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[1] Discharge from marine-terminating outlet glaciers represents a key component of the
Greenland Ice Sheet mass budget and observations suggest that mass loss from northwest
Greenland has recently accelerated. Despite this, the factors controlling outlet glacier
dynamics within this region have been comparatively poorly studied. Here we use remotely
sensed data to investigate the influence of atmospheric, oceanic, and glacier-specific
controls on the frontal position of Alison Glacier (AG), northwest Greenland, and nine
surrounding outlet glaciers. AG retreated by 9.7 km between 2001 and 2005, following at
least 25 years of minimal change. Results suggest that sea ice and air temperatures influence
glacier frontal position at seasonal and interannual timescales. However, the response of
individual outlet glaciers to forcing was strongly modified by factors specific to each glacier,
specifically variations in fjord width and terminus type. Overall, our results underscore the
need to consider these factors in order to interpret recent rapid changes and predict the
dynamic response of marine-terminating outlet glaciers to atmospheric and oceanic forcing.
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1. Introduction

[2] Numerous studies have documented rapid mass loss
from the Greenland Ice Sheet (GrIS) during the past 20 years
[e.g., Jacob et al., 2012; Rignot and Kanagaratnam, 2006;
Sasgen et al., 2012; van den Broeke et al., 2009], with defi-
cits accelerating by 20.1 ± 1 km3 a�2 between 1992 and
2010 [Rignot et al., 2011]. This loss was attributed approxi-
mately equally to negative surface mass balance, primarily
resulting from an increase in surface melting relative to accu-
mulation, and increased ice discharge from marine-terminat-
ing outlet glaciers [Rignot et al., 2008; Rignot et al., 2011;
van den Broeke et al., 2009]. Indeed, observations have dem-
onstrated that outlet glaciers can undergo rapid dynamic
change and produce substantial mass loss at annual to de-
cadal timescales [Bevan et al., 2012; Howat et al., 2008;
Joughin et al., 2012; Pritchard et al., 2009; Rignot et al.,
2008]. Consequently, understanding the factors controlling
Greenland outlet glacier dynamics is crucial for accurate
prediction of near-future sea-level rise and GrIS response
to climate change [Intergovernmental Panel on Climate
Change, 2007].

[3] At present, considerable uncertainty remains over
the primary drivers of Greenland outlet glacier behavior,
with potential controls including air temperatures, ocean
temperatures, sea ice, and factors specific to individual
glaciers, such as basal topography, fjord geometry, glacier
velocity, width, and catchment area [Carr et al., 2013].
Here we use the term “oceanic” to refer to forcing associated
with sea ice, sea surface temperatures (SSTs), and subsurface
ocean temperatures. Increasing concern over climate warming
from the 1990s together with the synchronous nature of
Greenland outlet glacier retreat in the early 2000s, particularly
in south-eastern Greenland [e.g., Howat et al., 2008;
Murray et al., 2010], led researchers to focus on the role
of atmospheric and oceanic forcing in driving outlet glacier
dynamics. However, recent studies have demonstrated that
the response of individual glaciers to these factors can vary
substantially at regional scales [McFadden et al., 2011] and
that glacier-specific factors, particularly bed topography,
may significantly influence Greenland outlet glacier
behavior [Howat et al., 2011; Joughin et al., 2010a; Nick
et al., 2009; Thomas et al., 2009]. Here we focus specifi-
cally on the role of fjord width, terminus type, and, to a
lesser extent, basal topography in modulating the response
of outlet glaciers to external forcing. Although the potential
influence of basal topography on glacier dynamics has been
recognized for some time [Alley, 1991; Meier and Post,
1987;Weertman, 1974], it has yet to be widely investigated
on the GrIS, due to limited data availability, and other
glacier-specific controls, such as fjord width variations,
remain poorly studied [Carr et al., 2013]. Understanding
the role of these controls is crucial for accurate sea level rise
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prediction, as mass loss rates are frequently extrapolated
from a small number of study glaciers and so inadequate
consideration of glacier-specific factors could lead to
substantial over- or under-estimates.
[4] Here we investigate the influence of atmospheric,

