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Abstract

Structural design of mechanical components is an iterative process that involves multiple stress analysis runs; this can be time
consuming and expensive. It is becoming increasingly possible to make significant improvements in the efficiency of this process by
increasing the level of interactivity. One approach is through real-time re-analysis of models with continuously updating geometry.
A key part of such a strategy is the ability to accommodate changes in geometry with minimal perturbation to an existing mesh.
This work introduces a new re-meshing algorithm that can generate and update a boundary element mesh in real-time as a series
of small changes are sequentially applied to the associated model. The algorithm is designed to make minimal updates to the mesh
between each step whilst preserving a suitable mesh quality that retains accuracy in the stress results. This significantly reduces
the number of terms that need to be updated in the system matrix, thereby reducing the time required to carry out a re-analysis of
the model. A range of solvers are assessed to find the most efficient and robust method of re-solving the system. The GMRES
algorithm, using complete approximate LU preconditioning, is found to provide the fastest convergence rate.
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1. Introduction

Stress analysis of mechanical components has become an
essential part of the validation of engineering designs but it can
be time consuming and expensive. It is desirable to shorten
the design cycle, thus reducing development costs and enabling
new products to be brought to market in the shortest time pos-
sible. It is of particular importance to obtain the most suitable
design at the conceptual design stage as the cost of any change
at later stages grows rapidly. For many components this can be
done only through rapid computational analysis of a wide range
of initial geometries.

For clarity it is necessary to precisely define the terms real-
time and rapid analysis within the context of this work. We
use the definitions of Margetts et al. [1]. Real-time refers to
the analysis taking place within the refresh rate of the media
on which the model is viewed. This will typically be within
0.02 seconds. Rapid incorporates real-time but allows that the
analysis may be slightly slower, taking place in an acceptably
short period of time that the user is prepared to wait. This is of
the order of seconds and is synonymous with the definition of
interactive given in [1].

Real-time analysis of two-dimensional models is now a re-
ality [2]. However, real-time stress analysis of three-dimensional
objects presents numerous additional challenges. Over the last
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decade, various schemes based on the finite element method
(FEM), that aim to provide interactivity have been presented
[1, 3–5]. Meier et al. [6] review a range of deformable models
that utilise both finite element (FE) and boundary element (BE)
techniques. In this paper we address only BE implementations.
The boundary element method (BEM) is a natural method to
use where re-meshing is involved as changes need to be applied
only to elements on the surface of the model. If the volume
were meshed, as in the case of the FEM, then changes would
propagate further through the model and many more degrees
of freedom would be affected. Mackie [3] presents a substruc-
turing approach that attempts to ameliorate these difficulties.
Wang et al. [7] present a BEM based scheme for interactive
analysis for surgical simulation. Real-time updating is also of
interest to computer game developers to provide realistic de-
formable objects. For example, James and Pai [8] discuss the
use of the BEM to provide physically accurate simulation of
three-dimensional objects. However, as the technique is used
purely for visual approximation of deformations, a much lower
degree of accuracy is required and a coarse mesh can be used
resulting in a very fast analysis. Pre-computed solutions are
also utilised.

Concept Analyst [2], a two-dimensional BE stress analysis
package that features real-time functionality, has already been
developed. The current work aims to extend this interactive,
real-time stress analysis capability into the three-dimensional
domain. This involves the development of innovative techniques
to generate, update and analyse the mesh. A key part of achiev-
ing this goal is the creation of a re-meshing algorithm. A high
quality initial mesh must be created to produce an accurate ini-
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tial analysis using the minimum number of elements. The mesh
should further be capable of absorbing some of the distortion
introduced as the user updates the model. A concise data struc-
ture is also required to aid rapid re-meshing.

Many authors have proposed algorithms for re-meshing FE
and BE models, often in an adaptive scheme. Adaptive refine-
ment schemes, which are extensively reviewed for BEs by Kita
and Kamiya [9], inform re-meshing through the errors in an ini-
tial analysis. Depending on the scheme selected different strate-
gies may be employed. h-refinement requires subdivision of an
existing mesh; p-refinement retains the existing mesh but alters
the order of the element; r-refinement maintains the same num-
ber of elements but requires regeneration of the entire mesh.
These schemes may be used in combination, but do not usu-
ally allow for geometrical changes. If the geometry of a model
is changing, it is possible to refresh only affected areas of the
mesh. This has previously been applied to fluid flow problems
using the h-refinement technique with the FEM [10]. However,
some of the methods employed could easily be adapted for BE
analysis.

It is important to minimise the number of elements updated
during re-meshing (Trevelyan et al. [11] have shown this to
be the major factor in reducing re-analysis response time, as
illustrated in Figure 1). Reducing the number of updated ele-
ments gives rise to a reduction in both the time to re-integrate
and re-assemble the linear system of equations generated by
the BEM and the time required to solve these equations [12].
Michler [13] uses techniques based on radial basis functions
to locally distort a aircraft mesh based on geometric changes.
This approach is designed for complex geometry undergoing
significant geometric perturbation. A simpler and hence faster
algorithm has been implemented for the basic geometries found
in the current work. However, Michler’s approach would be ap-
propriate should more complex models be considered.

A fast linear solver, for example GMRES [14], can be em-
ployed to accelerate the re-analysis. Such iterative methods
have already been applied to the BEM [15–17] and have pro-
duced positive results. However, they do not achieve the speed
necessary for real-time re-analysis. As the majority of the mesh
remains unchanged when the model geometry is updated, the
results of the initial solve can be used to provide both a suitable
initial guess at the solution and appropriate preconditioning of
the evolving system matrix. Other linear solvers that utilise
model order reduction have been developed by Leu [18], Am-
sallem and Farhat [19], Ryckelynck et al. [20] and Kerfriden et
al. [21].

During dynamic updating of stress contours on continuously
changing geometries, e.g. as a hole is dragged from one loca-
tion to another, it is acceptable to relax requirements on the er-
ror associated with each individual simulation. Once the model
is finalised a more refined mesh can be used to generate a more
accurate estimation of the stress distribution.

