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ABSTRACT
We have performed a series of numerical experiments to investigate how the primordial thermal
velocities of fermionic dark matter particles affect the physical and phase-space density profiles
of the dark matter haloes into which they collect. The initial particle velocities induce central
cores in both profiles, which can be understood in the framework of phase-space density
theory. We find that the maximum coarse-grained phase-space density of the simulated haloes
(computed in six-dimensional phase space using the ENBID code is very close to the theoretical
fine-grained upper bound, while the pseudo-phase-space density, Q ∼ ρ/σ 3, overestimates
the maximum phase-space density by up to an order of magnitude. The density in the inner
regions of the simulated haloes is well described by a ‘pseudo-isothermal’ profile with a core.
We have developed a simple model based on this profile which, given the observed surface
brightness profile of a galaxy and its central velocity dispersion, accurately predicts its central
phase-space density. Applying this model to the dwarf spheroidal satellites of the Milky Way
yields values close to 0.5 keV for the mass of a hypothetical thermal warm dark matter particle,
assuming that the satellite haloes have cores produced by warm dark matter free streaming.
Such a small value is in conflict with the lower limit of 1.2 keV set by the observations of the
Lyman α forest. Thus, if the Milky Way dwarf spheroidal satellites have cores, these are likely
due to baryonic processes associated with the forming galaxy, perhaps of the kind proposed
by Navarro, Eke and Frenk and seen in the recent simulations of galaxy formation in the cold
dark matter model.
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1 IN T RO D U C T I O N

The standard cosmological model, the ‘� cold dark matter model’
(�CDM) has been tested over a huge range of scales, from the en-
tire observable universe, probed by measurements of temperature
anisotropies in the cosmic microwave background radiation (CMB;
Komatsu et al. 2011), to the scales of galaxy clusters and individual
bright galaxies, probed by large galaxy and Lyman α forest sur-
veys (Colless et al. 2005; Seljak et al. 2005; Zehavi et al. 2011).
On smaller scales than this, there is no strong evidence to support
the standard model. Yet, it is on such scales that the nature of the
dark matter is most clearly manifest. In the standard model the dark
matter consists of cold particles, such as the lightest stable particle
predicted by supersymmetry. There are, however, models of particle
physics that predict lighter particles, such as sterile neutrinos, that
would behave as warm dark matter (WDM), rather than cold dark
matter (CDM) (see Feng 2010; Hooper, Kelso & Queiroz 2012, for

� E-mail: shaoshi@bao.ac.cn

discussions of recent experimental constraints). No current astro-
nomical data can distinguish between these alternatives.

If the dark matter particles freeze out while in thermal equi-
librium, their kinematics leave a predictable imprint in the power
spectrum of primordial perturbations (Zel’dovich 1965). Hot dark
matter (HDM) particles, such as light neutrinos, decouple while still
relativistic; their large thermal velocities dampen fluctuations below
a ‘free-streaming’ length, λFS, which is of the order of a few tens of
megaparsecs at redshift z = 0 (Bond & Szalay 1983). Early N-body
simulations showed that this is too large to be compatible with the
level of clustering measured in the galaxy distribution (Frenk, White
& Davis 1983), thus ruling out light neutrinos as the dominant form
of dark matter. Recent analyses of the power spectrum of the galaxy
distribution (Cole et al. 2005), the Lyman α forest (Viel, Haehnelt
& Springel 2010) and the CMB (Komatsu et al. 2011) constrain the
sum of the neutrino masses to be

∑
mν < 0.58 eV.

CDM particles decouple after they have become non-relativistic.
For a typical cold, weakly interacting, massive particle, λFS is
of the order of a parsec and the corresponding ‘Jeans’ mass is
of the order of 10−6 M� (Green, Hofmann & Schwarz 2005);
free streaming in this case is not relevant for galaxy formation.
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The intermediate case of WDM corresponds to particles that de-
couple while still relativistic, yet become non-relativistic before the
epoch of radiation–matter equality. Their free-streaming scale could
then be of the order of the size of a galaxy, in which case they can
affect the build up of dark matter haloes and of the galaxies forming
within them (Bode, Ostriker & Turok 2001; Lovell et al. 2012),
as well as the formation of the first stars (Gao & Theuns 2007).
Dark matter particles need not freeze out in thermal equilibrium,
as is the case, for example, of the axion and the sterile neutrino
discussed by Boyarsky, Ruchayskiy & Iakubovskyi (2009a). In this
case, the relation between the dark matter particle mass and λFS

is more complex. Boyarsky, Ruchayskiy & Shaposhnikov (2009b)
discuss current limits on such WDM models.

Except perhaps in the central regions of galaxies, the dynamics of
dark matter particles are driven purely by their own gravity and are
thus governed by the Vlasov–Poisson equations. Then, according
to Liouville’s theorem, the distribution function, f (x, v, t), of the
particles – the mass per unit volume in phase space – is time indepen-
dent, Df (x, v, t)/Dt = 0. Phase-space mixing, or coarse-graining,
can only decrease the phase-space density below this fine-grained
bound set by the nature of the particles. Tremaine & Gunn (1979)
used this property to constrain the nature of stable leptons as the
dominant form of dark matter. Since the intrinsic velocities of CDM
particles are small, their fine-grained phase-space density limit is
very high and such haloes are cuspy (e.g. Navarro, Frenk & White
1996b, 1997; Diemand et al. 2008; Stadel et al. 2009; Navarro et al.
2010; Gao et al. 2012). For WDM (and a fortiori for HDM), the
phase-space density bound is much lower and such haloes develop
central cores (Hogan & Dalcanton 2000; Bode et al. 2001).