oceanic, and glacier-specific controls on the frontal position
of Alison Glacier (AG), northwest Greenland, and its nine
neighboring marine-terminating outlet glaciers (Figure 1).
Northwest Greenland has undergone rapid mass loss
[Khan et al., 2010] and significant changes in glacier
dynamics in the past decade [Kjær et al., 2012], including
widespread retreat [Howat and Eddy, 2011], substantial
acceleration [Moon et al., 2012] and an increased frequency
of glacial earthquakes [Veitch and Nettles, 2012]. We focus
particularly on AG as it has recently exhibited exceptionally
high retreat rates [Joughin et al., 2010a; McFadden et al.,
2011] in comparison to both regional and ice-sheet wide
values, yet it has been relatively poorly studied. We first

investigate the influence of atmospheric and oceanic forcing
on seasonal changes in frontal position between 2004 and
2010. We then assess the relative importance of these
controls at interannual timescales for the period 1993 to
2010 and evaluate longer-term glacier behavior from 1976
to present. Finally, we investigate the role of fjord width,
terminus type, and basal topography in modulating glacier
response to atmospheric and oceanic forcing.

2. Methods

2.1. Glacier Frontal Position

[5] Outlet glacier frontal positions were obtained from a
combination of radar and visible satellite imagery from
1976 to 2012. The primary source was Synthetic Aperture
Radar (SAR) Image Mode Precision imagery, acquired as
part of the ERS1, ERS2, and Envisat missions and provided
by the European Space Agency (ESA). Scenes were selected

Figure 1. Location of study glaciers, Kitsissorsuit meteorological station (green triangle), and
average outlet glacier retreat rate (symbol color) and total retreat (symbol size) between 2 January 1993
and 26 January 2010. Base image: Landsat scene acquired 27 June 2001 and provided by Global Land
Cover Facility.
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as close to the end of the calendar month as possible to allow
for comparison with monthly climatic and oceanic data. The
images were processed by applying precise orbital state
vectors, provided by the ESA, and radiometric calibration
was applied. Images were then multilooked to reduce speckle
and were terrain corrected using Version 2 of the 30m
resolution Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation Model.
ERS images were coregistered with corresponding Envisat
scenes, which have a higher geolocation accuracy.
Processed scenes were output at a spatial resolution of
37.5m. Where possible, periods of limited SAR Image
Mode data availability were supplemented with Landsat data
obtained from the Global Land Cover Facility (http://glcf.
umiacs.umd.edu/), the USGS Global Visualization Viewer
(http://glovis.usgs.gov/) and USGS Earth Explorer (http://
earthexplorer.usgs.gov/). Frontal positions from 1976 were
obtained from Landsat MSS images acquired on 22 March
(IGD) and 9 April (other glaciers) 1976. Frontal positions
for 1986 were identified from a SPOT-1 panchromatic im-
age, acquired on 9 August 1986).
[6] Adopting previous methods [Howat et al., 2010;

Howat et al., 2008; McFadden et al., 2011; Moon and
Joughin, 2008], changes in terminus position were calculated

by repeatedly digitizing the ice front within a reference box
of fixed width (Figure 2). The edges of the reference box
were orientated approximately parallel to the main ice flow
direction and were joined by a reference line at an arbitrary
distance up-glacier (Figure 2). The glacier terminus was
digitized from sequential images, and the mean change in
frontal position was calculated by dividing the change in
the area of the reference box by its width. This method
improves upon using a single centerline reference point, as
it accounts for uneven changes in the ice front and provides
a more representative measure of frontal position change
[Howat et al., 2008; Moon and Joughin, 2008]. Total retreat
and retreat rates were calculated relative to 2 January 1993,
which was the earliest image available for all of the study
glaciers. Due to data availability, the temporal resolution of
the frontal positions varied during the study period: data were
available at a decadal resolution between 1976 and 1992, at
subannual to annual resolution between 1993 and 2003 and
at approximately monthly intervals between 2004 and 2010.
[7] Potential sources of error in frontal position are:

