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On cosmological scales, observations of the cluster abundance currently place the strongest constraints

on fðRÞ gravity. These constraints lie in the large-field limit, where the modifications of general relativity

can correctly be modeled by setting the Compton wavelength of the scalar field to its background value.

These bounds are, however, at the verge of penetrating into a regime where the modifications become

nonlinearly suppressed due to the chameleon mechanism and cannot be described by this linearized

approximation. For future constraints based on observations subjected to cluster abundance, it is therefore

essential to consistently model the chameleon effect. We analyze descriptions of the halo mass function in

chameleon fðRÞ gravity using a mass- and environment-dependent spherical collapse model in combi-

nation with excursion set theory and phenomenological fits to N-body simulations in the �CDM and fðRÞ
gravity scenarios. Our halo mass functions consistently incorporate the chameleon suppression and

cosmological parameter dependencies, improving upon previous formalisms and providing an important

extension to N-body simulations for the application in consistent tests of gravity with observables

sensitive to the abundance of clusters.
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I. INTRODUCTION

In fðRÞ gravity, the Einstein-Hilbert action is supple-
mented with a free nonlinear function fðRÞ of the Ricci
scalar R [1], which when designed appropriately can con-
tribute to produce the observed late-time accelerated ex-
pansion of our Universe [2–4]. fðRÞ gravity is formally
equivalent to a scalar-tensor theory where the additional
degree of freedom is described by the scalaron field fR �
df=dR [5–7] and the kinetic coupling vanishes in the
Jordan frame. Here, we parametrize our models by the
scalaron field evaluated at the present background, jfR0j.
The fR field is massive, and below its Compton wave-
length, it enhances gravitational forces by a factor of 1=3,
increasing the growth of structure. Due to the density
dependence of the scalaron’s mass, fðRÞ gravity models
may incorporate the chameleon suppression [8–10], return-
ing gravitational forces to Newtonian relations in high-
density regions and making them compatible with Solar
System tests [11,12].

The enhanced gravitational coupling at low curvature
and below the Compton wavelength can be utilized to
place constraints on the fðRÞ modification. The transition
required to interpolate between the low curvature of the
large-scale structure and the high curvature of the Galactic
halo [11] as well as the comparison of nearby distances
inferred from Cepheids and the tip of the red-giant-branch
stars in a sample of unscreened dwarf galaxies [13] set the
currently strongest bounds on the background field,
jfR0j< j�j � ð10�7–10�5Þ, i.e., the typical depth of cos-
mological potential wells. Independently, strong con-
straints can also be inferred from the cosmological

structure only. In this large-scale regime, the currently
strongest constraints on fðRÞ gravity models are inferred
from the analysis of the abundance of clusters, yielding a
constraint of jfR0j & 10�4 [14–17].
It is important to note that the cluster-scale constraints

have been derived by relying on a linearized approach of
the fðRÞ modifications, assuming a linear relation between
the curvature fluctuation �R and the field fluctuation �fR
that is correctly described by the background Compton
wavelength of the scalaron. This approach breaks down
when jfR0j & 10�5, where cluster scales are affected by
the chameleon suppression. It is therefore important for
comparison to future measurements to describe the observ-
able quantities encompassing the chameleon effect. While
N-body simulations provide a great laboratory for the
study of the chameleon mechanism [18–24], semianalytic
models need to be developed based on these simulations, in
order to allow for a full exploration of the cosmological
parameter space in the model comparison to observations
[25–30].
In this paper, we develop and compare different

prescriptions for modeling the halo mass function in cha-
meleon fðRÞ gravity based on the mass- and environment-
dependent spherical collapse for chameleon theories [28]
applied to fðRÞ models in combination with excursion set
theory and phenomenological fits to N-body simulations.
Our descriptions of the halo mass function incorporate the
chameleon mechanism and cosmological parameter de-
pendencies and show good agreement with N-body simu-
lations and previous fitting formulas for fðRÞ gravity
without the need of introducing new fitting parameters
for the chameleon modification. Thus, they are well suited
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for complementing N-body simulations for the consistent
comparison of fðRÞ gravity to observations that are sensi-
tive to the abundance of clusters.

The outline of the paper is as follows. In Sec. II, we
review fðRÞ gravity with a particular focus on the
Hu-Sawicki model [11]. We discuss the linearized and
suppressed regimes and a description of the transition
between them by an estimation of the thin-shell thickness
[8]. In Sec. III, we examine the evolution and formation of
structure in fðRÞ gravity, in specific, through the spherical
collapse model for chameleon theories and extended ex-
cursion set theory with a conditional moving barrier. We
further give here details about the N-body simulations
employed. Section IV is devoted to the modeling of
the halo mass function in chameleon fðRÞ gravity and the
comparison of the different approaches based on the
spherical collapse model, excursion set theory, and phe-
nomenological fitting functions to N-body simulations. We
conclude in Sec. V.

II. fðRÞ GRAVITY

In fðRÞ gravity, the Einstein-Hilbert action is supple-
mented with a free nonlinear function of the Ricci scalar R,

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðRÞ� þ Smðc m;g��Þ; (1)

where �2 � 8�G, Sm is the matter action with matter fields
c m, and we have adopted natural units. We specialize here
to metric fðRÞ gravity, where the connection is of
Levi-Cività type and the modified Einstein field equations
are obtained as usual from the variation of the action
[Eq. (1)] with respect to the metric g��,

G�� þ fRR�� �
�
f

2
�hfR

�
g�� �r�r�fR ¼ �2T��:

(2)

The scalaron fR � df=dR is the additional scalar degree of
freedom of the model, characterizing the modification of
the gravitational force.

We further concentrate on the functional form of fðRÞ
proposed by Hu and Sawicki [11]:

fðRÞ ¼ � �m2 c1ðR= �m2Þn
c2ðR= �m2Þn þ 1

: (3)

Here, �m2 � �2 ��m0=3, and overbars refer to background
quantities. We require the modification fðRÞ to satisfy
Solar System tests [11] through the chameleon mechanism
[8–10] and moreover, yield a Hubble parameter that
matches the �CDM expansion history. This constrains
the free parameters of the model, c1, c2, and n. At high

curvatures, c1=n2 R � �m2 and Eq. (3) simplifies to

fðRÞ ’ � c1
c2

�m2 � fR0
n

�Rnþ1
0

Rn ; (4)

with fR0 � fRð �R0Þ and �R0 denoting the present back-
ground curvature. Furthermore, from requiring �CDM to
be recovered when jfR0j ! 0, we obtain

c1
c2

�m2 ¼ 2�2 ���: (5)

