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Abstract

System signatures provide a powerful framework for reliability assessment for sys-

tems consisting of exchangeable components. The use of signatures in nonparametric

predictive inference has been presented and leads to lower and upper survival functions

for the system failure time, given failure times of tested components. However, deriv-

ing the system signature is computationally complex. This paper presents how limited

information about the signature can be used to derive bounds on such lower and upper

survival functions and related inferences. If such bounds are sufficiently decisive they

also indicate that more detailed computation of the system signature is not required.

Key words: bounds; exchangeable components; lower and upper survival functions; non-

parametric predictive inference; system signature.

1 Introduction

System signatures are a powerful tool for quantifying reliability of coherent systems con-

sisting of exchangeable components [16]. Consider a system consisting of m exchangeable

components, it could be said that such components are all ‘of the same type’. Throughout

this paper it is assumed that the system is coherent. Let the random failure time of the

system be TS, and let Tj:m be the j-th order statistic of the m random component failure
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times for j = 1, . . . ,m, with T1:m ≤ T2:m ≤ . . . ≤ Tm:m. The system’s signature is the m-

vector q with j-th component qj = P (TS = Tj:m), the probability that the system fails at the

moment of the j-th component failure. Assume that
∑m

j=1 qj = 1, so the system functions

if all components function, has failed if all components have failed, and system failure only

occurs at times of component failures. The survival function of the system failure time is

P (TS > t) =
m
∑

j=1

qjP (Tj:m > t) (1)

Recently, the use of signatures for nonparametric predictive inference (NPI) for system

reliability has been presented [6]. In NPI for system reliability, lower and upper survival

functions are derived for the system’s failure time, these reflect the limited knowledge about

reliability of the components, using only the information from component tests. A brief

introduction to NPI and overview of the results in [6] is given in Section 2.

Derivation of the signature is not straightforward, even for relatively basic systems. But

for specific inferences it may not be necessary to compute the exact signature. If computation

of signatures is stopped before the exact signature is derived, one typically has bounds for

the probabilities qj. We explore the use of such bounds in NPI, leading to lower and upper

bounds for the NPI lower and upper survival functions. For specific inferences, these bounds

based on partially known signatures may already be conclusive, meaning that no further

computation is needed. The basic results for the use of such bounds in NPI are presented

in Section 3, together with explanation of the possible use of information on signatures for

subsystems and comparison of the failure times of two systems. Examples in Section 4

illustrate the results in this paper. Section 5 presents some concluding remarks.

2 Using signatures in NPI

Nonparametric predictive inference (NPI) is a statistical method to learn from data in the

absence of prior knowledge and using only few modelling assumptions [5]. It provides a

solution to some explicit goals for objective (Bayesian) inference, for example the empirical

and logical norms as formulated byWilliamson [4, 17], it is exactly calibrated from frequentist

statistics point of view [15], and it has strong consistency properties within theory of interval

probability [2]. NPI is based on Hill’s assumption A(n) [14] which gives direct probabilities

[11] for one or more real-valued future random quantities, based on observations of n related

random quantities. These probabilities are such that all orderings of the future random

quantities among the observed random quantities are equally likely; for more details we refer

to Coolen [5]. NPI is a framework of statistical theory and methods that use A(n)-based lower

and upper probabilities [9, 10]. An informal way to interpret lower and upper probabilities
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is as follows: A lower probability P (E) for an event E reflects the evidence in available

information in favour of the event E, the corresponding upper probability P (E) for this

event reflects the evidence in available information against this event. These are logically

linked by the conjugacy property P (E) = 1− P (Ec), where Ec is the complementary event

to E [9].

Suppose that in a test of n components, exchangeable with those in the system considered,

the observed failure times were t1 < t2 < . . . < tn. For ease of notation, define t0 = 0 and

tn+1 = ∞. These n observations partition the non-negative real-line into n+1 intervals Ii =

(ti−1, ti) for i = 1, . . . , n+1. Consider reliability of a system with m components, so interest

is in the m failure times of those components, say T1, . . . , Tm. The test data and the future

observations T1, . . . , Tm are linked via repeated use of the assumption A(n) [5, 8]. The order

statistics of the m future observations T1, . . . , Tm are denoted by T1:m ≤ T2:m ≤ . . . ≤ Tm:m.

