4.5), and additionally to replace the LS estimator of β by a robust L1 estimator.

We denote this estimator, which is not a linear smoother any more, by (III).

We return to the ‘classical’ estimator (4.3, 4.4) but reformulate it a little. For any

choice of weights, define the weight diagrams as

s′
ℓ = (w1(zℓ), . . . , wn(zℓ)) , ℓ = 1, . . . , n.

These can be thought of as the rows of a smoother matrix, S, so that, if one had p = 0

in (1.1), the fitted response would be given by ŷ = Sy. In this notation, one can show

that the approach via (4.3, 4.4) is exactly equivalent to solving

β̂ = (X ′(I − K)X)−1X ′(I − K)y(4.6)

ĝ = S(y − Xβ̂)(4.7)

where K = S + S′ + S ′S (Speckman, 1988). A related class of estimators, (IV), is

obtained by setting K = S. For symmetric matrices S, this new class of estimators

can be shown to correspond to solutions of a suitable penalized least squares problem

(Green, Jennison, & Seheult, 1985). For kernel weights (4.5) as used in this paper, S

is non-symmetric.

In the simulation study in Section 5, we will furthermore consider the semiparamet-

ric regression estimator, (V), produced by R function gam in R package gam (Hastie,

2010), using the identity link function and the default smoother (smoothing splines).
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Table 1: Simulation design according to Zhu & Ng (2003). The table is arranged to

match the graphical layout in Figures 3 to 7.

ǫ

N(0,1) U[-0.5,0.5]

U[-0.5,0.5] Uni-Nor Uni-Uni
x

N(0,1) Nor-Nor Nor-Uni

This corresponds effectively to using equations (4.6) and (4.7), but with S correspond-

ing to the cubic spline smoother matrix as provided explicitly in Fahrmeir & Tutz

(2001), page 181.

All estimators (I) - (V) fulfil the assumptions (A1)-(A4) of Theorem 1, as detailed

at the end of the Appendix.

5 Simulation study

Next, we carry out an extensive simulation study, using the same setup as Zhu & Ng

(2003). Specifically, data sets of size n = 100 are simulated from the model

y = βx + bx2 + (z2 − 1/3) +
√

12(z − 1/2)ǫ,(5.1)

where all of x, z and ǫ are random variables. This is a model of type (1.1) with

ε = ε(x, z) =
√

12(z − 1/2)ǫ. The null hypothesis corresponds to the setting b = 0.

Zhu & Ng found that the performance of their test, in terms of the test power, depends

strongly on the type of the distribution of x and ǫ. Therefore, we follow their simulation

design and use different combinations of the distributions of the variables in our study.

These four combinations, along with the labels that we are going to use for them,

are displayed in Table 1. For the random variable z, we use throughout a uniform

distribution on [0,1].

We investigated and compared estimation methods (I)-(V) presented in Section 4,

where the biweight kernel K(u) = 15
16

(1−u2)1{−1≤u≤1} was used in (I)-(IV), and splines

where used for estimator (V). For the smoothing parameters, we used for (I) to (IV)

the values of h as found in Zhu & Ng via generalized cross-validation, namely h = 0.30
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and h = 0.57 for the cases with uniform and normal error, respectively. Clearly, these

bandwidths have only been found to be optimal for smoother (II), while the optimal

bandwidths for (I), (III), and (IV) are likely to be different. However, there is no

objective way of imposing an equal degree of smoothness onto all smoothers, since the

trace of the smoother matrix is a misleading quantity for a leave–one–out estimator, and

(III) does not possess a smoother matrix at all. Hence, working with equal smoothing

parameters seems a fair compromise. As a contrast, for the gam function in (V), we used

the default smoothing parameter corresponding to tr(S) = 5 (including the intercept).

For comparison, the trace of the smoother matrix S used in the Nadaraya-Watson

smoothers in (I) and (IV), is 3.5. Hence, while (I)-(IV) should be compared between

themselves (all using kernels with the same bandwidth), the estimator (V) serves as

an external benchmark (different smoother and smoothness).