The scalar field equation follows from the variation of
the action [Eq. (1)] with respect to the scalaron and in the
quasistatic approximation, for jfRj � 1, becomes

r2�fR ¼ 1

3
½�RðfRÞ � �2��m�; (6)

where the background has been subtracted, i.e., �fR ¼
fRðRÞ � fRð �RÞ, �R ¼ R� �R, ��m ¼ �m � ��m.
The cosmological background is assumed to be spatially

homogeneous and isotropic, where we describe the
scalar metric perturbations of its Friedmann-Lemaı̂tre-
Robertson-Walker metric by � ¼ �g00=ð2g00Þ and � ¼
�gii=ð2giiÞ. The relation of� to the matter density and �R
is given by the modified Poisson equation [11]

r2� ¼ 2�2

3
��m � 1

6
�RðfRÞ: (7)

A. Linearized and suppressed regimes

For large values of the background field compared to the
typical depth of gravitational potentials, jfR0j �
j�j � ð10�7–10�5Þ, we can linearize the field equations,
Eqs. (6) and (7), using the approximation

�R � @R

@fR

��������R¼ �R
�fR ¼ 3m2�fR; (8)

where m is the mass of the scalaron evaluated at the
background and �C � 2�m�1 is its Compton wavelength.
Within this linearized approximation and in Fourier space,
the solution to Eqs. (6) and (7) becomes

k2�ðkÞ ¼ ��2

2

�
4

3
� 1

3

��
k

ma

�
2 þ 1

��1
�
a2��mðkÞ; (9)

where k ¼ jkj is the comoving wave number. From
Eq. (9), it can be seen that at scales k � ma, gravitational
forces are enhanced by a factor of 1=3.
In the opposite limit, where jfR0j � j�j �

ð10�7–10�5Þ, using Eqs. (4)–(6), in the high-density re-
gions, where ���m � �3r2�fR, the scalar field becomes

fR ’ fR0

� �R0

�2ð�m þ 4 ���Þ
�
nþ1

: (10)

Hence, for �m � ��c and n >�1, we get fR ’ 0, a sup-
pression of the modifications and a return to Newtonian
gravity. More specifically, in this case, �R ¼ �2��m and
the Fourier transform of Eq. (7) recovers the standard
Poisson equation
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k2�ðkÞ ¼ ��2

2
a2��mðkÞ: (11)

The transition between the linearized and suppressed
regimes, described by Eqs. (9) and (11), respectively, for
a top-hat overdensity may be approximated by an estima-
tion of the thin-shell thickness, as we shall discuss in the
following.

B. Transition between spherically symmetric shells of
constant density

Khoury and Weltman [8] derived an estimation of the
radial profile of the scalar field ’ in a spherically symmet-
ric top-hat overdensity of radius RTH with constant inner
and outer matter density �in and �out, respectively. On the
inside and outside of RTH, the solutions of the scalar field,
’out and ’in, minimize the effective scalar field potential
Veffð’Þ defined by the scalar field equation

~h’ � V 0
effð’Þ; (12)

with the tilde denoting the Einstein frame. Veff consists of
the scalar field potential Vð’Þ and a contribution from the
coupling of ’ to the matter components. Reference [8]
finds that the distance that is necessary for ’ to settle from
’out to ’in is approximately given by

�R

RTH

’ �

6�

’out � ’in

�N

; (13)

where � is defined by the transformation of the Jordan
frame metric g�� to the Einstein frame metric ~g�� through

~g�� ¼ e�2��’g��: (14)

The Newtonian potential at the surface of the sphere is

�N ¼ �2

8�

M

RTH

¼ �2

6
�inR

2
TH; (15)

with mass M � 4��inR
3
TH, and hence, we obtain

�R

RTH

’ 1

��

’out � ’in

�inR
2
TH

: (16)

In fðRÞ gravity, � ¼ �1=
ffiffiffi
6

p
and ~g�� ¼ ð1þ fRÞg��.

Thus, for jfRj � 1, Eq. (16) becomes

�R

RTH

’ 3

�2�in

fR;in � fR;out
R2
TH

: (17)

The inner and outer solutions of the scalaron minimizing
Veffð’Þ are equivalent to Eq. (10), i.e.,

fR;in=out ’
2
4 1þ 4 ��

�m

~�in=outa
�3 þ 4 ��

�m

3
5nþ1

fR0; (18)

where ~�in=out � �m;in=outða ¼ 1Þ= ��mða ¼ 1Þ. Therefore,

the transition between spherically symmetric shells of

constant density in fðRÞ gravity can approximately be
described by

�R

RTH

’ jfR0ja3
�m~�inðH0RTHÞ2

2
4
0
@ 1þ 4 ��

�m

~�outa
�3 þ 4 ��

�m

1
Anþ1

�
0
@ 1þ 4 ��

�m

~�ina
�3 þ 4 ��

�m

1
Anþ1

3
5: (19)

In the thin-shell regime, for r 2 ½R0; RTH�, the scalar
field is [8,28]

’ðrÞ ’ ’in þ ��

3
�in

�
r2

2
þ R3

0

r
� 3

2
R2
0

�
; (20)

where �R ¼ RTH � R0. Hence, the force enhancement F
due to the extra coupling for a unity test mass at RTH

becomes

F
GM

R2
TH

� ��r’jRTH
’ 2�2 GM

R2
TH

�
1�

�
R0

RTH

�
3
�

¼ 2�2 GM

R2
TH

�
3
�R

RTH

� 3

�
�R

RTH

�
2 þ

�
�R

RTH

�
3
�
: (21)

Note that as RTH � R0 and R0 � 0, we have �R=RTH 2
½0; 1�, which implies F 2 ½0; 2�2� and, in specific, F 2
½0; 1=3� for fðRÞ gravity. Hence, for a top-hat overdensity,
Eq. (21) yields an interpolation between the suppressed
regime in Eq. (11) and the 1=3 enhancement of the gravi-
tational force in Eq. (9), which is C0 for �R=RTH ! 0 and
C2 for �R=RTH ! 1.
In previous studies [28,31], only the first term in Eq. (21)

has been considered through the approximation

F ’ 2�2 min

�
3
�R

RTH

; 1

�
: (22)

This slightly underestimates the efficiency of the chame-
leon suppression. When studying the structure formation in
chameleon fðRÞ gravity through the implementation of the
thin-shell approximation in the spherical collapse model in
the following, we shall use the full expression Eq. (21).
However, we also study the case of introducing a constant
fudge factor 	 in Eq. (22),

F ’ 2�2 min

�
3	

�R

RTH

; 1

�
; (23)

to modulate the efficiency of the chameleon suppression
and account for corrections of approximations such as
sphericity [32] and a top-hat overdensity [26] to realistic
structure formation. Reference [31] found that a factor of
	 � 1=2 yields good agreement with the difference be-
tween the lensing and dynamical mass of dark matter halos
measured in N-body simulations of fðRÞ gravity.
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III. STRUCTURE FORMATION

In the following, we study the formation and evolution
of structure in the cold dark matter scenarios of�CDM and
fðRÞ gravity. We begin by reviewing the linear growth of
structure for �CDM and the quasistatic regime of fðRÞ
gravity in Sec. III A, where due to Eq. (9) for fðRÞ gravity,
the linear growth becomes a function of scale in addition to
its time dependence. In Sec. III B, we describe the spheri-
cal collapse model for fðRÞ gravity, discussing its applica-
tion to excursion set theory in Sec. III C. We examine the
role of the environmental density in Sec. III D and give
details on theN-body simulations employed in our study in
Sec. III E. Note that we focus on cold dark matter halos
formed in a fðRÞ model constructed as alternative to a
cosmological constant. Galaxy clusters in the context of
fðRÞ gravity in the absence of dark matter have been
studied, e.g., in Ref. [33].