The following probabilities hold for Tj:m, for j = 1, . . . ,m and for i = 1, . . . , n+ 1 [8]

P (Tj:m ∈ Ii) =

(

i+ j − 2

i− 1

)(

n− i+ 1 +m− j

n− i+ 1

)(

n+m

n

)−1

These probabilities lead to the following NPI lower and upper survival functions for Tj:m,

which are the sharpest bounds for the probability of the event Tj:m > t that can be justified

without further assumptions. The NPI lower survival function for Tj:m is, for t ∈ (ti−1, ti]

STj:m
(t) = P (Tj:m > t) =

n+1
∑

l=i+1

P (Tj:m ∈ Il)

and the NPI upper survival function is, for t ∈ [ti−1, ti)

STj:m
(t) = P (Tj:m > t) =

n+1
∑

l=i

P (Tj:m ∈ Il)

At observed failure times ti, these NPI lower and upper survival functions are equal, that is

STj:m
(ti) = STj:m

(ti) for i = 1, . . . , n, while STj:m
(0) = STj:m

(0) = 1. For t > tn, STj:m
(t) = 0

and STj:m
(t) =

∏m

l=j
l

n+l
> 0. This reflects that there is no evidence in favour of such

components, and hence the system, surviving past time tn (reflected by the lower survival

function being zero), but the evidence against this is limited as there are only n observations

(reflected by the upper survival function being a positive decreasing function of n). The NPI

lower and upper survival functions for the failure time TS of a system with signature q are

[6]

STS
(t) = P (TS > t) =

m
∑

j=1

qjSTj:m
(t) (2)

STS
(t) = P (TS > t) =

m
∑

j=1

qjSTj:m
(t) (3)
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While this is a straightforward generalization of (1), the derivation involves m optimisation

problems which take on the optima simultaneously [6]. For more information about the

statistical framework of NPI, the theory of imprecise probability and applications in the

area of reliability, the reader is referred to [5, 9, 10]1.

3 Partially known signatures

Computation of the system signature is a complex problem due to the fact that m! orderings

in which the m components can fail must be considered [3, 16]. Explicit expressions for

the signature of some specific system structures are available [12], but general algorithms to

compute signatures have not received much attention in the literature, with the noticeable

exception of a logical approach presented by Boland [3] which uses the concept of mini-

mal ordered cut sets, reducing the total number of orderings that need to be counted by

grouping together orderings which share the same minimal ordered cut set. However, as any

computational method has to deal with the very large number of orderings, it is interesting

to consider if one really needs to know the exact signature for a specific inference on the

system’s reliability. It is likely that any method for computing the signature, if ended before

the exact signature has been derived, will provide bounds for the probabilities qj of the sig-

nature. In this paper the use of bounds on qj is explored in NPI. The method presented can

be applied throughout the process of computation of the signature and can indicate when

further computation is not required.

Assume that bounds on the elements of signature q = (q1, . . . , qm) have been derived, with

0 ≤ q
j
≤ qj ≤ qj ≤ 1. Assume

∑m

j=1 qj ≤ 1 and
∑m

j=1 qj ≥ 1, so at least one signature (with

elements summing to one) exists between these bounds. We also assume, for all j = 1, . . . ,m

q
j
≥ 1−

m
∑

l=1
l 6=j

ql and qj ≤ 1−
m
∑

l=1
l 6=j

q
l

(4)

If these inequalities are not satisfied then q
j
can be increased or qj decreased, to the value

which gives equality in the corresponding inequality, without any change to the signatures

q whose elements are all within these bounds.

