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Abstract

The Red system of bacteriophage l is responsible for the genetic rearrangements that contribute to its rapid evolution and
has been successfully harnessed as a research tool for genome manipulation. The key recombination component is Redb, a
ring-shaped protein that facilitates annealing of complementary DNA strands. Redb shares functional similarities with the
human Rad52 single-stranded DNA (ssDNA) annealing protein although their evolutionary relatedness is not well
established. Alignment of Rad52 and Redb sequences shows an overall low level of homology, with 15% identity in the N-
terminal core domains as well as important similarities with the Rad52 homolog Sak from phage ul36. Key conserved
residues were chosen for mutagenesis and their impact on oligomer formation, ssDNA binding and annealing was probed.
Two conserved regions were identified as sites important for binding ssDNA; a surface basic cluster and an intersubunit
hydrophobic patch, consistent with findings for Rad52. Surprisingly, mutation of Redb residues in the basic cluster that in
Rad52 are involved in ssDNA binding disrupted both oligomer formation and ssDNA binding. Mutations in the equivalent of
the intersubunit hydrophobic patch in Rad52 did not affect Redb oligomerization but did impair DNA binding and
annealing. We also identified a single amino acid substitution which had little effect on oligomerization and DNA binding
but which inhibited DNA annealing, indicating that these two functions of Redb can be separated. Taken together, the
results provide fresh insights into the structural basis for Redb function and the important role of quaternary structure.
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Introduction

Homologous recombination (HR) mediates the pairing and

exchange of DNA strands between homologous partners. HR is

universally employed by organisms to preserve genomic informa-

tion by restoration of DNA breaks, facilitation of recovery after

interruptions to DNA replication and also as a means of

generating genetic diversity [1,2,3].

Bacteriophage l Red (recombination deficient) is a HR system

consisting of three genes: exo, bet and gam encoding proteins Reda,
Redb and Redc respectively. Reda is a 59 to 39 exonuclease which

digests one of the two strands of the substrate DNA duplex,

yielding ssDNA. Redb is the recombinase in this process; a single

stranded annealing protein (SSAP) with a subunit molecular

weight of approximately 30 kDa which binds ssDNA and pairs it

to complementary sequences [3]. Redc protects the DNA ends by

inhibiting the host RecBCD nuclease [4]. Redb alone is sufficient

to mediate recombinational exchange if suitable ssDNA is

available [5].

HR by the Red system has been extensively reviewed [3,6,7]

and can progress via either RecA-dependent (utilizing the bacterial

strand exchange recombinase RecA for pairing) or RecA-

independent pathways [8]. These follow strand invasion or single

stranded annealing (SSA) routes, respectively, to recombinant

formation (although in vitro experiments show that Redb can carry

out strand invasion even in the absence of RecA [9]). Annealing

requires considerably less than 50 nt of sequence homology

[5,10,11,12].

The Red system is of interest for a number of reasons. Firstly,

viral recombinases make an important contribution to evolution,

both of the viruses and their hosts [13]. Secondly, they allow the

addition or removal of DNA segments in vivo, a method that does

not require the restriction digestion and ligation steps necessary

when similar manipulations are carried out in vitro [14]. This

approach is known as ‘‘recombineering’’ (recombination-mediated

genetic engineering) [15] and is particularly useful for generating

gene knockouts and in the manipulation of sizeable DNA

molecules such as BACs [16]. Finally, Redb is of interest because

of its potential to shed light on general mechanisms of SSAPs.

The Red system has been the focus of considerable research and

while Reda is well characterized [17,18,19] and its crystal

structure in complex with substrate DNA has been solved [20],

the mode of action of Redb remains obscure. While it clearly

performs the key annealing step in recombination, the mechanistic

details are unclear, partly because only relatively low resolution

structures from transmission electron microscopy (TEM) [21] and

atomic force microscopy (AFM) [22] are available. These studies

suggest that in the absence of ssDNA, Redb forms a ring or split-
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lock washer-shaped multimer consisting of approximately 11 or 12

monomers. In the presence of ssDNA, the protein has been

reported to become disordered [22] or form larger rings consisting

of 15–18 subunits, depending on the length of DNA provided [21].

Redb mixed with long complementary ssDNA molecules gener-

ates extended, left-handed helices thought to consist of protein and

double stranded DNA (dsDNA) [21]. Proteins involved in strand

pairing are typically toroidal or helical in shape, with a ring

structure for phage recombinases first demonstrated for Erf from

phage P22 [23]. A number of other ring-shaped recombinases are

able to form extended nucleoprotein filaments in the presence of

DNA and include Rad51, Rad52, RecA and Mgm101

[24,25,26,27].

Redb has been proposed as a distantly-related homologue of

Rad52, a eukaryotic protein that promotes both single-strand

annealing and stimulates homologous recombination reactions by

assisting assembly of Rad51 on RPA-coated ssDNA [28,29]. Like

Redb, Rad52 binds ssDNA and facilitates the annealing of

homologous ssDNA [30]. Full-length human Rad52 (hRad52)

consists of 418 residues, with a molecular weight of approximately

46 kDa. The crystal structures of the N-terminal 209 [31] and 212

[32] residues of hRad52 have been solved, revealing a toroidal

arrangement composed of 11 subunits. The N-terminal region of

Rad52 is evolutionarily conserved in eukaryotes [30] and is

notable for having a positively-charged groove encircling the outer

surface of the ring which most likely constitutes the ssDNA binding

site [31,32]. Rad52 also appears capable of associating with

dsDNA via a nearby, yet distinct, binding site [33].

