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1. Introduction

Black holes are one of the most fascinating objects in classical general relativity. They

represent the endpoint of gravitational collapse of a large mass object, independent

of initial conditions. The prototypical black hole, the Schwarzschild solution, was

first presented barely a year after Einstein put forward his new theory of gravity, yet

it took half a century before relativists were confident of the interpretation of this

solution, and began to construct a rigorous set of theorems describing the properties

of black holes. One of the more poetically labelled set – the “no hair” theorems [1] –

has been perhaps the most contentious. Originally demonstrated for static vacuum

black holes, [2, 3], the no hair theorems have been refined and extended to a wide

range of interacting particle and gravitational theories, [4, 5, 6]. Nonetheless, there

are many known “violations” of the no hair theorems, from the dressing of black

holes by scalar or gauge condensates [7], to literal hair, in the form of topological

defects which extend out from the black hole to infinity, [8].

The issue of the most basic hair however, scalar hair, is thought to be understood,

yet is perhaps the most perplexing. For a wide range of potentials, it is easy to show

that a static black hole cannot have a nontrivial scalar field on its event horizon

(unless the space-time is asymptotically anti-de Sitter, [9], or the scalar potential

has been specifically tailored, [10]). However, within cosmology, scalar fields are

widely used, not only for inflation, but as an expedient model of quintessence, [11],

or late time acceleration (see [12] for a review of dark energy models). Indeed, the

standard exponential scalar potential - widely used to give power law acceleration,
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was shown to be in conflict with spherically symmetric asymptotically flat or de Sitter

static black hole space-times, [13]. How then can these cosmological scalars interact

with a black hole event horizon? Generally, the scalar field is varying on a very slow

time scale relative to the light crossing time of the black hole, thus we might expect

that it has little effect on the event horizon itself, yet, like the inexorable flow of time,

the scalar must evolve cosmologically, and it seems contradictory that it is pinned to

a single value for all time at the black hole – an issue explored by Barrow, [14], in

the context of primordial black holes.

In fact, the resolution of the conflict is quite straightforward: The no hair the-

orems were explored in the context of static black holes, and quite clearly a rolling

cosmological scalar can never be static. Correspondingly, the presence of a black

hole in a cosmology implies that the cosmology cannot be spatially homogeneous,

and therefore does not have the canonical FRW form. While we can use cosmolog-

ical perturbation theory to describe the far field effect of the black hole, we cannot

describe the full spatial geometry including the event horizon within the context of

perturbation theory – and it is the effect of the event horizon which is critical in

determining the behaviour of the scalar. We therefore need a time-dependent black

hole solution.

Exact black hole solutions are surprisingly thin on the ground, given how ubiq-

uitous black hole are in nature, and time dependent ones even more so. The first

dynamical black hole ‘solution’ was postulated by McVittie, [15], who modified the

Schwarzschild solution to include an FRW-like cosmology, with the black hole event

horizon at fixed comoving radius and a fluid energy density dependent only on time.

However, as pointed out in [16], one expects the black hole to break the spatial

homogeneity of the cosmology, and thus (except in the special case of a de Sitter

universe) this unrealistic set-up leads to a singularity on the would be event horizon.

The McVittie solution has been generalised, [17, 18], to allow for radial accretion,

although the generalisations follow the method of ‘metric engineering’, in that a spe-

cific ansatz is proposed, then the matter stress energy inferred (see also [19] for a

discussion of some possible issues with these approaches).

Instead of imposing a particular metric ansatz, a successful approach has been

instead to postulate a particular format for the behaviour of the solution, notably

self-similarity, first used to estimate primordial black hole accretion in [20], but also

extended to allow more general perfect fluid equations of state, [21, 22, 23], and

scalar tensor gravity, [24]. Although these solutions do make an assumption about

the behaviour of the metric, and are restricted to a perfect fluid, they have the

advantage that they are exact, allow for time-dependence of the black hole, to be

explored without resorting to complex numerical methods. (See [25] for a brief

review.)

There is also the time dependent Vaidya solution, [26], which is somewhat special,

as the mass of the black hole now becomes dependent on a null coordinate, requiring a
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null matter source. There are also exact solutions for Einstein plus scalar field which

either represent a collapsing scalar field, [27], or use solution generating techniques

to add scalar profiles to a black hole, [28]. In both cases however, the would be event

horizon is singular, and indeed in [27], identifying event horizons becomes an issue.

Thus a direct approach to finding an exact solution seems to have been unsuccessful

in the sense that in cosmology, we expect a solution which will be locally interpretable

as a “black hole” (Schwarzschild solution) but that nonetheless will also have large

scale cosmological evolution, which on long time scales will give a natural evolution

of the black hole event horizon area due to scalar accretion. (See [29] for a review

and discussion of the interplay between cosmological expansion and local systems).