The iterative solvers discussed in Section 6 were originally
developed for application in the FEM. Here they have been
applied to the BEM, which typically produces small, dense,
non-symmetric matrices in contrast to the large, sparse systems
found in the FEM.

Figure 1: Re-analysis performance for three-dimensional applications (Repro-
duced from [11]).

This paper is organised as follows. In Section 2 the BEM
is introduced. Section 3 describes the initial mesh, defining el-
ement and mesh quality measures. In Section 4 the re-meshing
algorithm is outlined, and this is validated, based on stress re-
sults, in Section 5. In Section 6 six different re-analysis algo-
rithms are discussed. These are assessed for numerical accuracy
and speed in Section 7.

2. The Boundary Element Method

The BEM is a standard method of analysis in the solution
of partial differential equations, and is the subject of numer-
ous texts, including Becker [22]. This section contains a brief
overview of the principal steps involved. We consider the prob-
lem of finding displacements and stresses in a linear elastic ma-
terial comprising a domain Ω ∈ R3, having boundary ∂Ω = Γ.
We seek to solve the equations of linear elasticity subject to
boundary conditions

u(q) = ū, q ∈ Γu (1)

t(q) = t̄, q ∈ Γt (2)

where u, t are displacement and traction components, ū, t̄ are
prescribed displacement and traction boundary conditions, and
Γ = Γu

⋃
Γt. In practice, the use of different boundary condi-

tion types in different coordinate directions at the same loca-
tion is common, so that this division of Γ into separate Neu-
mann and Dirichlet boundaries in this fashion is purely sym-
bolic. The boundary integral equation (BIE) can be formulated
for displacements at a source point, p ∈ Γ, due to tractions and
displacements on Γ.

c(p)u j(p)+
∫

Γ

Ti j(p, q)ui(q)dΓ(q) =

∫
Γ

Ui j(p, q)ti(q)dΓ(q) (3)

where c(p) is a term introduced as a result of the limits applied
to allow the strongly singular integral containing the traction
kernel to be evaluated, so that the integral on the left hand side
of (3) is evaluated in the Cauchy Principal Value sense. Ti j and
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Ui j refer respectively to the traction and displacement kernels,
given by:

Ti j =
−1

8π(1 − ν)r2

[
(1 − 2ν)δi j + 3

∂r
∂xi

∂r
∂x j

]
+

1 − 2ν
8π(1 − ν)r2

[
∂r
∂x j

ni −
∂r
∂xi

nk

]
(4)

Ui j =
1

16π(1 − ν)r

[
(3 − 4ν)δi j +

∂r
∂xi

∂r
∂x j

]
(5)

where r = |q − p|, ni and n j are components of the outward
normal, n, at q, δi j is the Kronecker delta, µ is the shear modulus
and ν is the Poisson’s ratio of the material. The subscripts define
directional components, so that Ti j and Ui j refer to a traction
or displacement in the Cartesian direction, i, at field point, q,
caused by a unit load in direction j at the source point, p. To
solve the system numerically the boundary of the object must
first be discretized into a series of elements, forming a surface
mesh. The discretized BIE can now be re-written in the local
parametric element coordinates (ξ, η):

c(p)u j(p) +
∑

elem e

∫ 1

−1

∫ 1

−1
Ti j(p, q)Φk(ξ, η)J(ξ, η)dξdη uk

=
∑

elem e

∫ 1

−1

∫ 1

−1
Ui j(p, q)Φk(ξ, η)J(ξ, η)dξdη tk (6)

where vector Φ contains the value of each shape function at
the current integration point and J is the Jacobian, which trans-
forms the differential variables at the current point from the lo-
cal into the global coordinate systems. For reasons of compu-
tational performance we use the collocation form of the BEM,
requiring collocation of (6) at a sufficient number of points, p,
that for convenience coincide with the nodal positions. Per-
forming the integrations given in (6) a set of equations can be
derived. These are given in matrix form as:

[H]{u} = [G]{t} (7)

where [H] and [G] contain the integrated traction and displace-
ment kernels respectively. If an appropriate set of boundary
conditions is defined, (7) can be rewritten in the form:

[A]{x} = {b} (8)

This system can now be solved as a set of linear equations to
find the unknown tractions and displacements contained in {x}.
Internal stresses may be found by declaring p at the point of
interest, substituting the now fully defined values of displace-
ment and traction at the nodes into equation (6) and summing
boundary integrals to yield u(p).

3. Initial Mesh and Data Structure

A new mesh-generation algorithm has been developed for
the current work. The algorithm ensures that sufficient con-
trol can be maintained over the mesh and data structure dur-
ing the meshing and re-meshing procedures. The overheads are

also reduced by generating only the data required for analysis
and subsequent re-analysis. All the elements generated dur-
ing meshing are continuous quadratic serendipity elements and
may be either triangular or quadrilateral. Conical and cylindri-
cal surfaces are meshed with a structured mesh whilst a con-
strained Delaunay triangulation scheme [23] is used to generate
triangular meshes across plane surfaces. An example of a mesh
generated is shown in Figure 2. Finer meshes can be generated
as required according to user preferences.

 

Figure 2: Three-dimensional mesh example.

The shape of the elements used in the mesh directly affects
the accuracy of an integration scheme of prescribed order. The
initial mesh is therefore generated from high quality quadratic
BEs, for which the quality measure is described below, and is
refined in areas where high stress concentrations have been pre-
dicted. The predictions are based on heuristics applied to the
geometry of the initial model.