Among phage SSAP proteins, Sak from the virulent Lactococcus

lactis phage ul36 has been classified as belonging to the same

superfamily as Rad52 [34] and was subsequently identified as a

genuine orthologue by further analysis [35,36]. In contrast, despite

similarities in activity, Redb was assigned to a different SSAP

superfamily [34]. However, studies by Erler et al. identified

conserved elements in the N-terminal DNA binding domains of

Redb and Rad52 [22], while Lopes et al. also suggested that the

Sak, Redb and Erf families belong to the same Rad52 superfamily

[37], although the alignments in the two reports differ, making it

unclear if Redb should indeed be considered as part of a larger

superfamily that incorporates Rad52. An additional related

protein, Mgm101, is also ring-shaped and is required for

recombination of mitochondrial DNA [27].

In this present study, we have conducted the first detailed

mutational analysis of the regions of Redb predicted to share

homology with Rad52 and have assessed their structure-function

relationship. As a consequence we have identified key features of

Redb responsible for oligomerization, ssDNA binding and

annealing that offer further insight into the mechanism of strand

annealing by this superfamily of recombinases.

Results

Sequence Comparison between Rad52 and Redb
Proteins
To help clarify the link between Redb and Rad52, the degree of

sequence conservation was reinvestigated as outlined in the

Materials and Methods. Similar efforts to identify homologous

features have been undertaken previously [22,37]. The multiple

sequence alignment presented in Figure 1 resembles most closely

that generated by Erler et al. [22] and was used in subsequent

analyses.

The N-terminal domain of eukaryotic Rad52 proteins is highly

conserved and possesses ssDNA annealing activity [30,31]. The X-

ray crystal structures [31,32] reveal an undecameric toroidal

architecture resembling a mushroom, with a central ‘stem’

structure (residues 79–156) comprising the main body of the ring,

and a ‘domed cap’ formed by the regions flanking the stem

(residues 25–78 and 157–208; Figure 2A), as proposed by Kagawa

et al. [32]. Based on the sequence alignment assembled here, it is

apparent that the region with the greatest conservation between

the two protein families corresponds to the stem structure of

Rad52 (residues 77–152 in Redb, boxed in green in Figure 1 and

shown in green in Figure 2A). The sequence identity between

Redb and hRad52 is 15% over the entire N-terminal domain

(residues 1–206 in Redb) and 19.7% if only the stem regions are

compared. Notably, the greatest similarity between the two

sequence families is found at either end of this stem region. The

first region maps to Redb residues 76–82, with a predominantly

hydrophobic consensus sequence of hhGhpGW (where h= hy-

drophobic, p = polar), corresponding to loop L5 in the Rad52

structure. The second region corresponds to Redb residues 148–

152, with a highly basic consensus sequence KRxLR (where

x= any residue), and which includes residues known to be critical

for ssDNA binding in Rad52 [32,38]. Interestingly, the stem

structure sequence is flanked by regions that are highly conserved

within the respective Redb and Rad52 families, but show

significant divergence between the two families (blue and pink

boxed regions in Figure 1). In Redb, a highly conserved stretch of

predominantly hydrophobic residues immediately precedes the

putative stem region (Redb residues 39–76). Immediately after the

putative stem region there are an additional 10 conserved residues

in Redb (residues 154–163) that are not found in Rad52 (Figure 1).

Crucially, residues that have been shown to be important for

binding ssDNA in Rad52 [32,38] and Sak [35] are also conserved

in Redb.
A number of conserved residues in Rad52, including I52, R55,

Y65, I66, R70, F79, G80, Y81, N82, W84, K152, R153, R156

and K169, have been implicated in ssDNA binding [32,38]

(Figure 1 and 2A). Several of these residues (R55, Y65, K152,

R153 and R156) line a positively charged groove encircling the

hRad521–212 structure and are proposed to contact the ssDNA

substrate via backbone phosphates, leaving nucleotides exposed for

strand annealing. In contrast, residues F79, G80, Y81, N82 and

W84 form a hydrophobic cluster at the subunit interface in the

undecameric hRad521–212 ring that, in the crystal structure, is

situated below the positively charged groove, making a direct

interaction with DNA unlikely in that conformation. To verify the

expected relationship between Redb and Rad52 we performed

alanine mutagenesis on residues which are predicted from the

alignment to affect ssDNA binding: Y64, K69, V77, G78, V79,

D80, W82, K148, R149 and R152 (Figure 1, 2B and 2C). Five of

these (V77, G78, V79, D80 and W82) correspond to the

previously mentioned hydrophobic cluster in the Rad52 structure,

while the others lie in, or near, the positively-charged groove

(Figure 2C). An additional substitution (R161A) was made based

on findings indicating that this residue contributes to single-strand

annealing in vivo [37], although it should be noted that while R161

is conserved within the Redb family, it is absent from Rad52

proteins according to our sequence alignment (Figure 1). We also

mutated residues K132 and K172, which could possibly corre-

spond to hRad52 residues K133 and K169, respectively, that are

implicated in dsDNA binding, ternary complex assembly, and D-

loop formation [33], although sequence conservation between the

two families in these regions is not clear (Figure 1).

Purification of Redb Proteins
Full-length Redb wild-type (WT) protein and the 13 variants

harboring alanine substitutions (Y64A, K69A, V77A, G78A,

Redb Characterization
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V79A, D80A, W82A, K132A, K148A, R149A, R152A, R161A

and K172A) were expressed as N-terminal histidine-tagged

proteins and purified by Ni2+-affinity chromatography, with

subsequent removal of the tag by thrombin digestion as reported

in the purification of Rad52 [25], leaving an additional three

residues (Gly-Ser-His) prior to the initial methionine. Expression

levels and solubility of all of the mutant proteins were similar to

that of Redb WT, with the exception of W82A, which showed

poor expression and could not be purified in sufficient quantities

for further study (data not shown). It is likely that W82 is critical

for structural integrity, consistent with the orientation of the W84

side chain in the hRad52 structure.