(i) coregistration of ERS and Envisat images; (ii) geolocation
accuracy of Envisat data; (iii) relative geolocation accuracy
of ERS/Envisat and visible imagery; and (iv) manual digitizing
errors. The error associated with coregistration was assessed

Figure 2. Illustration of the method used for measuring outlet glacier frontal positions, ice velocities, and
fjord width. A reference box was defined which extends parallel to the main ice flow direction from an
arbitrary upstream reference line (red box), and the glacier terminus was repeatedly digitized from
successive images (yellow line). Mean ice velocities were sampled within a 1 km2 box (green box), orientated
parallel to and centered on the glacier centerline (blue line). Blue dots indicate sampling locations for fjord
width perpendicular to the centerline. Fjord width was measured (i) perpendicular to the glacier centerline
(black line) at 500m intervals from the upstream reference line (blue triangles) and (ii) approximately parallel
to the glacier terminus for each available terminus position (pink line). The base image provides a typical
example of an ENVISAT scene used for terminus mapping and shows the ice mélange and calving of
large, tabular icebergs from the terminus of Alison Glacier during its rapid retreat phase. Base image:
ENVISAT ASAR image, acquired 2 October 2004, courtesy of ESA (European Space Agency).
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by manually checking the coregistration of each ERS scene
against its partner Envisat image: ERS scenes that did not
coregister at the imagery resolution were rejected. On the
basis of previous geolocation accuracy assessments, errors
in Envisat geolocation are likely to be substantially less than
the image resolution [Small et al., 2004]. The relative
geolocation of the radar and visible imagery, and manual
digitizing errors, were evaluated by repeatedly digitizing
22 sections of rock coastline from a subsample of five
ERS, five Envisat, and five Landsat images, where there
should be no discernible change in coastline position
between scenes. The resultant total mean error in frontal
position was 28.9 m, which is below the image resolution
and can be primarily attributed to manual digitizing. Due
to their comparatively poor original georeferencing, the
two Landsat MSS images were georeferenced to a later
Landsat image (acquired on 27 June 2001) using distinctive
features on the rock coastline. The resultant root mean
square error was 62m for the image acquired on the 22
March 1976 and 78m for the image from 9 April 1976.

2.2. Glacier and Fjord Width

[8] The initial terminus width of each study glacier was
measured from the earliest common image from 2 January
1993. Terminus width was measured by drawing a line
approximately parallel to each calving front and measuring
the distance between the two points where the line
intersected with the lateral margins of the terminus at sea
level. Fjord width was measured in two ways. First, lines
were drawn perpendicular to the glacier centerline at
intervals of 500m from the upstream reference line, and
fjord width was measured between the two points where
the lines intersected with the fjord walls at sea level
(Figure 2). Second, lines were drawn approximately parallel
to the calving front using each available frontal position
and fjord width was measured between the points where
the lines intersected with the fjord walls at sea level
(Figure 2). NW1 retreated inland of its fjord during the
study period and fjord width was therefore only measured
in the section where the terminus was between the fjord
walls. Furthermore, width was not measured perpendicular
to the calving front, as it became highly concave toward
the end of the study period which precluded accurate width
measurements using this approach.

2.3. Outlet Glacier Velocities

[9] Ice velocity data were extracted at two time steps
(winter 2000–2001 and winter 2005–2006) from the annual
ice-sheet-wide velocity maps for the GrIS, developed as
part of the NASA Making Earth Science Data Records for
Use in Research Environments (MEaSUREs) program
[Joughin et al., 2010b]. The velocity data were derived
using Interferometric SAR data from the RADARSAT-1
satellite. Mean ice velocities were sampled within a 1 km2

box, which was centered on and orientated parallel to the
glacier centerlines and located 1 km from the glacier
terminus, as identified from the winter 2005–2006 velocity
map (Figure 2).