3.1. Element and mesh quality
A robust quality measure has been developed to ensure the

initial mesh is of high quality and that an appropriate quality is
maintained during the re-meshing procedure. The quality, Q,
of each triangular element can be assessed using an adaption of
the radius ratio discussed by Topping et al. [24]. This is defined
as the ratio of the radius of the incircle to the circumcircle of the
element. The quality, Q, can be formulated using this approach
such that:

Q =
16A2

abc(a + b + c)
(9)

where A is the area of the element and a, b and c are the side
lengths. Q takes a value from 0 and 1, where 1 indicates the
highest quality element (an equilateral triangle) and 0 a fully
collapsed element. It is prudent to ensure that every element is
of quality, Q ≥ Qmin. The mesh quality over each face of the
model can be assessed using the mean, Q̄, and standard devia-
tion, S , of the collected element quality measures:

Q̄ =
1

nE

nE∑
e=1

Qe (10)

S =
1

nE

nE∑
e=1

(
Qe − Q̄

)2
(11)
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where nE is the number of elements on the assessed face. We
define measures Q̄min and S max to be the minimum acceptable
mean quality and the maximum acceptable standard deviation
of element quality respectively.

Quadrilateral elements are only generated on cylindrical or
conical surfaces and, using the procedures followed by the mesh-
ing and re-meshing algorithms, will always be of sufficient qual-
ity. If a measure were to be required the element aspect ratio
could be used, along with some constraint on the internal an-
gles.

4. Re-meshing a geometric perturbation

When a geometric change is applied to a model the mesh
must be updated. This is provoked by some dynamic cursor
operation which is expected to be of pixel order. The mesh
updating procedure is designed to minimise the number of ele-
ments affected when the model geometry is updated. This min-
imises the number of integrals, contained in the system matrix,
that need to be recalculated before re-analysis and improves the
convergence rate of a preconditioned iterative solver [12]. If
the same total number of elements is maintained then the pre-
conditioning matrix used by the solver can be re-used. If not
then the matrix will need to be expanded. This could be done
through block partitioning such as that described by Wang et al.
[7]. For the purposes of this paper it has been assumed that the
number of elements is constant. However the method could be
expanded or improved by adding or removing elements.

During re-meshing, each face of the model is considered in-
dividually and the mesh updated according to how the geometry
has been manipulated. Four situations can be identified and are
shown in Figure 3:

(a) No change is made to the face: No change is made to the
mesh.

(b) The face is translated: All the nodes and elements on the
face are translated through the same vector. The integrals
for the cases where point p and element e both lie on the
face therefore do not need to be recalculated but other
boundary integrals will need to be updated.

(c) The face is distorted out of plane: All elements on the
face are updated. The mesh is regenerated across the face
and all integrals will need to be recalculated.

(d) The face is distorted but remains in plane: Only some el-
ements on the face require updating, the rest of the mesh
remains unchanged.

We propose a new algorithm that can be applied to case (d)
to propagate these changes beginning at updated edges around
the face.

When the user updates the model, the changes propagate
as follows: Nodes, Ni (i = 1, 2, 3, ..., nN), distributed along up-
dated edges are repositioned by translating or scaling the origi-
nal distribution. The vector through which each has moved, Vi,
is stored. Each element that includes Ni, Eei (e = 1, 2, 3, ..., nEi),

(b) Face is
translated.

(c) Face
distorted

out of plane.

(a) No
change to
hidden face.

(d) Face distorted
but remains in
plane.

Figure 3: Geometric update of a block showing changed faces.

is assessed for quality, Qei, using (9). If Qei < Qmin, the un-
updated corner node(s) of Eei are moved through vector λVi,
where λ ≥ 1. The coefficient λ is chosen such that the mesh
changes do not propagate beyond this node for several future
updates. The changes propagate further until all the elements
return an acceptable value of Qe. A node may be moved only
once each time the model is re-meshed. This process is sum-
marised in Figure 4.

The changes applied to the mesh often result in increasing
numbers of updated and distorted elements and hence degrada-
tion of Q̄ as demonstrated in Figure 5, which illustrates the case
in which Qmin has been set to 0.5 to show the distortion more
clearly. A high quality initial mesh absorbs some of the distor-
tion but, to preserve accuracy, the mesh will periodically require
more extensive modification over distorted faces. For large dis-
tortions, the mesh must be regenerated across the entire face
(this rule has not been applied in Figure 5 so that the effects of
failing to apply this measure can be seen). Once the updates
have finished propagating, the mean and standard deviation of
the element quality across face j, Q̄ j and S j, are calculated. If
Q̄ j < Q̄min or S j > S max, the mesh across face j is regener-
ated when the re-meshing algorithm is next called in place of
the usual nodal updating procedure. For smaller problems, ele-
ments may be removed from areas where the mesh has become
dense, such as in front of the advancing hole shown in Figure 5,
and replaced in sparse areas, such as behind the hole. A smaller
number of elements will be modified by this update although Q̄ j

will not be substantially improved. Both techniques will result
in an increase in run time for analyses where a part of the mesh
has been regenerated but effectively reduce it on the following
runs.

Figure 5 clearly shows that elements exist in a series of
concentric bands around the hole. The same banding can be
observed in almost all automatically generated meshes (FE or
BE) around any geometric feature. Small perturbations in the
location of the feature will affect only the neighbouring band. If
the changes are larger, a cluster of elements of quality Qmin that
move with the updated geometric feature will be maintained.
Qmin may be graded by band to maintain a high element quality
immediately around key geometry, leading to a more accurate
approximation to the stress in these areas. However, maintain-
ing a high element quality results in changes propagating fur-
ther through the mesh and the usual compromise must be made
between speed and accuracy.

The reader is reminded that, since the mesh is updated in
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Figure 4: Flowchart showing a single re-meshing iteration.

real-time as the user drags features of the object into new lo-
cations, the majority of the geometric changes will be of pixel
order and will require only minor modifications to the mesh.
The larger mesh updates will be applied only in a very small
proportion of the calls to the algorithm.

5. Validation of the re-meshing scheme

Tests have been carried out to validate the accuracy of stress
solutions calculated using BE models perturbed by the re-meshing
scheme. One example is discussed here, the case of moving
a circular hole, of diameter D, within a thick plate of dimen-
sions 15D × 5D × D. The stresses at the nodes around the
hole were computed using a BE mesh produced using the new
algorithm and compared to benchmark stresses produced us-
ing a converged FE model. The FE model was converged to a
L2-norm tolerance of less than 1% in the stresses at the nodes
around the hole. A long plate with a hole has been chosen to re-
duce the effects that the proximity of the ends of the plate have

on the stresses around the hole. A single benchmark can there-
fore be used to compare the stresses for all hole locations as it
is moved along the plate. The BE mesh on the surfaces y = 0
and z = D of the model is shown in Figure 6. The following
boundary conditions are applied:

ux = 0, x = 0
uy = 0, y = 0
uz = 0, z = 0
tx = T, x = 15D

(12)

where u and t refer to displacements and tractions applied in the
subscripted Cartesian direction. We take T = 1000.

