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Abstract 

Although the functional form of the critical current density (Jc) of superconducting-normal-superconducting 

(SNS) Josephson-Junctions (J-Js) has long been known in the very low field limit (eg the sinc function), 

includes the local properties of the junction and has been confirmed experimentally in many systems, there 

have been no such general solutions available for high fields.  Here we derive general analytic equations for 

cJ  in zero field and in high fields across SNS J-Js for arbitrary resistivity of the superconductor and the 

normal layer, which are consistent with the literature results available in limiting cases.  We confirm the 

validity of the approach using both computational solutions to time-dependent Ginzburg-Landau (TDGL) 

theory applied to S-N-S junctions and experimental Jc data for an SNS PbBi-Cd-PbBi junction. We suggest 

that since SNS junctions can be considered the basic building blocks for describing the grain boundaries of 

polycrystalline materials because they both provide flux-flow channels, this work may provide a 

mathematical framework for high Jc technological polycrystalline superconductors in high magnetic fields. 

 

http://community.dur.ac.uk/superconductivity.durham/Carty-SNS-SuST%202013.pdf
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1 INTRODUCTION 

Some aspects of the research into the properties of superconductors in magnetic fields are rather 

compartmentalised.  Research on Josephson junctions (J-Js) in low fields, be that for high-speed computers 

or voltage standards1, concentrates on studying the local structural and electronic properties of grain 

boundaries (or normal layers) on very small length scales because they strongly affect technological 

performance2, 3.  On the other hand, research considering the critical current density (Jc ) of high field 

polycrystalline superconductors, used for applications from MRI scanners and particle accelerators to fusion 

tokamaks4, is generally parameterised using scaling laws which usually do not include local grain boundary 

properties at all.  At criticality, fluxons depin5 from isolated pinning sites or free fluxons shear past pinned 

fluxons as part of the flux line lattice6 and flux flow consists of a series of separate pinning site events.  We 

attribute this compartmentalisation predominantly to the lack of a mathematical framework that can 

describe how the local properties of grain boundaries affect Jc in high magnetic fields.  Such a framework is 

required to synthesise our understanding of the effects of local grain boundary properties on Jc with our 

understanding of the many fluxons and pinning sites that must be considered in high fields and will help 

bring the research on J-Js to bear on understanding and improving polycrystalline superconductors for high 

field applications.  In this paper, we analyse the current density through  superconducting-normal-

superconducting (SNS) junctions because we suggest they can provide useful building blocks for describing 

grain boundaries in polycrystalline superconductors.  We derive general analytic expressions for Jc across 

SNS J-Js in zero field and in high magnetic fields for superconductors and normal layers with arbitrary 

resistivity, which are consistent with limiting-case solutions available in the literature.   These expressions 

allow one to relate high-field critical current density measurements to the properties of the normal layer. 

We confirm the solutions obtained by comparison with computational solutions using time-dependent 

Ginzburg-Landau (TDGL) theory and with experimental in-field variable-temperature Jc data on a PbBi-

Cd-PbBi SNS junction.  Finally, we discuss future work, which will include using the functional form 

proposed to describe Jc in polycrystalline materials. 

2 TIME DEPENDENT GINZBURG-LANDAU THEORY  

The Ginzburg-Landau theory of superconductivity7 follows from the Landau theory of second-order phase 

transitions, but uses a complex order parameter  such that ||2 equals the density of superconducting 

electrons.  It provides a way of describing superconductivity that is more complete than simple macroscopic 

models8 but without the extreme complexity of microscopic theory that makes calculations of the mixed 

state for example, impractical.  The theory has been extended to include time-dependant behaviour where 

in standard form the TDGL equations are9, 10 
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    where the normalised wavefunction 
^

( ) ( ) 0/S S sy y y and 0 /s s sy a b . sa and sb are the standard Ginzburg-

Landau constants, the values of ( )Sx and ( )Sl  are the characteristic lengths for the order parameter and 

supercurrent respectively, the Ginzburg-Landau parameter ( ) ( )/S Sk l x  and g is usually taken as the 

inverse normal state diffusivity10.  These TDGL equations also apply for composite materials (i.e. 