Evidence for central cores in galaxies is controversial (see Frenk
& White 2012, and references therein for a recent discussion). Re-
cently, Walker & Peñarrubia (2011) have argued that the kinematics
of the Fornax and Sculptor dwarf spheroidals in the Milky Way rule
out central density cusps, but Strigari, Frenk & White (2010) have
shown that the data for these and other dwarfs are consistent with
the cuspy profiles seen in CDM simulations. On the other hand,
Boylan-Kolchin, Bullock & Kaplinghat (2011), Lovell et al. (2012)
and Parry et al. (2012) have shown that the central concentration
of the dark matter haloes of nine dwarf spheroidals are lower than
expected in the simulations of CDM haloes (Springel et al. 2008)
(but see Wang et al. 2012). Although baryonic processes associated
with the forming galaxy could lower the central density of haloes
and even induce a core (Navarro, Eke & Frenk 1996a; Read &
Gilmore 2005; Mashchenko, Wadsley & Couchman 2008; Pontzen
& Governato 2012), it is also possible, in principle, that the kind
of phase-space constraints just discussed could be at work at the
centres of the dwarf spheroidals.

In this paper, we investigate the effect of primordial dark mat-
ter particle thermal velocities on halo density profiles. To this aim,
we carry out N-body simulations from initial conditions in which
the power spectrum has a small-scale cut-off and the particles rep-
resenting the dark matter have significant thermal velocities. Our
setup does not correspond exactly to any particular HDM or WDM
particle candidate. Rather, we are interested in the more general
problem of how phase-space constraints are satisfied in cosmolog-
ical N-body simulations. In particular, we determine the level at
which the Tremaine & Gunn (1979) bound is satisfied. We then
model our numerical results, generalize them to the case of specific
WDM candidates and apply them to the Milky Way satellites.

As we were completing this work, Macciò et al. (2012) pub-
lished a paper investigating similar issues to those of interest here,
using similar numerical techniques. They interpret their results in

the terms of a macroscopic pseudo-phase-space density (defined in
equation (10), which, as we show, overestimates the coarse-grained
phase-space density by up to an order of magnitude.1 The remain-
der of this paper is structured as follows. In Section 2, we describe
our set of numerical simulations. In Section 3, we briefly review
relevant aspects of phase-space theory and describe our methods
for calculating the coarse-grained phase-space density in the simu-
lations. In Section 4, we investigate phase- and real-space density
profiles of dark matter haloes and compare these with our theoreti-
cal estimates. In Section 5, we use a model based on our numerical
simulations to revise the lower mass limit of WDM particles. Our
paper concludes in Section 6 with a summary and discussion.

2 PHASE-SPACE DENSI TY

In this section, we briefly review those aspects of phase-space
density theory that are relevant to general fermionic dark matter
particles.

2.1 Fine-grained phase-space density

The evolution of a system of collisionless particles is described by
the Vlasov equation. According to Liouville’s theorem, the fine-
grained phase-space density, f (x, v, t) – the mass density in an
infinitesimal six-dimensional phase-space volume, d3xd3v, centred
on the point (x, v) at time t – is conserved: Df/Dt = 0 (see e.g.
Peebles & Yu 1970 for the general relativistic description).

Following Tremaine & Gunn (1979), Madsen (1991) and Hogan
& Dalcanton (2000), using the Fermi–Dirac occupation distribution
we can derive an upper limit on FFD, the fine-grained phase-space
density of a relativistic fermionic relic in kinetic equilibrium

FFD( p) = g

(2π�)3

1

eE/kBT + 1

≤ g

2(2π�)3
. (1)

Here, E = [(mc2)2 + (pc)2]1/2 is the energy of a particle with mass m
and momentum p and g is the number of degrees of freedom (Kolb
& Turner 1990). This expression may be more familiar from the
derivation of the equation of state of degenerate fermions. WDM
particles are relativistic when they decouple, i.e. when T = TD,
the decoupling temperature. After decoupling both the energy and
the temperature decline in proportion to (1 + z) and hence the
shape of the Fermi–Dirac distribution remains unchanged. Finally,
under a Lorentz transformation, lengths contract in proportion to
the Lorentz factor, γ , whereas momenta increase in proportion to
1/γ so the phase-space density is an invariant.

The function FFD is the number density of particles per unit vol-
ume in momentum space, an appropriate choice when the particles
are relativistic. When the particles become non-relativistic, we can
write the phase-space density, fFD, in terms of the mass density of
particles per unit volume in velocity space, which introduces a factor
m4, so the non-relativistic version of equation (1) becomes

f max
FD = g m4

2(2π�)3

= 0.42 M� kpc−3 (km s−1)−3 g

2

(
m c2

0.03 keV

)4

. (2)

1 As noted in an Erratum (Macciò et al. 2013), the velocity dispersion of the
dark matter particles in the initial conditions of their simulations is incorrect
by a factor of

√
3.

 at D
urham

 U
niversity L

ibrary on June 19, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2348 S. Shao et al.

In the linear regime, the density of these non-relativistic particles
decays as (1 + z)3 but their peculiar velocities decay as (1 + z);
hence this bound does not evolve with redshift, as expected.

2.2 Coarse-grained phase-space density

The coarse-grained phase-space density, F (x, v, t), is defined as
the mass density in a finite six-dimensional phase-space volume,

3x
3v, centred on the point (x, v) at time t. The averaging pro-
cess decreases the phase-space density and hence F ≤ f (see, for
example, Tremaine, Henon & Lynden-Bell 1986 and Mathur 1988
for the application of Liouville’s theorem in an astronomical set-
ting). Phase mixing is expected to be small in the region with the
highest phase-space density, and the maximum value of F for a
system is therefore expected to be close to the value of f (Lynden-
Bell 1967). Of course, in any real system, baryonic effects may
increase or decrease the phase-space density. In a simulated dark
matter halo, we can estimate F in six dimensions and verify whether
indeed F max ≤ f max

FD ; we will do so below.
We begin by discussing various ways in which F can be estimated

for a dark matter halo. We assume the central part of the halo to
have a pseudo-isothermal density profile (e.g. Kent 1986; Begeman,
Broeils & Sanders 1991), which is a good fit to the simulated dark
matter halo discussed below. This profile is given by