The secondary structure of the purified Redb proteins was

probed using far-UV circular dichroism spectroscopy (CD). WT

displayed the typical CD signature of a predominantly a-helical
protein, as anticipated [39]. All of the mutants displayed a similar

CD spectrum, suggesting no major alterations in protein folding

(Figure S1).

Figure 1. Comparison of Redb, Rad52 and Sak N-terminal domains. Conserved residues are highlighted and colored according to the Clustal
X scheme, with color intensity denoting the degree of homology between the three SSAP groups. The green boxed region indicates the stem
structure of Rad52 [32]; secondary structure elements (b-b-b-a) in this region are highlighted. The blue boxed regions correspond to the conserved
part of the domed cap region in the hRad52 N-terminal structure, while pink boxed regions indicate alternative conserved stretches in Redb that flank
the putative stem structure. Residues of Redb mutated to alanine in this study are marked with blue circles and numbered accordingly. Residues of
hRad52 that have been experimentally shown to be involved in ssDNA binding [32,38] are indicated by red circles. Sak SSAP from phage ul36 and
related sequences are also shown. Abbreviations and UniProt accession numbers: Ep_beta, Redb from Enterobacteria phage l (P03698); Mn_beta,
bacteriophage recombinase from Mannheimia haemolytica (A7JWQ9); Yp_beta, DNA recombination protein from Yersinia pestis biovar Orientalis str.
(A4IUY1); Vc_beta, putative DNA recombination protein from Vibrio cholerae (Q8KQW0); Ip_beta, phage recombination protein from
Iodobacteriophage wPLPE (B5AX97); Bp_beta, putative phage recombination protein from Burkholderia pseudomallei strain 668 (A3NM00); Ab_beta,
phage recombination protein Bet from Acinetobacter baumannii; Hs_Rad52, Rad52 homolog from Homo sapiens (P43351); Sc_Rad52, Rad52 from
Saccharomyces cerevisiae (P06778); Sp_Rad22, Rad22 protein from Schizosaccharomyces pombe (P36592); Sp_Rti1, Rti1 protein from S. pombe
(O42905); ul36_Sak, putative translation initiation factor from Lactococcus phage ul36 (Q9MC33_9CAUD). The three additional sequences in the Sak
family are identified by GI accession numbers. The alignment display was generated using Jalview [48].
doi:10.1371/journal.pone.0078869.g001

Redb Characterization
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Effect of Mutations on ssDNA Binding
The ssDNA binding activity of Redb WT and the twelve stable

mutant proteins was evaluated using electrophoretic mobility shift

assays with a 50 nt ssDNA substrate (Figure 3). Samples were

cross-linked with glutaraldehyde prior to electrophoresis, consis-

tent with previous studies on Rad52 [32,38]; in the absence of

cross-linking only smears for the shifted species were observed

(data not shown). Redb WT formed a slow-migrating complex

with ssDNA, with smearing indicative of some unstable protein-

ssDNA interactions that disassociate during electrophoresis

(Figure 3A). A similar complex, with some variation in stability,

was observed with most of the mutants, although in some cases

(e.g. V77A, R149, R152A) a discrete faster-migrating species was

also evident. This latter complex can also be observed at high

concentrations of the WT protein (Figure 3A). Y64A and K69A

displayed only a minor reduction in ssDNA binding compared to

WT (Figure 3), while the D80A, K132A, K148A, R149A and

K172A mutants showed a more significant defect, binding 40–

90% of the ssDNA at 3 mM protein (Figure 3C). The most severely

impaired ssDNA binding variants were V77A, G78A, V79A,

R152A and R161A, which bound only 10–35% of the ssDNA at

the 3 mM data point (Figure 3C).

Effect of Mutations on Binding a Second Strand of DNA
The ability of the Redb variants to form complexes with two

50 nt complementary oligos was investigated to probe the effects

of the mutations on a second ssDNA binding site thought to be

involved in strand annealing [40]. Redb proteins were first

incubated with Cy3-labeled ssDNA before addition of a second

unlabeled strand (Figure 4, Figure S2). In contrast to the ssDNA

binding assays, the complexes of Redb with two complementary

strands migrated as discrete high-MW bands during electropho-

resis in the absence of cross-linking, reflecting the increase in

stability of the complex when a second, complementary strand is

present [40]. Overall, the pattern of binding was similar to that

seen in the ssDNA assays (Figure 3). For instance, Y64A and D80A

showing relatively modest decreases in binding in the presence of

the second strand, whereas K69A, K172A and K132A showed

greater decreases. The remaining mutants were significantly

impaired in binding to the DNA, including K148A and R149A

which show a much greater reduction in binding affinity

compared with the results obtained with a single DNA strand

(Figures 3 and 4).

Effect of Mutations on DNA Annealing
In order to probe the effects of the mutations on ability to

catalyze DNA annealing, assays were carried out with comple-

mentary 50 nt strands (Figure 5). The results revealed substantial

annealing even in the absence of protein, with 50% of total DNA

annealed at approximately 7 min. The presence of Redb WT

resulted in a significant acceleration in the rate, achieving 50%

annealing after less than 1 min (Figure 5B). Mutants Y64A and

D80A displayed activity similar to WT, consistent with the ssDNA

binding assays (Figure 3B and 3C). Most of the other mutants

showed 50% annealing at between 2–5 min, with K148A, R149A,

and K172A having a moderate defect, whereas V77A, G78A,

V79A and R161A exhibited a more severe impairment (Figure 5B),

also consistent with the relative binding affinities for ssDNA. In

contrast, K132A displayed a greater relative decrease in annealing

activity compared to its ssDNA binding activity. The most striking

result, however, was obtained with K69A. This mutant, while

showing near-WT levels of ssDNA binding and a relatively

moderate decrease in second strand binding ability (Figures 3 and

4), produced a significant inhibitory effect on DNA annealing

(Figure 5B), taking approximately 15 min to reach 50%,

considerably longer than the ssDNA in the absence of Redb
protein. Very little further increase in annealing was detected with

K69A even when the reaction was incubated for a total of 96 min

(data not shown).