Another approach in the literature is to find a probe solution for the scalar field,

i.e. one in which the scalar field evolves on a Schwarzschild background, [30, 31].

Here, near the event horizon, the scalar field must be a function of the advanced

null coordinate, v ∼ et+r
∗
, which parametrises the black hole future event horizon.

One can then estimate the back-reaction on the event horizon using the energy

momentum of this approximate solution. A problem with this approach however, is

that the coordinates being used are local static Schwarzschild coordinates, which do

not correspond to the cosmological flow of time at large distances and therefore give

no guarantee that any ‘solution’ will be well behaved at cosmological event horizons.

One can also worry that estimates using local intuitive notions of energy, rather than

an analysis of the Einstein equations with a scalar source, might be misleading.

In order to be confident that probe calculations give a good estimate of scalar

accretion onto black holes, we require a time-dependent scalar field with a time

dependent black hole. Here, we present a resolution of this problem, by expanding

the equations of motion for the geometry and the scalar field order by order in a “slow

roll” parameter. We present a procedure for solving for the time dependent scalar on

the black hole, finding the leading order solution which extends from the near black

hole expectation of [30, 31] to the cosmological solution at large distances. Our

solution is valid independent of the relative sizes of the black hole and cosmological

event horizons. We also present the back reaction of the scalar field on the black

hole, and calculate the expansion rate of the black hole due to scalar accretion. An

advantage of our method is that we can identify the event horizons accurately as

null surfaces, therefore the usual ambiguity of apparent vs. event horizons does not

occur.

It is perhaps worth emphasising that our approach is explicitly to construct a

natural extension of the Schwarzschild ‘vacuum’ solution, and not some engineered

exact solution of Einstein’s equations, either by making a metric ansatz, or by taking

an ansatz for the behaviour of the solution. Our only input will be the symmetries

of the physical set-up, and the output a nonsingular solution corresponding to the

physical set-up of an FRW expanding universe at large scales, and a (Schwarzschild)

black hole with some local scalar field on small scales.
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2. Scalar fields and black holes: set-up

In this section, we set up the equations of motion for the scalar field with the black

hole. The idea is to write down the general equations of motion compatible with the

symmetries, then to expand them order by order in the kinetic energy of the scalar

field.

To motivate our approach, consider a universe in which the acceleration of the

universe is driven by a slowly rolling scalar field, somewhat analogous to inflation

though clearly at a much lower scale. A simple toy model consists of an FRW

universe,

ds2 = dt2 − a2(t)dx2 (2.1)

and a scalar field with an exponential potential W = M4e−βφ, which leads to a power

law acceleration

a(t) =

(
t

t0

)k
, φ = φ0 +

2

β
ln

t

t0
, k =

2κ

β2
=

2W (φ)2

M2
pW

′(φ)2
= ε−1 (2.2)

where κ = 8πG = M−2
p , and ε is the conventional slow roll parameter introduced

here to emphasise that k � 1.

Now consider the solution in conformal time η = η0(t/t0)
(ε−1)/ε:

ds2 =

[
η0
η

]2+ 2ε
1−ε [

(dη − dρ)(dη + dρ)− ρ2dΩ2
II

]
(2.3)

where dΩ2
II is the standard line element on the unit sphere, and

φ = φ0 −
2ε

β(1− ε)
ln
η

η0
. (2.4)

Then, if we assume that ε� 1, and expand [η0/η]
2ε
1−ε ∼ 1− 2ε ln |η/η0|, this metric

is perturbatively close to the de Sitter (dS) metric:

gab = g
(DS)
ab

(
1− 2ε ln

∣∣∣∣ ηη0
∣∣∣∣+O(ε2)

)
(2.5)

over a Hubble time interval. The dark energy universe can therefore be expressed as

a linear perturbation of a known exact solution to Einstein’s equations – the de Sitter

universe. Looking at (2.4), we see that φ = φ0, plus a correction of order O
(
ε1/2Mp

)
,

and thus for small ε, we can express the cosmology as a de Sitter universe with a

small correction of order O(ε1/2) for the scalar, and O(ε) for the geometry.

Now consider adding a black hole to this cosmological rolling scalar solution.