ρ(r) = ρ0

1 + (r/rc)2 , (3)

where ρ0 is the core density and rc the core radius. The correspond-
ing asymptotically flat circular velocity is Vc = (4πGρ0r

2
c )1/2. As-

suming isotropic orbits Vc is related to the one-dimensional velocity
dispersion σ , by Vc = √

2σ . Under these assumptions, central den-
sity, core radius and velocity dispersion are related by

ρ0 = 1

2πG

σ 2

rc
2

. (4)

To obtain the corresponding coarse-grained phase-space density,
we need to know the velocity distribution function. Dynamically
relaxed systems often have a Maxwellian velocity distribution, and
we will assume this to be a good description for the central regions
of the dark matter halo (Vogelsberger et al. 2009). The maximum
density in velocity space is then (2πσ 2)−3/2, and therefore the maxi-
mum coarse-grained phase-space density, which occurs at the centre
of the halo, is

F max
iso = ρ0

(2πσ 2)3/2

= 1

(2π)5/2G

1

σr2
c

(5)

= 0.06 M� kpc−3 (km s−1)−3

×
( σ

100 km s−1

)−1
(

rc

20 kpc

)−2

. (6)

If the core is due to free streaming of a WDM particle, then requiring
F max

iso ≤ f max
FD constrains the WDM particle mass to be

m c2
(g

2

)1/4
≥ 8.2 keV

( σ

km s−1

)−1/4
(

rc

pc

)−1/2

. (7)

To derive the limit in equation (5), we had to make an assumption
about the form of the density profile of the central halo. Boyarsky
et al. (2009a) introduced a ‘coarsest’ phase-space density, F max

Boy ,
which corresponds to a maximal coarse graining and does not re-
quire this assumption. Instead it makes use of the value of the

enclosed mass, M(R), of the halo over the whole available phase-
space volume 
x 
v = (4π/3)2R3v3

∞, where v∞ is the local escape
speed. For isotropic orbits, v∞ ≥ √

6σ , leading to the maximum
coarse-grained value of F of

F max
Boy = ρ0

8π
√

6σ 3
≈ 3 ln 2

16
√

6π2G

1

σr2
h

≈ 0.18F max
iso , (8)

where rh is the half-light radius, defined by Pryor & Kormendy
(1990),

ρ0 = 3 ln 2

2πG

σ 2

rh
2
. (9)

This calculation is less restrictive and hence F max
Boy < F max

iso , as
should be.

Finally, an often used approximation to F is

Q ≡ ρ

〈v2〉3/2
, (10)

introduced by Hogan & Dalcanton (2000) and more recently used,
for example, by Taylor & Navarro (2001), Ascasibar et al. (2004),
Dehnen & McLaughlin (2005), Peirani, Durier & de Freitas Pacheco
(2006), Hoffman et al. (2007), Colı́n, Valenzuela & Avila-Reese
(2008), Vass et al. (2009), Navarro et al. (2010). We will refer to this
as a pseudo-phase-space density, since it only has the dimensions
of F, but it is not a proper coarse-grained average of f. Indeed, the
maximum value of Q for the halo profile of equation (3) under the
assumptions of isotropic Maxwellian velocities, is

Qmax = (2π)3/2

3
√

3
F max

iso ≈ 3.03 F max
iso . (11)

The upper bound to the fine-grained distribution for thermal
fermions discussed by Hogan & Dalcanton (2000) is very simi-
lar to the value in equation (2) above, f max

Hogan ≈ 0.97f max
FD (see also

Boyarsky et al. 2009a). Requiring Qmax ≤ f max
Hogan then overesti-

mates the constraint on the dark matter particle mass by a factor of
(3.12)1/4.

2.3 Coarse-grained phase-space density in simulations

A robust measurement of F in an N-body system requires a full
six-dimensional calculation. In recent years, a number of indepen-
dent approaches have been developed that allow such a calculation
(Arad, Dekel & Klypin 2004; Ascasibar & Binney 2005; Sharma
& Steinmetz 2006; Vogelsberger et al. 2008). The method of Arad
et al. (2004) uses the Delaunay tessellation of the N particles in
six-dimensional (x, v) phase space. Two other algorithms, FIESTAS

(Ascasibar & Binney 2005) and ENBID (Sharma & Steinmetz 2006),
are based upon the idea of a binary k − d tree, i.e. repeated sub-
divisions of phase space in each of its six dimensions into nodes
that contain (approximately) the same number of particles until
each node contains a single particle. Both the Delaunay tessellation
and the k − d tree then associate a ‘volume’, Vi, to a particle, and
the corresponding phase-space density is simply mparticle/Vi, where
mparticle is the mass of the particle in the simulation. These algo-
rithms contain adjustable parameters that can be chosen to improve
the estimates. For example, Ascasibar & Binney (2005) include a
boundary correction to improve the behaviour of the method at low
density and smoothing kernels to reduce particle noise.

In this paper, we make use of the publicly available ENBID code
(Sharma & Steinmetz 2006) to estimate the coarse-grained phase-
space density in our simulations. ENBID employs a Shannon Entropy
formulation which gives accurate results in high-density regions.
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We have included the ‘boundary correction’ but did not use the
smoothing option because it may underestimate the highest phase-
space density in a dark matter halo, which is crucial in this study. We
will denote the coarse-grained phase-space density of the simulated
haloes calculated using ENBID as FNB

3 N- B O DY SI M U L AT I O N S

3.1 Physical requirements

If dark matter particles have large intrinsic velocities at early times,
two distinct physical effects become important: free streaming out
of density perturbations and a maximum achievable phase-space
density. In the linear regime, the WDM power spectrum of fluctua-
tions, PWDM(k), is suppressed relative to the CDM power spectrum,
PCDM(k), by a factor

T 2(k) ≡ PWDM(k)