Figure 2. Comparison of hRad52 structure and homology
model of Redb. (A) Structure of undecameric N-terminal hRad521–212
(PDB accession 1KN0) showing residues involved in ssDNA binding
[32,38]. The structure is colored as follows: residues 25–78 (part of the
‘‘domed cap’’) in light blue, residues 79–156 (‘‘stem structure’’) in green,
residues 157–220 (part of the ‘‘domed cap’’) in dark blue. The N- and C-
termini are also indicated. (B and C) Homology-based model showing
sequence conservation between hRad52 and Redb. (B) The hRad521–212
oligomeric ring structure is shown, with the stem region in green, and
the flanking regions in pink. One subunit is rendered in surface view
and colored according to sequence conservation between Redb and
Rad52 family proteins based on the alignment in Figure 1 (yellow to
red, least to highest degree of conservation), with the aid of the
ConSurf server [49]. The basic groove predicted to bind ssDNA is
indicated by a cyan dotted line. (C) Two views of a subunit of the 1KN0
structure (truncated to residues 25–177 for clarity) and colored
according to the degree of conservation with respect to Redb as in
(B). The two conserved patches and predicted locations of the Redb
residues probed in this study are indicated. Residue V77 is buried and is
therefore not displayed.
doi:10.1371/journal.pone.0078869.g002

Redb Characterization
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Subunit Structure of Mutant Proteins
The oligomeric state of each of the variants was investigated

since ring formation is likely to be important for proper

functioning of Redb. Analysis by native PAGE (Figure 6A)

revealed that Redb WT and the majority of the mutants (Y64A,

K69A, V77A, G78A, V79A, D80A, K132A, R152A, and K172A)

migrate as a single diffuse band, although there was some variation

in the relative mobility of migrated species. In contrast, the

majority of K148A and R149A appear as distinct bands of much

lower molecular mass, with the remainder of the protein forming a

ladder-like pattern of successively higher-order oligomers when

larger amounts of protein are loaded (Figure S3). In addition,

R161A showed a similar ladder pattern, but without a single

predominant species (Figure 6A).

Figure 3. Binding of Redb WT and mutant proteins to ssDNA. (A) Gel retardation assays showing binding of Redb WT and mutant proteins to
ssDNA. Varying concentrations of Redb (0, 0.09, 0.19, 0.38, 0.75, 1.5, 3, 6, 12.5, 25, 50, 100 mM) were mixed with 10 nM 59 Cy3-labeled 50 mer
oligonucleotide as described in the Materials and Methods. Samples were fixed with 0.1% glutaraldehyde prior to separation on 6% PAGE. (B and C)
DNA binding analysis based on quantification of the gels in (A). The percentage ssDNA bound by Redb proteins at 3 mM is presented as a bar graph in
(C).
doi:10.1371/journal.pone.0078869.g003

Redb Characterization
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Size-exclusion chromatography has commonly been used to

estimate the molecular weights of toroidal SSAPs [38,41,42,43]

and was employed here to further probe the quaternary structure

of the Redb variants (Figure 6B). Consistent with the native PAGE

results, Redb WT and most of the mutants (Y64A, K69A, V77A,

G78A, V79A, D80A, K132A, R152A and K172A) eluted as a

single peak of approximately 600 kDa. In the case of full-length

hRAD52, similarly large-sized peaks have been attributed to

complexes of several heptameric rings [38]. Redb is known to

form 11 or 12 mer rings in the absence of DNA [21,22],

potentially indicating that the 600 kDa peak is comprised of two or

more 11 or 12 mer rings. (Figure S4). Interestingly, a two-ring

complex has been proposed for the phage ul36 Sak protein [36].

Consistent with the native PAGE results (Figure 6A), K148A and

R149A mutant proteins yielded single peaks of considerably lower

molecular mass than WT, corresponding to complexes of

approximately 3 subunits (Figure 6B). Also as seen with native

PAGE, R161A exhibited an altered oligomeric state, eluting as

two major peaks, one at the void volume corresponding to

aggregated material and the other with a molecular mass higher

than WT (likely over 800 kDa). Taken together, these results

suggest that RedbWT in the apo form adopts a multimeric subunit

structure, which is disrupted by mutation of either K148 or R149.

In addition, the R161A mutant, despite folding normally (Figure

S1), is prone to aggregation, consistent with its poor DNA binding

and annealing activity. The remaining Redb mutants do not

appear to significantly affect multimer formation.

Transmission Electron microscopy (TEM) Analysis
We used TEM for direct visualization of the quaternary

arrangement of Redb variants in the presence or absence of the

50-nt ssDNA substrate (Figure 7). The apo WT protein was

observed as a heterogeneous mixture of structures that includes

numerous toroids with an average outer diameter of 12 nm

(range = 7.7–15.6 nm) similar to the dimensions reported previ-

ously [21] (Figure 7A). The majority of the mutants, including

K69A which exhibited an inhibitory effect on annealing, displayed

similar ring structures, although some mutants showed a greater

number of incomplete or non-ring structures. In the case of

R161A, WT-like rings were observed alongside larger protein

aggregates, while for the K148A and R149A mutants very few

multimeric structures were observed, consistent with the results

from both native PAGE and size exclusion chromatography.