We fitted model (5.1) using using B = 200 bootstrap replicates for each simulated

data set, and repeated the procedure 3000 times (these numbers were chosen so that

comparability with the results reported in Zhu & Ng (2003) is warranted). Gaussian

random variables ej were used in bootstrap step (i), and the test statistics Ta based

on normal weights (2.4) was used in steps (iii) and (iv). For comparative purposes, we

also applied Fan and Huang’s (2001) Adaptive-Neyman test (Adj-FH), with normalized

test statistics

TAN =
√

2 log log n T ∗
AN − {2 log log n +

1

2
log log log n − 1

2
log(4π)},(5.2)

where

T ∗
AN = max

1≤m≤n

1√
mσ̂2

2

m∑

j=1

(ε̂∗2j − σ̂2
1)

and ε̂∗2j are discrete Fourier transforms of the original residuals, ε̂j. Formulae for the

estimation of σ2
1 = Var(ε) and σ2

2 = Var(ε2) are provided in Fan & Huang (2001).

It is important to note that the Adj-FH test was developed for tests under a para-

metric null hypothesis, while the the proper test in the context of the null hypothesis

H0 would be that by Fan & Li (1996). However, apart from being easier to implement,

the Adj-FH test also compares well with the test of Fan & Li (1996) as shown in the

simulation results reported by Zhu & Ng. An issue that will arise for either test is that

13



the power depends strongly on the variance estimates, which become poor for large b.

Zhu & Ng addressed this issue by resorting to the variance estimated under H0. We

opted for using the true, known variances, which, for the simulation problem at hand,

can be straightforwardly worked out. Exploiting the independence of z and ǫ, one

finds Var[(z − 1
2
)ǫ] = Var(z)E(ǫ2), and hence σ2

1 = 12Var(z)E(ǫ2) = 1/12 for uniform

error and σ2
1 = 1 for normal error. An analogous computation gives σ2

2 = 7/450 and

σ2
2 = 22/5, for uniform error and for normal error, respectively. According to Fan &

Lin (1998), the test statistic in (5.2) satisfies:

P (TAN < x) −→ exp(− exp(−x)), n −→ ∞.(5.3)

The authors also provide a tabulated list of upper α quantiles. For α = 0.05 and

n = 100 as considered here, Fan & Lin’s table gives the critical value 3.90, which

was used in the simulation below. Since our null hypothesis is semiparametric, the

theoretical distribution and quantiles do not transfer one–to–one to our setup. Zhu &

Ng (2003) dealt with this problem by “some constant adjustment so as to maintain

the significance level”. We do not follow this route, but provide the observed powers

at face value, hence allowing insights into the magnitude of the bias in the significance

level under the different scenarios.

To give an initial impression of the nature of this heteroscedastic nonparamet-

ric estimation problem, Figure 2 (top left) gives the true function g(z) = z2 − 1/3,

along with partial errors yi − βxi from a randomly chosen simulation loop, in the

special case β = 1, b = 0. The subsequent figures give the nonparametric estimates

ĝ = (ĝn(z1), . . . , ĝn(zn))′. As expected, the median–based estimate (III) is less smooth

than the others, but notably, also the leave–one–out estimator (II) demonstrates some

considerable deviation from what one would expect to be a smooth curve, especially in

the boundary region. This is remarkable as the bandwidth parameters were optimized

for this very estimator! We see that leaving out the “most informative observation” at

each point impacts on the fitted curve considerably. Therefore, we do not think this

estimator should be used generally for the actual estimation of a nonparametric term,

unless this happens explicitly and intentionally within a cross–validation routine for

the purpose of bandwidth selection. We will see that the smoothness of the nonpara-

metric estimate ĝ impacts on the Adj-FH test (at least, in the form that we have used
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Figure 2: Top left: plot of true function g(z) = z2 − 1/3, along with partial residuals

yi − βxi for an exemplary data set simulated from (5.1) with β = 1 and b = 0; other

panels: nonparametric estimates ĝ using (I) to (V).
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it), while it impacts less strongly on the test proposed herein.

The test powers (in terms of percentages of rejections of H0 : b = 0, over all

3000 replicates) are provided, for estimation routines (I) to (V), in graphical form in

Figures 3 to 7. The target significance level is set at α = 0.05, i.e. we reject H0 if the

bootstrapped p–value is less than or equal 0.05. Each panel shows the percentage of

rejection of H0 as a function of the slope parameter b. In terms of the weight parameter

a, we use the values a = 0.1 (dashed), 1 (dotted), and 10 (dashed–dotted). While the

former two settings worked generally well, the latter setting performed suboptimal, but,

bearing in mind the results from Section 2.1, we included it for comparative purposes.
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Figure 3: Percentage of rejection of H0 as a function of b, for estimator (I).

b

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

Nor−Nor Nor−Uni

Uni−Nor

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Uni−Uni

Adj−FH
a=0.1
a=1
a=10

The solid line in each plot corresponds to the Adj-FH test.

