
Classification with decision trees from a
nonparametric predictive inference perspective
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1 Introduction

Many mathematical models can be used to represent the information in situa-
tions where uncertainty is present. These models are generalizations of proba-
bility theories such as belief functions, reachable probability intervals, capac-
ities of various orders, upper and lower probabilities, and convex and closed
sets of probability distributions (also called credal sets). The term imprecise
probabilities (Klir[32], Walley [45]) subsumes these theories. Some of these
generalized theories are more appropriate than others in specific situations.

With the emergence of these models, an extension of classical uncertainty-
based information theory within probability theory became needed. In the
1990s, using the Shannon entropy (Shannon [43]) measure for probabilities as
a starting point, a large amount of research was carried out to study measures
to quantify different types of uncertainty inherent to some of these models,
principally on belief functions. In recent years, this study has been extended
to general credal sets. The maximum entropy measure has been used as a



2 J. Abellán, R.M. Baker, F.P.A. Coolen, R.J. Crossman, A. R. Masegosa

suitable total uncertainty measure for general credal sets1, satisfying a number
of desirable properties (Abellán et al. [6], Klir [32]).

The Imprecise Dirichlet model (IDM), presented by Walley [46], is a model
for statistical inference from multinomial data which was developed to cor-
rect shortcomings of previous alternative objective models. It satisfies a set of
principles which are claimed by Walley to be desirable for inference (see Wal-
ley [46]). The IDM can be seen as a model which gives imprecise probabilities
that can be expressed via a set of reachable probability intervals and a belief
function (Abellán [1]). The IDM has been applied to many statistical prob-
lems; a description of these applications can be seen in Bernard [10]. However,
the use of the IDM has recently been questioned for some practical applica-
tions (Piatti et al. [37]). Shortcomings of the IDM were already discussed in
detail by Walley [46], and by many discussants of that paper, leading Walley
to strongly motivate researchers to develop alternative inference models.

Coolen and Augustin [17] presented Nonparametric Predictive Inference
for multinomial data (NPI-M) as alternative, that does not suffer from some
of the main drawbacks of the IDM [46]. It is different to the IDM in the sense
that NPI-M learns from data in the absence of prior knowledge and with only
a few modeling assumptions, most noticeably a post-data exchangeability-like
assumption together with a latent variable representation of data as lines on
a probability wheel. NPI-M does not satisfy some of the principles for infer-
ence suggested by Walley [46], most noticeably the Representation Invariance
Principle (RPI), but Coolen and Augustin do not consider this to be a short-
coming [18]. In fact, they present arguments against general adoption of the
RPI for inference and propose an alternative, weaker principle, which NPI-M
satisfies.

The imprecision expressed by the NPI model is upper than the one from
the IDM, when the most frequent value for the s parameter is used. It is
important to remark the differences about the total uncertainty expressed by
the maximum entropy function that we can find between the NPI model and
the IDM. With the IDM we have more conflict but less imprecision than with
the NPI model being the value of the total uncertainty of the set associated
with the IDM lower than the one associated with the sets obtained from the
NPI model.

One application of the study of information based uncertainty measures
on imprecise probabilities is the method of Abellán and Moral [3] for building
decision trees. In this method, the split criterion used has different character-
istics to those of the classical split criteria. This procedure to build decision
trees is able to use different models of imprecise probabilities to represent the
information from a data set and also to use different uncertainty measures.
The introduction of the IDM and the NPI models can produce different results
for that procedure, because as we will see, the treatment of the information

1A measure that quantify the 2 types of uncertainty found: conflict and non-
specificity
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is different for each way of representation, being the imprecision greater when
the NPI model is used.

We have carried out a series of experiments to check the performance of the
NPI model when placed in this method and used to build decision trees. For
this aim, algorithms to attain the maximum entropy probability are required;
these are presented in Abellán et al. [8]. We have used 40 data sets with the
common characteristic that the class variable has a known number K ≥ 3
of cases or categories, as was considered in the model presented in Coolen
and Augustin [17]. To compare results, we have used two other classical split
criteria into the same scheme; a variation of the parameter used in the IDM;
and others procedures of classification based on decision trees.

We will show that the model based on the NPI model has a performance
with slightly improved accuracy compared to the best model based on the
IDM (with a variable parameter s),2 whilst using notably smaller trees. If the
value of the parameter s in the IDM is increased, we can obtain smaller trees
too but in that case, the accuracy is clearly decreased.

This paper is organized as follows: Section 2 presents a summary of the
principal theories of imprecise probabilities. Section 3 describes the IDM
model and Section 4 the NPI model. Section 5 is devoted to a brief overview
of uncertainty measures for imprecise probabilities. In Section 6 we explain
the procedure for building decision trees using imprecise probabilities and un-
certainty measures, and in Section 7 we present the results of the experiments
carried out. Section 8 summarizes the conclusions.

2 Theories of imprecise probabilities: A brief overview

2.1 Imprecise probabilities and credal sets

Theories of imprecise probabilities (Klir [32], Walley [45], Weichselberger [48])
share some common characteristics; for example, the evidence within each
theory can be described by a lower probability function P∗ on a finite finite
variable X, with values in a finite set X = {x1, . . . , xK}, or alternatively, by
an upper probability function P ∗ on X. These functions are always regular
monotone measures (Wang and Klir [47]) and satisfy∑

x∈X
P∗({x}) ≤ 1,

∑
x∈X

P ∗({x}) ≥ 1. (1)

A general set S of imprecise probabilities on X, can be described as a set
of probability distributions p on X associated with both bounds P∗ and P ∗,
such that p ∈ S ⇒ P∗({x}) ≥ p({x}) ≥ P ∗({x}). This definition does nor
force S to be closed or convex.