Redb WT complexed with ssDNA oligonucleotides has been

variously reported to form ring structures of 15–18 subunits [21]

or disordered structures [22]. In our TEM images, WT protein

mixed with 50 nt ssDNA produced distinct rings and filaments

that presumably constitute nucleoprotein complexes (Figure 7B).

These structures differ from those seen in the apo form, the

filaments being thicker (2.0–2.5 nm) and the rings having a larger

average outer diameter of 16 nm. In the case of the mutant

proteins the propensity to form filaments and larger rings in the

presence of ssDNA varied considerably. Several displayed a similar

appearance to WT (Y64A, K69A), while others formed mainly

incomplete rings or filaments (D80A, K132A, K148A, K172A). In

contrast, some mutants appeared largely unchanged from their apo

structures, suggesting limited nucleoprotein complex formation

(V77A, G78A, V79A, R149A, R152A, R161A). Overall, the TEM

data correlate well with the ability of the substitution mutants to

interact with ssDNA in the electrophoretic ssDNA binding

experiments. One notable finding is that K148A is able to form

a complex with ssDNA despite having a disrupted quaternary

structure in the apo form.

Figure 4. Binding of Redb WT and mutant proteins to
sequentially added complementary DNA strands. Gel retardation
assays were performed using varying concentrations of Redb (0.1, 0.3,
0.9, 2.7 mM) and 5 nM each of sequentially added complementary DNA
strands. Images of the actual gels are shown in Figure S2.
doi:10.1371/journal.pone.0078869.g004

Figure 5. ssDNA annealing activities of Redb WT and mutants.
(A) Gel retardation assays showing formation of double-stranded DNA
as a function of time. Lanes correspond to 0, 1, 2, 3, 6, 12, and 24 min
time points. (B) Percentage of DNA annealing catalyzed by the Redb
variants as a function of time. Spontaneous annealing (without Redb) is
indicated by the dotted line.
doi:10.1371/journal.pone.0078869.g005

Redb Characterization
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Discussion

Although the question of how SSAPs, and in particular Redb,
function to generate recombinants using relatively short regions of

nucleotide sequence homology is fundamentally important, a

detailed structure-function analysis, beyond that of functional

domains [44], has so far been lacking. One approach has been to

clarify the evolutionary relationships between Redb and other

SSAPs, although this has led to somewhat conflicting results.

Our own analysis suggests key similarities between the N-

terminal domain of Rad52 and those of the phage SSAPs Sak and

Redb. We propose that Rad52, Sak and Redb represent three

distinct but related families within a larger superfamily, which

although exhibiting limited sequence homology, share a conserved

architectural core and a similar mode of action.

To test our hypotheses, 13 residues in Redb were selected as

targets for mutagenesis and the purified mutant proteins assessed

experimentally for their impact on DNA binding and annealing.

The results of these investigations, summarized in Table S1,

largely validate the functional importance of the conserved

residues identified in the sequence alignment. However, several

notable and somewhat counterintuitive results were obtained

whose implications will be discussed below.

For the hydrophobic cluster (Redb residues 77–82), the

corresponding residues in hRad52 (79–84) are localized at the

interface between two adjacent subunits in the toroidal structure;

in particular the large side-chain of Y81 (V79 in Redb) inserts into
a hydrophobic cavity of an adjacent subunit, in a ball-and-socket

manner likely to be important in maintaining the oligomeric ring

configuration. Despite this, our results reveal that the correspond-

ing point mutants in Redb retain an intact oligomeric structure yet

display a loss of DNA binding ability, which is particularly severe

with residues V77, G78 and V79 but only mild in the case of D80.

It should be noted that a similar phenomenon has been reported

for the corresponding residues in full-length hRad52 [38]. In the

related yeast mitochondrial DNA recombination protein

Mgm101, mutation of the equivalent residue to Redb V77

(F153A) likewise resulted in poor ssDNA binding [27], although

this Mgm101 mutant also displayed aggregation which could have

contributed to the defect. A possible explanation for the effect on

DNA binding is that mutations at the hydrophobic region may

lead to structural changes that indirectly affect the configuration of

the ssDNA binding residues at the protein surface, making them

less able to bind DNA. A second and related possibility is that the

mutations may inhibit conformational changes that Redb must

make upon binding to ssDNA [21,22]. The loss of annealing

activity in mutants V77A, G78A and V79A most likely arises from

their inability to bind ssDNA substrates. With respect to the lack of

effect on oligomeric structure, it is possible that the C-terminal

domains in full-length Redb and Rad52 provide additional

interactions that stabilize the quaternary structure despite muta-

tions at the conserved hydrophobic subunit interface.