A. Linear growth of structure

In �CDM, combining the linearly perturbed Einstein
field equations with energy-momentum conservation, one
obtains the ordinary second-order differential equation for
the evolution of the matter overdensity �mða; kÞ in total
matter gauge:

�00
m þ

�
2� 3

2
�mðaÞ

�
�0

m � 3

2
�mðaÞ�m ¼ 0; (24)

where here and throughout the paper, primes denote de-
rivatives with respect to ln a and�mðaÞ � H2

0�ma
�3=H2.

We define the linear growth function DðaÞ as
DðaÞ
DðaiÞ

� �mða; kÞ
�mðai; kÞ (25)

at an initial scale factor ai � 1 in the matter-dominated
regime and solve for DðaÞ with the corresponding initial
conditions DðaiÞ ¼ ai and D0ðaiÞ ¼ ai. Note that in this
paper,DðaÞ shall always refer to the linear growth function
assuming a �CDM cosmology.

In fðRÞ gravity, Eq. (25) is altered due to the modifica-
tion of the Poisson equation, Eq. (7), where for large jfRj,
an additional modification of the relation of the lensing
potential (���) to the matter density fluctuation con-
tributes through the rescaling of its dependency on the
matter density by ð1þ fRÞ�1. These modifications can be
included in Eq. (24) as

�00
m þ

�
2� 3

2
�mðaÞ

�
�0

m � 3

2

1� gða; kÞ
1þ fR

�mðaÞ�m ’ 0;

(26)

where as in Eq. (9),

g � �þ�

���
¼ � 1

3

k2

k2 þm2a2
; (27)

and correctly describe the time- and scale-dependent linear
growth function DfðRÞða; kÞ defined as in Eq. (25) on qua-

sistatic scales [15]. Note, however, that at near-horizon
scales, for scalar-tensor models like fðRÞ gravity, the
matter fluctuation obtained from combining the linearly
perturbed Einstein equations with energy-momentum con-
servation, in general, deviates from the matter fluctuation
inferred from the quasistatic description in Eq. (26) [34].
Since this modification is small in fðRÞ gravity and addi-
tionally, here, we are interested in the high-curvature re-
gime, we can safely neglect this contribution and
furthermore the lensing modification as we restrict our
attention to models where jfRj � 1.

B. Spherical collapse

We study the formation of clusters in fðRÞ gravity using
the spherical collapse model. We approximate the dark
matter halo by a spherically symmetric top-hat overdensity
of initial radius RTH with a constant matter density �in and
�out on the inside and outside. In order to incorporate the
chameleon suppression in the spherical collapse calcula-
tion, we follow Ref. [28] and implement the thin-shell
thickness estimator for the chameleon transition by
Ref. [8] described in Sec. II B in the case of fðRÞ gravity.
We introduce 
ðaÞ to denote the physical radius of
the overdensity at a, where 
ðaiÞ ¼ aiRTH. Note that the
nonlinear evolution of this overdensity causes 
ðaÞ to
deviate from this simple linear relation at a > ai. This
deviation shall be denoted by the dimensionless variable
y � 
ðaÞ=aRTH. Conservation of mass enclosed in the
overdensity implies ��ma

3R3
TH ¼ �m


3 and hence, ~� ¼
�m= ��m ¼ y�3.
From Eq. (19), it follows that the thickness of the thin

shell is

�




’ jfR0ja3nþ4

�mðH0RTHÞ2
yh

2
4
0
@ 1þ 4 ��

�m

y�3
env þ 4 ��

�m
a3

1
Anþ1

�
0
@ 1þ 4 ��

�m

y�3
h þ 4 ��

�m
a3

1
Anþ1

3
5; (28)

where we use the notation yh and yenv to refer to the inner
and outer overdensities—the halo and its local environ-
ment, respectively.
In order to describe the evolution of yh, we model the

effective modification to Newton’s constant as

Geff ¼
�
1þ F

�
�





��
G; (29)

where Fð�
=
Þ is given by the thin-shell approximation in
Sec. II B. With this modification, the equation of motion of
the spherical shell is given by [28,35]

€




¼ ��2

6
ð ��m � 2 ���Þ � �2

6
ð1þ FÞ��m; (30)
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which with ~�in ¼ y�3
h yields

y00h þ
�
2�3

2
�mðaÞ

�
y0hþ

1

2
�mðaÞð1þFÞðy�3

h �1Þyh¼0;

(31)

where dots denote cosmic time derivatives. Note that in
Eq. (30), we have used the contribution of the modified
force through F��m rather than through F�m, which was
used in Ref. [28]. The final expression for the evolution of
yh in Eq. (31), however, is in agreement with Eq. (35) of
Ref. [28].

We assume that the environment follows a �CDM evo-
lution, which in Eq. (30) is obtained in the limit�
=
 ! 0
or equivalently, F ! 0. Thus,

y00env þ
�
2� 3

2
�mðaÞ

�
y0env þ 1

2
�mðaÞðy�3

env � 1Þyenv ¼ 0:

(32)

Equations (31) and (32) form a system of coupled dif-
ferential equations, which we solve by setting the initial
conditions at ai � 1 in the matter-dominated regime:

yh=env;i ¼ 1� �h=env;i

3
; (33)

y0h=env;i ¼ ��h=env;i

3
: (34)

We use the �CDM linear growth function DðaÞ from
Eq. (25) to extrapolate initial overdensities to the present
time, defining an effective linear overdensity

�h=envðx;
h=envÞ � Dð1Þ
DðaiÞ�h=env;i: (35)

C. Excursion set theory

Excursion sets correspond to regions where the matter
density smoothed over the region exceeds a given thresh-
old, defining the regions where virialized structures are
expected to have formed [36–42]. The smoothed matter
density perturbation field over a region of radius R is