material 1 and 2) as long as the temperature dependencies of the material properties are explicitly 

included.  In the dirty limit11, microscopic theory gives  
1

2/8 B cD k T Tx p  and 
1

3 2
07 3 /4 B ck T Tl rz p m   where Tc is critical temperature, 21

3= FD v t  is diffusivity,  is the normal-

state resistivity and (3)  1.202 is the Riemann zeta function. The mathematical description of 

composite superconductors can then be completed using Usadel theory12,13 which gives the following 

boundary conditions at the interface between the superconductor and the normal barrier14: 
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The first boundary condition corresponds to continuity of pair conservation amplitude, while the second 

corresponds to supercurrent conservation (consistent with Equation (2)). We note that the terms ‘dirty’ and 

‘clean’ can be used to describe the ratio /S Nr r  in appropriate limits, but we avoid that terminology in 

this paper to avoid confusion with the well-known dirty and clean limits in the general theory of 

superconductivity15.   

3. ONE-DIMENSIONAL ANALYTIC SOLUTIONS FOR JC IN SNS JOSEPHSON JUNCTIONS  

3.1 General Considerations  

We can consider current flowing through a one dimensional SNS Josephson junction with a normal barrier 

of thickness 2d in the x-direction.  With the applied field along the z-axis, the magnetic vector potential A 

can be defined as ˆBxyA  and it is assumed that the normalised order parameter ŷ  depends only on x. 

Inside the normal junction, Equations (1) and (2) are rewritten in 1D: 
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where ^ /N Sa a a ,  
^

/N Sb b b , 
^

/N Sm m m .and 
^

( ) ( ) 0/N N sy y y  Outside the junction, the order parameter 

is given by16: 

 1ˆ ˆ tanh exp
22S
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x x d i
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j
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 (7) 

 2ˆ ˆ tanh exp
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S

x x d i
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j
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where ŷ  is the order parameter far from the junction and the phase difference across the junction is j .  

In the Meissner state ˆ 1y , and in the mixed state it can be approximated as 
2

1
c

B

B
. 

From these expressions and the boundary conditions one can relate ˆN dy  and 
ˆ
Nd

d
dx

y
 to ŷ  and j : 

 
2ˆ ˆ

ˆ exp exp
ˆ2 22

N N N

S S

d di i
d

dx

y r yj j
y

x r y
 (9) 

where the general solution for ˆNy  is of the form16 

 1 1 2 2
ˆ
N x c f x ic f xy  (10) 

The choice of phases in Eqns. (7) and (8) and the symmetry of the junction ensure f1 and f2 are symmetric 

and antisymmetric functions respectively, while c1 and c2 are real constants.  Finding analytic solutions for 

the current reduces to solving for ˆNy  and then substituting into (6). We describe the pair-breaking within 

the junction by means of a decay length in the normal-metal, DNx , defined as 

 ( ) ^ ^

1
DN Si

m
x x

a
. (11)  

We define DNx  to be an imaginary quantity so that the equations have the same form in both the 

superconductor and the normal metal, contrary to the usual convention16, 17 in which DNx  is real.  Solutions 
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for ˆ
Ny  are derived below where each of the terms 

^ ^

2
S

ma
x

,

^ 2^

2

ˆ

S

mb y

x
 and 

22eBx
in Equation (5) are large in 

turn. 

3.2 Zero-field Jc – linear equations (
^^
/ 0a b )  

For strong pair-breaking (for example if T is relatively high) then 
2ˆ 1Ny  within the junction.  The 

nonlinear term 
2

( )
ˆ
Ny  can be ignored and a simple analytic solution is possible2, 16.  In zero-field, the field 

term can also be ignored so equation (5) can be simplified to2 

 
2
( ) ( )

2 2

ˆ ˆ
0

N N

DN

d

dx

y y

x
 (12) 

which has the well-known solutions2, 16 

 1 2cosh , sinh
DN DN

x x
f f

x x
 (13) 