Important observations to draw from these figures are: (a) For all employed esti-

mators, and for all considered values of the weight parameter a, the target significance

level is closely met under H0 (i.e., b=0). (b) The test power rises very quickly to

1 for Nor-Nor and Nor-Uni design, moderately quickly for Uni-Uni design, and per-

forms very poorly for Uni-Nor design. This is in line with the results from Zhu & Ng

(2003). (c) Of the three values of a considered, the best performance was observed for

a = 0.1, closely followed by a = 1. The largest differences between different values of

a were observed for Uni-Uni and Nor-Nor design, while the differences are negligible

for Uni-Nor (here all settings perform poorly) or Nor-Uni (here all settings perform

well) design. (d) Comparing Figure 4 for the leave–one–out estimator with Figure 1 in

Zhu & Ng (2003), we see that our estimator, for a = 0.1 and Uni-Uni design, performs

comparable to their CVn test, while it performs considerably better under the Nor-Nor

and Nor-Uni scenarios. Our test appears to perform even worse than CVn under the

difficult Uni-Nor scenario. (e) For normally distributed x, the Adj-FH test produced

results which were not dissimilar to the test proposed herein, apart from lower powers
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Figure 4: Percentage of rejection of H0 as a function of b, for estimator (II).
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Figure 5: Percentage of rejection of H0 as a function of b, for estimator (III).
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Figure 6: Percentage of rejection of H0 as a function of b, for estimator (IV).
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for small values of b. The Adj-FH test is not suitable for uniformly distributed x, as

also found by Zhu & Ng. While the target significance level was slightly undershot

for estimators (I), (IV), and (V) under some design configurations, it was overshot

for estimator (II) and especially strongly for estimator (III). The reason for the latter

behavior is apparently found in the non–smoothness of these estimators as evidenced

in Figure 2: the more the estimated function ĝ deviates from a smooth function, the

more heavily the assumption of a parametric model (underlying the Adj-FH test) is

violated. It is in these cases where Zhu & Ng’s ad–hoc adjustment to maintain the

significance level may be beneficial, though it is reassuring to see that in the majority

of considered scenarios the Adj-FH test performs reasonably without this course of

action.

A bootstrapped version of the Adj-FH test was also attempted (using again B =

200, and the same wild residuals as in Section 3). This led to unsatisfactory results,

with unacceptably low powers overall, which we do not report in this paper. The

precise reason for the failure of the wild bootstrap in this context is unclear to us. It

is probably due to the type of asymptotic distribution attained by the test statistic
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Figure 7: Percentage of rejection of H0 as a function of b, for estimator (V).
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(5.2). Specifically as it may be seen from (5.3), this distribution belongs to the family

of extreme value distributions and these distributions are known to often lead to failure

of the bootstrap; see for instance Chernick (1999), §9.3.

6 Discussion

Some final words on the choice of the weight parameter a are in order. Though the

results in the small simulated example in Section 3 indicate that the test performs quite

insensitively to the choice of a, it is still impossible to pinpoint some specific value of

a which would serve for all data sets, the reason being that the impact of a certain

value of a onto the test statistic, such as (2.4), depends on the scale of the predictors

v = (x′, z′)′. However, the reassuring message to be taken from the abovementioned

simulation is that, for the normal weight function, we do not need to be concerned

about fixing a precise value of a, it is merely important to identify its right magnitude.

It should be added at this occasion that this simulation was repeated using Laplace–

weights (2.5). It turned out that this weight function reacts far more temperamentally
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to the choice of a, and powers of similar strength as for the normal weights were only

achieved in the small window 0.5 ≤ a ≤ 1.

For the normal weight function, a simple rule of thumb allowing to identify the

right magnitude of a (without needing to fit a pilot model) is to set

â =
1

n2

n∑

j,k=1

||vj − vk||2.

This rule delivers a value â ≈ 0.7 for the simulations in Section 3 and of â ≈ 0.35 for

the simulations in Section 5. As far as the second simulation is concerned, this falls

just well in between a = 0.1 and a = 1, both of which performed well in the simulation

study.