2Its normal value used is s = 1.
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If the set of probability distributions comprises a general credal set, P, i.e.
a closed and convex set of probability distribution functions p on X (Kyburg
[34]), then functions P∗ and P ∗ associated with P are determined for each set
A ⊆ X by the expressions

P∗(A) = inf
p∈P

∑
x∈A

p({x}), P ∗(A) = sup
p∈P

∑
x∈A

p({x}). (2)

In this case, P∗ and P ∗ are called dual, because for each p ∈ P and each
A ⊆ X, the following holds:

P ∗(A) = 1− P∗(X −A) (3)

where X −A denotes the subset of X that is complementary to A.

2.2 Probability intervals

In the theory of probability intervals (Campos et al. [12]), the bounds
([l(x), u(x)]) on the probability of the singleton elements x ∈ X, determine the
lower and upper probabilities P∗ and P ∗ of each event. Clearly, l(x) = P∗({x})
and u(x) = P ∗({x}) , and inequality (1) must be satisfied. Each given set of
probability intervals I = {[l(x), u(x)]|x ∈ X} is associated with a credal set,
P(I), of probability distribution functions, p, defined as follows:

P(I) = {p|x ∈ X, p(x) ∈ [l(x), u(x)],
∑
x∈X

p(x) = 1}. (4)

A given set I of probability intervals may be such that some combinations
of values taken from the intervals do not correspond to any probability distri-
bution function. This indicates that the intervals are unnecessarily wide. To
avoid this deficiency, the concept of reachability was introduced by Campos
et al. [12].

A given set I is called reachable if and only if for each x ∈ X and every
value v(x) ∈ [l(x), u(x)] there exists a probability distribution function p for
which p(x) = v(x). The reachability of any given set I can be easily checked:
the set is reachable if and only if it satisfies the following:∑

x∈X l(x) + u(y)− l(y) ≤ 1,∀y ∈ X,∑
x∈X u(x) + l(y)− u(y) ≥ 1,∀y ∈ X.

(5)

The upper and lower probabilities from a reachable set of probability in-
tervals can be obtained using the following result of Campos et al. [12]:

Proposition 1 With the above notation, given a reachable set I of probability
intervals, the lower and upper probabilities are determined for each A ⊆ X by
the formulae
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P∗(A) = max{
∑
x∈A l(x), 1−

∑
x/∈A u(x)},

P ∗(A) = min{
∑
x∈A u(x), 1−

∑
x/∈A l(x)}.

(6)

3 Probability intervals from the IDM

The imprecise Dirichlet model (IDM) was introduced by Walley [46] for infer-
ence about the probability distribution of a categorical variable. Let us assume
that X is a variable taking values on a finite set X = {x1, . . . , xK} and that
we have a sample of n independent and identically distributed outcomes of
X. If we want to estimate the probabilities θx = p(x) with which X takes its
values, a common Bayesian procedure consists of assuming a prior Dirichlet
distribution for the parameter vector (θx)x∈X , and then taking the posterior
expectation of the parameters given the sample. The Dirichlet distribution de-
pends on the parameters s > 0 and t = (tx)x∈X , which is a vector of positive
real numbers satisfying

∑
x∈X tx = 1. The density takes the form

f((θx)x∈X ) =
Γ (s)∏

x∈X Γ (s · tx)
∏
x∈X

θs·tx−1x ,

where Γ is the gamma function. If n(x) is the number of occurrences of
value x in a sample of size n, the expected posterior value of parameter θx is
n(x)+s·tx
n+s , which is also the Bayesian estimate of θx (under quadratic loss).
The imprecise Dirichlet model [46] only depends on the parameter s, and

assumes all the possible values of t. This defines a closed and convex set of
prior distributions. It represents a much weaker assumption than a precise
prior model, but it is possible to make useful inferences using this model.
In our particular case, where the IDM is applied to a single variable X, we
obtain a credal set for this variable that can be represented by a system of
probability intervals. For each parameter θx we obtain a probability interval
given by the lower and upper posterior expected values of the parameter given

the sample, this interval can be easily computed and is given by [n(x)n+s ,
n(x)+s
n+s ].

The associated credal set on X is given by all the probability distributions

p′ on X such that ∀x ∈ X , p′(x) ∈ [n(x)n+s ,
n(x)+s
n+s ]. For any A ⊂ X , it can be

shown that

p′(A) ∈
[∑

x∈A n(x)

n+ s
,

∑
x∈A n(x) + s

n+ s

]
.

The intervals are coherent in the sense that if they are computed by taking
the infimum and supremum in the credal set, then the same set of intervals is
obtained.

The parameter s determines how quickly the lower and upper probabilities
converge as more data become available; larger values of s produce more
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cautious inferences. Walley [46] does not give a definitive recommendation,
but he advocates values between s = 1 and s = 2.

Abellán [1] gives a set of properties for this type of probability interval.
Every set of IDM probability intervals represents a set of reachable probability
intervals. The credal set associated with a set of IDM probability intervals L

L = {[li, ui]| li =
n(xi)

n+ s
, ui =

n(xi) + s

n+ s
, i = 1, 2, . . . ,K,

K∑
i=1

n(xi) = n},

can also be expressed by a belief function.

4 Probability intervals from the NPI-M

The NPI model for multinomial data (NPI-M) was developed by Coolen and
Augustin [17, 18]. The model is based on a variation of Hill’s assumption
A(n) [29, 30], which relates to predictive inference involving real-valued data
observations. Nonparametric predictive inference is a frequentist statistical
framework with attractive properties, for which applications have been pre-
sented to many problems in statistics, reliability and operations research; for
some introductions and overviews, see [9, 15, 16].