Suppose that we want to derive the NPI lower and upper survival functions (2) and

(3) based on the observed failure times of n tested components which are exchangeable

with those in the system. If the exact system signature is not known, but bounds q
j
and

qj are available for each probability qj, then these can be used to derive lower and upper

bounds for these NPI lower and upper survival functions. These will be the tightest possible

1See also www.npi-statistics.com and www.sipta.org
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bounds corresponding to these bounds for the elements of the signature. Because STj:m
(t)

and STj:m
(t) are increasing functions of j, for all t > 0, it is clear that we can derive two

signatures with all their elements within the bounds and such that one of them provides

the maximum lower bound for both STS
(t) and STS

(t) and the other provides the minimum

upper bound for both STS
(t) and STS

(t), for all t > 0. This corresponds to the link between

the stochastic ordering of random failure times of systems and the stochastic ordering of

their signatures [16]. It is logical to call the signature within these bounds which provides

the maximum lower bound for the NPI lower and upper survival functions, the ‘pessimistic

signature’, and denote it by qp. Similarly, we call the one which provides the minimum upper

bound for the NPI lower and upper survival functions, the ‘optimistic signature’, and denote

it by qo. These terms follow the logical interpretation of ‘pessimistic’ and ‘optimistic’ in

terms of survival of the system and the lack of knowledge of the actual NPI lower and upper

survival functions as the exact signature is not known.

The pessimistic signature puts the probability mass that is flexible according to the given

bounds q
j
and qj as far to the left as possible, so to elements with lower values of j, hence

making earlier system failure more likely. The optimistic signature puts this probability

mass as far to the right as possible, so to elements with higher values of j, hence making

later system failure more likely. Algorithms to derive qp and qo are easy to implement, and

lead to

qp = (q1, . . . , qjp−1, 1−

jp−1
∑

j=1

qj −
m
∑

j=jp+1

q
j
, q

jp+1
, . . . , q

m
)

qo = (q
1
, . . . , q

jo−1
, 1−

jo−1
∑

j=1

q
j
−

m
∑

j=jo+1

qj, qjo+1, . . . , qm)

for some jp, jo ∈ {1, . . . ,m}. The assumptions (4) ensure that the jp, jo are unique and

qpjp ∈ [q
jp
, qjp ] and qojo ∈ [q

jo
, qjo ].

The lower and upper bounds for the NPI lower and upper survival functions for TS follow

immediately from (2), (3) and the pessimistic and optimistic signatures qp and q0,

Sp
TS
(t) =

m
∑

j=1

qpjSTj:m
(t) (5)

So
TS
(t) =

m
∑

j=1

qojSTj:m
(t) (6)
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and the lower and upper bounds for the NPI upper survival function for TS are

S
p

TS
(t) =

m
∑

j=1

qpjSTj:m
(t) (7)

S
o

TS
(t) =

m
∑

j=1

qojSTj:m
(t) (8)

These are the sharpest bounds for the NPI lower and upper survival functions for TS corre-

sponding to the bounds q
j
and qj for qj, for j = 1, . . . ,m.

Due to the construction of these bounds, it is clear that they can actually be attained.

So, when the real signature q is only known up to such bounds for its individual elements, it

follows that the NPI lower and upper survival functions for TS are between their respective

bounds, and nothing more can be deduced without additional assumptions or indeed without

further computation of the signature. Further computation which falls short of deriving

the exact signature will lead to new bounds for the NPI lower and upper survival functions

which are within the corresponding earlier bounds. This may be useful for deciding if further

computation is required for a specific inferential problem. For example, if one is interested in

the system’s reliability at time t∗ and requires a minimum probability of p∗ for the system to

function at time t∗, then Sp
TS
(t∗) ≥ p∗ would imply that the reliability requirement is certainly

met without need for further computation of the signature. Similarly, if S
o

TS
(t∗) < p∗ then

the reliability requirement is certainly not met. In the other situations one cannot draw a

firm conclusion about whether or not the reliability requirement is met and one may want to

continue computation of the system signature. Even with the exact signature it is possible

that no firm conclusion can be drawn, namely if STS
(t∗) < p∗ ≤ STS

(t∗). In such a case one

would either require more test data or use additional information, insights or assumptions

in order to reach a conclusion. We consider it an advantage of the use of lower and upper

probabilities [9] that such situations can occur, as they reflect the limits to the amount of

information in test results. The use of these lower and upper bounds at different levels of

computation of the system signature, so with increasingly accurate bounds, will be illustrated

in Example 1 in Section 4. In all examples we will concentrate on the optimal lower bound

for the NPI lower survival function and the optimal upper bound for the NPI upper survival

function, which are likely to be of most relevance for inferences.