PCDM(k)
, (12)

where k is the wavevector. Free streaming introduces the smallest
wavevector, kH, for which T < 1, and some authors refer to 2π/kH

as the ‘free-streaming length’. However, when considering struc-
ture formation, it is more useful to characterize the effects of free
streaming by the value of kFS = 2π/λFS for which the amplitude
of the power spectrum is reduced by a factor of 2 relative to the
CDM case, such that T2(k = kFS) = 1/2. The shape of the function
T(k) depends on the nature of the dark matter. A commonly used
approximation for thermally produced WDM particles is

T (k) = (1 + (α k)2)−5 (13)

(Bode et al. 2001). For this case,

λFS = 23.45 α ,

α = 0.05

(
�WDM

0.3

)0.15 (
h

0.72

)1.3 (
mc2

keV

)−1.15

h−1 Mpc , (14)

where �WDM is the total WDM density today in units of the critical
density, m is the WDM particle mass and H = 100 h km s−1 Mpc−1

is the Hubble constant at z = 0 (Bode et al. 2001). The numerical
coefficient depends on the effective number of degrees of freedom,
gX, of the particle and we have assumed gX = 1.5. With this definition
we find

λFS = 1.2

(
�WDM

0.3

)0.15 (
h

0.72

)1.3 (
mc2

keV

)−1.15

h−1 Mpc ; (15)

the corresponding mass is

MFS ≡ 4π

3
ρm λ3

FS

= 6 × 1011

(
�WDM

0.3

)1.45 (
h

0.72

)3.9 (
mc2

keV

)−3.45

h−1 M�.

(16)

We will refer to λFS as the free-streaming scale.2

The second important effect is the limit on the phase-space
density achievable by dark matter particles with significant pri-
mordial thermal velocities. These have a Fermi–Dirac distribution,

2 Unfortunately, not all authors agree on a single definition of λFS.

[exp (v/v0) + 1]−1, with v0 given by (Bode et al. 2001)

v0(z) ≈ .012(1 + z)

×
(

�WDM

0.3

)1/3 (
h

0.65

)2/3 (
1.5

gX

)1/3 (
keV

mx

)4/3

km s−1. (17)

These initial velocities induce a core radius, rc, in collapsed haloes
which, for thermal dark matter relics, scales with the velocity dis-
persion of the halo, σ , as rc ∝ σ−1/2m−2 (Hogan & Dalcanton
2000; Bode et al. 2001). Free streaming prevents the haloes of
virial radius3 R200 � λFS from forming insignificant numbers. As
we will show below, the core radius of such haloes is rc � λFS.
Since rc ∝ σ−1/2, the ratio rc/R200 is even smaller for more mas-
sive haloes.

The small value of the ratio rc/R200 makes it challenging to
investigate core radii in the simulations since the calculation needs
to resolve the huge dynamic range between rc and λFS. This is not
currently practical for the values of λFS typical of those expected
in WDM models. However, if one is interested in the more general
problem of the relationship between rc and the phase-space density,
it is not necessary for the cut-off in the power spectrum to correspond
to the thermal velocities of a particular dark matter candidate. This
is the approach we take in this study: we perform a numerical
experiment by choosing a value of λFS but giving the particles
much larger intrinsic velocities than would be appropriate for a
WDM particle of mass m according to equation (14). For brevity,
we will refer to these models as pseudo-WDM models (P-WDM).
We stress that this is not a self-consistent dark matter model: the
resulting core radii will be much larger than expected for a WDM
particle of that mass, but this is immaterial for our purposes. This
procedure is similar to that adopted by Macciò et al. (2012). For
comparison, we also investigate a self-consistent WDM model in
which the initial thermal velocities are compatible with the cut-off
in the power spectrum. Since the thermal velocities are now much
smaller than the initial linear gravitational velocities, we expect
their effect to be negligible.

3.2 Simulation details

All our simulations are of periodic cubic volumes of linear
size 5 h−1 Mpc. The assumed cosmological parameters are
(�m, ��, h, σ8) = (0.3, 0.7, 0.7, 0.9), but the exact choice of these
numbers is not important here. We have run two reference simu-
lations: a standard �CMD (labelled CDM) and a self-consistent
�WDM (labelled WDM) model. These have 2563 particles, cor-
responding to an N-body particle mass of 6.2 × 105 h−1 M�. The
CDM transfer function was computed using CMBFAST (Seljak &
Zaldarriaga 1996). For the WDM simulation, the power spectrum
of the initial conditions was obtained by multiplying the CDM
spectrum by T(k)2, as given by equation (13). The assumed free-
streaming length scale, λFS ≈ 0.5 h−1 Mpc , corresponds to a 2 keV
thermal relic WDM particle and each particle is given the appropri-
ate random velocity drawn from the Fermi–Dirac distribution with
v0 given by equation (17). For definiteness, we will always assume
that the WDM particle has g = 2 spin degrees of freedom.

The pseudo-WDM simulations (labelled P-WDM) have a similar
setup to the WDM case, except that the random velocities are much

3 We define the virial radius, R200, of a cosmological dark matter halo as the
radius within which the mean density is 200 times the critical density. The
corresponding enclosed mass is M200.
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larger and would correspond to those appropriate to a WDM parti-
cle of mass 0.03 keV. For ease of comparison, the Gaussian random
field used to initialize the simulations uses the same phases for all
three models. To enable statistical comparisons, we carried out a
further three P-WDM simulations using the same cosmological pa-
rameters but different realizations of the initial conditions; these are
denoted P-WDM256. Finally, to investigate numerical convergence,
we carried out one simulation with eight times better mass resolu-

Table 1. Simulation details: in all cases the assumed cosmological param-
eters are (�m,��, h, σ8) = (0.3, 0.7, 0.7, 0.9) and the simulation cube is
5 h−1 Mpc on a side. The WDM and pseudo-WDM (P-WDM) models use
the CDM power spectrum suppressed by T2(k) from equation (13), using the
parameters for a thermal WDM particle of mass mc2 = 2 keV with g = 2
spin degrees of freedom. The corresponding free-streaming length is λFS ≈
0.5 h−1 Mpc. The added velocities for the WDM model are consistent with
the WDM particle properties, whereas for the P-WDM run, they correspond
to those of an mc2 = 0.03 keV thermal WDM particle.