2.4. Subglacial Topography

[10] Subglacial topographic data were supplied by Center
for Remote Sensing of Ice Sheets (CReSIS) (ftp://data.

cresis.ku.edu/data). The Level 2 “Ice Thickness,” “Ice
Surface,” and “Ice Bottom” elevations products were used,
which provides measurements of ice-bottom elevations along
a series of flightlines across the GIS. Here we used the 2010
Greenland P-3 data set, which was collected between 19 and
21 May 2010 as part of Operation IceBridge aircraft surveys,
using the Multichannel Coherent Radar Depth Sounder
sensor on the NASA P-3B platform. This data set was
selected as it provided the best spatial coverage and data
quality within the study region. Data were available for one
flightline perpendicular to the coastline and six parallel to
the coastline, which were spaced between 2 and 5 km apart.
The along-track sample spacing was approximately 14.5m,
and the along-track horizontal resolution was approximately
25m (http://nsidc.org/data/docs/daac/icebridge/irmcr2/index.
html). The depth resolution of the data was 4.5m. In-built
quality flags identify data points as a high, medium, and low
confidence pick: this information was used to exclude all data
points that were medium or low confidence. Landsat imagery
was then used to remove any data points acquired over ocean
or land. Further information on data processing, error sources,
and specific errors associated with the 2010 Greenland P-3
data are available from http://nsidc.org/data/docs/daac/
icebridge/irmcr2/index.html.

2.5. Atmospheric and Oceanic Data

[11] Atmospheric and oceanic data were compiled from a
variety of sources and seasonal and monthly means were
calculated for comparison with glacier frontal position data.
Surface air temperature (SAT) data were obtained from
Kitsissorsuit meteorological station (57°49′36″W 74°1′58″N;
Figure 1) and were provided by the Danish Meteorological
Institute (DMI) at a three-hourly temporal resolution
[Carstensen and Jørgensen, 2011]. Data were filtered to
account for missing values and were only used in the
calculation of monthly/annual averages if the following
criteria were met [Cappelen, 2011]: (i) no more than two
consecutive records were missing in a day; (ii) no more than
three records in total were missing in a day; (iii) daily
averages were available for 22 or more days per month;
and (iv) monthly averages were available for all months of
the year. The filtered data were then used to calculate mean
monthly, summer (JJA), and annual air temperatures and the
number of positive degree days (PDDs) per year.
[12] In order to assess the extent to which temperature

data at Kitsissosuit are representative across the study
region, a latitudinal lapse rate was calculated using mean
monthly data from DMI meteorological stations at Nuusuaq
(located 386 km south of Kitsissosuit) and Kitsussut (located
512 km north of Kitsissosuit). The estimated lapse rate was
0.004°C/km, which equates to a mean temperature difference
of 0.43°C between Kitsissosuit and the most northerly glacier,
NW7. This value is substantially smaller than the magnitude
of interannual warming, and we focus primarily on air
temperature trends, rather than absolute values. At seasonal
timescales, we focus on IGD, AG, and NW1, which are the
closest to Kitsissosuit, and the mean air temperature
difference between these glaciers was minimal (0.14°C).
Furthermore, our frontal position data are at a monthly
temporal resolution, so potential differences in seasonal retreat
due to a later onset of melt towards the north of the transect
are unlikely to be detectable within the data resolution.
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[13] Sea ice data were extracted from charts provided by
the National Ice Center, which were compiled from a range
of directly measured and remotely sensed data sources
(http://www.natice.noaa.gov/). Various imagery sources are
incorporated into the charts, including Envisat, Defense
Meteorological Satellite Program Operational Linescan
System, Advanced Very High Resolution Radiometer, and
RADARSAT, which have a spatial resolution down to
50m. Data are provided at a weekly to biweekly temporal
resolution, and the accuracy of sea ice concentrations is
estimated to be ± 10% [Partington et al., 2003]. The data
set uses information from multiple sensors and manual
interpretation, which generally provides more accurate sea
ice information than a single data source.
[14] Data were sampled at each study glacier from a