It may be possible to derive a system’s signature by combining signatures of its subsys-

tems. Gaofeng et al [13] present such algorithms for a system consisting of two subsystems in

parallel or series configuration, with all components in the system exchangeable. Of course,

this combination can be applied repeatedly to derive the system’s signature for quite com-

plicated systems, as long as they can be built up by a sequence of pairwise combinations

of subsystems, either in series or parallel configuration. For the NPI approach, bounds for
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the signatures of two subsystems in parallel or series configuration can be used to derive

bounds for the full system’s signature, using the same algorithms. The reason for this is the

assumption that the system is coherent, which implies that a decrease (increase) in reliability

of a component can never lead to increased (decreased) reliability of the system, therefore

a decrease (increase) in reliability of a subsystem can never lead to increased (decreased)

reliability of the system. The pessimistic signatures for the two subsystems can be combined

to give the pessimistic signature for the full system, and combining the optimistic signatures

for the two subsystems leads to the optimistic signature for the full system. For the formu-

lae for such combinations and the algorithms to compute them the reader is refered to [13];

these are used with the optimistic and pessimistic signatures in Example 2 in Section 4 to

illustrates this approach.

In addition to the survival of a system consisting of exchangeable components, the pes-

simistic and optimistic signatures can be used to derive optimal bounds for other inferences.

For example, Coolen and Al-nefaiee [6] considered the comparison of the failure times of two

coherent systems, each consisting of exchangeable components. It is assumed that the failure

times of the components in the different systems are fully independent, so any information

about components’ failure times of one system does not affect (lower and upper) probabilities

involving only failure times of components of the other system. Due to the monotonicity of

this comparison with regard to the systems’ signatures, such comparison with exactly known

signatures [6] can be generalized to partially known signatures. Let the signatures of systems

A and B be qa and qb and their failure times T a and T b, and assume that these systems

have ma and mb components and that na and nb components exchangeble with those in the

respective system were tested, with failure times ta1 < ta2 < . . . < tana
and tb1 < tb2 < . . . < tbnb

.

Let ta0 = tb0 = 0 and tana+1 = tbnb+1 = ∞. If the exact signatures are known, NPI lower and

upper probabilities for the event T a ≤ T b + δ are [6]

P (T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ)

where

P (T a
i:ma

≤ T b
j:mb

+ δ) =
na
∑

l=1

P a,i
l P (T b

j:mb
+ δ ≥ tal )

with P a,i
l = P (T a

i:ma
∈ (tal−1, t

a
l )). Let vl,δ ∈ {1, . . . , nb+1} be such that tbvl,δ−1 < tal −δ < tbvl,δ ,

then

P (T b
j:mb

+ δ ≥ tal ) =

nb+1
∑

v=vl,δ+1

P (T b
j:mb

∈ (tbv−1, t
b
v))
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The corresponding NPI upper probability is

P (T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ)

where

P (T a
i:ma

≤ T b
j:mb

+ δ) =
na+1
∑

l=1

P a,i
l P (T b

j:mb
+ δ ≥ tal−1)

and

P (T b
j:mb

+ δ ≥ tal−1) =

nb+1
∑

v=vl,δ

P (T b
j:mb

∈ (tbv−1, t
b
v))

If the exact signatures are not available but instead bounds qa and qa for qa and qb and qb

for qb have been derived, which are assumed to satisfy (4), then the optimal lower bound for

the NPI lower probability for the event T a ≤ T b+ δ is derived using the optimistic signature

qa,o for System A and the pessimistic signature qb,p for System B

P l(T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qa,oi qb,pj P (T a
i:ma

≤ T b
j:mb

+ δ)