Given that the background solution is a perturbation of a de Sitter universe, it

is reasonable to suppose that the black hole plus scalar might be expressible as a

perturbation of a Schwarzschild de Sitter space-time. Note however, that this is
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distinct from conventional cosmological perturbation theory, where one perturbs a

given spatial section and evolves forward in time. Rather, here we seek to write the

fully interacting black hole-plus-scalar system as a perturbation expansion around the

static solution in the kinetic motion of the scalar. Just as the rolling scalar cosmology

is perturbatively close to the de Sitter manifold, we expect that the rolling scalar

plus black hole manifold should be close to the Schwarzschild de Sitter manifold,

and just as the linear expansion above has a range of validity, we expect that our

expansion will also be valid only over Hubble time-scales.

The geometry of the time-dependent black hole will not now have constant cur-

vature spatial slices, but we do expect an SO(3) symmetry, corresponding to the

spherical symmetry of the black hole. We also expect both time and radial depen-

dence in the metric. The general metric may therefore be written in the form [32, 33]

ds2 = 4e2νB−1/2dUdV −BdΩ2
II. (2.6)

This form of the metric elucidates both the symmetry of the space-time (SO(3)), as

well as the remaining gauge freedom (the conformal group in the U, V directions).

By rewriting the coordinates in light-cone form, it will be clear how to deal with the

event horizons present in the anticipated solution (the cosmological and black hole

event horizons), as well as how to change gauge to analytically extend across these

horizons. In particular, the null coordinates allow us to identify the actual event

horizons of the solution, as opposed to apparent horizons, as an horizon is of course

always a null surface, defined by U or V = constant.

Using (2.6), the coupled Einstein-scalar equations for the variables B, ν, φ are

φ,UV = −W,φ(φ)B−1/2e2ν − 1

2B
(B,Uφ,V +B,V φ,U) (2.7)

B,UV = 2
(
κW (φ)B1/2 −B−1/2

)
e2ν (2.8)

ν,UV =
1

2

(
κW (φ)B−1/2 +B−3/2

)
e2ν − κ

2
φ,Uφ,V (2.9)

B,V V = 2ν,VB,V − κBφ2
,V (2.10)

B,UU = 2ν,UB,U − κBφ2
,U (2.11)

where W (φ) is a general potential, the only stipulation being that it satisfies the slow

roll condition ε� 1.

For a constant scalar field (i.e. briefly ignoring (2.7)) a generalisation of the

Birkhoff theorem shows that the Einstein equations have Schwarzschild de Sitter

(SdS) as a general solution, [32]. Given that we follow a similar procedure in analysing

the rolling scalar, it is worth briefly reviewing the steps of this argument.

If φ is constant, (2.10) and (2.11) can be integrated directly to give

2ν = lnB,V + lnG′(U) = lnB,U + lnF ′(V ) (2.12)
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where F ′ and G′ represent arbitrary integration functions. Consistency of these

expressions leads us to deduce that B must be a function of [F (V ) +G(U)], and

hence

e2ν = F ′(V )G′(U)B′(F +G) . (2.13)

Inserting into (2.8) then gives

F ′G′B′′ = 2F ′G′B′
(
κW0B

1/2 −B−1/2
)

⇒ B′ =
4

3
κW0B

3/2 − 4B1/2 + 8GM
(2.14)

where 8GM is an integration constant (suggestively labeled!), W0 = W (φ0), and

primes denote differentiation with respect to the argument of the function. However,

writing N(r) as the SdS potential

N(r) = 1− 2GM

r
−H2r2 (2.15)

shows that in fact

B′ = −4
√
BN(

√
B) (2.16)

with H2 = κW0/3, the vacuum density of the constant scalar field. Changing coor-

dinates to r = B1/2, t = 2(G(U)− F (V )), then gives

ds2 =
F ′G′B′

B1/2
4dUdV −BdΩ2

II → N(r)dt2 − dr2

N(r)
− r2dΩ2

II (2.17)

i.e. the Schwarzschild de Sitter metric in static coordinates. In this form, we can see

explicitly that the arbitrary integration functions F and G are simply gauge degrees

of freedom of the metric (2.17), and in fact represent the conformal transformations

on the (U, V )−plane. SinceB′ can vanish, this metric will in general have singularities

at certain values of B. These are none other than the black hole and cosmological

event horizons of the static co-ordinates. However, “cosmological” coordinates at

large ‘r’ would not have an horizon, and would asymptote a standard cosmological

de Sitter space-time; we therefore need to identify the (Kruskal) transformations

which provide extensions across each horizon.

Writing r∗ as the usual tortoise co-ordinate, note that

r∗ =

∫
dr

N(r)
= −2

∫
dB

B′
= −2(F +G) (2.18)

thus t−r∗ = 4G, t+r∗ = −4F . Following the usual Kruskal method, we now choose

the functions F (V ) and G(U) to make the metric regular at the cosmological event

horizon rc:

F (V ) = − 1

2N ′(rc)
ln [N ′(rc)V ] , or V = Rc exp

[
(t+ r∗)

2Rc

]
G(U) =

1

2N ′(rc)
ln [N ′(rc)U ] , or U = Rc exp

[
(t− r∗)

2Rc

] (2.19)
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where we have written Rc = 1/N ′(rc) as shorthand (see appendix).