In the thick junction limit of 1
DN

d

x
 we can approximate both f1 and f2 so that   

 1 2

1
exp
2

DN

d
f d f d

x
 (14) 

which gives the relationship between ( )
ˆ
Ny  and its derivative at x = d: 

 
ˆ ˆ
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Substituting into (9) and solving for ( )
ˆ
N dy  gives 
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Solving this quadratic gives: 
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Equating the real and imaginary parts of ( )
ˆ
N dy from (17) to those from (10) and (14) gives: 
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We can substitute into (6) to get the maximum critical current JD-J (corresponding to 2
pj ) which 

generalises the famous (exponential) thickness dependence found by De Gennes2 to include the /S Nr r

dependence, where:   

 

2
2

2

2
0

ˆ 2
1 exp

2 2

S S S S S
D J

N S DN DN N DN N DN

d
J

e

r x r x ry
r m l x x r x r x

 (20) 

We denote this (depairing) current density of the junction as JD-J since it is an intrinsic property of the 

junction comparable to the depairing current for a superconductor. 

3.3 Zero-field Jc – nonlinear equations (
^^
/ 0a b ) 

In an SNS Josephson junction where T = Tc(N) = 0, the 
^

Na  term is zero within the junction, and in zero-

field the non-linear term 
2

ŷ determines the behaviour of the junction.  Equation (5) becomes: 
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N
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y
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As before we set *ˆ ˆx xy y  using (7) and (8).  Note that as the first Ginzburg-Landau equation is now 

nonlinear, f1 and f2 are themselves dependent on c1 and c2.  It is extremely difficult to solve the nonlinear 

Ginzburg-Landau expression exactly, so we use an approximate solution.  One particular solution of (21) is 
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0

exp2
x̂ S

i

x xm

j
y x

b
 (22) 

where and x0 are arbitrary real constants.  However, this function does not have the required symmetry.  

This exact solution does however suggest that a trial solution should decay as 1/x inside the normal junction, 

with the function reaching a singularity were it to be extrapolated into the superconductor.  Since the 

function y = sec x is an even function with singularities at x = /2 and the singularities in the extrapolation 

of  are at x (x > d), we suggest f1 can be approximated by 
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We add the requirement that the flow of current through the junction, and therefore *
ˆ

ˆIm
x

y
y , must be 

independent of x . Note that the functions in (13) which lead to the De Gennes result automatically meet 

this requirement.  For f1 given as (23), f2 is given by 

 2 sin sec
2 2 2

x x x
f

x x x

p p p
 (24) 

Next c1 and c2 are found.  Solving the real part and then the phase of (21) at x = x gives 
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From these simultaneous equations for c1 and c2, we find: 
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Substituting into (6) at x = 0 gives the current density of J as a function of x: 
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To complete the calculation, we find x as a function of the junction half-thickness d.  In the thick junction 

limit (d  x) we can use the following approximations 
2 1

sec tan
2 2 1

d d

x x d x
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Using (9) gives the value of x: 
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Substituting into (29), we find the result: 
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3.4 High-field Jc in SNS Junctions  

When 
^ ^

2
S

ma
x

and 

^ 2^

2

ˆ

S

mb y

x
 are negligible, it is possible to obtain general solutions f1 and f2 , for equation (5) of 

the form16: 

 2 21
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in which 1F1 is Kummer’s confluent hypergeometric function.  For 
2

x
eB

 and 2
8 DN

B
e x

 (which will 

be strictly true at the S-N interfaces of a thick junction in high field), f1 and f2 can be approximated by: 
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where 2
0a  is taken to be zero and g  to be unity.  It is important to extend these solutions to lower fields, 

since in the superconducting state 2/ 1cB B . Hence we have added 2
0a  and g so that f1 and f2 do not become 
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non-physically large when 
2eBd

 is small.  Equations (36) and (37) retain  
2 2

2

ˆ 2 ˆN

N

d eBx

dx

y
y  when 

2
0 4eB

a
g

 and 1g  for large x and 1/ 6 0.4g  for small x.  We have set 
2 22 (1 ) (6 )eBd eBdg

to parameterise the weak field dependence of g  and ensure physically reasonable B-field and x dependencies 

in lower fields while retaining high field accuracy.   