The conserved basic cluster in the Rad52 N-terminal structure,

corresponding to Redb residues 148–152, constitutes a groove

encircling the oligomeric ring and represents the probable ssDNA

binding site. Mutations at these residues in Redb conferred a

significant loss in DNA binding ability, consistent with the results

obtained with Rad52 [32,38], particularly for R152A. However, it

should be noted that DNA annealing activity is not entirely

abolished in these mutants. Both K148A and R149A exhibited an

inability to form higher-order oligomeric species and showed

defects in ring formation under TEM in the absence of ssDNA. In

the case of R149A, the corresponding residue in the hRad52

structure (R153) participates in hydrogen bond interactions with a

neighboring subunit, which might account for the defects in

oligomerization [32]. However, this is not the case with K148A

where the equivalent residue in hRad52 (K152) points towards the

groove and does not appear to participate directly in intersubunit

interactions. Indirect effects cannot be ruled out, especially given

the proximity of the adjacent residue in each case, nor possible

differences between the structures of Redb and the N-terminal

domain and full-length Rad52 proteins. Interestingly, the oligo-

Figure 6. Characterization of the oligomeric structure of Redb mutant proteins. (A) Native PAGE analysis of Redb protein variants. Proteins
(10 mg per lane) were separated on a 5–20% gradient polyacrylamide gel and visualized by staining with Coomassie Blue. (B) Size-exclusion
chromatography of Redb mutants. Proteins (10 ml of 6 mg/ml) were applied to a Superdex 200 5/150 GL gel filtration column in 20 mM potassium
phosphate pH 6.0, 10 mM MgCl2, 0.15 M NaCl. Molecular masses were estimated by constructing a calibration curve from known molecular mass
standards: ovalbumin (44 kDa), conalbumin (75 kDa), aldolase (158 kDa) and ferritin (440 kDa).
doi:10.1371/journal.pone.0078869.g006
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meric status of the relevant mutants in Rad52 or Sak has not been

reported. It should also be highlighted that the Redb mutant

K148A, despite the disruption of the native ring structure and a

reduced DNA binding ability, showed the formation of nucleo-

protein filaments in the presence of ssDNA under TEM. These

results suggest that, at least in the case of Redb, ssDNA binding

Figure 7. Visualization of Redb WT and mutant protein oligomers by TEM. Images were obtained for proteins (2 mM) alone (A) or in the
presence of 1 mM 50 nt ssDNA (B). The scale bars represent 50 nm.
doi:10.1371/journal.pone.0078869.g007
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and annealing may occur even without the capacity to assemble a

complete toroidal structure. However, we cannot exclude the

possibility that the inclusion of complementary ssDNA strands in a

reaction has some stabilizing effect that promotes partial or

complete ring formation to occur even though higher order

structures were not observed under TEM in the presence or

absence of a single DNA strand.

For residues outside the stem region, Redb residue K69 merits

special attention. Although the residue is conserved within the

Redb family of sequences, its correspondence to residue R70 of

hRad52 is not entirely certain. From our results, Redb K69A

displays a WT-like oligomeric structure and shows only a

moderate reduction in DNA binding, consistent with previous

findings on Redb [44]. However, in ssDNA annealing assays

K69A displayed a marked inhibitory effect, such that rate of strand

annealing was considerably reduced compared to the rate of

spontaneous DNA annealing in the absence of protein. We

propose that Redb K69A retains the capacity to interact with two

ssDNA molecules yet binds in such a way as to hinder annealing of

the two strands. How this inhibition occurs and its implications for

the mechanism of annealing by Redb warrants further investiga-

tion.

Mutation at R161 (R161C) in Redb has previously been

reported to cause a dramatic decrease in single-strand annealing

in vivo [37], although there is no obvious equivalent of this residue

in hRad52 according to our analysis. Consistent with the

published experimental data, we found a significant decrease in

the DNA binding and annealing activities of an R161A mutant

in vitro (Figures 3–5). Native PAGE, gel filtration chromatography

and TEM (Figure 6 and 7) suggest that this mutation leads to the

formation of abnormally large protein aggregates, although TEM

results show that oligomeric ring formation is not itself impaired.

From these results we deduce that the loss of DNA binding in

R161A is a consequence of a large proportion of the protein being

sequestered in non-functional aggregates.

From our results, the Redb Y64A mutant only exhibited mild

perturbations in DNA binding and annealing. In contrast, the

corresponding mutation in hRad52, Y65A results in a drastic

reduction in ssDNA binding activity [32,38]. It is possible that,

although tyrosines at this position are ostensibly conserved, they

play different roles in the two protein families.

Similar overall effects were observed for the mutants K132A

and K172A, which are only weakly conserved in our sequence

alignments. In both cases, the mutation caused only a moderate

reduction in ssDNA binding activity and relatively more significant

effects on second strand DNA binding and annealing activity.

Although poorly conserved, it is possible that these and other

residues participate in a network of positively-charged residues on

the surface of the protein that stabilize second-strand DNA

interactions and thereby promote annealing. A previous study

reported that K172A mutation leads to the abrogation of DNA

binding in a sequential, two-strand DNA-binding assay with Redb
[44]. However, it should be noted that the mutant generated

therein was made in a truncated Redb background (residues 1–

188) and removal of the C-terminal region may exacerbate the

effects of the K172A mutation seen in our study.

Our gel filtration data suggest that Redb WT exists predom-

inantly as multimers of an 11–12mer ring, although a precise

estimate of molecular mass by this approach is not possible. It is

interesting to note that for Sak protein, both full-length and N-

terminal versions are predicted to form mixtures of 11 and 22mers

[36]. The fact that the crystal structure of the N-terminal part of

Rad52 is an undecamer is important as the structural arrangement

of the full-length (heptamer-forming) protein may differ signifi-

cantly, with concomitant effects on the function of specific regions

and residues. The results in this study may reflect a conformation

of Redb in terms of intra-and inter-subunit interactions that most

closely resembles that of full-length Rad52 although with 11–12-

fold, rather than 7-fold, rotational symmetry.

Existing HR models suggest that a single SSAP ring binds to

one ssDNA strand [31] before a second strand is positioned and

anneals. Models for the annealing mechanism of these proteins

often invoke two rings somehow acting in tandem with one ring

binding to each of the single strands to be annealed [45,46].