Thus, the original functions of the metric (2.6) are

B(U, V ) = r2 =

(
r∗−1

[
Rc ln

V

U

])2

e2ν = F ′G′B′ =
R2
c

√
BN(

√
B)

UV
=

R2
c

UV
rN(r)

(2.20)

where r∗−1 is the inverse tortoise function, which does not in general have a closed

analytic form, and r is understood to be a function of U and V . In these co-ordinates,

as r → rc,

V = U exp

[
r∗

Rc

]
≈ U(r − rc) (2.21)

thus the cosmological event horizon is at V = 0 and is parametrized by U . Moreover

e2ν = −R
2
c

U2

rcN

(r − rc)
(2.22)

is explicitly regular as expected.

For future reference, the Kruskal extension at the black hole event horizon rh
would be given by the null co-ordinate choice

F (v) = − 1

2N ′(rh)
ln [N ′(rh)v] , or v = Rh exp

[
(t+ r∗)

2Rh

]
G(u) = − 1

2N ′(rh)
ln [−N ′(rh)u] , or u = Rh exp

[
−(t− r∗)

2Rh

] (2.23)

writing Rh = 1/N ′(rh) as before. The black hole event horizon is at u = 0, and

parametrized by v. We will mostly work with the ‘cosmological’ co-ordinates U and

V , however, we will refer to the black hole Kruskals (u, v) when checking regularity

at the event horizon.

Now suppose that we take into account that φ is not constant, and write

φ = φ0 +
√

2εMpφ1(U, V )

B = r2 (1 + εδ1(U, V ))

ν = ν0 + εδ2(U, V )

(2.24)

then, recalling the expressions for B0 = r2 and ν0, and expanding the equations of

motion shows that the equation for φ1 is at order O(
√
ε), and decouples from the
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perturbations to the geometry, which appear at order O(ε)

√
2ε φ1,UV =

√
2ε

N

UV

[
3H2R2

c +
Rc

r
(V φ1,V − Uφ1,U)

]
(2.25)

εr2δ1,UV = −2εRc
rN

UV
(Uδ1,U − V δ1,V ) (2.26)

+εR2
c

N

UV

[
4δ2(3H

2r2 − 1) + 3δ1(1−H2r2)− 12H2r2φ1

]
εr2δ2,UV = ε

R2
cN

UV

[
(1 + 3H2r2)δ2 −

3δ1
4

(1 +H2r2)− 3H2r2φ1

]
− εr2φ1,Uφ1,V(2.27)

εr2δ1,V V = 4εRc
rN

V
(δ2,V − δ1,V ) + ε

δ1,V
V

(
rRc(rN)′ − r2

)
− 2εr2φ2

1,V (2.28)

εr2δ1,UU = 4εRc
rN

U
(δ1,U − δ2,U)− εδ1,U

U

(
rRc(rN)′ + r2

)
− 2εr2φ2

1,U (2.29)

We therefore solve first for the scalar field rolling in the SdS background, then com-

pute the back-reaction on the geometry.

3. The scalar field

In order to solve (2.25), it is most transparent to present the equation in terms of

our SdS variables:

φ̈1 −
1

r2
∂

∂r∗

(
r2
∂φ1

∂r∗

)
= 3H2N(r) (3.1)

Clearly, this equation will have oscillatory solutions for φ1, corresponding to partial

waves scattering off the black hole, however, we are interested in the background,

‘vacuum’ solution where φ1 rolls according to the potential W . Thus we set

φ1 = λt+ ϕ(r) (3.2)

where (3.1) gives
d

dr

(
r2N

dϕ

dr

)
= −3H2r2 (3.3)

which is solved by

ϕ = −
∑
i

[
H2ri +

C

r2i

]
Ri ln |r − ri|+

C

2GM
ln r (3.4)

with C an integration constant. (See the appendix for definitions of the Ri etc. to-

gether with useful identities.)

For a nonsingular solution, the φ field must be regular in a locally regular coordi-

nate system at both the black hole (rh) and cosmological (rc) future event horizons.