An error measure, εσ, is calculated to compare the accuracy
of the BE stresses to the benchmark:

εσ =
‖{σ} − {σ̂}‖

‖{σ̂}‖
(13)

where ‖ · ‖ denotes the L2-norm, {σ̂} the benchmark stress com-
ponents and {σ} the matching stress components generated by

5



    

(a) Initial mesh, Q̄ = 0.89, S = 0.09. (b) Q̄ = 0.86, S = 0.12. (c) Q̄ = 0.82, S = 0.19. (d) Q̄ = 0.81, S = 0.17.

Figure 5: Iterative updating of the mesh around a hole, showing updated elements. Qmin = 0.5.

 

y 

z 

x 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Test model.

the BE code. For this study, the tangential stresses, {σt}, around
the top of the hole (z = D) will be used. Figure 7 shows the
normalised tangential stress, σt/T , after the hole has moved a
distance, d = 0.5D in the positive x direction. Angle φ is de-
fined as the anticlockwise angle from the top of the hole, as
viewed in Figure 6. Note that, as this is a thick plate, the stress
concentration factor, Kt, is smaller on the free surface of the
plate than at z = 0 where Kt ≈ 3.1 consistent with expectations
for thin plate theory [25].

3π
4

π
4

π
2

π 5π
4

3π
2

7π
4

2π

Figure 7: Normalised tangential stress, σt/T , around hole after it has moved
through distance D/2.

The deviation in the BE results from the benchmark solution

is most noticeable when dσt/dφ = 0. Similar deviations also
appear in the FE model if a comparable number of elements is
used around the hole. All the elements around the hole were ini-
tially slightly distorted, having Q̄ = 0.77. However, at around
φ = 3π/2 rad; deformation of these elements as the mesh was
updated resulted in a local increase in Q̄ and hence produced a
better approximation to σ̂t when compared to φ = π/2 where Q̄
has degraded locally. A smoother and more accurate curve can
be produced through appropriate application of higher quality
elements; however, the trade-off between accuracy and compu-
tational resources required must be considered. The emphasis
in the current work is to achieve very rapid solutions of ac-
ceptable quality during interactive re-analysis; higher quality
solutions can be obtained using a more refined mesh. However,
this will require a more computationally expensive analysis and
should only be carried out to assess the final stress values.

A profile of how the model behaves as it is modified has
been produced for the plate with a hole when it is meshed with
700 elements. The hole was moved through distance D in the
positive x direction in 100 steps to simulate pixel order updates.
The results are shown in Figures 8-11 where d is the total dis-
tance through which the hole has moved at any given point.
It can clearly be seen in Figure 8 that if the hole is continu-
ously moved in the same direction the number of updated el-
ements will generally increase. To reduce this accumulation,
local mesh regeneration must be carried out periodically us-
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ing one of the schemes discussed in Section 4. Without these
schemes, Q̄ will, on average, decrease as the hole is moved fur-
ther as shown in Figure 9, leading to an increase in εσ as shown
in Figure 10. To show the effects of periodically regenerating
the mesh an arbitrary value of Q̄min = 0.84 is selected, as shown
by the grey lines in Figure 11, some of the element distortion
is removed and Q̄ is regulated. This in turn helps to regulate
εσ. However, it is clear from Figure 10, which shows εσ with-
out any regeneration, that ∆εσ remains small during re-meshing
relative to εσ, accommodating some element distortion as evi-
dent in Figure 9. It should be noted that εσ is the L2-norm error;
the error in the peak stress is typically around εσ/2. Wall clock
timings give the times for re-meshing in the region of thou-
sandths of a second, around six times faster than generating the
initial mesh.

Surface: z = D

Figure 8: Percentage of elements updated for a hole in a plate.

Surface: z = D

Figure 9: Mean element quality for a hole in a plate.

If applied intelligently a small number of high quality el-
ements will produce a more accurate solution than many low
quality elements. For the fastest analysis, it is therefore essen-
tial to find and generate an optimal mesh. Most stress concen-
trations peak around the edges of a model. If a high quality
local mesh is maintained in these areas a greater accuracy can
be achieved and maintained for these key results. However, this
causes a greater number of elements to be updated in each it-
eration as the model is deformed and hence will increase the
analysis time. A compromise must be reached to enable real-
time updating whilst maintaining an acceptable accuracy.

Figure 10: Error, εσ, at nodes around hole.

Surface: z = D

Figure 11: Mean element quality with regeneration.

6. Re-analysis of an updated model

For rapid analysis the model must be efficiently re-analysed
as the geometry is updated. By re-writing (8) the system of n
linear equations can be expressed as:

[Ai]{xi} = {bi} (14)

where i = 0, 1, 2, ... refers to the number of times the system
has been modified. The initial system of equations, i = 0, gen-
erated from the initial geometry, must be solved before any dy-
namic updating of geometry occurs. This is carried out using
a full LU decomposition. Every time the model is re-meshed
the system is updated. As the majority of the changes are small
the majority of matrix [Ai−1] is preserved in [Ai], where [Ai] =

[Ai−1] + [∆A]. The matrix [∆A] is sparse with only a few rows
and columns containing non-zero values. The vector {bi} is en-
tirely changed from {bi−1}. The updated system must be re-
solved to find the new tractions and displacements, {xi}.