Further studies with appropriate DNA substrates will be required

to understand if this is the case in Redb.
The work presented here clarifies the relationship between

Redb, Sak and Rad52 SSAPs and offers the first study to validate

this relationship experimentally by alanine mutagenesis of Redb.
Residues in Redb conserved between the three protein families

show similar functionality, although several novel features are

apparent. Significantly, residues at the subunit interface are linked

to DNA binding while others implicated in DNA binding in Sak

and Rad52 were also associated with oligomer formation. These

results provide the basis for further work to clarify the oligomeric

states of Redb and related proteins including a better understand-

ing of the structure of the full-length protein and the mechanism of

ssDNA annealing.

Materials and Methods

Sequence Alignments
The sequences for full-length Redb and hRad52 were searched

separately against the RefSeq database in NCBI using PSI-

BLAST; and the related sequences used to build the consensus

alignment for each family were selected to obtain as broad a range

of homologues as possible and at the same time avoid sequences

that differed by only a few residues. Redb family sequences were

selected within a BLAST maximum score of 157–259 (maximum

identity of 46–65%). The selected sequences were then aligned

using the T-Coffee program [47]. For the Rad52 family, the

criteria applied were a BLAST maximum score of 152–523

(maximum identity of 48–68%). In both cases conserved features

within each family were noted. Subsequently, the two alignments

were merged in Jalview [48] and the N-terminal domains were

aligned using the Clustal module, in addition to manual alignment

using the conserved residues as a guide.

Site-directed Mutagenesis of the Bet Gene
The bet gene was amplified from phage l genomic DNA using

Pfx DNA polymerase and oligonucleotides 59-TAAAACATAT-

GAGTACTGCACTCGC-39 and 59-TGCAG-

GATCCTGTCCGGTGTCATGC-39. The PCR product was

digested with NdeI and BamHI (underlined) and inserted into

pGADT7 to create pFC142. The integrity of the cloned gene was

confirmed by DNA sequencing. The insert from pFC142 was

subcloned into the pET14b expression vector using the same

restriction sites. The latter construct expresses the Redb protein

with an N-terminal 6-histidine tag. Alanine substitution mutants

were generated using the Phusion high-fidelity PCR kit (Thermo

Fisher Scientific). Each PCR contained 10 mg of the template (bet

gene in pET14b), 0.26 mM each of the forward and reverse

oligonucleotide primers containing the desired point mutation

(Operon Biotechnologies), 200 mM dNTPs, 3% DMSO, 0.04 U/

ml Phusion DNA polymerase and Phusion buffer in a total volume

of 25 ml. The mixture was incubated at 98uC for 30 seconds

followed by 18 cycles at 98uC for 10 seconds, 50uC for 30 seconds

and 72uC for 3 minutes, followed by a final step at 72uC for 10
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minutes. For some of the mutants an annealing temperature of 45

or 55uC was necessary. Ten units of DpnI (New England Biolabs)

was added to the completed PCR reactions which were incubated

at 37uC for 1 hour. A portion of the digested sample was

introduced into XL10-Gold Ultracompetent cells (Agilent Tech-

nology) and transformants selected on LB agar plates containing

0.1 mg/ml ampicillin. The successful introduction of each

mutation was confirmed by DNA sequencing.

Protein Purification
BL21(DE3) competent cells (New England Biolabs) were

transformed with the WT polyhistidine-tagged bet construct and

its mutant derivatives. Cells were pre-cultured overnight at 37uC
in LB medium containing 0.1 mg/ml ampicillin, inoculated into

1 L of the same medium and cultivated to an A600 nm of ,0.7.

Redb protein expression was initiated by addition of isopropyl-b-
D-thiogalactopyranoside to a final concentration of 0.4 mM and

cells harvested by centrifugation after 3 hours. Cells were

resuspended in histidine-tag binding buffer (20 mM Tris-HCl

pH 8.0, 0.5 M NaCl, 30 mM imidazole) and lysed by sonication.

The lysate was clarified by centrifugation and the supernatant

applied to a HisTrap FF column (GE Healthcare). After washing

in histidine-tag binding buffer, bound proteins were eluted with

his-tag elution buffer (20 mM Tris-HCl pH 8.0, 0.5 M NaCl,

265 mM imidazole). Buffer exchange was performed using

Amicon Ultra 10,000 MWCO spin columns (Merck Millipore)

against 20 mM Tris-HCl pH 8.0, 0.5 M NaCl. The 17-residue

histidine-tag moiety was removed by addition of 10 U thrombin

(Nacalai Tesque) followed by incubation at 20uC for ,16 hours.

Uncleaved protein was removed by passage through a HisTrap FF

column in histidine-tag binding buffer, while thrombin protease

was eliminated subsequently using a Benzamidine FF column (GE

Healthcare). Redb protein samples were subjected to buffer

exchange and concentration against 20 mM Tris-HCl pH 8.0,

1 mM DTT, 10% glycerol using Amicon Ultra 10,000 MWCO

spin columns. A portion of the sample was kept at 4uC and used

directly for CD analysis. The remainder of the purified protein

samples were subjected to buffer exchange/concentration against

20 mM Tris-HCl pH 8.0, 1 mM DTT, 50% glycerol and stored

at 220uC until further use.

Circular Dichroism Spectroscopy
Purified Redb proteins (0.1 mg/ml) in 20 mM potassium

phosphate pH 6.0 buffer were placed in a quartz cuvette with a

0.1 cm path length and circular dichroism in the range of 500-

190 nm was monitored at room temperature using a Jasco J-720

spectropolarimeter.

Non-denaturing (native) PAGE
10 mg of protein was mixed with loading buffer (to a final

concentration of 62.5 mM Tris-HCl pH 6.8, 10% glycerol,

0.002% bromphenol blue) and separated on a 5–20% gradient

polyacrylamide gel (ATTO) using 25 mM Tris, 192 mM glycine

as running buffer at 200 V, 30 mA for 1 h. The gel was stained

with Coomassie Brilliant Blue R-250.