The optimal upper bound for the NPI upper probability for T a ≤ T b + δ is derived using

the pessimistic signature qa,p for System A and the optimistic signature qb,o for System B

P
u
(a≤ T b + δ) =

ma
∑

i=1

mb
∑

j=1

qa,pi qb,oj P (T a
i:ma

≤ T b
j:mb

+ δ)

These bounds follow from the monotonicity of these NPI lower and upper probabilities

with regard to the signatures. The lower bound for the NPI lower probability for this event

corresponds to maximum optimism about the lifetime of System A and maximum pessimism

about the lifetime of System B, which is fully in line with intuition, and of course the other

way around for the upper bound for the NPI upper probability. The upper bound for the NPI

lower probability and the lower bound for the NPI upper probability are of course derived

by taking the alternative optimistic or pessimistic signatures, but these are less likely to be

of interest. This is illustrated in Example 3 in Section 4.

4 Examples

Example 1.

For the system in Figure 1, assume that all 7 components are exchangeable, in the sense

that every ordering of their failure times is equally likely. Computing the signature for

this system involves determining for all of the 7! = 5040 orderings of the failure times of
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the components, at which of these ordered times the system fails. Of course, all 6! = 720

orderings with failure of Component 1 occurring first lead to immediate failure, from which

we can conclude the lower bound q
1
= 0.143. It is easy to see that no other component’s

failure will lead to immediate system failure if it is the first to fail, hence also the upper bound

q1 = 0.143. In addition, it is easy to see that the system cannot function with at most two

functioning components, this leads to the upper bounds q6 = q7 = 0. This information, using

conditions (4) but without further computation, can be reflected by q = (0.143, 0, 0, 0, 0, 0, 0)

and q = (0.143, 0.857, 0.857, 0.857, 0.857, 0, 0). The corresponding pessimistic and optimistic

signatures are qp = (0.143, 0.857, 0, 0, 0, 0, 0) and qo = (0.143, 0, 0, 0, 0.857, 0, 0).

Computation of signatures by counting orderings typically leads to information in the

form of lower bounds q
j
for individual elements of the signature. To illustrate the method

presented in this paper further, Table 1 provides, in addition to the first case just men-

tioned, three more combinations of lower and upper bounds for this system’s signature as

occurred at different stages of its computation [3], with increasing amount of information

in Cases 1 to 4. For each case the pessimistic and optimistic signatures are also presented

in this table. Test component failure times were simulated for this example, with n = 100

observations taken from the Weibull distribution with shape parameter 3 and scale param-

eter 1. The corresponding lower bounds for the NPI lower survival function, Sp
TS
(t) as

given in Equation (5), and the upper bounds for the NPI upper survival function, S
o

TS
(t) as

given in Equation (8), are presented in the plots in Figure 2, where in each plot also the

NPI lower and upper survival functions are presented based on the exact signature, which

is q = (1/5040) × (720, 1200, 1392, 1440, 288, 0, 0) = (0.143, 0.238, 0.276, 0.286, 0.057, 0, 0).

These plots illustrate the use of the bounds as presented in this paper, and also show that

the lower bound of the NPI lower survival function moves up if more details about the sig-

nature become known, in which case the upper bound for the NPI upper survival function

moves down. This figure illustrates nicely the effect of increasing knowledge of the signature,

reflected by bounds for the NPI lower and upper survival functions which become closer to-

gether. Of course, with more information about the signature, going from Case 1 to Case 4,

the resulting bounds are fully nested with those from Case 1 being the widest and containing

the bounds from the other three cases, and so on.

As possible use of these bounds in order to determine when no further computation for the

signature is needed, suppose that there is a reliability requirement that the system’s failure

time should exceed 0.5 with probability at least 0.8. With the bounds for the signature in

Case 1, the upper bound for the NPI upper survival function at 0.5 is greater than 0.8 and

the corresponding lower bound for the NPI lower survival function is less than 0.8, but for

the bounds in Case 2, based on some additional computations, the upper bound for the NPI
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upper survival function at 0.5 is less than 0.8, so it is clear that the reliability requirement

cannot be met and hence that no further computation of the signature is needed. Similarly,

if one only requires that the system’s failure time should exceed 0.5 with probability at least

0.3 then one needs no more computation once the bounds in Case 4 have been derived, as

the corresponding lower bound for the NPI lower survival function at 0.5 exceeds 0.3 hence

this reliability requirement is certainly met.