polygon extending the full width of the terminus and 50m
perpendicular to it, in order to extract sea ice concentrations
from as close to the terminus as possible. For the seasonal
analysis, monthly means were calculated for each study
glacier. Sea ice data from all study glaciers were then used
to calculate monthly and seasonal means for the study
region. On average, monthly and seasonal means for
individual glaciers varied from the regional average by
3.2% and 3.8%, respectively, suggesting that sea ice
concentrations do not vary substantially across the region
and that regional means are representative of conditions at
each study glacier. Regional averages were also used to
calculate the number of ice-free months per year, which
are defined as months when mean monthly sea ice
concentrations are equal to zero.
[15] Monthly SST data were obtained from the Moderate

Resolution Imaging Spectrometer (MODIS), provided by
the NASA Ocean Color Project (http://oceancolor.gsfc.
nasa.gov/), and from Version 2 of the Reynolds SST analysis
data set [Reynolds et al., 2007]. SST data were used to
investigate surface ocean temperatures only and are not
necessarily representative of conditions at depth. MODIS
data were used for the period 2000 to 2010 and have a spatial
resolution of 5 km. The in-built data quality mask was used to
remove pixels flagged as low quality and a combination of
Landsat imagery, and the in-built land mask were used to
remove land pixels. SSTs were then sampled from all grid
squares located within 25 km of each study glacier terminus.
[16] As MODIS data were only available from 2000

onwards, Reynolds SST analysis data were also used to
assess interannual changes in SSTs. However, the Reynolds
data have a comparatively coarse spatial resolution (0.25°)
and MODIS data were therefore used for the more detailed
seasonal analysis between 2004 and 2010. The in-built mask
was used to remove pixels identified as land and sea ice and
values were sampled from the grid squares closest to the
glacier termini. Both data sets were sampled as close to
the termini as possible, as SSTs proximal to the glaciers
are likely to be strongly affected by local factors such as
sea ice, glacial meltwater discharge and icebergs. Monthly
values from each data set were then used to calculate mean
July–September SSTs for the study region, as these months
were identified as ice free in the data quality masks for both
data sets for all years.
[17] In addition to the SST data, subsurface ocean

temperatures were obtained from the Hadley Centre EN3
quality controlled subsurface ocean temperature and salinity

data set [Ingleby and Huddleston, 2007], which is available
at a monthly temporal resolution. Data were sampled from
the 1° by 1° model grid square that was located closest to
the study glaciers, situated at a distance of 37 to 71 km from
the glacier termini. The data provide information on ocean
temperatures on the continental shelf and do not account for
the complex processes within the glacier fjords or at the
calving front. The data are therefore unsuitable for assessing
oceanic conditions at the glacier front and instead are used to
give a general indication of temperature change with depth
in the water column at the continental shelf.

3. Results

3.1. Outlet Glacier Frontal Position

3.1.1. Seasonal Variation
[18] The temporal resolution of the data allows for

analysis of seasonal frontal position variations from 2004
onwards. Data are presented for AG, NW1, and IGD
(Figure 3), which encompass the range of the different types
of seasonal frontal position variation and response to forc-
ing within the study region (seasonal data for the other study
glaciers are provided in the auxiliary material). The onset of
seasonal retreat within the study region usually begins
between April and July and seasonal advance generally
commences between the end of August and the end of
November (Figure 3). However, there is substantial
variation in the timing of seasonal advance/retreat, both on
individual glaciers and across the study region (Figure 3).
With the exception of AG and NW1, seasonal frontal
position variation within the study area averaged approximately
±400m and ranged between±660m at Hayes Glacier and
±210m at NW6. Aside from AG and NW1, the magnitude
of seasonal retreat varied little from year-to-year and
seasonal variations were significantly greater than the
interannual trend, despite an overall pattern of retreat
(Figures 1 and 3). In contrast, the amount of seasonal retreat
at AG fluctuated substantially over the study period: during
the summers of 2004 and 2005, the glacier retreated by
3.61 km and 2.29 km, respectively, and underwent little
seasonal advance (Figure 3a). In contrast, seasonal retreat
in 2008 and 2009 amounted to only 0.89 km and 0.50 km,
respectively (Figure 3a). The magnitude of seasonal retreat
at NW1 also showed substantial interannual variation and
reached a maximum of 1.7 km in summer 2005. Subsequent
to winter 2004, seasonal retreat at NW1 was generally far
greater than seasonal advance (Figure 3d). To obtain an
approximate estimate of winter calving, we compared sea-
sonal advance rates and ice velocities in winter 2005–2006.
AG, NW1, and a number of the other study glaciers advanced
at a rate which was very similar to their flow speed (Table 1),
suggesting that winter calving was minimal. However, the
rate of winter advance was considerably less than the
terminus velocity on other glaciers, including IGD, NW2,
and NW7 (Table 1), indicating that calving may have
persisted during the winter.
3.1.2. Interannual Variation
[19] Due to data availability, interannual glacier retreat