�ðx; RÞ ¼
Z

Wðjx� yj;RÞ�ðyÞd3y

¼
Z

~Wðk;RÞ�ke
ik	xd3k; (36)

where Wðjx� yj;RÞ is a window function and �ðxÞ �
�mðxÞ= ��m � 1 is the matter density perturbation. ~Wðk;RÞ
and �k are the corresponding Fourier transforms. For now,
we shall only consider the initial density perturbation field
and use �ðxÞ to refer to it. We assume �ðxÞ to be Gaussian.
The density fluctuation field is characterized by its power
spectrum PðkÞ, for which the variance is

SðRÞ � �2ðRÞ � h�2ðx;RÞi ¼
Z

~Wðk;RÞPðkÞd3k: (37)

Hence, given the power spectrum, one can interchange S
and R as measures of the scale of spherical perturbations.
For a sharp window function ~Wðk;RÞ in k-space, an in-
cremental step in the smoothed initial overdensity field
�ðx;RÞ in Eq. (36) is attributed to the extra higher-k
modes. In this case, the wave numbers are uncorrelated
such that the incremental steps satisfy the Markov prop-
erty, i.e., steps depend on the current value only and are
independent of previous values. The increment is a
Gaussian field with zero mean and variance dS such that
�ðx; SÞ can be described by a Brownian motion in S with
Gaussian probability distribution

Pð�; SÞd� ¼ 1ffiffiffiffiffiffiffiffiffi
2�S

p e��2=2Sd�: (38)

For a scale-independent linear growth function, determin-

ing the growth of both � and
ffiffiffi
S

p
, the linear density field

remains Gaussian at all times. This holds particularly for a
�CDM universe and from now on, �ðx;RÞ shall refer to
the extrapolation of the smoothed initial matter density
perturbation to z ¼ 0 via the linear density growth function
DðaÞ from Eq. (25) [see Eq. (35)]. Note that since the linear
growth function is simpler to calculate for �CDM than for
fðRÞ gravity and especially due to its scale independence,
we shall always use the linear �CDM growth function
DðaÞ to do this extrapolation. Hence, for fðRÞ gravity,
the extrapolated matter density field and associated quan-
tities should be interpreted as effective quantities only.
In this spirit, a spherical region of initial radius R is

considered to have collapsed to a virialized object today or
live in a larger region which has collapsed earlier if
�ðx;� RÞ � �c, where �c is the effective collapse density,
which may be determined from the initial matter over-
density causing a singularity in Eq. (31) and extrapolated
to the present time via DðaÞ. In fðRÞ gravity, this critical
density is dependent on the mass of the top-hat overdensity
and the local environment, �cðx;M;�envÞ with M �
4� ��m0R

3
TH. We show the mass dependency of �c for differ-

ent jfR0j and �env for collapse today in Fig. 1. In general, in
addition to the top-hat mass and the environment, �c is
dependent on �m and the redshift of the collapse zc.
In a �CDM universe, �c becomes independent of mass

and environment and thus, for a given �m at a given zc,
defines a flat barrier ��

c . In this case, the fraction of mass
enclosed in virialized dark matter halos of mass M �
4�R3 ��m;i compared to the total mass is [43]

F ðM; zÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2�S

p
Z 1

Dð0Þ
DðzÞ�

�
c

½e��2=2S � e�ð����
c Þ2=2S�d�:

(39)

This corresponds to the fraction of Brownian motion tra-
jectories which have crossed ��

c at S. The fraction of mass
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enclosed in halos of masses corresponding to SðMÞ 2
½S; Sþ dS� that collapse at z ¼ zc is given by the Press-
Schechter expression [44]

�ðS; zcÞdS ¼ 1ffiffiffiffiffiffiffiffiffi
2�S

p Dð0Þ
DðzcÞ

��
c

S
exp

�
� 1

2

Dð0Þ
DðzcÞ

ð��
c Þ2
S

�
dS;

(40)

where �ðSÞ describes the distribution of Brownian
motion trajectories that first cross the barrier Dðz ¼ 0Þ��

c =
Dðz ¼ zcÞ at S.

In fðRÞ gravity, the barrier �c is no longer flat and
becomes dependent on S and the environment embedding
the collapsing halo. In order to characterize the environ-
ment, we follow Ref. [28] and study a top-hat sphere with
density perturbation �envðx;
Þ, evolving according to
�CDM and specified by the choice of radius 
, which
embeds �ðx;RÞ. The crossing probability conditional on
the Brownian motion trajectory passing �env at S
 is

�½�cðS; �envÞ; Sj�env; S
�. This probability needs to be

computed numerically, for which we use a code developed
in Ref. [28] based on the algorithm of Ref. [45]. We refer to
Ref. [28] for more details on this computation. In the

following, we shall clarify the characterization of the
environment.

D. Environment

The effect of the environment on the first-crossing dis-
tribution depends on the definition of the radius 
. This can
be done, for instance, following the fixed-scale environ-
ment approximation of Ref. [28], fixing a Lagrangian (or
initial comoving) radius 
, defining 
 � 
. We shall adopt
the value for the Lagrangian radius used in Ref. [28], 
 ¼
8h�1 Mpc, such that S
 ¼ �2

8. For comparison to N-body

simulations or observations that do not differentiate be-
tween structures formed in different environments, the
conditional first-crossing distribution of the moving barrier
�½�cðS; �envÞ; Sj�env; S
� computed with the algorithm of

Ref. [45] needs to be integrated over all environments. In
order to do so, in the following, we shall denote the
distribution of �env characterized through 
 as P
ð�envÞ,
corresponding to the probability that the Brownian motion
trajectory passes through �env at S
 never having crossed

the collapse density ��
c at S < S
. This is given by [43]

P
ð�envÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2�S


p �ð��
c � �envÞ

�
e
��2env

2S
 � e
�ð�env�2��c Þ2

2S


�
;

(41)

where � is the Heaviside step function. The environment-
averaged first-crossing distribution becomes

h�ðSÞienv ¼
Z ��

c

�1
P
 	�½�cðS; �envÞ; Sj�env; S
�d�env:

(42)

Note that this reduces to the unconditional first-crossing
of a constant barrier ��

c at S,

h�ðSÞienv ¼ 1ffiffiffiffiffiffiffiffiffi
2�S

p ��
c

S
e�ð��

c Þ2=2S; (43)

when �cðS; �envÞ ¼ ��
c , for which

�½�cðS; �envÞ; Sj�env; S
� ¼ ��
c � �envffiffiffiffiffiffiffi

2�
p ðS� S
Þ3=2

e
�ð��c ��envÞ2

2ðS�S
 Þ :

(44)