Name Number of Particle mass Softening ε mc2

particles (h−1 M�) (h−1 kpc) (keV)

CDM 2563 6.2 × 105 0.8 –
WDM 2563 6.2 × 105 0.8 2
P-WDM256 2563 6.2 × 105 0.8 0.03
P-WDM512 5123 7.8 × 104 0.2 0.03

tion, also with several different realizations of the initial conditions.
These are denoted by P-WDM512. The starting redshift for the CDM
and WDM run was z = 100, but for the P-WDM runs it was z = 20
since in this case, structure formation is significantly delayed by the
larger thermal velocities. Table 1 summarizes the parameters of the
simulations. All our simulations were performed with the GADGET-3
code, an improved version of GADGET-2 (Springel 2005).

3.3 Comparisons of CDM and WDM simulations

Images of the CDM, WDM and P-WDM256 simulations are dis-
played in Fig. 1 for the fiducial 2563 particle run. As anticipated,
the overall appearance of the main halo in the three simulations
is very similar, but the amount of small-scale substructure is very
different. The cut-off in the initial power spectrum in the WDM
simulations has the effect of suppressing the formation of structure
on scales below λFS. This is the reason why there are far fewer sub-
structures in the WDM than in the CDM images. The large initial
random velocities in the P-WDM case further smooths out the mass
distribution, suppressing the formation of structures with velocity
dispersion smaller than the amplitude of the random velocities.

The structure of the most massive halo in the CDM model, and
the corresponding haloes in WDM and P-WDM, are compared in
more detail in Fig. 2. These haloes all have fairly similar total mass,
M200 ∼ 1.5 × 1012 h−1 M� for both CDM and WDM, and M200 ∼

Figure 1. Projected density in a 5 h−1 Mpc cube at z = 0 for the CDM, WDM and P-WDM simulations (left to right). The top panels show the full simulation
volume in a slice of 1.5 h−1 Mpc ; the bottom panels zoom in on the most massive halo. As expected, features on scales larger than the free-streaming length
are very similar, but on smaller scales the WDM runs have much less substructure. Model P-WMD, which had substantial initial random velocities, has almost
no substructure at all.
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Figure 2. Mean, radially averaged density profile, ρ(r) (left), and coarse-grained phase-space density profile, FNB(r) (right), for the most massive halo in the
CDM (blue), WDM (green) and P-WDM (red) simulations. Phase-space densities were computed using the ENBID code. The black dashed lines are NFW and
power-law fits to ρ and FNB, respectively for the CDM model. Different line styles correspond to the simulations of different numerical resolution, as given in
the legend, with arrows indicating twice the corresponding softening lengths. The CDM and WDM profiles are nearly indistinguishable, with ρ(r) and FNB(r)
well fitted by the NFW and power-law profiles, respectively. In contrast, the P-WDM model, which has significant initial thermal velocities, develops a core.
The maximum value of the phase-space density, FNB, in the P-WDM model is close to, but smaller than the fine-grained upper limit, f iso

FD , indicated by the
horizontal red line.

1.0 × 1012 h−1 M� for P-WDM512. The density profiles of the
CDM and WDM runs are nearly indistinguishable from each other,
demonstrating that for this self-consistent WDM model neither free-
streaming nor the (relatively small) initial intrinsic velocities affect
the overall structure of the halo. For this choice of WDM parame-
ters, this is expected and has been seen in previous work (e.g. Bode
et al. 2001; Colı́n et al. 2008). In contrast, the P-WDM256 model,
with its significantly larger intrinsic velocities, does form a core.
Comparison of models P-WDM256 and the eight times higher reso-
lution P-WDM512 shows that the core is numerically well resolved
and converged.

The phase-space density profiles of models CDM and WDM are
also virtually indistinguishable; they are consistent with a power
law, as found in previous studies (Fig. 2, right-hand panel). Once
again, neither free-streaming nor intrinsic velocities affect the pro-
file. On the other hand, in the P-WDM models a well-resolved
core in the phase-space profile develops. The coarse-grained phase-
space density, FNB, computed using ENBID, has a maximum of
F max

NB ∼ 0.5h2 M� kpc−3 (km s)−3, close to but smaller than the
value of f max

FD = 0.85 h2 M� kpc−3 (km s)−3 (shown as the hori-
zontal red line) calculated from equation (2) for a WDM particle of
mass mc2 = 0.03 keV. This demonstrates that our simulation meth-
ods and our calculation of phase-space densities using ENBID are
sufficiently accurate to follow correctly the formation of cores due
to the WDM intrinsic velocities. Given the good numerical conver-
gence of the profiles, we use our three P-WDM256 simulations with
different initial random phases to obtain statistical results in more
detail below.

In contrast, the fine-grained phase-space density bound for
the standard 2 keV thermal relic is f max

FD (mc2 = 2 keV) = 1.7 ×
107 h2 M� kpc−3 (km s−1)−3 , ∼7 orders of magnitude larger than
for the P-WDM case. The corresponding size of the core is nearly

two orders of magnitude smaller, and is well within the smooth-
ing length of our simulations. Clearly, as we had anticipated, these
simulations are not able to resolve the core of the WDM model.