1

2

3

6

54

7

Figure 1: A system with 7 components (Exs. 1,3)

Case 1 q (0.143, 0, 0, 0, 0, 0, 0)

q (0.143, 0.857, 0.857, 0.857, 0.857, 0, 0)

qp (0.143, 0.857, 0, 0, 0, 0, 0)

qo (0.143, 0, 0, 0, 0.857, 0, 0)

Case 2 q (0.143, 0.143, 0, 0, 0, 0, 0)

q (0.143, 0.857, 0.714, 0.714, 0.714, 0, 0 )

qp (0.143, 0.857, 0, 0, 0, 0, 0)

qo (0.143, 0.143, 0, 0, 0.714, 0, 0)

Case 3 q (0.143, 0.143, 0.076, 0, 0, 0, 0))

q (0.143, 0.781, 0.714, 0.638, 0.638, 0, 0)

qp (0.143, 0.781, 0.076, 0, 0, 0, 0)

qo (0.143, 0.143, 0.076, 0, 0.638, 0, 0)

Case 4 q (0.143, 0.143, 0.152, 0.157, 0, 0, 0)

q (0.143, 0.548, 0.557, 0.562, 0.405, 0, 0)

qp (0.143, 0.548, 0.152, 0.157, 0, 0, 0)

qo (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0)

Table 1: Bounds, pessimistic and optimistic signatures (Ex. 1)

Example 2.
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Case 4

Figure 2: NPI lower and upper survival functions (Ex. 1)

Figure 3 shows a coherent system consisting of 17 exchangeable components, which consists

of two subsystems in parallel configuration. Subsystem A is the same system, consisting

of 7 components (numbered 1-7), as considered in Example 1. Subsystem B consists of

10 components (numbered 8-17). While the exact signature for this full system can be

obtained by using the given signature for Subsystem A together with repeated use of the

algorithm presented by Gaofeng et al [13] for Subsystem B and for the combination of the two

subsystems, we assume, in order to illustrate the use of the bounds on signatures presented

in this paper, that the signatures of subsystems A and B have only been derived partially,

with the bounds and corresponding pessimistic and optimistic signatures as presented in

Table 2.
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Figure 3: Two subsystems in parallel (Ex. 2)

A qa (0.143, 0.143, 0.152, 0.157, 0.100, 0, 0)

qa (0.143, 0.448, 0.457, 0.462, 0.405, 0, 0)

qa,p (0.143, 0.448, 0.152, 0.157, 0.100, 0, 0)

qa,o (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0)

B qb (0.200, 0.222, 0.072, 0.100, 0.046, 0.013, 0, 0, 0, 0)

qb (0.200, 0.222, 0.419, 0.447, 0.393, 0.360, 0, 0, 0, 0)

qb,p (0.200, 0.222, 0.419, 0.100, 0.046, 0.013, 0, 0, 0, 0)

qb,o (0.200, 0.222, 0.072, 0.100, 0.046, 0.360, 0, 0, 0, 0)

Table 2: Bounds, pessimistic and optimistic signatures for subsystems A and B (Ex. 2)

The pessimistic signature for the full 17-component system is derived by application of

the algorithm presented by Gaofeng et al [13] with the use of the pessimistic signatures qa,p

and qb,p, which leads to

qp = (0, 0.015, 0.050, 0.099, 0.161, 0.158, 0.136, 0.109,

0.084, 0.064, 0.048, 0.035, 0.023, 0.013, 0.005, 0, 0)

Applying the same algorithm with the optimistic signatures qa,o and qb,o leads to

qo = (0, 0.015, 0.031, 0.040, 0.046, 0.051, 0.061, 0.078,

0.106, 0.128, 0.164, 0.128, 0.084, 0.047, 0.021, 0, 0)