Although high-field solutions for SNS J-Js are available16, 18, they are of limited use because they do not 

include for example general expressions for S

N

r
r . This is particularly problematic if we try to generalise 

work on SNS junctions to address polycrystalline materials since grain boundaries are usually more resistive 

than intragranular material. Using the method outlined above for solving the linear equations in zero field, 

we obtain a general in-field solution applicable for all S

N

r
r  values.  Using (36) and (37) in (9) and (10) 

to solve for c1 and c2 gives: 
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Note the form of 
2

2
2 ( )c S

B d
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is used for convenience and does not depend on the superconducting properties since 

it is equal to 
2eB dg

. Using 
3 1
4 4

3 1
2 2

2 2  and the property of f1 and f2 : 1 2 1 2

2eB
f x f x f x f x  

16,which ensures that the current density is constant across the junction, we find D JJ of the junction to be 
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4 COMPUTATIONAL RESULTS  

4.1 General Considerations  
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The critical currents of various Josephson junctions were calculated using TDGL theory and a transport 

current measurement approach equivalent to a standard four-terminal resistive measurement.  The geometry 

of the SNS J-J system is shown in Fig. 1.  The external applied field had a gradient in the y-direction to 

provide a current travelling in the x-direction.  The current enters and leaves the system as normal current, 

and then becomes supercurrent some way inside the superconductor.  The total length of superconductor 

was typically set to 70 Sx . The current was ramped upwards in a series of steps, and the voltage across the 

junction calculated and averaged over the second half of each step. The voltage was computed by integrating 

the electric field in the direction of current flow to within 4 Sl  of the ends of the system, which allows 

sufficient space for the injected normal current to become supercurrent, and then summing over all y within 

the superconductor.  Zero voltage was used to obtain the critical current density Jc.  Fig. 2 shows examples 

of the current-versus-voltage characteristics used to extract Jc which show a sharp transition at low voltages 

which then broadens as seen experimentally18. Because of the normalised units used in this computational, 

data are shown in terms of 2cH .  The experimental data shown in the next section are shown in terms of 

2cB where 2 0 2c cB Hm . We are ultimately interested in equilibrium properties, where the time-dependent 

terms ultimately tend to zero so 
4

14 3

p
z

z
was set to 1 in (2) to reduce computational expense which, 

consistent with work in the literature, does not affect the results19 20.   In wide thin junctions with high Jc 

values, the value of Jc for the junction as a whole is lowered as the current is excluded from the central 

region of the junction by the Meissner effect21.  The importance of self-field limiting can be determined from 

the Josephson penetration depth21 
04J

ceJ d
l

m l
. We have confirmed computationally that for widths 

up to 10 Sx , Jc(H = 0) = JDJ, and that self-field effects only start to become important in zero field for a 

30 Sx -wide junction when the junction thickness is below one coherence length.    

4.2 Zero-field computational data 

Figure 3 shows Jc computed as a function of the junction thickness d, junction resistivity (N) and (S) for 
^^
/a b  = 1 and 

^^
/a b = 0 where we have assumed 

2

2
( )

S s

DNN

r x
r x

.  Making these substitutions into (20) with 
^^
/a b

= 1 gives the normalized current density across the junction in zero field to be   

 

2

ˆ ˆ2 1 exp 2
2 2

S S S N
D J

N N N S

J d
r r r r

r r r r
 (42) 

while (33) for 
^^
/a b  = 0 gives 

 

3
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2 2
ˆ ˆ 1

2
S S S

D J

N N N

J d
r r rp
r r r

 (43)  
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The thickness dependences of Jc for the SNS junctions obtained computationally are in almost exact 

accordance with (42) and (43) respectively.  For both 
^^
/a b = 0 and 

^^
/a b  = 1, D̂ JJ  for a single SNS junction 

is Sk -independent. 