Two different approaches have been considered for rapidly
re-solving the system; iterative solvers and reduction techniques.
Six algorithms have been analytically compared for re-solving
(14):

1. Generalised minimum residual (GMRES) [14]

2. Bi-Conjugate gradient stabilised (BiCGSTAB) [26]

3. Transpose free quasi-minimal residual (TFQMR) [27]

4. Leu reduction [18]
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5. Eigenvector based proper orthogonal decomposition (POD)
(E-POD) [20]

6. Singular value decomposition (SVD) based POD (SVD-
POD) [21]

Algorithms 1-3 are iterative solvers whereas 4-6 utilise re-
duction techniques. The iterative algorithms and a full LU de-
composition have also been tested on GPUs.

6.1. Iterative methods

Many different iterative solvers have been developed, the
most common of which are discussed in [28]. The GMRES,
BiCGSTAB and TFQMR algorithms have been chosen for this
research as they are stable and applicable to non-symmetric sys-
tems. They are commonly applied to large sparse matrices typi-
cal of the FEM. Here they are applied to the smaller fully popu-
lated matrices produced by the BEM. The implementations are
based on the templates given in [28] but have been modified to
re-use as many vectors as possible to reduce data storage and
memory accesses. It can be shown that if the data are spread
over a larger area of memory the algorithms run more slowly.
To reduce the amount of required memory the maximum num-
ber of iterations of each algorithm has been limited, enabling
a suitable block of memory to be allocated beforehand. The
modified pseudo-code for these algorithms can be found in the
appendix.

A preconditioning matrix [M] can be applied to (14) with
the aim of speeding up convergence by improving the condi-
tion of the system that is to be solved. Both diagonal and com-
plete approximate LU a [12] preconditioning have been applied
to the GMRES, BiCGSTAB and TFQMR algorithms. The ap-
plied LU preconditioner is the complete LU decomposition of
[A0], generated during the initial analysis. This is equivalent to
applying [A0]−1 to (14) when a simple forward and backward
substitution is carried out. For clarity this will be referred to
simply as LU preconditioning throughout this paper. If it is as-
sumed that each geometric update is small, {xi−1} can be used
to reduce the solution time by providing a good first approxi-
mation of {xi} [12].

6.1.1. GMRES (Generalised minimal residual method)
The GMRES algorithm uses the Arnoldi method to gener-

ate a series of orthogonal vectors in the Krylov subspace, {v j}

(where j is the iteration number) that can be used as a basis in
which to construct the solution vector. Together with factors y j,
these are used to compute the solution:

{xi} = {xi−1} + y1{v1} + y2{v2} + ... + y j{v j} (15)

or
{xi} = {xi−1} + [V]{y} (16)

Convergence is reached when ‖{r j}‖/‖{bi}‖ < tol where {r j}

is the residual {bi} − [Ai]{xi j} and ‖ · ‖ denotes the L2-norm. The
tolerance tol is defined by the user.

A new basis vector is generated with each iteration of the
algorithm. Once the method has converged, (16) is applied to

update {xi}. To limit memory requirements, restarted versions
of the GMRES method are often used to limit the number of
Krylov vectors, updating {xi} before each restart. For the type
of systems encountered in this work it has been found that the
method converges within 20 iterations in the worst case. The
majority of solutions take 5-10 iterations, therefore no restarts
are required.

The amount of memory required by the solver, in addition to
that required to store the system and preconditioner, increases
with each iteration. For a typical 10 iteration solution, approx-
imately an additional 12n double precision numbers need to be
stored. This is small relative to the amount of memory occu-
pied by the system and, for the sizes of system considered in
the project, is far from prohibitive.

6.1.2. BiCGSTAB (Bi-conjugate gradient stabilised method)
The BiCGSTAB method was developed as an improvement

on the conjugate gradient squared (CGS) method that often ex-
hibits irregular convergence patterns. It attempts to minimise
the residual vector, {r j}:

{r j} = Q j([Ai])P j([Ai]){r0} (17)

where j is the iteration number, P j([Ai]) is an jth degree poly-
nomial in [Ai] and Q j([Ai]) is an jth degree polynomial de-
scribing a steepest descent update. The vector {xi} is updated
and convergence checked, using the same stopping criterion as
the GMRES method, twice in each iteration. The BiCGSTAB
method requires about half as much memory as the GMRES
method at 6n double precision numbers.

6.1.3. TFQMR (Transpose free quasi-minimal residual method)
The quasi-minimal residual (QMR) method aims to solve

the system in a least squares sense, in a similar manner to the
GMRES approach. However, the basis generated in the Krylov
subspace is bi-orthogonal and the residual is therefore referred
to as quasi-minimal. The TFQMR algorithm achieves this with-
out using [A]T which is slow to access due to the way a ma-
trix is stored in computer memory. The total additional mem-
ory required by the TFQMR algorithm is similar to that of the
BiCGSTAB algorithm at 7n double precision numbers.

The TFQMR algorithm has been expanded to reduce com-
putation. This means that each loop around the algorithm is ef-
fectively two iterations. The vector {xi} is updated after each of
these iterations, therefore only a single basis vector is required
at any one time, thus reducing the memory requirements. The
stopping condition computes an upper bound for the residual,
{r j} using data already stored by the algorithm. This is com-
pared to tol.

6.2. Reduction methods

Reduction techniques reduce the size of the problem by ap-
proximating it with a smaller system. This reduced system is
very fast to solve but additional overheads are required to gen-
erate the system.
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6.2.1. Leu
Leu [18] presents a reduction method, formulated specifi-

cally for the BEM, to solve (14). The theoretical speed up of
the algorithm is computed relative to a direct method based on
the number of floating point operations. On implementation
the current authors found that the greater number of memory
accesses required by the algorithm and the order in which the
data must be retrieved from memory had a detrimental effect on
the speed of the algorithm. It could therefore not compete with
the other methods for the type of problem considered here. Due
to these considerations the Leu algorithm will not be discussed
further in this paper.

6.2.2. Proper orthogonal decomposition
Proper orthogonal decomposition (POD), also called Karhunen-

Loève decomposition (KLD), uses a set of m basis vectors, [B],
together with m coefficients, {ζ}, to find {xi}:

{xi} = [B]{ζ} (18)

The reduced system is constructed:

[B]T [Ai][B]{ζ} = [B]T {bi} (19)

Here [B] is of size n × m and [Ai], n × n, so that it remains
only to solve a small m × m system where m � n. Hence {ζ}
can be found with a direct solver.