was compared to atmospheric and oceanic forcing data
between 1993 and 2010, and the limited number of frontal
positions available prior to 1992 were used to provide a
longer-term context. Between 1993 and 2010, all study
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glaciers underwent net retreat, which predominantly
occurred during the past decade, and the magnitude of
retreat varied dramatically between glaciers (Table 1 and
Figures 1 and 4a). At AG, both the rate and magnitude of

retreat far exceeded the regional average, with retreat
totaling 11.6 km between 1993 and 2010. Approximately
10 km (84%) of the total retreat at AG occurred between
July 2001 and October 2005, and retreat rates peaked

Table 1. Summary of Glacier Retreat Rates for January 1993 to January 2010, April 1976 to June 2001, and June 2001 to January 2010a

Glacier
Total Retreat

(m)
Retreat Rate
(m a�1)

Retreat Rate
(m a�1)

Retreat Rate
(m a�1)

Glacier
Velocity Glacier Velocity Velocity Change Ice Front Advance Rate

(1993–2010) (1993–2010) (1976–2001) (2001–2010) (winter 2000–
2001)

(winter 2005–
2006)

(winter January 2000 to
June 2005)

(winter June 2005)

NW7 749 42 - - 1090 950 �140 212
NW6 665 37 6 63 800 670 �130 422
NW5 1152 64 30 60 90 100 +10 -
HA 1768 98 7 106 2160 2070 �90 1353
NW4 668 37 7 53 850 830 �20 814
NW3 1925 107 10 179 1060 1050 �10 1025
NW2 196 11 121 15 2710 2480 �230 675
NW1 5317 295 263 551 390 450 +60 653
AG 11,575 643 0 1227 1800 2840 +1040 2687
IGD 824 46 +3 108 2680 2760 +80 1136

aGlaciers are ordered by location, from north to south (see Figure 1), and abbreviations are as follows: AG (Alison Glacier); HA (Hayes Glacier); and
Igdlugdlip Sermia (IGD). The total mean error in frontal position is 28.9m, equating to a mean error in retreat rate of 1.6m a�1. Ice velocities are shown
for winter 2000–2001 and 2005–2006 and are used to calculate change in glacier velocity between the two time periods. Velocities were obtained the
MEaSUREs ice-sheet-wide velocity maps [Joughin et al., 2010b]. Winter ice front advance rates are shown for 2005–2006 and were calculated from glacier
frontal position data. Note the markedly higher retreat rates on AG and NW1 in comparison to the other study glaciers.

Figure 3. Outlet glacier frontal position (black crosses) and seasonal atmospheric and oceanic forcing
factors at (left) Alison Glacier, (middle) NW1, and (right) IGD. (a, d, and g) Mean monthly sea ice concen-
trations plotted in percent, with fast ice (i.e., 100%) in blue and all other values in red. (b, e, and h) Mean
monthly air temperatures for Kitsissorsuit meteorological station, plotted in red for temperatures above 0°C
and blue for temperatures below 0°C. (c, f, and i) Mean monthly sea surface temperatures (SST) from
MODIS data.
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between July and October 2004, when the glacier retreated
over 3 km (Figures 1 and 4a). Retreat was accompanied by
a 63% increase in ice velocities at AG’s terminus between
winter 2000–2001 and 2005–2006 (Table 1). At NW1,
frontal position varied little between 1992 and 2001, and
retreat rates were low (24.8m a�1) (Figure 4a). Retreat rates
then increased in two phases: retreat averaged 221.2m a�1