4.3 Field Dependence of Jc 

In low fields, the superconducting blocks on either side of the junction are in the Meissner state and the 

critical current density leads to the familiar sinc function22, 23 

  
2( 0)

sin
2

appc
c

app

ew d BJ B
J

ew d B

l

l
. (44) 

where w is the width of the junction.  We have confirmed using TDGL computation:  For wider junctions, 

or junctions with a higher zero-field Jc, the self-field resulting from the current flow becomes important; In 

the extreme limit, the self-field contribution causes the Fraunhofer sinc dependence to be replaced by a 

linear decrease of Jc with B, resulting from the confinement of the current to the edges.    

When B is high enough that the superconductors on either side of the junction enter the mixed state, the 

standard textbook low-field flux integration method is no longer valid22.  Fig. 4 shows the field dependences 

for 30(S)-wide junction of varying thicknesses.  These data are computationally expensive, particularly at 

low current density, so in order to find sufficient data points close to Bc2 we have compromised on noise. 

For these wide junctions, individual nodes are not discernible in the field dependences of Jc. The Jc data in 

Fig. 4 have been fitted and the approximate form is 

 
2

2

2

( 0) 1
2

S c
c D J

cS

B B
J B J B

B Bw d

x

x
 (45) 

This expression corresponds well with (44) where the oscillating term for these wide junctions has been 

averaged to 1/2, there is an additional 
2

1
c

B

B
 factor which comes from the field dependence of 2y  and 

as is commonly assumed from physical arguments24, the effective junction half-thickness has changed from 

(d + ) to (d + Sx ).  It can be noted that in Fig. 4 the computed values of Jc for fields above 0.6Bc2 (for d 

= 1.5 Sx ) or 0.2 Bc2 (for d = 3.5 Sx ) are less than those predicted by (45).  This is because JD-J is decreased 

further by the presence of the field following an exponential field dependence16 consistent with (41).  The 

additional low-Jc line in Fig. 4a for d = 3.5 Sx  is found by replacing the zero field JD-J with the high-field Jc 

given by (41) with the effective half-thickness of the junction set to d + Sx .  Finally in Fig. 4b, we show 

data for an SNS junction with an insulating boundary condition at the edges and fitted by the expression 
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0.662 0.66

2

2

1.69
( 0) 1

1.692

S c
c D J

cS

B B
J B J B

B Bw d

x

x
 (46) 

In the junction with insulating edges, current travels preferentially along the edges due to the 

superconducting surface sheath – this means the current through the junction is also dominated by the edges 

which, via the Fourier transform, changes the exponent from 1 to 0.66.  Bc2 is also replaced by Bc3 = 1.69Bc2. 

5. COMPARISON WITH EXPERIMENTAL DATA ON AN SNS JUNCTION 

In figure 5, the current density through a PbBi-Cd-PbBi SNS junction is shown from Hsaing and Finnemore’s 

(H-F) work18.  There are two important features of these Jc data: (i) the strong temperature dependence of 

Jc in zero field (between ~0.3 Tc(PbBi) and ~0.7 Tc(PbBi), the critical current density changes by about 

four orders of magnitude) which we attribute to the decay of the order parameter in the normal metal 

characterised in equation (20) and (ii) the exponential magnetic field dependence which we attribute to the 

decay of the order parameter in magnetic fields as described in equation (41).  We combine equations (20) 

and (41) together with (45) to account for the role of the phase of the order parameter, to provide a general 

equation for Jc given by:  

 

1
12 2 22
2 22 0 2 2 2

2 2
0 2 ( ) 2 2 ( )( )1

2 2 1
exp 1 exp

2
S Sc c

c
c S c c SSN DNS

B d B d dB B B
J F

B B B Bw d

r x g
m l k x g xr xx

 (47) 

where we have distinguished the effective half-thickness of the normal layer associated with the decay of the 

order parameter in zero field ( 0d ), the phase of the order parameter ( 1d ) and the decay of the order parameter 

in high field ( 2d ).  We have used the materials properties parameters listed in the H-F paper18 as follows: 