At the cosmological event horizon the appropriate co-ordinates are (U, V ), with V →
0 at the cosmological event horizon, and t ∼ Rc lnV , r∗ ∼ Rc ln |r − rc| ∼ Rc lnV .
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Conversely, using (2.23) near the black hole event horizon shows that u → 0, with

t ∼ −Rh ln(−u), and r∗ ∼ Rh ln(r − rh) ∼ Rh ln(−u). Therefore, demanding regu-

larity of φ1 gives two constraints on λ and C:

λ−H2rc −
C

r2c
= 0 = λ+H2rh +

C

r2h
(3.5)

solved by

C = −H2 r
2
hr

2
c (rh + rc)

r2h + r2c
, λ =

(rc − rh)
r2h + r2c

. (3.6)

revisiting the expression for ϕ, we see

ϕ = −λRc ln |r−rc|+λRh ln(r−rh)+λ
r2cRh − r2hRc

2rhrc
ln(r−rN)− rhrc

r2h + r2c
ln r (3.7)

(using various identities from the appendix).

Pulling this together we can write the φ field in the Kruskal coordinates (remem-

bering that r = r(V/U) or r(uv))

φ = φ0 +
√

2εMp λ
[
2Rc ln

U

Rc

+ 2Rh ln(r − rh) +
rcRh

rh
ln(r − rN)− rhrc ln r

(rc − rh)

]
= φ0 +

√
2εMp λ

[
2Rh ln

v

Rh

− 2Rc ln |r − rc| −
rhRc

rc
ln(r − rN)− rhrc ln r

(rc − rh)

]
(3.8)

which is manifestly nonsingular at the horizons, and illustrated in figure 1.

Figure 1 shows that the rolling of the scalar lags behind on the black hole event

horizon, what is less clear is a slight lagging on the cosmological event horizon. This

is more clearly seen if we plot φ as a function of r∗, as this makes the effect of the

event horizons on the rolling of the scalar clearer. Figure 2 shows the profile of the

scalar field as a function of r∗ at differing values of the ‘cosmological’ time parameter

η = (U + V )/2. The lag due to the event horizon (r∗ → −∞) is clearly shown here,

together with a slight lag (relative to r∗ ≈ 0) towards the cosmological event horizon,

although the φ profile becomes flat at larger r∗, as indeed it should as we expect to

be close to the cosmological solution which depends only on U +V . (For both figure

1 and 2, the parameter values rh = 1, rc = 15 were used.)

Finally, note that as rh → 0,

φ = φ0 +
√

2εMp

[2Rc

rc
ln
U

Rc

+ ln(r + rc)
]
∼ φ0 −

√
2εMp ln |U + V | (3.9)

i.e., the cosmological rolling scalar solution to order O(ε1/2), (cf (2.4)). On the other

hand, near the black hole event horizon,

φ ∼ φ0 +
√

2εMp2λRh ln v (3.10)

in agreement with the linearized solutions of [30, 31].
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BH
+

CH
+

r=const

U+V=const

Φ=const

t=const

SINGULARITY FUTURE INFINITY

Figure 1: Contours of constant φ (thick blue) within our Hubble volume. The Penrose

diagram is obtained by compactifying along the diagonal directions U and V using the map

x→ (1 + x)/(1− x). For comparison, contours of constant t and r are shown in grey, and

a constant cosmological time contour (U + V ) shown in red. The horizons are labelled, as

are the singularity and future infinity.

4. Back-reaction on the black hole geometry

Clearly, since φ is regular from the black hole event horizon out to the cosmological

event horizon with regular derivatives, its energy momentum is finite in this region.

We can therefore compute the back-reaction on the geometry to get a consistent

solution to order O(ε).

We start by comparing the first integrals of (2.28)

2δ2 = 2δ1 +

∫
rV φ2

1,V

RcN
dV +

∫ [
rV δ1,V V
2RcN

+
rδ1,V
2RcN

− (rN)′

2N
δ1,V

]
dV + g(U)

= δ1 +

∫
rV φ2

1,V

RcN
dV +

rV

2RcN
δ1,V + g(U) = δ1 + IV +

rV δ1,V
2RcN

+ g

(4.1)

and (2.29)

2δ2 = 2δ1 −
∫
rUφ2

1,U

RcN
dU −

∫ [
rUδ1,UU
2RcN

+
rδ1,U
2RcN

+
(rN)′

2N
δ1,U

]
dU + f(V )

= δ1 −
∫
rUφ2

1,U

RcN
dU − rU

2RcN
δ1,U + f(V ) = δ1 + IU −

rUδ1,U
2RcN

+ f

(4.2)
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Figure 2: The profile of the perturbation of the scalar field shown as a function of r∗.