The assumption made by Coolen and Augustin whilst applying NPI for
multinomial data [17, 18] is known as the circular-A(n) assumption, and re-
lates to multinomial data consisting of observed values Yi = yi, i = 1, ..., n.
These observations are related to observations of a corresponding latent
variable which create n intervals on a circle; these are then represented as
Ij = (yj , yj+1) for j = 1, ..., n − 1, and In = (yn, y1). The circular-A(n) as-
sumption is that the next observation will fall into any of these intervals with
equal probability 1

n , so in other words P (Yn+1 ∈ Ij) = 1
n for j = 1, ..., n.

To present this model, we use similar notation to Coolen and Augustin
[17, 18]. Suppose that there are K different categories altogether, and that
the first k of these, c1, ..., ck, have already been observed. Suppose that there
are nj observations in category cj , for j = 1, ..., k, and that

∑k
j=1 nj = n. In

this paper, we restrict attention to the case where the value of K is known.
The concept underlying NPI-M involves a latent-variable “probability

wheel” representation of the data. On this probability wheel, each of our
n observations is represented by a line from the center of the wheel to its
boundary, such that the wheel is partitioned into n equally-sized slices. From
the circular-A(n) assumption we conclude that the next observation has prob-

ability 1
n of being in any given slice. We must then decide which category

each of these slices should represent. Coolen and Augustin [17, 18] assume
that each category is only allowed to be represented by one single sector of
the wheel. This implies that two or more lines representing the same cate-
gory must always be positioned next to each other on the wheel. If a slice is
bordered by two lines representing the same category, it must be assigned to
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this category. However, if a slice is bordered by two lines representing different
categories, it may be assigned to any available category, that is to either of the
two categories corresponding to the slice’s bordering lines or to any different
category not yet represented by other lines (and therefore not yet observed).
It is important to emphasize that such a slice of the wheel does not have to
be assigned in total to a single category, it can be divided in any way to the
possible categories just mentioned.

Our general event of interest can be expressed as

Yn+1 ∈
⋃
j∈J

cj (7)

where J ⊆ {1, ...,K}. We shall refer to this general event as E. Let

OJ = J ∩ {1, ..., k}

represent the index-set for the categories in E that have already been observed,
and let r = |OJ |. Also, let

UJ = J ∩ {k + 1, ...,K}

represent the index-set for the categories in E that have not yet been observed,
and let l = |UJ |.

The NPI-M lower probability for the general event E (7) is found by
constructing a configuration of the probability wheel which minimizes the
number of slices that are assigned to E, and the NPI-M upper probability for
E is found by assigning as many slices of the wheel as possible to E.

Theorem 1 (Coolen and Augustin [18]) With the above notation, the NPI-M
lower and upper probabilities for the event E based on n observations are:

P (E) =
nJ −min(K − r − l, r)

n

and

P (E) =
nJ + min(r + l, k − r)

n

with nJ =
∑
j∈J nj.

For singleton events E = {Yn+1 ∈ ci} we obtain the following NPI-M lower
and upper probabilities:

P (Yn+1 ∈ ci) = max

(
0,
ni − 1

n

)
and

P (Yn+1 ∈ ci) = min

(
ni + 1

n
, 1

)
.
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We consider the following set of probability intervals:

L = {[li, ui]| li = max

(
0,
ni − 1

n

)
, ui = min

(
ni + 1

n
, 1

)
,

i = 1, 2, . . . ,K,

K∑
i=1

ni = n}.

On this set, the following in propositions hold (Abellán et al. [8]):

Proposition 2 L is a set of reachable probability intervals.

Proposition 3 The set of upper and lower probabilities produced by L is
the same as the set produced by the NPI-M lower and upper probabilities of
Theorem 1.

Hence, when the NPI-M model is applied to a set of n observations, the
lower and upper probabilities of an event can be obtained using only those
of the singleton events. This set of lower and upper probabilities associated
with the singletons expresses a reachable set of probability intervals, i.e. a
credal set. An important characteristic of this credal set is that not all of its
probability distributions are compatible with the theoretical NPI-M model,
i.e. the set of probability distributions obtained from the NPI-M model is not
a credal set. We can see this in the following example.

Example 1. (Abellán et al. [8])
Suppose we have 5 possible categories. Categories B and P are observed 4

and 5 times respectively, and the other categories R, Y and G are unobserved.
The data are shown on the probability wheel below (Figure 1).

B

BB

B

P

P P

P

P

Fig. 1. Probability wheel for Example 1

Using the NPI-M lower and upper probability formulae, we find that the
set of reachable probability intervals for the event Y10 ∈ cj , with the outcomes
ordered as {B,P,R, Y,G}, is{

[
3

9
,

5

9
]; [

4

9
,

6

9
]; [0,

1

9
]; [0,

1

9
]; [0,

1

9
]

}
.
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Here, the probability distribution D = ( 3
9 ,

4
9 ,

2
27 ,

2
27 ,

2
27 ) belonging to the

credal set associated with this set of reachable probability intervals. However,
it is not possible to find a configuration of the probability wheel that corre-
sponds to this probability distribution and is in line with the NPI-M frame-
work, because of the requirement that a category may not be represented by
more than one sector, as would be needed to divide the two available slices
equally over the three categories R, Y and G. So we can say that the there
exist probability distributions belonging to the set of all the probability dis-
tributions satisfying the NPI-M bounds which are not compatible with the
NPI-M. So the set of compatible probabilities is not convex. This also implies
that it is possible that we can not find a belief function associated with the set
of compatible probabilities obtained from the NPI-M. This does not happen
with the IDM.