In Figure 4, the left plot presents the lower bound for the NPI lower survival function

and the upper bound for the NPI upper survival function, both for the failure time of the

full system and based on n = 10 failure times of tested components which are exchangeable
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with those in the system. These failure times were actually simulated from the Weibull

distribution with shape parameter 2 and scale parameter 1, but this is not of much relevance

as we use no information or assumptions about any underlying probability distribution for

the failure times. The right plot in Figure 4 is included for comparison with the following

situation: Suppose that one would apply the NPI method presented in this paper directly

to each subsystem individually, using the bounds given in Table 2, but neglecting the fact

that all components in both subsystems are exchangeable. Making this mistake, one could

continue by calculating bounds for the full system’s survival function following the standard

way for simple parallel systems (effectively using ‘1− (1−Sa)(1−Sb)’, with self-explanatory

notation). The resulting lower and upper survival functions are greater than (or equal to)

the correctly derived bounds for the NPI lower and upper survival function, because for the

correct method the dependence of the components in both systems is taken into account

[5, 6]. An intuitive explanation is as follows: The parallel system will only fail if both

subsystems fail, and if one subsystem is known to fail this contains some information that

suggests that the components are not very reliable, which as a consequence increases the

(lower and upper) probability that the second subsystem also fails (when compared to the

situation with the wrongly assumed independence between the two subsystems). So, in

addition to illustrating the use of the algorithm by Gaofeng et al [13] in case signatures are

only partially known, this example also shows the importance of taking the dependence of

the exchangeable components, due to the limited information about their reliability from

the test results, carefully into account, as is done by the NPI approach.

Example 3.

Consider the systems of Figures 5 and 1, called System A and System B, respectively.

Assume that each system consists of exchangeable components but these are different for

the two systems, assuming independence of the failure times of components in the different

systems. Assume that bounds qa and qa are available for the signature of System A, and

bounds qb and qb for the signature of System B as given in Table 3, which also presents the

pessimistic and optimistic signatures corresponding to these bounds. Assume further that

na = nb = 30 components exchangeable with those of each type in the respective system

have been tested, leading to the failure times in Table 4. The optimal lower bound for the

NPI lower probability and the optimal upper bound for the NPI upper probability for the

event T a
S ≤ T b

S + δ are presented in Figure 6 as functions of δ. These bounds tend to be the

more relevant ones for reliability inferences, as briefly discussed in Example 1. This figure

also gives the NPI lower and upper probabilities for this event corresponding to the exact

signatures [6], which for System B was given in Example 1 and for System A is equal to
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Figure 4: Bounds on NPI lower and upper survival functions (Left); similar but resulting

from wrongly assumed independence of subsystems (Right) (Ex. 2)

qa = (1/720)× (0, 96, 192, 336, 96, 0) = (0, 0.133, 0.267, 0.467, 0.133, 0). Figure 6 presents the

optimal bounds for the NPI lower and upper probabilities for the event TA
S < TB

S + δ, as

function of δ, together with these actual NPI lower and upper probabilities corresponding to

exactly known signatures for both systems. This figure gives a good impression of the actual

difference between the failure times of these two systems, where it should be remarked that

the bounds based on the partial information are still relatively wide compared to the NPI

lower and upper probabilities based on the exact signatures, which shows by considering the

vertical distances between the functions at specific values of δ.

1

2

3

4

5 6

Figure 5: System A (Ex. 3)
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System A qa (0, 0.133, 0.267, 0.044, 0, 0)

qa (0, 0.133, 0.267, 0.600, 0.556, 0)

qa,p (0, 0.133, 0.267, 0.600, 0, 0)

qa,o (0, 0.133, 0.267, 0.044, 0.556, 0)

System B qb (0.143, 0.143, 0.152, 0.157, 0.100, 0, 0)

qb (0.143, 0.448, 0.457, 0.452, 0.405, 0, 0)

qb,p (0.143, 0.448, 0.152, 0.157, 0.100, 0, 0)

qb,o (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0)

Table 3: Bounds, pessimistic and optimistic signatures (Ex. 3)