The field is illustrated at three different time steps, showing the field rolling to larger φ

values. This figure was produced using the values rc = 15, rh = 1, η0 = Rc ∼ −8.3, and for

clarity the scalar field is normalised to its value at η0 and r∗ = 0, or alternately t = −2Rc,

r = 2: φ̂1 = φ1/φ1(−2Rc, 2) where, recall, φ1 = λt + ϕ, given in (3.7). (For reference,

φ1(−2Rc, 2) ' −2.7).

Where f and g are (for now) arbitrary integration functions, and can be thought of

as the perturbation of F ′ and G′.

Substituting for φ1 from (3.2) shows that the φ-integrals in (4.1,4.2) can be

written as functions of r. For example

φ1,V =
Rc

V
(λ+Nϕ′) =

Rc

V

(
λ−H2r − C

r2

)
⇒ IV =

∫
rV φ2

1,V

RcN
dV =

∫
r
dr

dV

(
λ−H2r − C

r2

)2

dV + δg(U)

(4.3)

where the δg(U) is added to acknowledge the fact that an integral over V can have an

arbitrary integration factor that is U−dependent, which may not be the same factor

as the r integral. However, since our expressions in (4.1) and(4.2) already contain
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integration functions, we will now without loss of generality define

IV =

∫
rdr

N2
(H2r +

C

r2
− λ)2

IU =

∫
rdr

N2
(H2r +

C

r2
+ λ)2

(4.4)

and take it that the functions f and g are appropriately adjusted.

Next, consistency of (4.1,4.2) requires

Uδ1,U + V δ1,V = 2Rc
∂

∂t
δ1 =

2RcN

r
(IU − IV + f − g) (4.5)

which determines the general form of δ1 as

δ1 =
RcN

r

[
ln(

UV

R2
c

)(IU − IV ) +

∫
2f

V
dV −

∫
2g

U
dU + h(r)

]
(4.6)

where h(r) is an arbitrary integration function. Combining (4.1) and (4.2) then

implicitly gives δ2:

δ2 =
δ1
2

+
r

4

∂

∂r
δ1 +

IU + IV
4

+
f + g

4
. (4.7)

We now substitute these expressions into (2.26), and after some algebra, the only

nonzero terms give a second order ODE for h(r):

Rc

[
rN2h′

]′
= 12H2r2ϕ+ (rN)′ (IU + IV ) . (4.8)

It proves helpful to manipulate this equation using integration by parts, and the fact

that 12H2r2 = [rN2(I ′U − I ′V )]′/λ, to find an expression for h:

h(r) = (IU − IV )
ϕ

λRc

+ h2(r) + h3(r) (4.9)

where

h2(r) =

∫
IU

λRcN

(
λ+H2r +

C

r2

)
+

∫
IV

λRcN

(
λ−H2r − C

r2

)
h3(r) =

∫
1

RcrN2

∫
2r2

N

(
λ+H2r +

C

r2

)(
λ−H2r − C

r2

) (4.10)

Thus

δ1 =
RcN

r

[
φ1

λRc

(IU − IV ) +

∫
2f

V
dV −

∫
2g

U
dU + h2(r) + h3(r)

]
(4.11)

It is reasonably clear that δ1 is regular at both event horizons, provided f and g

are no more divergent than V −1 or U−1, however, we must examine regularity of δ2,

as we still need to determine the integration functions. Inputting δ1 into (4.7) gives

δ2 =
δ1
4

+
f + g

2
+
RcN

′

4

(∫
2f

V
dV −

∫
2g

U
dU

)
+
Rc

4
[N(h2 + h3)]

′

+
φ1

4λ
[N(IU − IV )]′ +

IU
4λ

(
λ−H2r − C

r2

)
+
IV
4λ

(
λ+H2r +

C

r2

) (4.12)
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Clearly, the terms involving IU , IV and δ1 are regular from the definitions of C and

λ, however, the residual pieces contain divergences, and we must choose f and g

to regularise these. We will show this process in detail for the cosmological event

horizon, the black hole event horizon follows the same steps.

First we identify the potentially singular behaviour of the relevant functions

IU =
aU

r − rc
+ bU ln |r − rc|+ cU + JU(r)

IV =
aV

r − rh
+ bV ln(r − rh) + cV + JV (r)

Nh3 =
αc
Rc

(r − rc) ln |r − rc|+
αh
Rh

(r − rh) ln(r − rh) +Nh̃3

(4.13)

where the constants can be inferred from the appendix, JU = O(r − rc), JV =

O(r − rh), and (Nh̃3)
′ is regular. Then the singular parts appearing in (4.12) are:

φ1

λ
[N(IU − IV )]′

∣∣∣
sing

+Rc [N(h2 + h3)]
′
∣∣∣
sing

=
Rh

Rc

bV [ln(r − rh)]2

+

[
αc + 2bU + 2cU +

bUφ1

λRc

+ 3aUH
2 rh(rh + rc)

(2rc + rh)

]
ln |r − rc|+ bU [ln |r − rc|]2

+
Rh

Rc

[
αh + 2bV + 2cV +

bV φ1

λRh

+ 3aVH
2 rc(rh + rc)

(2rh + rc)

]
ln(r − rh)

(4.14)

These can be cancelled by choosing f = f0 + f1 lnV and g = g0 + g1 lnU , where the

constants fi are chosen to make δ2 regular at rc, and the gi from regularity at rh.