3.4 Physical and phase-space density profiles

As we have shown in Fig. 2, the most massive halo in the P-WDM
simulations develops a central, near-uniform density core of radius
a few kiloparsecs. This behaviour is very different from the cuspy,
ρ(r) ∝ 1/r, profiles familiar from CDM simulations (Navarro et al.
1996b, 1997, hereafter NFW). Fig. 3 shows density profiles for a
further nine numerically well-resolved haloes from the series of
P-WDM runs, with masses ranging from 2.1 × 1011 h−1 M� to
1.5 × 1012 h−1 M�. All nine haloes exhibit well-resolved cores and
their density profiles are well fitted by the pseudo-isothermal profile
for radii well within the core radius rc out to R200. The isothermal
profile fits the halo profiles near R200 to better than 20 per cent, and
even better further in. Best-fitting values for the central core density
vary between the haloes by a factor of ∼3.

Fig. 4 shows the phase-space density profiles of the nine P-WDM
haloes represented in Fig. 3. The blue dashed lines show median
values in radial bins of the six-dimensional coarse-grained phase-
space density profiles, FNB, calculated using ENBID. The horizontal
red solid lines indicate the theoretically expected maximum fine-
grained phase-space density, f max

FD , from equation (2) for mc2 =
0.03 keV, the WDM mass appropriate to the initial intrinsic ve-
locities imparted to the particles in the simulations. Clearly, all the
P-WDM haloes have an approximately flat phase-space density pro-
file near the centre. The maximum of this coarse-grained density
is very close to the fine-grained bound appropriate for the mc2 =
0.03 keV WDM model.
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Figure 3. Spherically averaged density profiles of nine well-resolved haloes in our fiducial P-WDM simulations (blue triangles). The top three haloes are chosen
from the higher resolution P-WDM512 simulation, while the rest are from the three P-WDM256 simulations. The virial mass, M200, in units of 1010 h−1 M�,
is indicated in each panel. Fits using the pseudo-isothermal profiles of equation (3) over the radial range 2ε < r < r200 are shown by long dashed lines, with
the best-fitting core radius, rc, indicated by vertical red lines. For comparison, the best-fitting NFW profile over the radial range rc < r < r200 is shown as the
black dot–dashed line. The lower plots show the ratio of the measured densities to the best-fitting NFW and pseudo-isothermal profiles. All nine haloes show
a well-resolved core, and their profiles are well approximated by the pseudo-isothermal form from well-inside rc out to R200.

The red horizontal dashed lines in Fig. 4 show F max
iso ,

the maximum coarse-grained phase-space density estimated
from equation (5) assuming a pseudo-isothermal profile and
Maxwellian velocities. To calculate F max

iso , we used
the value of rc which best fits the density profiles
of Fig. 3, and computed the one-dimensional velocity dis-
persion, σ , for all particles within rc. For all nine haloes, the
coarse-grained estimate, F max

iso , is within 30 per cent of f max
FD . Thus,

it is possible to estimate f max
FD by measuring the core radius and

velocity dispersion of the halo. If real galaxy haloes are dominated

by WDM and baryons have little effect, then our simulations sug-
gests that it is possible to constrain the mass of a WDM particle, at
least in principle. We apply this idea to dwarf galaxy data in the next
section.

The pseudo-phase-space density, Q ≡ ρ/〈v2〉3/2, often used as a
proxy for phase-space density, is shown with green lines in Fig. 4.
The shape of Q(r) is similar to that of FNB(r), but its amplitude is off-
set to larger values by up to an order of magnitude. Clearly, using Q
to estimate FNB will result in incorrect constraints on WDM particle
masses.

 at D
urham

 U
niversity L

ibrary on June 19, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Phase-space density of fermionic dark matter haloes 2353

Figure 4. Spherically averaged coarse-grained phase-space density profiles for the nine well-resolved haloes shown in Fig. 3. The blue dashed lines show
the median values in bins in radius, of the six-dimensional coarse-grained phase-space density profiles, FNB, calculated using ENBID. The pseudo-phase-space
density estimate, Q (equation 11), is shown in green, and a power law, F ∝ r−1.9, is shown in black. The red solid line indicates the upper limit to the fine-grained
phase-space density, f max

FD , from equation (2) for mc2 = 0.03 keV, the value of m adopted in assigning WDM velocities in the simulations. The red dashed line
indicates the upper limit F max

iso on F calculated from equation (5) using the value of rc that best fits the density profiles of Fig. 3 and the velocity dispersion
measured for the particles within rc. These values are very close together. The maximum value reached by FNB as computed using ENBID (blue dashed line) is
close to but smaller than the limits calculated by either the coarse-grained estimate F max

iso calculated from the halo’s properties, or the fine-grained phase-space
limit, f max

FD , appropriate for this P-WDM model. This demonstrates that the simulations satisfy Liouville’s theorem, FNB < f max
FD , and that the WDM particle

properties can be estimated from the halo profile, since F max
NB � F max

iso . In contrast, the pseudo-phase-space density, Q, overestimates FNB by a factor of a few
for some haloes, and up to an order of magnitude for others.

4 C ONSTRAINING WDM PA RTICLE MASSES
FROM HALO PROFILES

We now apply the results of the previous section to the dwarf
spheroidal satellites of the Milky Way. There are numerous claims
in the literature that these galaxies have a central density core (e.g.

Gilmore et al. 2007; Walker & Peñarrubia 2011, but see Strigari
et al. 2010) and there have been attempts to interpret these us-
ing phase-space density arguments, often with reference to WDM
(e.g. Hogan & Dalcanton 2000; Dalcanton & Hogan 2001; Bode,
Ostriker & Turok 2001; Strigari et al. 2006; Simon & Geha 2007;
Boyanovsky, de Vega & Sanchez 2008; Boyarsky et al. 2009a;
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de Vega & Sanchez 2010; de Vega, Salucci & Sanchez 2012; Macciò
et al. 2012). These studies usually assume that the stars in these
galaxies are in dynamical equilibrium and closely trace the dark
matter distribution in their parent dark matter haloes. Constraints
on the mass of the WDM particle are then obtained by compar-
ing the inferred phase-space density with a theoretical expectation,
often based on a proxy such as the pseudo-phase-space density, Q
(e.g. Hogan & Dalcanton 2000); as we saw before this choice would
lead to an incorrect result.