To highlight the importance of this issue, let us consider briefly the Australian

onions data set investigated in detail in Meintanis and Einbeck (2012), featuring 84

observations on the areal density of plants (plants/m2), a location indicator variable,

and the response log(yield). The obvious candidate models include (A) a linear model,

and (B) a semi–linear model, with a linear term for location and a non–parametric

term for density. The rule of thumb above gives, for this data set, â = 3400! Ap-

plication of the proposed test routine using test statistic (2.4) with weight parameter

a = 3400, estimator (V), and 200 bootstrap replicates, yields a p−value of 0.00 for

model (A) and 0.195 for model (B), giving, as expected, clear evidence that the semi-

parametric model is favorable. However, an unreflected use of, say, a = 1, would lead

to a loss of the test power, yielding p ≥ 0.15 for both models.

In closing we wish to note that the notion of validation advocated here refers to

the appropriateness of the partial linear model as a model for a given data set and not

to that of significance of parameters, or to the notion of goodness–of–fit with respect

to the error distribution. (This latter aspect was investigated in the context of partial

linear models by Meintanis & Einbeck, 2012). In fact, diagnostic procedures for the

problem discussed herein should precede any kind of investigative work with respect

to the error–distribution, since it is the greater picture of the model that comes first

and then come certain specifications of the ingredients of the model (be it parameter

significance or goodness-of-fit for the error distribution). It consequently becomes clear

that the current work is nicely complemented by that in Meintanis & Einbeck (2012)
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since the two procedures can be used in conjunction if one wishes to validate a partial

linear model with a specific structure for the error distribution.
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Appendix

Assumptions for Theorem 1.

(A1) The weight function satisfies W (t) > 0, except for a set of measure zero, and
∫

Rp+q W (t)dt < ∞.

(A2) The estimator of β satisfies β̂n −→ β, almost surely, as n → ∞.

(A3) The estimator of g(z) satisfies maxz |ĝn(z) − g(z)| −→ 0, almost surely.

(A4) The regressor vector satisfies E‖x‖1 < ∞.

Proof of Theorem 1. Let Ẽn(t) = n−1
∑n

j=1 εje
it′vj . Then by straightforward algebra

we have
∣∣∣Ẽn(t) − En(t)

∣∣∣ ≤ 1

n

n∑

j=1

∣∣∣x′
j(β̂n − β)

∣∣∣+
1

n

n∑

j=1

max
z

|ĝn(z) − g(z)| −→ 0,(6.1)

almost surely, as n → ∞. Also by the Law of Large Numbers Ẽn(t) −→ E(t), almost

surely, as n → ∞, which in conjunction with (6.1) and by invoking Fatou’s Lemma

yields

lim inf
n→∞

Tn,W ≥
∫

Rp+q

|E(t)|2 W (t)dt,(6.2)

almost surely. By following analogous arguments to those in (6.1) it follows that

n−1
∑n

j=1 |εj|−n−1
∑n

j=1 |ε̂j| −→ 0, almost surely, and since |En(t)|2 ≤
(
n−1

∑n
j=1 |ε̂j|

)2

,

a variation of Fatou’s Lemma (see Stroock, 1999, §3.3) yields

lim sup
n→∞

Tn,W ≤
∫

Rp+q

|E(t)|2 W (t)dt,(6.3)
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almost surely. Finally (6.2) and (6.3) imply (2.6) which concludes the proof

Remark. Assumptions (A2) and (A3) are fairly mild (in that they only imply con-

sistency and not asymptotic normality), and hold true for most estimators found in

the literature; see Schick (1996), Härdle et al. (2000), Gannaz (2007), and Wong et al.

(2009) for general references. More specifically, we note that the estimators (I), (II)

and (III) considered herein all satisfy assumption (A2) according to Robinson (1988, p.

939) or Speckman (1988, Theorem 2), Zhu & Ng (2003, p. 766), and Bianco & Boente

(2004, Theorem 1), respectively. Likewise, for assumption (A3) the reader is referred to

Speckman (1988, Theorem 3), Zhu (2005, Theorem 5.2.1) or Zhu &Ng (2003, p. 766),

and Bianco & Boente (2004, p. 236), respectively. For estimators (IV) and (V), the

corresponding results are found in Speckman (1998), Theorem 1 (for A2) and Theorem

3 (for A3).
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