However, in general, h�ðSÞienv must be computed
numerically.
A more accurate approach for defining the radius 
 is

taken in Ref. [29], where the size of environments is
defined by the Eulerian (physical) radius � . We shall adopt
the value used in Ref. [29], � ¼ 5h�1 Mpc. We refer to
Ref. [29] and in particular Fig. 2 therein for a comparison
of the Lagrangian and Eulerian definitions for the environ-
ment and implications for the structures inferred from that
for chameleon theories. The Eulerian overdensity at time t
is [46,47]
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FIG. 1 (color online). The collapse density �c in chameleon
fðRÞ gravity predicted by the spherical collapse model for
different jfR0j at zc ¼ 0. The chameleon effect is incorporated
via Eq. (21) and the thin-shell thickness Eq. (28). Note that the
predictions for �c in fðRÞ gravity return to the �CDM value
��
c ’ 1:676 when the environmental density fluctuation ap-

proaches the value of the halo overdensity.
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�NLðtÞ ’
�
1� �ðtÞ

��
c

����
c

: (45)

This defines the barrier for the environment

�E
envðMenvÞ ¼ ��

c

�
1�

�
Menv

��mV

��1=��
c
�
; (46)

for which the first crossing thereof determines the �ðtÞ that
a spherical region containing massMenv must have in order
to evolve into an Eulerian volume V at t. For a power-law
matter power spectrum PðkÞ with index ns, this becomes

�E
envðS
Þ ¼ ��

c

�
1�

�
�

8h�1 Mpc

�
3=��

c
�
S

�8

�
3=ð3þnsÞ��

c
�
;

(47)

where

S
ðMenvÞ ¼ Sð
Þ ¼ 1

2�2

Z 1

0
k2PðkÞW2ðk
Þdk (48)

with Lagrangian radius 
 such that Menv ¼ 4�
3 ��m=3.
The first-crossing probability of the moving barrier
�E
envðS
Þ in [S
, S
 þ dS
], PenvðS
ÞdS
, corresponds to

the probability that an arbitrary point is located in an
environment, which will have an Eulerian radius � at zc
and for which �ðtÞ 2 ½�E

envðS
Þ; �E
envðS
 þ dS
Þ�.

We use an approximation of the probability distribution
of the Eulerian environment �env by Ref. [48] and also used
in Refs. [29,30],

P� ð�envÞ ¼ �!=2ffiffiffiffiffiffiffi
2�

p
�
1þ ð!� 1Þ�env

�c

��
1� �env

�c

��!=2�1


 exp

�
��!

2

�env

ð1� �env=�cÞ!
�
; (49)

where � ¼ ð�=8Þ3=�c=�
2=!
8 , ! ¼ �c� with

� ¼ � d ln S

d lnMenv

¼ ns þ 3

3
: (50)

E. N-body simulations

Dark matter N-body simulations of fðRÞ gravity provide
a great laboratory for studying the chameleon mechanism.
Here, we use simulation results of Refs. [20,21] for the
comparison to the semianalytic modeling described in
Secs. III B through III D. These simulations are performed
using a particle mesh code solving the quasistatic relations
in Eqs. (6) and (7). They cover the Newtonian and chame-
leon scenarios for each field strength jfR0j ¼ 10�6, 10�5,
10�4 with n ¼ 1 and cosmological parameter values
fixed to match WMAP three-year results, �� ¼ 0:76,
�m ¼ 1���, h ¼ 0:73, ns ¼ 0:958, and the initial
power in curvature fluctuations As ¼ ð4:89
 10�5Þ2 at
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FIG. 2 (color online). Relative enhancement of the halo mass function in chameleon fðRÞ gravity with respect to the prediction for
�CDM. The environmental dependence is illustrated using the collapse density �c from Fig. 1 computed with the spherical collapse
model in Sec. III B and applied to the Sheth-Tormen fit for �CDM simulations [Eq. (53)] (left-hand panel). These predictions are
averaged over the Eulerian environment defined in Sec. III D (dashed line) and compared to the excursion set prediction (solid line)
(right-hand panel). Note that the N-body results at the low-mass end are contaminated by the inclusion of subhalos, which are not
identified and removed in the SO halo-finder employed.
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k ¼ 0:05 Mpc�1. Each set of simulations consists of ten
realizations with each box size, Lbox ¼ 64h�1 Mpc,
128h�1 Mpc, 256h�1 Mpc, and a total particle number
of Np ¼ 2563 placed on 1283 domain grids. During the

simulation, the domain grids are progressively refined in
regions where the local densities are sufficiently large to
reach a predefined threshold. This causes the grid structure
to efficiently follow the density distribution so that the
high-density regions can be resolved better. For the
identification of halos within the simulation and their
associated masses, a spherical overdensity (SO) algorithm
(cf. Ref. [49]) is used. Hereby, the particles are placed on
the grid by a cloud-in-cell interpolation and counted within
a growing sphere around the center of mass until the
required overdensity is reached. The particle masses con-
tained in the sphere then define the mass of the halo. This
process is started at the highest overdensity grid point and
hierarchically continued to lower overdensity grid points
until all halos are identified.

Note that we use the virial overdensity �vir obtained for
�CDM to identify halos even in fðRÞ gravity in order to
make a fair comparison between the different models. We
estimate the error of using �CDM virial masses Mvir

instead of virial masses for fðRÞ gravity in our predictions
with the approximate relation

Mvir;fðRÞ
Mvir

’
�
�vir;fðRÞ
�vir

��1=3
; (51)

which becomes exact for a halo density scaling as

�� r�9=4. This radial dependence for � can be motivated
for the self-similar secondary infall and accretion in both
�CDM and fðRÞ gravity [26,50]. For our choice of cosmo-
logical parameters, in the case F ¼ 0, we have �vir ¼ 390,
and forF ¼ 1=3, the virial overdensity becomes�vir;fðRÞ ¼
309 [35]. Hence, the error is approximately 8% in the case
of the full modificationF ¼ 1=3. As this is a very simplified
estimate for the mass ratio in Eq. (51), the full computation
requiring mass and environmental dependence of F and the
exact radial halo profile, and due to its relative smallness
compared to the overall modification, we chose to ignore
this effect when comparing models of the halo mass func-
tion to the N-body results in the following.

Finally, note that recently, it has been shown [51] that for
symmetron models [52], differences may appear between
the scalar field distributions produced in N-body simula-
tions when assuming the quasistatic limit and when ac-
counting for time derivatives of the scalar field. In the fðRÞ
gravity simulations used here, the scalar field sits at the
bottom of the effective potential and never changes sign.
This is different from the symmetron model considered in
Ref. [51], where the sign of the scalar field can be different
in different regions after the symmetry breaking. Hence,
we do not expect the same magnitude in the deviations of
the simulation results for fðRÞ gravity models and we
assume that the small-scale structure is correctly described

by the quasistatic approximation in Eqs. (6) and (7).
Furthermore, for fðRÞ gravity, numerical self-consistency
checks have been conducted [18], supporting the assump-
tion of the smallness of the time derivatives. A more
rigorous analysis of the applicability of the quasistatic
approximation remains to be conducted in future work.
We refer to Ref. [53] for a discussion of time-dependent
spherically symmetric perturbations in the Minkowskian
limit of fðRÞ gravity.