Using the IDM on this example with s = 1, the bounds of the probabil-
ity values obtained for each category, using the order {B,P,R, Y,G}, is the
following: {

[
4

10
,

5

10
], [

5

10
,

6

10
], [0,

1

10
], [0,

1

10
], [0,

1

10
]

}
�

An approximate model can be derived from NPI-M by considering all prob-
ability distributions compatible with the set of lower and upper probabilities
obtained from NPI-M [8]. This model, denoted by A-NPI-M, uses the convex
hull of the set of distributions compatible with the NPI-M, and so corresponds
to the structure defined by the singleton probabilities. A-NPI-M is therefore
a simplification of the exact model, allowing us to avoid considering a difficult
set of constraints (for more details, see Abellán et al. [8]).

5 A brief overview of uncertainty measures

It has been well established that uncertainty in classical possibility theory
can be suitably quantified by the Hartley measure (Hartley [28]). For each
nonempty and finite set A ⊆ X of possible alternatives, the Hartley measure,
H(A), is defined by the formula

H(A) = log2 |A|, (8)

where |A| denotes the cardinality of A. Since H(A) = 1 when |A| = 2, H
defined by equation (8) measures uncertainty in bits. The uniqueness of H was
proven on axiomatic grounds by Rényi [40]. The type of uncertainty measured
by H is usually called non-specificity.
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In classical probability theory, a justifiable measure of uncertainty was
derived by Shannon [43]. This measure, which is usually referred to as the
Shannon entropy and is denoted by S, is defined for probability distribution
function p on a finite set X by the formula

S(p) = −
∑
x∈X

p(x) log2 p(x). (9)

Since S(p) = 1 when |X| = 2 and p(x) = 1−p(x) = 0.5, S defined by Equation
(9) measures uncertainty in bits. However, the type of uncertainty measured
by the Shannon entropy is different from the uncertainty type quantified by
the Hartley measure; it is well captured by the term conflict.

When the classical uncertainty theories are generalized, both types of un-
certainty co-exist. This requires the Hartley measure and the Shannon entropy
to be properly generalized in the various theories.

In the early 1990s, the unsuccessful attempts to find a generalized Shan-
non entropy in the DST were replaced with attempts to find an aggregated
measure of both types of uncertainty (Harmanec and Klir [26]). An aggregate
measure that satisfies all the required properties (additivity, subadditivity,
monotonicity, proper range, etc.) was eventually found around the mid-1990s
by several authors (see Klir [32] for more details). This aggregate uncertainty
measure is a functional S∗ that for each belief function Bel in the DST is
defined as follows:

S∗(Bel) = max
PBel

{−
∑
x∈X

p(x) log2 p(x)}, (10)

where the maximum is taken over the set PBel of all probability distribution
functions p that dominate the given function Bel (i.e. Bel(A) ≤

∑
x∈A p(x)

for all A ⊆ X). This functional can be readily generalized to any given convex
set of probability distributions, as shown by Abellán and Moral (2003a).

In Abellán et al. [6] we can see that has sense to consider the following
expression of the maximum entropy function:

S∗ = (S∗ − S∗) + S∗,

where S∗ expresses the minimum entropy function. Here S∗−S∗ is considered
as a non-specificity measure; and S∗ as a conflict measure 3

To use the maximum entropy in applications it is important to consider its
calculus. Useful algorithms for computing S∗ were developed for the DST by
Harmanec et al. [27], for reachable interval-valued probability distributions by
Abellán and Moral [2], and for the theory based on Choquet order-2 capacities
(2-monotone measures) by Abellán and Moral [4].

To obtain the maximum entropy for the case of probability intervals from
IDM with a value of s between 1 and 2, we can use a more efficient algorithm

3A total uncertainty measure, on credal sets, is composed of a part to quantify
the non-specificity and a part to quantify the conflict [6]



Classification with decision trees using a NPI perspective 11

presented in Abellán [1]. The case of probability intervals from the NPI-M
and the A-NPI-M are considered using different algorithms in Abellán et al.
[8], because they can express different sets of probabilities (see Example 1).

Really the value of maximum entropy function obtained for the NPI-M is
very close to the one obtained for the A-NPI-M. If we consider one type of
model or other, we can obtain different bounds of probabilities, as we see in
the Example 1. Also, as we can see in that example, the different models used
to represent the information, can express different values of uncertainty-based
information. In the Example 1 the imprecision expressed by the NPI-based
models is upper than the one from the IDM. It is important to remark the
differences about the total uncertainty expressed by the maximum entropy
function that we can find between the NPI-based models and the IDM. For
example, the S∗ value for the A-NPI-M is 1.3046 and the one for the IDM
is 1.05319; the S∗ value for the A-NPI-M is 0.6365 and the one for the IDM
is 0.6730. With the IDM we have more conflict (S∗) but less non-specificity
(S∗−S∗) than with the A-NPI-M; being the value of the total uncertainty of
the set associated with the IDM around a 25% lower than the one associated
with the set obtained from the A-NPI-M.

6 Procedure to build decision trees using imprecise
probabilities and uncertainty measures

A decision tree, also called a classification tree, is a simple structure that can
be used as a classifier. Within a decision tree, each node represents an attribute
variable (or predictive attribute or feature) and each branch represents one
of the states of this variable. Each tree leaf specifies an expected value of the
class variable (the variable under study). The set of data used to build the
decision tree is called the training set and the set used to check the model
is called the test set. When we obtain a new sample or instance of the test
set, we can make a decision involving a prediction about the state of the class
variable by following the path through the tree from the root until a leaf is
reached, by using the sample values and the tree structure.