Our analysis shows that the maximum value of the coarse-grained
phase-space density in our N-body simulations is close both to the
fundamental fine-grained bound, f max

FD (equation 2), and to the esti-
mate, F max

iso (equation 5), calculated assuming a pseudo-isothermal
profile and Maxwellian velocities. This result allows us to reassess
previous constraints on WDM models and to set new rigorous limits
on the WDM particle mass. In particular, we use the results from
our simulations displayed in Fig. 4 that show that F max

iso differs from
f max

FD by not more than about 30 per cent. We proceed as follows.
We assume that the observed half-light radius of a dwarf

spheroidal is approximately equal to the radius, Rh, at which the
projected dark matter density attains half its central value. The pro-
jected surface density profile, S(R), of the pseudo-isothermal model
can be written as

S(R) =
∫ ∞

−∞
ρ[(R2 + z2)1/2] dz = S0rc√

r2
c + R2

, (18)

where R is projected radius, and S0 = πρ0rc is the central sur-
face density. Therefore Rh = √

3rc. We estimate the central one-
dimensional velocity dispersion σ of the dark matter from the
(measured) velocity dispersion of the stars within Rh. Combin-
ing these, we calculate the central maximum phase-space density of

the dark matter halo, F max
iso , using equation (5). Finally demanding

that F max
iso ≈ f max

FD , equation (7), yields an estimate of the WDM par-
ticle mass, which we expect to be good to within 30 per cent. The
inferred values are given in the last column of Table 2 and plotted in
Fig. 5. Of course, these constraints are only relevant if the satellite
dynamics are collisionless, so that Liouville’s theorem is satisfied.

Our constraints on the maximum phase-space density and mc2g1/4

differ from other estimates in the literature based on different meth-
ods for estimating the maximum value of the coarse-grained phase-
space density. These estimates vary by factors of ∼50 to ∼0.2 for
F, depending on the method used. For example, the limits from the
model of Hogan & Dalcanton (2000) are a factor of 3.08 larger than
ours. This disagreement is carried over to the limits set on mc2g1/4

even when using the same data, by factors ranging from 0.65 to 2.75
(see also the illuminating summary and discussion in Boyarsky et al.
2009a). In particular, our bounds on m are 1.54 times larger than
those of Boyarsky et al. (2009a). Our method has the advantage
over previous methods that it has been explicitly verified by N-body
simulations.

The method outlined above yields an estimate of the mass of
the WDM particle, mc2(g/2)1/4 ≈ 0.5 keV, not a limit on m. This
estimate is based on phase-space considerations which, in turn,
depend on the initial intrinsic velocities of the WDM particles. The
lower limit inferred from the Lyman α forest, mc2 � 1.2 keV, on
the other hand, is determined by the cutoff in the power spectrum
(Seljak, Slosar & McDonald 2006; Viel et al. 2008; Boyarsky et al.
2009a). Although this cutoff is, of course, induced by free streaming
due to the initial velocities, the two mass estimates exploit different
properties of the initial WDM particle distribution, velocities in one
case and the shape of the power spectrum in the other. For two
of the satellites listed in Table 2 – Coma Berenices I and Canes

Table 2. Parameters for dwarf spheroidal satellites of the Milky Way: satellite name (column 1); half-light
radius and velocity dispersion compiled by Boyarsky et al. (2009a) (columns 2 and 3); coarse-grained limit,
F max

iso , derived from the values of rh and σ (colomn 4); mass of the WDM particle assuming that the coarse-
grained phase space, F max

iso , equals the fine-grained value, f max
FD (column 5).

dSph Rh σ F max
iso mc2 (g/2)1/4

(pc) (km s−1) (M� kpc−3 (km s−1)−3) (keV)

dSphs from Gilmore et al. (2007)

Sextans 630 ± 170 6.6 ± 2.3 2.69+1.73
−1.73 · 10−6 0.269+0.043

−0.043

Fornax 400 ± 103 10.5 ± 2.7 4.20+2.42
−2.42 · 10−6 0.301+0.043

−0.043

Leo I 330 ± 106 8.8 ± 2.4 7.36+5.13
−5.13 · 10−6 0.346+0.060

−0.060

Ursa Minor 300 ± 74 9.3 ± 2.8 8.42+4.87
−4.87 · 10−6 0.358+0.052

−0.052

Carina 290 ± 72 6.8 ± 1.6 1.23+0.68
−0.68 · 10−5 0.394+0.054

−0.054

Draco 221 ± 16 9.5 ± 1.6 1.52+0.34
−0.34 · 10−5 0.415+0.023

−0.023

Bootes 246 ± 28 6.5+2.1
−1.3 1.79+0.71

−0.54 · 10−5 0.432+0.043
−0.033

Sculptor 160 ± 40 10.1 ± 0.3 2.73+1.37
−1.37 · 10−5 0.480+0.060

−0.060

Leo II 185 ± 48 6.8 ± 0.7 3.03+1.60
−1.60 · 10−5 0.493+0.065

−0.065

dSphs from Simon & Geha (2007)