IV. MODELING THE HALO MASS FUNCTION

Effects from fðRÞ modifications of gravity on halo
properties have been studied in, e.g., Refs. [17,25–
27,31,35,54,55]. The enhanced abundance of clusters
caused by the modification was used in Refs. [14,15,17]
in comparison to observations to place an upper bound on
the scalaron background value of jfR0j & 10�4. However,
given the expected constraints, these analyses have been
carried out in the linearized regime of fðRÞ gravity, where
the approximation of Eq. (8) is valid. With future measure-
ments, constraints will penetrate into the chameleon re-
gime, and it becomes important to consistently incorporate
the chameleon effect on the observables.
Here, we focus on describing the halo mass function in

fðRÞ gravity. Thereby, we use the spherical collapse model,
excursion set formalism, and fitting formulas that have
been calibrated to �CDM and fðRÞ gravity N-body simu-
lations. We restrict our focus to fðRÞmodels with exponent
n ¼ 1, corresponding to the choice of n in the N-body
simulations described in Sec. III E. Our relations can be
used to explore halo mass functions in the cosmological
parameter space beyond the parameter values used in the
N-body simulations and hence can be applied to consis-
tently constrain jfR0j in the chameleon regime.

A. Excursion set theory

Having determined the first-crossing distribution
�ðS; �envÞ in Sec. III C and its environmental average
h�ðS; �envÞienv in Sec. III D, where �ðS; �envÞdS describes
the fraction of mass enclosed in halos of masses corre-
sponding to SðMÞ 2 ½S; Sþ dS�, the halo mass function
can be computed from

dnðMÞ
dM

dM ¼ ��mðzcÞ
M

h�ðS; �envÞienv
�������� dS

dM

��������dM: (52)

We show the relative difference of the halo mass function
predicted by the excursion set approach for fðRÞ gravity
outlined in Secs. III C and III D with respect to �CDM in
Fig. 2.

B. Sheth-Tormen halo mass function

Sheth and Tormen [56] introduced a modification of the
Press-Schechter expression for the first-crossing distribu-

tion as a function of the peak threshold � � �c=
ffiffiffi
S

p
,
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��ð�Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a�2

s
½1þ ða�2Þ�p�e�a�2=2: (53)

Here, A is a normalization parameter, i.e.,
R
d��ð�Þ ¼ 1,

and a ¼ 0:707 and p ¼ 0:3. Equation (53) is designed
such that the halo mass function

dnðMÞ
dM

dM ¼ ��m

M
�ð�Þ d�

dM
dM (54)

matches results from N-body simulations, and the modifi-
cation can be motivated by excursion set theory with a
moving barrier such as that caused through ellipsoidal
collapse [57,58].

We compute the halo mass function defined by the first-
crossing distribution in Eq. (53) for the different fðRÞ
models assumed in the N-body simulations in Sec. III E.
�c is determined through the spherical collapse model in
Sec. III B, becoming dependent on mass and environment
and entering Eq. (53) through the peak threshold �. We
compare our predictions for fðRÞ gravity to their counter-
part from �CDM in Fig. 2, showing the relative enhance-
ments of the halo mass function caused by the fðRÞ
modifications in different local environments �env and the
environment-averaged case assuming the Eulerian distri-
bution of �env given in Eq. (49). In Fig. 3, we also show
results from using 	 ¼ 1=2 in Eq. (23) to increase the

efficiency of the chameleon suppression determined by
the thin-shell expression of Eq. (19).

C. Nonlinear PPF formalism

Li and Hu [25] introduce a nonlinear parametrized post-
Friedmann (PPF) description to determine the halo mass
function for chameleon fðRÞ gravity. They phenomenolog-
ically interpolate between the linearized and suppressed
regimes by introducing a chameleon PPF transition in the
variance as

S1=2PPFðMÞ ¼ S1=2fðRÞðMÞ þ ðM=MthÞ�S1=2�CDMðMÞ
1þ ðM=MthÞ� ; (55)

where Mth and � are calibrated to fit simulation results.
Assuming the same initial conditions for the fðRÞ and

�CDM models, the variance S1=2fðRÞ is determined from

Eq. (37) with the linear power spectrum

PfðRÞða; kÞ ¼
�
DfðRÞða; kÞ

DðaÞ
�
2
Pða; kÞ; (56)

where the linear growth functions are derived from solving
Eqs. (24) and (26). The PPF peak threshold in Ref. [25] is
then given by

0.0

0.5

1.0

1.5

2.0 fR0 10 4

Sheth Tormen Eulerian average
Sheth Tormen Eulerian average , 1 2
PPF
N body simulations

0.0

0.2

0.4

0.6

n
n

fR0 10 5

12.0 12.5 13.0 13.5 14.0 14.5 15.0
0.1

0.0

0.1

0.2

0.3

log10 Mvir h M

fR0 10 6

0.20

0.15

0.10

0.05

0.00

0.05 fR0 10 4

0.20

0.15

0.10

0.05

0.00

0.05 fR0 10 5

PPF
CDM

12.0 12.5 13.0 13.5 14.0 14.5 15.0

0.20

0.15

0.10

0.05

0.00

0.05

log10 Mvir h M

fR0 10 6

Eulerian average
Eulerian average, 1 2

FIG. 3 (color online). Comparison of predictions for the relative deviation in the halo mass function (left-hand panel) and in the peak
threshold (right-hand panel) for chameleon fðRÞ gravity with respect to the �CDM prediction, derived with the spherical collapse
model in Sec. III B. Results are averaged over the Eulerian environment described in Sec. III D, where the halo mass functions are
computed using the Sheth-Tormen expression [Eq. (53)]. The agreement with the N-body simulations at the high-mass end can be
improved by introducing the fudge factor 	 ¼ 1=2 in the thin-shell thickness used in the spherical collapse computation, increasing the
efficiency of the chameleon suppression. We also compare our results to the phenomenological PPF fit of Ref. [25], providing a
theoretical motivation for the functional form assumed therefor. Note that the N-body results at the low-mass end are contaminated by
the inclusion of subhalos, which are not identified and removed in the SO halo-finder employed.
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�PPF � ��
c

S1=2PPFðMÞ ; (57)

which they subsequently use in the Sheth-Tormen
expression [Eq. (53)] to approximate the halo mass
function. We simultaneously fit ð �Mth; �Þ, where
�Mthð106jfR0jÞ3=2M�=h � Mth, to the enhancements in the
halo mass function obtained from the N-body simulations
for jfR0j ¼ 10�4, 10�5, 10�6 described in Sec. III E, find-
ing �Mth ’ 2:172
 1012 and � ’ 1:415. We show the PPF
fits for the enhancements in the halo mass function and the
corresponding peak thresholds in Fig. 3.