In Figure 2 we give an example of a classification tree, involving three
attribute variables Ai (i = 1, 2, 3), with two possible values (0, 1) for each
of them, and a class variable C with cases or states c1, c2, c3. The root node
corresponds to the empty configuration4 (no value for any variable). Its two
children are two nodes corresponding to configurations (A1 = 0) and (A1 = 1)
respectively. The leaf labeled with c3 corresponds to the configuration σ =
(A1 = 1, A3 = 0). In each leaf of this tree we have a single value of the class
variable.

4The set obtained taking one state of some attribute variable is called a configu-
ration [3]. Hence, each node (even a leaf node) in a tree determines a configuration,
taking the set of states of the attribute variables from the root node to that node.
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A1

A2

c1

0

c2

1

0

A3

c3

0

c1

1

1

Fig. 2. Example of a classification tree.

Associated to each node is the most informative variable which has not
already been selected in the path from the root to this node, as long as this
variable provides more information than if it had not been included. In the
latter case, a leaf node is added with the most probable class value for the
partition of the data set defined with the configuration given by the path
until the tree root. If two or more categories share the maximum probability
for class value, we choose the most likely of these categories according to the
configuration at the parent node, and so on iteratively.

One important reference for the theory of decision trees is Quinlan’s ID3
algorithm [38], where precise probabilities and classical uncertainty measures
on probability theory are used. Our proposal uses imprecise probabilities and
uncertainty measures on more general theories than classical probability the-
ory. We will use a similar method to the one used for the ID3 algorithm for
building decision trees from a data set.

Given a data set D, each node of a decision tree can define a set of prob-
abilities for the class variable C in the following way: we first consider the
configuration σ associated to it, and then calculate the probability intervals
obtained from the IDM, NPI-M or A-NPI-M methods. We denote this set of
probabilities Pσ. For example, we have seen in Figure 2 that the node with
label c3 determines a configuration σ = (A1 = 1, A3 = 0). This configuration
has an associated data set, D[σ], which is the subset of the original D given
by those cases for which A1 = 1 and A3 = 0. Pσ is the set of probabilities
obtained by applying a model of imprecise probabilities.

The method starts with a tree with a single node. We shall describe it using
a recursive algorithm, which starts with the empty node (the root node) with
no label attached to it. Each node will have a list L∗ of possible labels of
attribute variables which can be attached to it. The procedure will start with
the complete list of attribute variables.

We consider the following function :

Inf(σ,Ai) =

( ∑
ai∈Ai

rσaiTU(Pσ∪(Ai=ai))

)
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where rσai is the relative frequency with which Ai takes the value ai in D[σ];
σ∪ (Ai = ai) is the result of adding the value Ai = ai to configuration σ, and
TU is a total uncertainty measure function, normally defined on credal sets
(see Klir [32]). In the original procedure (Abellán and Moral [3]) a combined
function is used, which separately measures randomness and non-specificity,
or the maximum of the entropy function (Abellán and Moral [5]) which is an
aggregate function of both parts of uncertainty.

If No is a node and σ the associated configuration, Inf tries to measure
the weighted average total uncertainty of the sets of probabilities associated
with the children of this node if variable Ai is added to it (there is a child for
each one of the possible values of this node). The average is weighted by the
relative frequency of each one of the children in the data set.

We now describe the method. The basic idea is very simple and is applied
recursively to each of the nodes we obtain. For each of these nodes, we consider
whether the total uncertainty of the credal set at this node can be decreased
by adding a new node. If this is the case, then we add the node which results in
the maximum decrease of uncertainty. If the uncertainty cannot be decreased,
then this node is not expanded and it is transformed into a leaf of the resulting
tree. We present the algorithm for this method in Figure 3.

Procedure BuildTree(No,L∗)

1. If L∗ = ∅, then Exit.
2. Let σ be the configuration associated with node No
3. Compute the set of probabilities associated with σ

and compute its total uncertainty TU(Pσ).
4. If TU(Pσ) = 0, then Exit.
5. If TU(Pσ) > 0, compute the value

α = minAi∈L∗ Inf(σ,Ai)
6. If α ≥ TU(Pσ), then Exit

7. If α < TU(Pσ), then
8. Let Al be the variable for which the minimum α is attained

9. Remove Al from L∗
10. Assign Al to node No
11. For each possible value al of Al

12. Add a node Nol
13. Make Nol a child of No
14. Call BuildTree(Nol,L∗)

Fig. 3. Procedure to build decision trees using imprecise probabilities and uncer-
tainty measures.
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In this algorithm, Al is the branching variable of node No. The intuitive
idea is that when we assign this variable to No, we divide the database asso-
ciated with this node among its different children. In each one of the children,
we can have more precise average knowledge about C but based on a smaller
sample.

The ID3 algorithm uses also uses estimates of probabilities and the uncer-
tainty measure is again Shannon entropy. The quantity that is used to decide
what variable to attach to a node is called information gain, which is similar
to TU(Pσ) − Inf(σ,Ai), which is what we compute to decide the branching
variable. The only difference is that information gain is applied to precise
probabilities. If Pσ denotes estimates of precise probabilities about C in D[σ]
then the information gain is given by

InfGain(σ,Ai) = S(Pσ)−

( ∑
ai∈Ai

rσaiS(Pσ∪(Ai=ai))

)
.

Note that this function can be considered as a comparison of the maximum
entropy for configuration σ with the expected maximum entropy following
the extension of configuration σ using the attribute variable Ai. We therefore
choose to split only if the expected maximum entropy following the split is
strictly less than the current maximum entropy.