Different approaches may be adopted for generating a suit-
able basis; two are presented here. Ryckelynck et al. [20]
formulate a solution specifically for the BEM. The vectors {xi}

from the first s analysis runs are used to construct matrix [Q],
which is used to produce matrix [K]:

[Q] = [ {x0} {x1} ... {xs} ] (20)

[K] = [Q][Q]T (21)

from which m eigenvectors are selected to form the basis, [B],
based on the related eigenvalues, αk, where αk > 10−10αmax, (k =

1, 2, 3, ..., n) and αmax is the highest eigenvalue. In the current
article, this method has been denoted E-POD.

Kerfriden et al. [21] formulate their method for the FEM.
They use a set of s vectors made up from a representative fam-
ily of solutions to the initial model under differing initial con-
ditions. These vectors are combined as in (20) to form [Q] and
the SVD is found:

[Q] = [U][S ][V]T (22)

The first m columns of [U] are taken to form an orthonormal
basis [B] where m < s. This method has herein been denoted
SVD-POD.

6.3. GPU algorithms
No parallelisation has been applied in the CPU algorithms.

However, preliminary work has been carried out into assessing
the performance of some of the algorithms on graphics process-
ing units (GPUs). The full LU decomposition, used in the ini-
tial solve, and the LU preconditioned GMRES, BiCGSTAB and

TFQMR algorithms, used for the re-solve, have been coded for
GPUs. This has been achieved using Nvidia’s CUDA (Compute
Unified Device Architecture) and the CUBLAS (CUDA Basic
Linear Algebra Subprograms) library [29]. Small calculations
have been retained on the CPU along with the Givens rotations
used in the GMRES algorithm as these operations are not as
suited to GPU parallelisation.

On account of the small number of calculations involved in
re-solving the system using POD it would be counterproductive
to run this solver on the GPU.

7. Assessment of solvers

To assess the speed and accuracy of the proposed solvers,
three test models have been considered to cover a range of stress
conditions:

1. Thick walled cylinder with an internal pressure (TWC).
The internal radius has been reduced as the number of
updates applied to the model, i, increases.

2. Cantilever under bending (CTL). The length of the can-
tilever has been extended as i increases.

3. Plate with a hole under uniaxial tension (PWH). This
gives a more complex stress field than the uniform field
found in the thick walled cylinder. The hole has been
moved along the plate as i increases.

Each model has been analysed using several different meshes
with varying degrees of refinement and different step sizes of
geometric perturbation.

Error measures are generated by computing the L2-norm of
the difference between {xi} calculated using the iterative solver
result and the benchmark solution, {x̂i}, based on a full LU de-
composition. Note that only the error in the algebraic solution
and not in the stress solution is considered. This error is com-
puted using:

εx =
‖{xi} − {x̂i}‖

‖{x̂i}‖
(23)

Two types of test were carried out on the models. The iter-
ative algorithms were timed for a fixed accuracy, εx < 0.005%,
and εx was compared for a fixed solve time of 0.05 seconds.
The timings do not include the time required to evaluate the
new boundary integrals. The decomposition methods are not it-
erative, therefore the accuracy cannot be prescribed in advance.
These methods will also have a constant solve time for any
given n.

The nomenclature used in the following sections will be as
follows: the times, in seconds, to update and solve [Ai] are de-
noted tui and tsi respectively. In the case i = 0, tu0 is the time to
fully populate the system and ts0 is the time to solve the system
using a full LU decomposition. When i > 0, tui is the time to
update the system and tsi is the solve time of the appropriate
solver. The number of updated degrees of freedom at the ith
update is given by nui.
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7.1. Repopulating the system

Repopulating the system involves recalculating the integrals
stored in [Ai]. The relationship between nui/n and tui/tu0, shown
in Figure 12, is broadly linear although there is some variation
between test models. No data was gathered for 23% < nui/n <
40%. As the relationship is linear, reducing nui for any given
model will proportionally reduce tui. This is in agreement with
the findings of Trevelyan et al. [11], given in Figure 1 where
the extra spread in re-analysis time is due to variability in tsi.

Figure 12: Repopulating the system.

Some overheads are involved in calculating which parts of
the system to update. If a large percentage of the system is
updated these can outweigh the benefits of only updating part
of the system, as seen in Figure 12 when nui/n > 60%.

7.2. Solution of the system for a fixed accuracy

The updated systems generated through geometric pertur-
bation of a range of test models were solved using the iterative
solvers and timed for a fixed accuracy, εx < 0.005%. Figure
13 shows the relationship between tsi and n, for the diagonally
and LU preconditioned iterative solvers after the first geomet-
ric update has been applied to each test model (i = 1). This
relationship is of the form:

tsi = cnitn2 (24)

The constant c depends on the solver used. The value nit is de-
pendent on the solver and the condition of the preconditioned
system and is the number of iterations carried out by the solver.
It should be noted that Figure 13 shows a typical fit to aid vi-
sualisation of the general trend. There is some variation in the
actual data. For the diagonally preconditioned systems nit is ap-
proximately constant for the test problems in this study, as seen
in Figure 14, which shows tsi for the plate with a hole model
discussed in Section 5. For the LU preconditioned systems the
conditioning will initially degrade as the size of the perturba-
tion from the original model geometry increases, causing nit to
increase. However once the geometry has changed significantly
from the original, the degradation in the conditioning of the sys-
tem will cease to substantially affect the solve time. This occurs
at d/D = 0.25 in the case illustrated in Figure 14.

diag GMRES
LU GMRES

diag BiCGSTAB
LU BiCGSTAB

diag TFQMR
LU TFQMR

Figure 13: Comparison of iterative solve times for a fixed accuracy.