Based on our results for �c from the spherical collapse
model in Sec. III B applied to the Sheth-Tormen halo mass
function in Sec. IVB, as an alternative determination of
�PPF, we suggest generalizing and redefining the PPF peak
threshold as

�PPF �
	
�cðM;�envÞ
S1=2ðMÞ



env

; (58)

where h	ienv denotes the environmental average. Note that
�c is determined using the linear �CDM growth function
to extrapolate the initial overdensity associated with the

collapse, and S1=2 is the variance obtained for �CDM. In
this definition, the chameleon transition is incorporated
within �cðM;�envÞ through the estimation of the thin-shell
thickness in Eq. (19). The advantage of this approach is
that it is theoretically well motivated, that �PPF may be
determined without calibration of fitting parameters to
simulation results, and hence, that it encompasses depen-
dencies on cosmological parameters and can easily be
applied to other chameleon theories. We compare the
different approaches for computing �PPF in Fig. 3, finding
a good qualitative agreement between them and supporting
the functional shape suggested in the phenomenological
PPF interpolation formula [Eq. (55)].

V. CONCLUSION

We have studied the spherical collapse of a top-hat
overdensity in fðRÞ gravity, taking into account the cha-
meleon suppression of modifications in high-density re-
gions. The chameleon mechanism is approximated by an
estimate of the thickness of a thin shell interpolating the
scalaron field between the constant spherical halo over-
density and the constant spherical environmental density.
We implement this thickness estimation to approximate the
nonlinear evolution of the spherical overdensity and the
initial overdensity associated with the collapse. The col-
lapse density obtained by this procedure is environment-
and mass-dependent.

We use excursion set theory to obtain the halo mass
function predicted by fðRÞ gravity and compare it to results
from N-body simulations. We further apply the peak

threshold predicted by chameleon fðRÞ gravity to the
Sheth-Tormen fitting function for the halo mass functions
of �CDM N-body simulations, to describe the enhance-
ment of the fðRÞ halo mass function relative to its �CDM
counterpart. Thereby, halo mass functions are predicted for
different environments, where we assume an Eulerian en-
vironment distribution to estimate an averaged result.
Introducing a fudge factor in the thin-shell thickness to
account for oversimplistic assumptions and approxima-
tions in the derivation of the chameleon barrier and to
modulate the efficiency of the chameleon suppression,
we can improve the description of the enhancement at
the high-mass end of the halo mass function observed in
the simulations. This fudge factor is also preferred in the
description of the difference between the lensing and dy-
namical mass of dark matter halos inferred from simula-
tions [31].
Finally, we compare our results to a nonlinear PPF fit,

which introduces a description of the chameleon mecha-
nism by interpolating the variance of the matter fluctua-
tions between the linearized fðRÞ gravity regime and the
fully suppressed limit, corresponding to �CDM. We find
that the peak threshold predicted by our environment- and
mass-dependent spherical collapse computations, averaged
over the Eulerian environment, is in agreement with the
peak threshold of the nonlinear PPF description, support-
ing the functional form suggested for this phenomenologi-
cal fit. While the PPF interpolation parameters have been
fitted to N-body simulations using particular cosmological
parameters, however, our derivation of the peak threshold
in fðRÞ gravity may be applied free of fitting parameters,
and it furthermore incorporates cosmological parameter
dependencies. Hence, our results can be used to extrapolate
simulations beyond the set of simulated cosmological
parameters for use in parameter estimation analyses for
inferring constraints on fðRÞ gravity, employing observa-
tions sensitive to the cluster abundance.

ACKNOWLEDGMENTS

We thank Michael Kopp, Tsz Yan Lam, and Francesco
Pace for useful discussions. L. L. and K.K. are supported
by the European Research Council, B. L. by the Royal
Astronomical Society and Durham University, and
G. B. Z by the Dennis Sciama Fellowship at the
University of Portsmouth. K.K. further acknowledges sup-
port from STFC Grants No. ST/H002774/1 and No. ST/
K0090X/1 and the Leverhulme trust. N-body simulations
have been conducted on computer facilities provided by
the Western Canada Research Grid and the Sciama High
Performance Compute cluster, which is supported by the
ICG, SEPnet, and the University of Portsmouth. Further
numerical computations have been performed with MAPLE

16 and Wolfram MATHEMATICA 9. Please contact the au-
thors for access to research materials.

LOMBRISER et al. PHYSICAL REVIEW D 87, 123511 (2013)

123511-10



[1] H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970).
[2] S.M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004).
[3] S. Nojiri and S.D. Odintsov, Phys. Rev. D 68, 123512

(2003).
[4] S. Capozziello, S. Carloni, and A. Troisi, Recent Res. Dev.

Astron. Astrophys. 1, 625 (2003).
[5] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[6] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[7] K.-I. Maeda, Phys. Rev. D 37, 858 (1988).
[8] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026

(2004).
[9] I. Navarro and K. Van Acoleyen, J. Cosmol. Astropart.

Phys. 02 (2007) 022.
[10] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, Phys.

Rev. D 76, 063505 (2007).
[11] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[12] P. Brax, C. van de Bruck, A.-C. Davis, and D. J. Shaw,

Phys. Rev. D 78, 104021 (2008).
[13] B. Jain, V. Vikram, and J. Sakstein, arXiv:1204.6044.
[14] F. Schmidt, A. Vikhlinin, and W. Hu, Phys. Rev. D 80,

083505 (2009).
[15] L. Lombriser, A. Slosar, U. Seljak, and W. Hu, Phys. Rev.

D 85, 124038 (2012).
[16] S. Ferraro, F. Schmidt, and W. Hu, Phys. Rev. D 83,

063503 (2011).
[17] L. Lombriser, F. Schmidt, T. Baldauf, R. Mandelbaum, U.

Seljak, and R. E. Smith, Phys. Rev. D 85, 102001 (2012).
[18] H. Oyaizu, Phys. Rev. D 78, 123523 (2008).
[19] H. Oyaizu, M. Lima, and W. Hu, Phys. Rev. D 78, 123524

(2008).
[20] G.-B. Zhao, B. Li, and K. Koyama, Phys. Rev. D 83,

044007 (2011).
[21] B. Li, G.-B. Zhao, R. Teyssier, and K. Koyama, J. Cosmol.

Astropart. Phys. 01 (2012) 051.
[22] B. Li, W.A. Hellwing, K. Koyama, G.-B. Zhao, E.

Jennings, and C.M. Baugh, Mon. Not. R. Astron. Soc.
428, 743 (2013).

[23] E. Jennings, C.M. Baugh, B. Li, G.-B. Zhao, and K.
Koyama, Mon. Not. R. Astron. Soc. 425, 2128 (2012).