The information gain has an important characteristic: it is always a non-
negative number. It is important to remark that the equivalent criterion that
we use in the procedure to build decision trees,

ImpInfGain = TU(Pσ)−

( ∑
ai∈Ai

rσaiTU(Pσ∪(Ai=ai))

)

can be negative [3].
Another split criterion, used in a posterior algorithm of Quinlan [39], is

the information gain ratio, which uses the same split criterion as the ID3
method, but splits by the entropy of the attribute variable, i.e. there exists a
direct relation between this value and the number of cases of each attribute
variable. This criterion penalizes variables with many states and forms the
basis for the C4.5 model [39], a more complex model (defined to work with
continuous variables, it works with missing data, and it has a posterior pruning
process that is introduced to improve the results)

As we see in our algorithm defined above, different models based on im-
precise probabilities can be applied to obtain the sets of probabilities Pσ; and
different uncertainty measures TU can be applied on the set of probabilities
Pσ. It both these senses, then, the procedure is an open one.
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7 Experiments

In this section, we will principally compare the use of the IDM, varying its
parameter s, with the use of the NPI-M for building simple decision trees. In all
the procedures, we will use the maximum entropy as a tool, and use splitting
procedure described in the last section. The difference between the original
algorithm of ID3 (Quinlan [38]), based on precise probabilities and the entropy
function, and the method used here is that we use imprecise probabilities to
obtain a credal set, via the IDM; or a (possible non-convex) set of probabilities,
via the NPI-M, at each node; and then we use the maximum entropy measure
to select the variable on which we split. For our experiments, we have used
Weka software (Witten and Frank [51]) on Java 1.5, and we have added the
necessary methods to build decision trees using any one of the above described
split criteria.

To compare these methods, we have experimented also with the the very
used and successful C4.5 algorithm of Quinlan [39]. We use the version im-
plemented on Weka, where the C4.5 method is called J4.8 and it has a set
of fixed parameters to improve the accuracy of the method. To compare re-
sults we have used this method with its parameters by defect and without a
post-pruning procedure.

We have denoted the procedures using IDM with s = 1, 1.5, 2 as IDMs
(IDM1, IDM1.5, IDM2). The rest are called as NPI−M and C4.5 to simplify.

All five of these methods have been applied on a wide and varied collec-
tion of 40 data sets, obtained from the UCI repository of machine learning
databases5. The data sets chosen are very different in terms of their sample
size, number and type of attribute variables, number of states of the class vari-
able, etc. These data have the common characteristic that their class variable
has 3 or more possible values (K ≥ 3).

A brief description of these data sets can be found in Table 1, where
column “N” is the number of instances in the data sets, column “Attrib” is
the number of attribute variables, column “Num” is the number of numerical
variables, column “Nom” is the number of nominal (categorical) variables,
column “K” is the number of cases or states of the class variable (always a
nominal variable and K ≥ 3) and column “Ka” is the number of values that
the attribute variables of each data set can take.

We have applied the following preprocessing methods: missing values have
been replaced with mean values (for continuous variables) and modal values
(for discrete variables) using Weka’s own filters. In the same way, continuous
variables have been discretized using Fayyad and Irani’s discretization method
[21]. The preprocessing methods have been applied using the training set; the
resulting values are then translated to the test set (for example, missing values
in the test set are replaced by the averages or modal values obtained from the
training set). For each database, we repeat 10 times a k-10 fold cross-validation

5They can be downloaded directly from http://archive.ics.uci.edu/ml/
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procedure (100 training sets and 100 test sets). To compare the methods, we
have used the following tests with a 0.05 level of significance (see Demsar
[20]).

-To compare multiple classifiers on multiple datasets:

Friedman’s test (Friedman [22, 23]): a non-parametric test that ranks
the algorithms separately for each dataset, the best performing algorithm
being assigned the rank of 1, the second best, rank 2, etc. The null hy-
pothesis is that all the algorithms are equivalent. If the null-hypothesis is
rejected, we can compare all the algorithms to each other using Holm’s
test (Holm [31]).

We have considered the above set of tests following a trade-off on the rec-
ommendations by Demsar [20] and by Garćıa and Herrera [24]. As suggested
in those works, the Friedman test may report a significant difference but the
post-hoc test fails to detect it. This is due to the lower power of the post-
hoc test conducted. Nemenyi’s test [36] is recommended by Demsar, but in
some situations can be a less sensitive test than others, as it is described by
Garćıa and Herrera. With Nemenyi’s test we can encounter situations where
the differences expressed by the Friedman test were not detected. Hence, as
the latter authors recommended, we considered conducting a post-hoc Holm’s
test.

7.1 Results

Table 2 presents the results of the accuracy of the procedures.
The Friedman test about the accuracy indicates significant differences at

the 0.05 level of significance (p-value is 0.01993), and the Friedman ranks are:

IDM1: 2.625
NPI-M: 2.6125
C4.5: 3.45
IDM1.5: 2.85
IDM2: 3.4625

Here we can see that the best method (better rank) is the procedure using
the NPI-M, following very close for the one with IDM1. The worse are the
C4.5 and the IDM2, with very similar results.

Table 3 presents the p-values obtained from the Holm tests carried out
about the accuracy. We can see that only exists significant differences be-
tween the NPI-M and the IDM2 procedures (in favor of NPI-M) at 0.05 level
of significance. It must be remarked that the IDM1 is very close to obtain
significant differences too with respect to the IDM2.