Canes Venatici I 564 ± 36 7.6 ± 2.2 2.92+0.92
−0.92 · 10−6 0.275+0.022

−0.022

Ursa Major I 318+50
−39 7.6 ± 2.4 9.17+4.09

−3.67 · 10−6 0.366+0.041
−0.037

Hercules 330+75
−52 5.1 ± 2.4 1.27+0.83

−0.72 · 10−5 0.397+0.065
−0.056

Leo T 178 ± 39 7.5 ± 2.7 2.97+1.68
−1.68 · 10−5 0.490+0.070

−0.070

Ursa Major II 140 ± 25 6.7 ± 2.6 5.37+2.83
−2.83 · 10−5 0.569+0.075

−0.075

Leo IV 116+26
−34 3.3 ± 2.8 1.59+1.52

−1.64 · 10−4 0.746+0.179
−0.192

Coma Berenices I 77 ± 10 4.6 ± 2.3 2.58+1.46
−1.46 · 10−4 0.843+0.119

−0.119

Canes Venatici II 74+14
−10 4.6 ± 2.4 2.80+1.80

−1.64 · 10−4 0.859+0.138
−0.126
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Figure 5. WDM particle mass, mc2 (g/2)1/4, inferred from the satellite properties of Table 2, as a function of the satellite velocity dispersion, σ (left), and
core radius, rc (right). For clarity, uncertainties on σ and rc are not plotted. The value of m assumes that the coarse-grained phase-space density, F max

iso (equation
5), equals the theoretical bound, f max

FD (equation 1). This analysis gives values of mc2(g/2)1/4 ≈ 0.5 keV, approximately independently of σ or rc. The shaded
regions indicate the lower bound on m from the Lyman α forest study of Boyarsky et al. (2009a), with their 99.7 per cent and 95 per cent confidence intervals
(1.5 and 1.7 keV) shown in red and green, respectively.

Venataci II – the mass estimate from the phase-space constraint and
the lower limit from the Lyman α forest are close. However, for the
majority of the dwarf spheroidals in the table, the WDM particle
mass inferred from the phase-space constraint is significantly below
the lower limit from the Lyman α forest. For these objects the two
methods can only be reconciled if the phase-space density is lower
than predicted by Liouville’s theorem. This may result, for example,
from energy exchange between the dark matter and the baryons in
the halo.

5 SU M M A RY A N D D I S C U S S I O N

Whether WDM particles decouple as thermal relics or form from
non-equilibrium decay, they acquire initial velocities whose ampli-
tude depends on the particle’s mass. Subsequent free streaming im-
poses a cut-off in the primordial spectrum of density perturbations.
In this paper, we have performed a series of numerical experiments
to investigate how the intrinsic primordial velocity dispersion of
fermionic dark matter particles affects the central density profile of
the dark matter haloes into which they later collect. For WDM the
initial velocities are small and resolving them in an N-body simula-
tion of halo formation would require a currently prohibitively large
number of simulation particles. Since we are primarily interested
in the connection between the initial velocities and the final phase-
space distribution of the particles, we can circumvent this problem
by decoupling the initial velocities from the free-streaming length.
Our simulations therefore do not correspond to a self-consistent
representation of any particular WDM particle candidate but they

are suitable for tackling the problem in hand. The power spectrum
cut-off and primordial velocities we assumed correspond to those
of thermally produced WDM particles of mass of 2 and 0.03 keV,
respectively. For comparison purposes, we also ran the simulations
of the standard �CDM case and a self-consistent WDM model with
a particle mass of 2 keV.

Our main results may be summarized as follows.

(i) Initial particle velocities induce cores in the radial profiles of
both the physical and the phase-space density of dark matter haloes.
The inner density profile of the simulated haloes is well described
by the pseudo-isothermal model (with a core).

(ii) The maximum coarse-grained phase-space density of simu-
lated haloes (computed using the ENBID code; Sharma & Steinmetz
2006) is very close to the theoretical fine-grained upper bound. This
implies that it is, in principle, possible to use phase-space arguments
to constrain the nature of the dark matter.

(iii) In contrast, the pseudo-phase-space density, Q ∼ ρ/σ 3, over-
estimates the maximum phase-space density by a significant factor,
up to an order of magnitude.

(iv) Assuming that the velocity distribution of the halo dark mat-
ter particles is Maxwellian, a simple analytical model that predicts
the maximum allowed coarse-grained phase-space density describes
the simulations remarkably well (Fig. 3).

(v) Application of this analytic model to the kinematical data of
dwarf spheroidal satellites of the Milky Way, assumed to have a
pseudo-isothermal density profile with a core, constrains the mass
of a hypothetical thermal fermionic WDM relic to be mc2 (g/2)1/4 ≈
0.5 keV.
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The low particle mass we infer from phase-space considerations
yields a large free-streaming mass, MFS ∼ 1012 h−1 M� (equation
16). As emphasized by Macciò et al. (2012), this is so large that a
model with this kind of dark matter is unlikely to produce enough
satellites in galaxies like the Milky Way. Whereas CDM may suffer
from an excess of massive subhaloes – the ‘too big to fail’ problem
of Boylan-Kolchin et al. (2011), WDM may suffer from a ‘too small
to succeed’ problem.

Our inferred value for m differs from other estimates in the lit-
erature based on different methods to estimate the coarse-grained
phase-space density, by factors ranging from 0.2 to 58. Our esti-
mate, however, is the only one that has been explicitly validated
using cosmological simulations of halo formation.

The inferred value of m follows from the assumption that the
density profiles of the Milky Way dwarf spheroidal satellites have
central cores. This assumption is controversial: for example Walker
& Peñarrubia (2011) argue that cores are required by the data, at
least for Fornax and Sculptor, but Strigari et al. (2010) have shown
explicitly that the data for these and other dwarfs are consistent with
NFW cusps. In any case, the value of the particle mass required by
the kinematical data, under the assumption that the dwarf spheroidal
haloes do have cores, conflicts with the lower bound on the WDM
particle mass set by the observations of the Lyman α forest which
require the particles to have a mass m � 1.2 keV (Seljak et al.
2006; Viel et al. 2008; Boyarsky et al. 2009a). This implies that
if the cores are actually real, then they cannot be explained by the
free-streaming velocities of thermally produced WDM particles.
Instead, baryonic processes associated with the forming galaxy, for
example, of the kind originally proposed by Navarro et al. (1996a)
and more recently seen in simulations (e.g. Read & Gilmore 2005;
Mashchenko et al. 2008; Governato et al. 2010; Brooks & Zolotov
2012) would be required.
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