[24] E. Puchwein, M. Baldi, and V. Springel, arXiv:1305.2418.
[25] Y. Li and W. Hu, Phys. Rev. D 84, 084033 (2011).
[26] L. Lombriser, K. Koyama, G.-B. Zhao, and B. Li, Phys.

Rev. D 85, 124054 (2012).
[27] A. Borisov, B. Jain, and P. Zhang, Phys. Rev. D 85, 063518

(2012).
[28] B. Li and G. Efstathiou, Mon. Not. R. Astron. Soc. 421,

1431 (2012).
[29] B. Li and T.Y. Lam, Mon. Not. R. Astron. Soc. 425, 730

(2012).
[30] T.Y. Lam and B. Li, Mon. Not. R. Astron. Soc. 426, 3260

(2012).

[31] B. Li, G.-B. Zhao, and K. Koyama, Mon. Not. R. Astron.
Soc. 421, 3481 (2012).

[32] K. Jones-Smith and F. Ferrer, Phys. Rev. Lett. 108, 221101
(2012).

[33] S. Capozziello, E. De Filippis, and V. Salzano, Mon. Not.
R. Astron. Soc. 394, 947 (2009).

[34] L. Lombriser, J. Yoo, and K. Koyama, Phys. Rev. D 87,
104019 (2013).

[35] F. Schmidt, M. Lima, H. Oyaizu, and W. Hu, Phys. Rev. D
79, 083518 (2009).

[36] R. Schaeffer and J. Silk, Astrophys. J. 292, 319 (1985).
[37] S. Cole and N. Kaiser, Mon. Not. R. Astron. Soc. 233, 637

(1988).
[38] S. Cole and N. Kaiser, Mon. Not. R. Astron. Soc. 237,

1127 (1989).
[39] G. Efstathiou, C. S. Frenk, S. D.M. White, and M. Davis,

Mon. Not. R. Astron. Soc. 235, 715 (1988).
[40] G. Efstathiou and M. J. Rees, Mon. Not. R. Astron. Soc.

230, 5P (1988).
[41] R. Narayan and S. D.M. White, Mon. Not. R. Astron. Soc.

231, 97 (1988).
[42] R. G. Carlberg and H.M. P. Couchman, Astrophys. J. 340,

47 (1989).
[43] J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser,

Astrophys. J. 379, 440 (1991).
[44] W.H. Press and P. Schechter, Astrophys. J. 187, 425

(1974).
[45] K. Parfrey, L. Hui, and R.K. Sheth, Phys. Rev. D 83,

063511 (2011).
[46] F. Bernardeau, Astrophys. J. 427, 51 (1994).
[47] R. K. Sheth, Mon. Not. R. Astron. Soc. 300, 1057 (1998).
[48] T.Y. Lam and R.K. Sheth, Mon. Not. R. Astron. Soc. 386,

407 (2008).
[49] A. Jenkins, C. S. Frenk, S. D.M. White, J.M. Colberg, S.

Cole, A. E. Evrard, H.M. P. Couchman, and N. Yoshida,
Mon. Not. R. Astron. Soc. 321, 372 (2001).

[50] E. Bertschinger, Astrophys. J. Suppl. Ser. 58, 39 (1985).
[51] C. Llinares and D. Mota, Phys. Rev. Lett. 110, 161101

(2013).
[52] K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104,

231301 (2010).
[53] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167

(2011).
[54] M. C. Martino, H. F. Stabenau, and R.K. Sheth, Phys. Rev.

D 79, 084013 (2009).
[55] F. Schmidt, Phys. Rev. D 81, 103002 (2010).
[56] R. K. Sheth and G. Tormen, Mon. Not. R. Astron. Soc.

308, 119 (1999).
[57] R. K. Sheth, H. Mo, and G. Tormen, Mon. Not. R. Astron.

Soc. 323, 1 (2001).
[58] R. K. Sheth and G. Tormen, Mon. Not. R. Astron. Soc.

329, 61 (2002).

MODELING HALO MASS FUNCTIONS IN CHAMELEON . . . PHYSICAL REVIEW D 87, 123511 (2013)

123511-11

http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.37.858
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.78.104021
http://arXiv.org/abs/1204.6044
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://dx.doi.org/10.1103/PhysRevD.85.124038
http://dx.doi.org/10.1103/PhysRevD.85.124038
http://dx.doi.org/10.1103/PhysRevD.83.063503
http://dx.doi.org/10.1103/PhysRevD.83.063503
http://dx.doi.org/10.1103/PhysRevD.85.102001
http://dx.doi.org/10.1103/PhysRevD.78.123523
http://dx.doi.org/10.1103/PhysRevD.78.123524
http://dx.doi.org/10.1103/PhysRevD.78.123524
http://dx.doi.org/10.1103/PhysRevD.83.044007
http://dx.doi.org/10.1103/PhysRevD.83.044007
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1093/mnras/sts072
http://dx.doi.org/10.1093/mnras/sts072
http://dx.doi.org/10.1111/j.1365-2966.2012.21567.x
http://arXiv.org/abs/1305.2418
http://dx.doi.org/10.1103/PhysRevD.84.084033
http://dx.doi.org/10.1103/PhysRevD.85.124054
http://dx.doi.org/10.1103/PhysRevD.85.124054
http://dx.doi.org/10.1103/PhysRevD.85.063518
http://dx.doi.org/10.1103/PhysRevD.85.063518
http://dx.doi.org/10.1111/j.1365-2966.2011.20404.x
http://dx.doi.org/10.1111/j.1365-2966.2011.20404.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21592.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21592.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21746.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21746.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20573.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20573.x
http://dx.doi.org/10.1103/PhysRevLett.108.221101
http://dx.doi.org/10.1103/PhysRevLett.108.221101
http://dx.doi.org/10.1111/j.1365-2966.2008.14382.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14382.x
http://dx.doi.org/10.1103/PhysRevD.87.104019
http://dx.doi.org/10.1103/PhysRevD.87.104019
http://dx.doi.org/10.1103/PhysRevD.79.083518
http://dx.doi.org/10.1103/PhysRevD.79.083518
http://dx.doi.org/10.1086/163162
http://dx.doi.org/10.1086/167375
http://dx.doi.org/10.1086/167375
http://dx.doi.org/10.1086/170520
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1103/PhysRevD.83.063511
http://dx.doi.org/10.1103/PhysRevD.83.063511
http://dx.doi.org/10.1086/174121
http://dx.doi.org/10.1046/j.1365-8711.1998.01976.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13038.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13038.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04029.x
http://dx.doi.org/10.1086/191028
http://dx.doi.org/10.1103/PhysRevLett.110.161101
http://dx.doi.org/10.1103/PhysRevLett.110.161101
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1103/PhysRevD.81.103002
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04006.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04006.x
http://dx.doi.org/10.1046/j.1365-8711.2002.04950.x
http://dx.doi.org/10.1046/j.1365-8711.2002.04950.x