(PbBi) 7.2cST K , (Cd) 0.52cNT K ,  / 10S Nr r , /c cJ I A  where the area of the junction, A, is 1.1 × 10-

6 m2 and the width of the junction, w, is 2.5 × 10-4 m. The PbBi was alloyed with Bi at 1-2 % and the 

superconducting properties known to be similar to Pb25 - the Ginzburg-Landau parameter for the 

superconductor, ( ) ( )/S Sk l x  was taken to be 1 and  Bc2(T), was fixed using the WHH relation 
1.5

2 2( ) (0)(1 )c cB T B t , where t = T/Tc is the reduced temperature 26-28 and 2(0) 80cB mT 25, 29.  For the 

normal metal decay length, DNx , we used equation (11) and the relation that defines the coherence length 

for a material whether above or below its critical temperature 2 2/2m a x  30, so that: 

 

1

2

( ) ( )( ) cS cN
DN N cS

cN

T T
T

T T
x x . (48)  

Although this work considers temperatures above (Cd) 0.52cNT K when the Cd is non-superconducting, we 

can use the known superconducting properties of Cd to find an approximate value for ( )( )N cSTx .  Using the 

values given for Cd 18 for the diffusivity, DN= 0.15 m2s-1 and the Fermi velocity, vF= 7.7 × 105, the dirty 
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limit expression from microscopic theory for the coherence length (i.e. 
1

2
( )Dirty( ) /8N cS B cS cNT D k T Tx p ) 

and the clean limit expression (i.e. 0.5 0.5
( )Clean( ) /1.76 ( )N cS F B cN cS cNT v k T T Tx p ) we find values of 260 nm and 

570 microns for the dirty and clean limits respectively22.  Using Pippard’s approach31 (i.e. 
1 1 1

( ) ( )Clean ( )Dirty( ) (( ( )) ( ( )) )N cS N cS N cST T Tx x x  , we calculate ( )( )N cSTx to be about 180 nm.  Cd and Pb were 

chosen for these experiments in part because the solubility of Pb in Cd is negligible and hence the chemical 

properties change abruptly at the PbBi-Cd interface.  The theory used in this paper applies to thick junctions 

where there is a relatively abrupt change in electronic properties at the interface between the PbBi and the 

Cd (equivalent to the requirement that for example, the electron scattering length, l, in the normal layer is 

much smaller than the half-thickness of the barrier) and 0 1 2d d d .  However this thick limit assumption 

does not accurately apply to the PbBi-Cd-PbBi SNS junction considered here.  Given that 1d   and 2d  both 

characterise the effective half-thickness of the normal layer in-field, we have made the assumption they are 

equal (i.e. 1d ).  Hence the solid lines in figure 5 are a best fit to the cJ data using equation (47) with two 

free parameters which are shown in the inset of Figure 5 and have been allowed to be temperature dependent 

- the effective half-thicknesses of the normal barrier in zero field 0d (nm) and in-field 1d  (nm) respectively.  

The parameter 0d  is ~ 1.57 microns and almost temperature independent.  It can be compared to the nominal 

or chemical, Chemd , half-thickness for the Cd layer of 1.7 microns 32.  The agreement is within the uncertainties 

in the values and temperature dependencies of the materials properties of the Cd. Nevertheless we also note 

that the effective thickness of the normal layer in zero field may be expected to be smaller than the chemical 

half-thickness, because in accordance with the uncertainty principle, the superconducting state may remain 

established a BCS coherence length inside the Cd (i.e. 0 Chem BCSd d x  where BCS(PbBi) 76nmx 18). The 

temperature dependence of the parameter 1d  (nm) is given by 1 526 54d T   where the temperature T is in 

Kelvin.  In the normal state, at temperatures above Tc(Pb-Bi) (i.e. 7.2 K – 10 K where normal state measurements 

were made), we find that 1d is 0.9 – 1 micron which is significantly smaller than Chemd . Given that the electron 

scattering length for l(Cd), is about 600 nm (although note the resistivity of Cd in these junctions is uncertain 

to a factor two), we suggest the difference between the theoretical and experimental values of 1d  is due to 

the superelectrons first equilibrating a distance l(Cd) inside the Cd layer (i.e. 1 Chem (Cd)d d l ) in-field. This 

explanation attributes the increase in 1d  with increasing temperature, to the decrease in l(Cd). 