Table 4 presents the results of the accuracy of the procedures.
The Friedman test about the size of the trees (number of nodes) indicates

significant differences at the 0.05 level of significance (p-value is 6.33E-11),
and the Friedman ranks are:
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Table 1. Data set description.

Data set N Attrib Num Nom K Ka
anneal 898 38 6 32 6 2-10
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22
balance-scale 625 4 4 0 3 -
bridges-version1 107 11 3 8 6 2-54
bridges-version2 107 11 0 11 6 2-54
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2-4
dermatology 366 34 1 33 6 2-4
ecoli 366 7 7 0 7 -
flags 194 29 2 27 4 2-14
hypothyroid 3772 30 7 23 4 2-4
iris 150 4 4 0 3 -
letter 20000 16 16 0 26 -
lung-cancer 32 57 0 57 3 2-4
lymph 146 18 3 15 4 2-8
mfeat-factors 2000 216 216 0 10 -
mfeat-fourier 2000 76 76 0 10 -
mfeat-karhunen 2000 64 64 0 10 -
mfeat-morphological 2000 6 6 0 10 -
mfeat-pixel 2000 240 0 240 10 4-6
mfeat-zernike 2000 47 47 0 10 -
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
pendigits 10992 16 16 0 10 -
postoperative-patient-data 90 8 0 8 3 3-4
primary-tumor 339 17 0 17 21 2-3
segment 2310 19 16 0 7 -
soybean 683 35 0 35 19 2-7
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4-6
Sponge 76 44 0 44 3 2-9
tae 151 5 3 2 3 2
vehicle 946 18 18 0 4 -
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2
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Table 2. Percentage of accuracy of the methods.

Dataset IDM1 NPI-M C4.5 IDM1.5 IDM2

anneal 99.66 99.09 99.07 99.22 99.04
arrhythmia 66.49 67.86 68.04 68.01 68.15
audiology 80.40 85.04 77.58 76.38 76.11
autos 78.30 78.11 77.34 76.95 75.10
balance-scale 69.59 69.59 69.47 69.59 69.59
bridges-version1 67.76 68.73 60.12 65.01 65.06
bridges-version2 58.99 64.15 60.95 62.75 62.20
car 91.64 90.13 93.74 87.21 86.38
cmc 48.63 48.98 47.85 48.91 49.16
dermatology 93.95 93.43 94.04 93.87 94.31
ecoli 80.27 80.19 80.24 80.18 80.21
flags 58.44 59.12 56.73 58.50 57.61
hypothyroid 99.41 99.38 99.34 99.36 99.28
iris 93.53 93.40 94.20 94.27 94.27
letter 78.15 78.77 79.42 76.15 74.62
lung-cancer 49.50 41.33 41.92 44.75 42.92
lymphography 73.12 73.68 75.67 73.14 74.65
mfeat-factors 81.47 81.71 80.56 81.11 80.57
mfeat-fourier 68.64 68.90 67.72 68.33 68.08
mfeat-karhunen 72.63 73.14 71.69 72.05 71.03
mfeat-morphological 70.76 69.78 69.91 70.18 70.05
mfeat-pixel 79.96 79.99 78.42 80.00 79.30
mfeat-zernike 63.56 64.19 62.04 63.56 62.86
nursery 96.28 95.15 98.69 94.96 93.75
optdigits 78.75 78.95 78.41 78.53 78.00
page-blocks 96.27 96.08 96.58 96.02 95.89
pendigits 89.07 89.37 89.23 88.30 87.24
postoperative-patient-data 71.00 71.11 57.56 71.11 71.11
primary-tumor 38.99 39.21 40.65 39.59 38.97
segment 94.46 94.18 94.82 94.07 93.77
soybean 91.86 93.29 92.56 91.17 89.72
spectrometer 44.77 43.34 42.94 44.75 43.82
splice 92.97 93.25 92.16 93.19 93.44
sponge 94.11 94.48 91.68 94.88 94.88
tae 46.78 46.78 46.78 46.78 46.78
vehicle 69.21 69.39 68.64 69.97 69.50
vowel 77.36 75.92 79.45 73.15 69.63
waveform 74.21 73.99 71.64 74.30 74.19
’wine 92.36 92.02 91.45 93.09 93.27
zoo 95.92 95.53 93.41 96.02 95.64

Average 76.73 76.77 75.82 76.23 75.75
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Table 3. P-values Table on the accuracy for α = 0.05. Holm’s procedure rejects
those hypotheses that have a p-value ≤ 0.005

i algorithms Holm
10 IDM2 vs. NPI-M 0.005
9 NPI-M vs. C4.5 0.005556
8 IDM1 vs. IDM2 0.00625
7 IDM1 vs. C4.5 0.007143
6 IDM1.5 vs. IDM2 0.008333
5 IDM1.5 vs. C4.5 0.01
4 IDM1.5 vs. NPI-M 0.0125
3 IDM1 vs. IDM1.5 0.016667
2 IDM1 vs. NPI-M 0.025
1 IDM2 vs. C4.5 0.05

IDM1: 4.3
NPI-M 2.7
C4.5: 3.725
IDM1.5: 2.7875
IDM2 1.4875

Here we can see that the method with a lower significant number of nodes
is IDM2, the one with worse accuracy. The method with worse rank here is
IDM1 follows for C4.5, IDM1.5 and NPI-M in that order.

Table 5 presents the p-values obtained from the Holm tests carried out
about the number of nodes. We can see that exists significant differences
between the IDM2 and all the rest ones (in favor of IDM2) at 0.05 level of
significance. It must be remarked that the IDM1 is notably the worse because
always exist significant differences when the test “IDM1 vs. M” is carried
out, with “M” any other method in this study. When IDM1.5 and NPI-M are
compared with other method “M”, we always obtain a p-value lower for the
test “NPI-M vs. M” than for the test “IDM1.5 vs. M”.