For example, as r → rc,

V ∼ (2rc + rh)U

(
rh − rc
2rc + rh

)Rh
Rc

(r − rc) (4.15)

hence

2f +

∫
2f

V
dV

∣∣∣∣∣
sing

∼ f1 (lnV )2 + (f0 + f1) lnV

∼ f1 [ln |r − rc|]2 + 2f1 lnU ln |r − rc|

+
[
f0 + 2f1 +

2f1Rh

Rc

ln(rc − rh) +
2f1RN

Rc

ln(rc − rN)
]

ln |r − rc|

(4.16)

Comparing this with (4.14), and recalling that φ1 ∼ 2RCλ ln(U/Rc), we see that

f1 = −bU (4.17)

f0 = αc + 4bU + 2cU +
2bU
Rc

[Rh ln(rc − rh) +RN ln(rc − rN)] + 3aUH
2 rh(rh + rc)

(2rc + rh)

with similar expressions for the gi. The remaining, regular, parts of δ1 and δ2 are then

expressible in terms of regular dilogarithms and logarithms, but the full expressions

are rather lengthy and cumbersome.
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Instead, by focussing on the event horizons, it is easiest to obtain results of most

physical interest. For the cosmological event horizon, the {U, V } coordinate system

is appropriate, with the CEH being at V = 0, and parametrized by U . Since r =

const. along the horizons, (2.11) gives

B = r2c
(
1− 8ελ2R2

c ln |U |
)
' r2c |U |−8ελ

2R2
c (4.18)

Setting rh → 0 gives 4λ2R2
c = 1, and hence B ∝ |U |−2ε, in complete agreement with

the cosmological event horizon area of the pure rolling scalar solution, (2.3).

Of more interest however is the accretion of scalar field onto the black hole. Here,

using the Kruskal {u, v} system and (2.10), we get

B = r2h
(
1 + 8ελ2R2

h ln v
)
' r2hv

8ελ2R2
h (4.19)

In other words, the event horizon creeps out very slowly. We can compare this

with an order of magnitude estimate based on naive physical notions of mass and

energy flow, [30, 31]. The flow of energy into the black hole should be governed

by the difference of the energy momentum tensor from being null, T 0
0 − T rr , which

is of order φ̇2 ∼ W ′2/H2 ∼ εH2/κ. Integrating this over the black hole event

horizon gives κδṀ ∼ r2hεH
2, or using the relation between horizon radius and mass:

δA ∼ r3hεH
2δt. Of course, we should be careful of using a time coordinate near

the black hole event horizon, as t ∼ 2rh ln v + ln(r − rh) is singular, however, in

the spirit of this heuristic argument, we can identify δt ∼ 2rhδ(ln v), which gives

δA ∼ Aε(δ ln v)r2h/r
2
c , in qualitative agreement with (4.19).

For an astrophysical black hole, this accretion rate is glacially slow, and far

outweighed by the local environment, in which the accretion disc far outweighs local

interstellar matter, let alone this cosmologically coasting scalar. However, the fact

that naive local estimates of the back-reaction of accretion of scalar matter in this

set-up are fully backed up by this analytic calculation, valid in the full region between

the black hole and cosmological event horizons, means we should have confidence in

these physically motivated techniques.

To illustrate the effect of the rolling of the scalar, in figure 3 we show the effect

on the event horizon areas; for the purpose of illustration choosing ε = 0.1, and

the rather artificial initial values of rc = 2, rh = 1. Both horizons grow during the

Hubble time, although the cosmological event horizon has a larger relative growth of

c. 22%, as opposed to approximately 13% for the black hole event horizon.

5. Discussion

In this paper, we have shown how to couple a slowly rolling scalar field to a black hole.

We first set up the most general metric describing the physical set-up – an SO(3)

symmetric geometry with dependence on both “time” and “radial distance”. This
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Figure 3: A plot of the variation of the event horizon areas for the initial choice of

rc = 2, rh = 1, ε = 0.1.

geometry is most naturally described in light-cone coordinates, which elucidate the

integrable nature of the vacuum equations, and also lend themselves to an accurate

determination of the black hole event horizon. Writing down the equations of motion

reveals that if the potential is not too steep, the scalar field evolution will be slow,

and the equations of motion can be solved perturbatively in the dynamics of the

scalar field.