Where the time is available after the initial model is fi-
nalised and before re-analysis runs, a full LU decomposition
should be computed since, when applied as a preconditioner,
this can halve the re-analysis time for small geometric changes,
as shown in Figure 14. However, if the model has small n, tsi

will be more similar for the LU and diagonally preconditioned
systems and, if a large modification is applied to a model with
small n, the resulting system can be solved more quickly us-
ing diagonal preconditioning. This is due to the fact that in a
small system a much higher percentage of the mesh will be re-
generated after a geometric perturbation. The matrix, [Ai], will
therefore rapidly cease to bear much relation to [A0] and the LU
and diagonal preconditioning will produce systems of compa-
rable condition. This effect was only observed in the smallest
(n = 726) of the 32 test cases assessed for this work and then
only for the largest deformation. As the effect was negligible
and n > 726 for the majority of models it can be safely as-
sumed that LU preconditioning should be used to produce the
smallest tsi.

If the total number of reanalysis updates, k is known and the
aim is to reduce the total run time:

T =

k∑
i=1

tui + tsi (25)

then diagonal preconditioning should be used in preference to
LU preconditioning if k < n/40, as this will provide the same
accuracy for a reduced T . During dynamic updating of the
model k will not be known and, as the aim is to minimise tui+tsi,
LU preconditioning should be applied. However, the LU pre-
conditioner must be recomputed sparingly (if at all), as it is ex-
pensive to compute, and only after a minimum of n/40 updates
have been applied to maintain the efficiency of the process. Al-
ternatively an new LU preconditioner can be generated by a
separate process in a new thread [12], thereby not detracting
from the re-solution time.

Re-solve times and accuracies are model specific and dif-
ferent solvers may perform better under specific conditions but
overall the GMRES approach most consistently provides most
rapid convergence and has proved to be the most stable algo-
rithm. Using these methods it appears that currently models of
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diag GMRES
LU GMRES

diag BiCGSTAB
LU BiCGSTAB

diag TFQMR
LU TFQMR

Figure 14: Resolve timings as a hole is moved along a thick plate (n ≈ 4300).

size n < 2000 are amenable for real-time update of results.

7.3. Solution of the system within a predefined time
For rapid analysis, the solver will be required to re-solve the

system to a sufficient accuracy within an acceptable time limit.
To simulate this the iterative solvers have been allowed to run
as many iterations as possible within 0.05 seconds. Reduction
methods are not assessed here as the reduced problems always
require a specific amount of overhead and are small enough to
solve with a direct solver.

Figure 15 shows a diagrammatic representation of the error,
εx, for a range of system sizes, n, based on numerical results.
The contours depict the lower bound on εx for each solver. For
LU preconditioned GMRES and BiCGSTAB solvers εx is con-
sistently less than 10−3 (except in the occasional case). The
error, εx, increases with n as larger systems require more time
per iteration of the solver and therefore execute fewer iterations.

LU T
FQM

R

di
ag

 B
iC

GSTAB

di
ag

 G
M

R
ES

diag TFQMR

LU G
MRES &

 LU B
iC

GSTAB

Figure 15: Comparison of iterative solve errors for a fixed solve time.

7.4. Solution of the system using POD
For the first set of tests, the basis, [B], has been generated

from the results of the first s analysis runs using both the E-POD
and SVD-POD schemes. The re-solve time, tsi, is independent
of [B] and i and is of the form:

tsi = cmn2 (26)

where c is a constant. The variation in εx between the two
schemes is typically of the order 10−6 when using the same m.

As shown in Figure 16, the time required to generate [B],
tB, is large when applying E-POD as the eigenvalues of an n×n
system must be computed. As tB increases cubically with n,
this is prohibitive for anything but the smallest models for this
analysis application. When applying SVD-POD the SVD of an
n× s system must be found; this leads to a considerably smaller
tB than E-POD. When computing the SVD-POD, tB appears to
bear little relationship to n for systems of the size encountered
in this study (n < 5000) and is typically less than 0.1 seconds.

E-POD SVD-POD LU decomposition

Figure 16: Time to generate [B] for different system sizes.

System size, n, has little effect on εx which is mainly influ-
enced by the number of basis vectors, m, and increases rapidly
with i. The benefit of increasing m is limited, for example, in
Figure 17, if m > 3 no reduction in the error is observed once
d/D = 0.08. Both Kerfriden et al. [21] and Ryckelynck et al.
[20] propose enrichment schemes to regulate εx by adding vec-
tors to [B] based on the latest analysis results. However, these
enrichment schemes have not been implemented in the current
work as any increase in tsi will render the method uncompetitive
with the GMRES algorithm for the types of system encountered
in this study.

m=4m=1 m=2 m=3 m=5

10-7

Figure 17: Change in solution error, εx, as a hole is moved diagonally across a
thick plate.

Figure 18 has been produced from the test model shown in
Figure 6 by moving the hole in the direction x = y. The error,
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εx, is compared for the SVD-POD with m = 3 to εx for the LU
and diagonally preconditioned GMRES algorithms. The same
tsi has been applied to the GMRES algorithms as was used to
solve the reduced system. It can be seen that, for this model,
once d/D = 0.08, the GMRES methods provide a more accu-
rate solution and εx does not degrade as rapidly. If a larger value
of m were used these effects become even more pronounced.

Figure 18: Solution error for a fixed solve time (m = 3).

In Figure 18, PODa denotes a set of runs using the first four
analysis results to generate the basis, whereas PODb considers
bases drawn from a set of representative solutions generated
from the following models:

1. The initial model.

2. The hole was moved in the x-direction through distance
D/2.

3. The hole was moved in the y-direction through distance
D/2.

4. The plate was stretched in the x-direction through dis-
tance D.

PODb does not provide any improvement in εx over PODa. A
poorly selected basis can also lead to an even greater εx.