Considering the two methods with better performance on accuracy, close
to that of the NPI-M: IDM1 and IDM1.5, we have carried out a decomposition
of the error in Bias and Variance (see [33]). For the sake of simplicity we do
not present the tables of these results here. We have obtained the following
summarized results:

Bias: NPI-M wins (low bias) in 14 and loses in 22 data sets with respect to
IDM1. NPI-M wins (low bias) in 27 and loses in 12 data sets with respect
to IDM1.5.

Variance: NPI-M wins in 28 and loses in 10 data sets with respect to
IDM1. NPI-M wins in 23 and loses in 16 data sets with respect to IDM1.5.

The results are similar between NPI-M and IDM1: NPI-M has better vari-
ance but worse bias than IDM1; and it expresses that IDM1.5 is clearly worse
than NPI-M: IDM1.5 has worse variance and worse bias than NPI-M.
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Table 4. Average of the number of nodes

Dataset IDM1 NPI-M C4.5 IDM1.5 IDM2

anneal 71.59 65.33 62.35 67.81 65.22
arrhythmia 107.64 96.05 105.82 89.83 78.07
audiology 58.03 60.11 69.57 41.95 38.82
autos 135.75 123.91 156.88 120.65 106.70
balance-scale 27.39 27.33 15.04 27.13 27.13
bridges-version1 66.42 26.07 80.50 33.34 22.61
bridges-version2 152.82 44.97 75.43 130.74 63.95
car 161.66 125.42 186.37 113.74 76.93
cmc 314.46 195.19 351.94 289.02 223.62
dermatology 55.90 46.22 44.71 55.26 52.56
ecoli 39.75 37.05 31.69 37.25 36.23
flags 588.40 82.86 149.43 522.47 423.87
hypothyroid 60.79 56.65 50.45 53.72 47.31
iris 8.13 7.72 6.74 7.54 7.07
letter 9877.43 11346.65 13889.21 6828.23 5326.82
lung-cancer 26.15 22.20 18.15 21.76 14.76
lymphography 37.55 34.07 45.29 29.13 27.50
mfeat-factors 656.05 613.61 624.51 636.46 564.42
mfeat-fourier 718.47 638.18 827.51 622.70 500.05
mfeat-karhunen 786.20 727.34 716.69 713.82 573.60
mfeat-morphological 195.50 136.19 326.08 151.61 119.57
mfeat-pixel 978.08 898.18 937.48 972.03 903.32
mfeat-zernike 720.68 658.53 875.56 656.15 555.50
nursery 354.21 291.90 926.24 254.72 172.87
optdigits 2079.70 1906.97 1939.54 1908.70 1596.93
page-blocks 247.62 194.72 388.54 187.88 158.46
pendigits 2984.86 2666.25 3917.13 2425.42 1822.55
postoperative-patient-data 1.06 1.00 36.87 1.00 1.00
primary-tumor 127.34 89.03 129.44 102.13 86.41
segment 412.08 362.96 505.66 363.05 332.48
soybean 118.54 101.30 107.85 110.70 95.90
spectrometer 402.88 472.13 680.43 298.22 247.02
splice 419.94 360.87 503.36 335.48 229.45
sponge 6.45 5.67 16.83 5.23 4.72
tae 5.62 5.30 5.06 5.66 5.88
vehicle 205.56 162.73 312.70 172.08 145.52
vowel 409.78 399.82 530.20 317.64 271.64
waveform 739.11 446.92 2193.33 460.46 292.96
’wine 24.24 21.05 20.89 16.90 11.64
zoo 22.44 22.36 17.16 22.44 22.44

Average 610.16 589.52 796.97 480.25 383.84
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Table 5. P-values Table on the number of nodes for α = 0.05. Holm’s procedure
rejects those hypotheses that have a p-value ≤ 0.025.

i algorithms Holm
10 IDM1 vs. IDM2 0.005
9 IDM2 vs. C4.5 0.005556
8 IDM1 vs. NPI-M 0.00625
7 IDM1 vs. IDM1.5 0.007143
6 IDM1.5 vs. IDM2 0.008333
5 IDM2 vs. NPI-M 0.01
4 NPI-M vs. C4.5 0.0125
3 IDM1.5 vs. C4.5 0.016667
2 IDM1 vs. C4.5 0.025
1 IDM1.5 vs. NPI-M 0.05

8 Conclusions
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40. A. Rényi, Probability Theory. North-Holland, Amsterdam, 1970.
41. S.L. Salzberg, On comparison classifiers: pitfalls to avoid and a recommended

approach, Data Mining and Knowledge Discovery 1 (1997) 317–328.
42. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press,

Princeton, 1976.
43. C.E. Shannon, A mathematical theory of communication, The Bell System

Technical Journal, 27 (1948) 379–423, 623–656.
44. D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Proce-

dures. Chapman & Hall/CRC 2000.
45. P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman & Hall,

London, 1991.
46. P. Walley, Inferences from multinomial data: learning about a bag of marbles,

Journal of the Royal Statistical Society B, 58 (1996) 3–57.
47. Z. Wang and G.J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
48. K. Weichselberger, Elementare Grundbegriffe einer allgemeineren Wahrschein-

lichkeitsrechnung I. Intervalwahrscheinlichkeit als umfassendes Konzept,
Physika, Heidelberg, 2001.



24 J. Abellán, R.M. Baker, F.P.A. Coolen, R.J. Crossman, A. R. Masegosa
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