It is worth emphasising that although we perform an expansion in the dynamics

of the scalar field, the solutions we find are exact across the the full radial range from

the black hole to cosmological event horizons, and are not in any sense perturbative in

the spatial (radial) coordinate. Not only do we correctly identify what the dynamical

dependence is, we are able to correctly identify the cosmological evolution (and hence

cosmological time) far from the black hole, as well as how the scalar field drives this

expansion, and how it is dragged by the black hole. For example, we can apply these

results to black holes whose event horizon constitutes a significant fraction of the

Hubble volume. These black holes accrete at a similar rate to the increase in area of

the cosmological event horizon.

It is interesting to compare the accretion rate of the black hole to the evaporation

rate, to see whether black holes, or radiation, will dominate the final state of the

universe. The black hole evaporation rate is inversely proportional to the area of

its event horizon: ṀH ∼ 10−4~/r2h, whereas the accretion rate is proportional to

horizon area: GδM ∼ εcH2r2hδt. Thus in order for evaporation to dominate, the

horizon radius of the black hole would have to satisfy

rh . 0.1ε−1/4
[
~G
cH2

]1/4
∼ 5× 10−6ε−1/4m (5.1)

– 15 –



Since ε ∼ 1 + w, where w is the equation of state for the dark energy, in order for

astrophysical black holes to preferentially evaporate, we would require an equation

of state fine tuned to approximately |1 + w| ≤ O(10−36)!

We should point out that while we have a time dependent scalar field in a time

dependent cosmological black hole background, this should not be viewed as a vio-

lation of the no hair theorems. The solution corresponds to a rolling cosmological

scalar field in which there is a black hole, and the rolling of the scalar adjusts to

its presence. The scalar does roll in the vicinity of the black hole, although it lags

behind the cosmological evolution, in the sense that the constant φ contours lie in

front of the constant η contours in figure 1. However, the black hole does not have

any scalar charge – there is no 1-parameter solution for φ in the black hole back-

ground. The solution (3.2) is not the most general solution, there will be wave like

fluctuations around this background, but we have not been able to find a family of

solutions with space-like dependence, which would be a signature of a scalar charge

on the black hole. Thus, our results should be viewed as a way of reconciling the “no

hair” intuition with more general time dependent situations.

Finally, to our knowledge, this is the first analytic procedure for finding a non-

singular accreting black hole space-time from first principles (i.e. without making

assumptions as to the form of the metric or solution) that results from consideration

of a physically realistic matter system with physically motivated symmetries and

boundary conditions. The results apply to a general potential, and only require

that the scalar field is slowly rolling. As such, they represent a testing ground for

investigation of black hole phenomena in the time dependent regime.
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A. Appendix: Some useful identities

Here we list some simple identities which are nonetheless very useful in manipulation

of expressions throughout the paper.

First, we write the roots of the Schwarzschild potential as ri (rN < 0 ≤ rh < rc)

so that

N(r) = −H
2

r
(r − rc)(r − rh)(r − rN) (A.1)
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It is then simple to note the following identities:

rc + rh + rN = 0

r2c + r2h + rcrh = −rcrh − rcrN − rhrN = H−2

rcrhrNH
2 = −2GM

(A.2)

We have also defined

Ri =
1

N ′(ri)
=

ri
(1− 3H2r2i )

(A.3)

which satisfy a similar identity to the ri

Rc +Rh +RN = 0 (A.4)

In addition, although we do not make use of the explicit forms of IU and IV , we

note here their form for the constants used in determining f and g

IU = −4rcR
2
cλ

2

(r − rc)
− rNr

2
hR

2
cλ

2

(r − rN)
+ 4R2

cλ
2H2(2r3c + r3h) ln |r − rc|+

r2cr
2
h

(r2c + r2h)
2

ln r

+
rh
r2c
λ2R2

cH
2(4r4c + 2r3crh + 3r2cr

2
h + 5rcr

3
h + r4h) ln(r − rN) (A.5)

IV = −4rhR
2
hλ

2

(r − rh)
− rNr

2
cR

2
hλ

2

(r − rN)
+ 4R2

hλ
2H2(2r3h + r3c ) ln(r − rh) +

r2cr
2
h

(r2c + r2h)
2

ln r

+
rc
r2h
λ2R2

hH
2(4r4h + 2r3hrc + 3r2cr

2
h + 5rhr

3
c + r4c ) ln(r − rN) (A.6)
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