6. CONCLUDING COMMENTS AND FUTURE WORK 

The critical current density (Jc) through a technological high- cJ  superconductor in high magnetic fields is 

controlled by the inclusions and microstructure of the material that hold fluxons stationary to keep the 

resistance zero7, 33, 34 and described using scaling laws.  We have long known that although characterizing 

grain boundary pinning using just the size of the grains is useful for describing similar superconducting 

materials with different grain sizes35, it is very simplistic.  Visualisation of solutions to the TDGL equations 
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for polycrystalline materials has shown that fluxons cross the superconductor by flowing along the grain 

boundaries36 and demonstrate that local grain boundary properties must be important.  Scaling laws are 

typically written in terms of a volume pinning force ( pF ) which for grain boundary pinning in low 

temperature superconductors is of the form5, 6, 35: 

 2
2 2

1

p q

n
p c c

c c

B B
F J B B

G B B

a
      (49) 

where B is the applied magnetic field, 2cB is the upper critical field, , n, p and q are constants and G is the 

grain size. No local grain boundary properties are included. For polycrystalline A15 material, Chevrel-phase 

superconductors and MgB2, p is approximately 0.5 and q is approximately 2 5, 6.    If we assume that in high 

cJ  superconductors, the De Gennes exponential term is not important, the exponential and 
2

1
c

B

B
terms 

determine the field dependence in high fields.  For Nb3Sn, 1 / ~ 2d x  which is equivalent to 2q  in (49)37, 38. 

In low fields (47) leads to 0.5
cJ B which is equivalent to p = 0.5 in (49). The temperature dependence of 

pF  from (47) is equivalent to an n-value in (49) of ~ 2 - 2.5 as observed experimentally for Nb3Sn.  Hence, 

the field and temperature dependencies in (47) are similar to the Kramer dependence which is widely found 

experimentally in polycrystalline LTS materials6, 37, 38 - although it has long been known (since the elastic 

constants of the flux-line-lattice were calculated in the extreme high-field limit) that the derivation used by 

Kramer is not valid39.  The 1w term in (47) is equivalent to the 1/G  term in (49) and shows that although 

scaling laws describe the increase in cJ  with increase in density of grain boundaries found experimentally35, 

these increases in cJ  may also be described using the junction model presented here35. Although we have 

not explicitly considered high temperature superconductors, the exponential field dependence for Jc is 

observed in many polycrystalline HTS materials consistent with thick normal grain boundaries40 41, 42.  These 

observations provide an expectation that (47) can describe Jc in both LTS and HTS polycrystalline 

superconductors which is the subject of our future work38.   
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Figures  

 

Thickness 2d 

 S S N 

Width w 

 Total length 

Net current flow 

              5 

Figure 1: Diagram of an SNS Josephson-Junction.  The essential components 
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Figure 2: Computed V-I traces for a 30 Sx wide, 0.5 Sx  thick junction with 10N Sr r . 
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Figure 3: Jc values computed for a single 5 Sx  wide SNS junction with various junction resistivities for a) 
^^
/a b  = 1 and b) 

^^
/a b = 0. The computational data (data points) correspond closely with the analytic results 

(42) and (43) respectively (lines) 
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Figure 4: Field dependence of Jc up to Hc2 for 30 Sx -wide 3N Sr r , 0Na  junctions of various thicknesses 

in a 5k  superconductor coated with a) N Sr r  metal and b) insulator. 
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Figure 5: A fit to the experimental data from Hsiang and Finnemore for the critical current density through an PbBi-

Cd-PbBi SNS junction as a function of temperature and magnetic field.  The solid lines are obtained using equation 

(47) with two free parameters 0d (nm) and 1d  (nm) which are the effective half-thicknesses of the normal barrier 

in zero field and in-field respectively.   
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