Gel Filtration Chromatography
Redb protein samples (10 ml of 4 mg/ml) were applied to a

Superdex 200 5/150 column (GE Healthcare) in buffer containing

20 mM potassium phosphate pH 6.0, 10 mM MgCl2, 0.15 M

NaCl. The molecular mass of eluting species was estimated from a

standard curve constructed from a high molecular weight

calibration kit (GE Healthcare) consisting of ferritin, aldolase,

conalbumin and ovalbumin.

ssDNA Binding Assay
Varying amounts of Redb (including a control without protein)

were mixed with 10 nM of a 50 nt single-stranded DNA substrate

(59-TGCGGATGGCTTAGAGCTTAATTGCT-

GAATCTGGTGCTGTAGCTCAACAT-39) labeled with Cy3 at

the 59 end (Operon Biotechnologies). Binding mixtures (10 ml)
were incubated for 40 minutes at 37uC in 50 mM potassium

phosphate buffer pH 6.0, 5 mM EDTA, 5% glycerol, 0.1 mg/ml

BSA. Samples were fixed with 0.1% glutaraldehyde and incubated

for a further 20 min at 37uC. Loading buffer containing glycerol

and xylene cyanol was added and samples separated on a 6%

DNA retardation gel (Life Technologies) in 0.56TBE buffer and

visualized using a Molecular Imager FX (Bio-Rad). Band

intensities were quantified using ImageJ (http://imagej.nih.gov/

ij/); the area beneath a rectangle spanning both the bound and

unbound substrate in each lane was calculated and used to

determine the percentage DNA bound by Redb protein. Similar

results were obtained by quantifying only the amount of substrate

in each lane.

Second DNA Strand Binding Assay
Varying amounts of Redb were mixed with 5 nM of 50 nt

single-stranded DNA substrate labeled with Cy3 at the 59 end (50-

minus; the same substrate used for the ssDNA binding assay) in

20 mM Tris-HCl pH 7.5, 5 mM MgCl2, 1 mM DTT, 0.1 mg/ml

BSA and incubated for 20 min at 37uC. Unlabeled 50 nt

complementary DNA strand (50-plus) was added to 5 nM final

concentration and further incubated for 40 min at 37uC. Samples

(10 ml) were then electrophoresed and visualized according to the

ssDNA binding assay protocol.

DNA Annealing Assay
Reaction mixtures (70 ml total volume) containing 1.0 mM

Redb, 5 nM Cy3-labeled 50 mer oligonucleotide (50-minus;

identical in sequence to that used in ssDNA binding assays),

20 mM Tris-HCl pH 7.5, 5 mM MgCl2, 1 mM DTT, and

0.1 mg/ml BSA were incubated at 37uC for 20 min. Unlabeled

50 nt complementary strand oligonucleotide (50-plus) was added

at 5 nM final concentration, mixed and 10 ml aliquots of the

reaction were removed at 1, 2, 3, 6, 12, and 24 min and stopped

with 200 nM unlabeled 50-minus oligonucleotide, 0.3 U protein-

ase K (Nacalai Tesque) and 0.5% SDS. For zero time points the

Cy3-labeled 50-minus oligonucleotide was premixed with excess

unlabeled 50-minus oligonucleotide prior to addition of the other

reaction components. A control reaction without Redb was

conducted in parallel. Samples were separated on native 10%

PAGE in 16TAE buffer at 200 V for 120 min and the bands

visualized on a Molecular Imager FX (Bio-Rad). Intensities of the

annealed and unannealed substrate bands were quantified using

ImageJ and the percentage annealing calculated.

TEM
Each Redb mutant variant was dialyzed overnight against

20 mM potassium phosphate buffer pH 8.0 at 4uC. Samples for

TEM observation were prepared with 10 mM protein incubated in

the presence or absence of 5 mM of an unlabeled 50-minus ssDNA

substrate described above and incubated at 37uC for 40 minutes in

a 5 ml mixture containing 20 mM potassium phosphate buffer

pH 6.0 and 20 mM MgCl2. The samples were then fixed by the

addition of glutaraldehyde to 0.6% and incubated further at 37uC
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for 20 minutes. Reaction mixtures were diluted 5-fold in the same

buffer and 4 ml applied to hydrophilized carbon-coated copper

TEM grids (STEM Co.), blot-dried, negative-stained with 3%

phosphotungstic acid (pH 6), blot-dried and allowed to air-dry.

The samples were visualized using a JEOL JEM-1230 80 kV

transmission electron microscope.

Supporting Information

Figure S1 Far-UV CD measurements of Redb WT and
mutant proteins.
(TIF)

Figure S2 Gel shift experiments for second DNA strand
binding activity of Redb WT and mutant proteins.
Electrophoresis was performed after the sequential addition of

two complementary 50 nt DNA strands (5 nM each) to varying

concentrations of Redb (0.1, 0.3, 0.9, 2.7 mM).

(TIF)

Figure S3 Native PAGE analysis using overloaded
samples. Redb WT and mutant proteins (20 mg per lane) were

loaded and run according to the method in Figure 6A. Ladder-like

migration patterns were observed for mutants K148A, R149A,

and R161A.

(TIF)

Figure S4 Standard curve for estimation of molecular
weights using gel filtration chromatography. Kav values

[(Ve - V0)/(Vc - V0)] against log MW of the known protein

standards. The generated linear equation and the R2 values are

also indicated. The dotted line indicates extrapolation of the

standard curve used to estimate the molecular weights of the larger

eluting species, such as Redb WT.

(TIF)

Table S1 Summary of Redb mutant analysis and the
role of equivalent residues in hRad52.
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