7.5. Comparison of GPU and CPU implementations

Preliminary results for GPU implementations of the LU pre-
conditioned GMRES, BiCGSTAB and TFQMR algorithms are
given here. Figure 19 shows the mean ratio CPU time/GPU
time, β, for the re-analysis solvers with a range of system sizes,
n. The CPU results have been generated using an Intel Xenon
X5570 CPU with the authors’ solvers. The GPU results have
been generated using an Nvidia Quadro 4800 GPU with the
CUBLAS library. The relationship between β and n is approx-
imately linear for systems of this size and it is found that it is
only for systems of size n > 5000 that the GPU computation is
beneficial. When generating and solving the LU decomposition
used in the initial analysis, many more operations are applied
to the same set of data and efficiency gains can be achieved for
smaller systems of size n > 2500, as shown in Figure 20. The

speed can be further improved if a blocked LU decomposition is
used, where the block size, b, is chosen to fill the memory on the
GPU. It is possible that using a similar blocking routine, such
as an element-by-element form [30], with the iterative solvers
could lead to a similar acceleration in these algorithms.

Figure 19: Comparison of CPU and GPU iterative solve times.

Blocked LU (b=128)Full LU (b=n)

Figure 20: Comparison of CPU and GPU LU decomposition and solve times.

Some round off effects [31] were observed to affect the num-
ber of iterations in the BiCGSTAB solver only. In the worst case
these had a negligible effect on the error, εx, of the order 10−8.
No variation in the solution accuracy was observed between the
CPU and GPU results for the GMRES and BiCGSTAB solvers.

8. Conclusions

Progress has been made towards real-time three-dimensional
BEM analysis. An algorithm has been introduced for updating a
boundary element mesh to accommodate a geometric perturba-
tion whilst preserving the majority of the mesh. The scheme is
highly efficient for small perturbations; methods to improve the
scheme for larger changes have also been discussed. Through
careful control of propagation of re-meshing from updated ge-
ometry, a boundary element mesh can be updated in a computa-
tionally inexpensive manner so that the time required to update
the boundary element system of equations can be reduced. An
illustrative example has shown that this can be processed whilst
maintaining an appropriate quality of solution.
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Several linear solvers have been compared for solving this
boundary element system of equations, with the complete ap-
proximate LU preconditioned GMRES method proving the most
robust, outperforming other iterative and model order reduction
based techniques. Using this method the speed of the re-solve
can be improved by a factor of 100 when compared to a full
LU decomposition. A GPU implementation of the GMRES,
BiCGSTAB and TFQMR solvers has shown little to no speed
up for the size of system assessed in this work. However, this
should not be too readily dismissed as an option as GPU al-
gorithms and hardware characteristics are currently developing
and improving rapidly. Further optimisation work could lead to
improved performance.

Future work will involve further reducing the time required
for the computationally expensive process of re-population of
the BEM system matrix terms and accelerating the solution fur-
ther using adaptive cross approximation (ACA) [32].
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Appendix: Iterative solver pseudo-code

The iterative solvers are based on the templates given in [28]
with some modifications made by the authors. The nomencla-
ture used in all the solvers is given in in Table 1 and the solver
specific nomenclature in Table 2. Note that this may differ from
the standard notation as some vectors have been reused to re-
duce the memory size and access requirements of the solvers.
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Table 1: General Variables.
Symbol Description
A new system matrix
x0, x previous and current solution vectors
b new b vector
r0, r initial and current residual vectors
M preconditioning matrix
n limit on number of solver iterations
tol solution tolerance
‖ · ‖ L2-norm

Table 2: Solver specific variables.
Variables Vectors

GMRES* α, β, θ, τ c, g, s, u, v,w, y
BiCGSTAB α, β, ρ1, ρ2, τ, ω p, s, t, v
TFQMR α, β, γ, η, θ, ρ1, ρ2, τ d, g, h, u, v,w

*GMRES incorporates matrices H and V , where V contains
vectors, v.

Algorithm 1 GMRES
r0 = b − Ax0
τ = bT b
g0 = ‖r0‖

v0 = r0/g0
i = 0
while i < n do

Solve: Mw = Avi

for j = 0, 1, 2, ..., i do
Hi, j = wT v j

w = w − Hi, jv j

end for
vi+1 = w/‖w‖
for j = 0, 1, 2, ..., i do
α = Hi, jc j − Hi, j+1s j

β = Hi, js j − Hi, j+1c j

Hi, j = α
Hi, j+1 = β

end for
θ = − tan−1(‖w‖/Hi,i)
ci = cos θ
si = sin θ
Hi,i = Hi,ici − ‖w‖si

α = gici

β = gisi

gi = α
gi+1 = β
if abs(β)/τ < tol then

Converged: end while
end if
i = i + 1

end while
Solve: HT y = g
u = VT y
Solve: Mw = u
x = x0 + w
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Algorithm 2 BiCGSTAB
r0 = b − Ax0
τ = ‖b‖
r = r0
x = x0
i = 0
while i < n do
ρ1 = rT

0 r
if i = 0 then

p = r
else
β = (ρ1/ρ2)(α/ω)
p = r + β(p − ωv)

end if
Solve: Ms = p
v = As
α = ρ1/rT

0 v
x = x + αs
r = r − αv
if ‖r‖/τ < tol then

Converged: end while
end if
Solve: Ms = r
t = As
ω = tT r/tT t
x = x + ωs
r = r − ωt
if ‖r‖/τ < tol then

Converged: end while
end if
ρ2 = ρ1
i = i + 1

end while

Algorithm 3 TFQMR
Mr = b − Ax0
Mv = Ar
g = v
w = u = r
ρ1 = rT r
τ =
√
ρ1

x = x0
i = 0
while i < n do
α = ρ1/rT v
if i = 0 then

d = u
else
β = θ2η/α
d = u + βd

end if
w = w − αg
θ = ‖w‖/τ
γ = 1/(1 + θ2)
η = γα
τ = τθ

√
γ

x = x + ηd
i = i + 1
if τ
√

i < tol then
Converged: end while

end if
u = u − αv
Solve: Mh = Au
β = θ2γ
d = u + βd
w = w − αh
θ = ‖w‖/τ
γ = 1/(1 + θ2)
η = γα
τ = τθ

√
γ

x = x + ηd
i = i + 1
if τ
√

i < tol then
Converged: end while

end if
ρ2 = rT w
α = ρ2/ρ1
u = w + αu
Solve: Mg = Au
v = g + α(h + αv)
ρ1 = ρ2

end while
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