System A System B

0.223 0.747 0.994 0.154 0.585 1.076

0.265 0.798 1.008 0.155 0.598 1.169

0.372 0.807 1.073 0.347 0.642 1.239

0.419 0.824 1.115 0.402 0.692 1.248

0.564 0.850 1.167 0.483 0.738 1.327

0.630 0.887 1.182 0.512 0.822 1.421

0.675 0.914 1.275 0.513 0.843 1.569

0.685 0.921 1.397 0.548 0.848 1.643

0.709 0.981 1.400 0.563 0.863 1.735

0.727 0.987 1.425 0.574 0.938 2.565

Table 4: Component failure times (Ex. 3)

5 Concluding remarks

all 7 components are exchangeable, in the sense that every ordering of their failure times is

equally likely. - add comment as suggested by ref

The concept of system signature and its use for reliability quantification has received

increasing attention in the literature in recent years. However, computation of the signature

has received relatively little attention and is complex for most systems. In this paper, it is

illustrated how one can base reliability inferences on a partially known signature, assuming

that bounds for the probabilities in the signature are available. Such bounds may typically

result from computations that are based on counting all the orderings, where any further

computations lead to sharpening of the bounds. Recently, interesting results have been

presented by Gaofeng et al [13], who show how signatures for subsystems can be combined
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Figure 6: NPI lower and upper probabilities for TA
S < TB

S + δ and their bounds (Ex. 3).

to derive a system’s signature in case of two subsystems in series or parallel configuration.

Their approach can also be used with partially known signatures, as illustrated in this

paper. An interesting topic for further research is whether such results can also be derived

for subsystems that are in different configurations.

The bounds on signatures considered in this paper could themselves be interpreted as

imprecise probabilities [9, 10]. For the inferences considered in this paper, the bounds corre-

sponded to logical and well-identifiable signatures within the bounds, called the optimistic

and pessimistic signatures. Of course, one may be interested in other inferential problems

for which this nice monotonicity with regard to the signature does not hold. For example, if

one would be interested in the system failing in its second year of operation then the bounds

would be less easy to derive. One could still apply the ideas presented in this paper, but de-

riving the bounds for the inferences that correspond to the bounds for the signature would

need to be formulated as constrained optimisation problems that may require numerical

solution methods.

As indicated in the examples, the lower bound for the NPI lower survival function and
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the upper bound for the NPI upper survival function are most likely to be of main interest.

However, the two other bounds presented can also be useful, particularly as the lower and

upper bounds for the NPI lower survival function provide a clear indication of the accuracy

with which, at any specific stage of computation, the real NPI lower survival function can be

approximated (and similar of course for the NPI upper survival function). This may also be

useful to provide an indication of the value of additional calculations to derive the signature.

An interesting further question is whether it is possible to learn about the system sig-

nature from failure observations. Recently, Aslett [1] has made interesting contributions to

Bayesian learning of the system signature when only data for the whole system are available.

This is important for ‘black-box’ systems, where it is not possible to construct the signature

on the basis of available information. In such cases, system failure data can enable learning

about some aspects of the system signature and hence of the actual structure of the system.

A main restriction for the use of the signature is the fact that it can only be applied to

systems with exchangeable components. This means that all components have to be ‘of the

same type’ and, beyond that, they all should have exchangeable roles in the system as it is

their failure times that are explicitly assumed to be exchangeable. This is very restrictive for

real-world systems, and it leads to some question marks about the applicability of methods

using the signature for most systems of practical interest. It for example also avoids the

use of signature-based methods for inferences and decision support in case of maintenance

or replacement of individual components, as after such an action the component involved

will typically have a changed future lifetime which therefore would typically no longer by

exchangeable with the lifetimes of the other components in the system. Recently, an alter-

native concept entitled ‘survival signature’ has been presented [7], which is closely related to

the signature for systems with exchangeable components but can be, quite straigthforwardly,

generalized to systems with multiple types of components. Further research on this topic,

including its use within the NPI framework, is ongoing and the authors hope to report on it

in the near future.
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