between June 2001 and July 2006 and increased to
352.5m a�1 thereafter (Figure 4a). The most rapid retreat
at NW1 occurred between July 2006 and September 2006,
when the glacier retreated by 1.2 km, and rapid retreat
phases also occurred during the summers of 2008 and 2009.
[20] The other study glaciers began to retreat from 2001

onwards (Figures 1 and 4a), but the magnitude of total
retreat was smaller (200m to 2 km) and average retreat

rates were slower (10 to 100m a�1) than at AG or NW1
(Table 1 and Figures 1 and 4a). Although the overall trend
was one of retreat, it was comparatively gradual on these
glaciers, and interannual retreat rates were significantly less
than the seasonal variability in frontal position. Between
January 2000 and June 2005, the glaciers underwent mini-
mal acceleration near to the terminus, and a number of
glaciers underwent slight deceleration (Table 1). Two
patterns of interannual retreat are therefore apparent within
the study region between 1993 and 2010: (i) rapid,
nonlinear, step-wise recession, which results in high-magni-
tude retreat at interannual timescales and occurred at AG
and NW1; and (ii) slower, more gradual retreat, which
produces far lower total retreat rates and occurred on the
remaining study glaciers.

Figure 4. Relative glacier frontal position and climatic/oceanic forcing factors. (a) Frontal position for all
glaciers, relative to January 1993, color coded according to glacier. (b) Mean annual and mean summer
(JJA) air temperatures and number of positive degree days (PDD) at Kitsissorsuit meteorological station.
(c) Mean seasonal sea ice concentrations for all study glaciers for the periods December–February (DJF),
March–May (MAM), June–August (JJA), and September–November (SON). (d) Number of months of
ice-free conditions for all study glaciers. (e) Mean sea surface temperatures for July–September (JAS) from
MODIS (light blue) and Reynolds (dark blue) SST data.
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[21] Frontal positions on the majority of the study glaciers
showed little net change between 1976 and 2001 (Figures 5
and 6), and their retreat rates were substantially lower than
between 2001 and 2010 (Table 1). Exceptions to this were
NW1 and NW2 (Figure 2 and Table 1), which retreated by
approximately 6 km and 3 km, respectively, between 1976
and 2001, with the majority of retreat occurring prior to
1986. The western margin of NW7 also retreated during this
period, coincident with the loss of a section of ice located to
the west of the lateral margin of the glacier. At AG, the
terminus position changed very little between 1976 and
2001 (Figure 5 and Table 1): results show a net advance of
9m during this interval, which equates to a rate of 0.4m
a�1, and is significantly less than the frontal position error.

Three distinct phases of frontal position behavior are
therefore apparent at AG: (i) minimal net retreat between
June 1976 and July 2001; (ii) very rapid retreat between
July 2001 and October 2005 at 2431.4m a�1; and (iii) more
gradual retreat at 306.2m a�1 until the end of the study pe-
riod (Figure 5). The vast majority of retreat on AG and on
the other study glaciers occurred from 2001 onwards.

3.2. Atmospheric and Oceanic Forcing

[22] Mean annual surface air temperature at Kitsissorsuit in-
creased by almost 8°C between 1990 and 2010 (Figure 4b),
which equates to a linear warming trend of 0.29°C per year
(R2 = 0.79). This trend concurs with substantial increases in
air temperature observed at nearby meteorological stations

Figure 5. Frontal position of Alison Glacier in relation to basal elevation, fjord width parallel to the
glacier terminus, and fjord width perpendicular to the centerline. (a): AG frontal position over time (colored
lines) in relation to ice-bottom elevations from CReSIS radar depth sounder flightlines, color coded from
green (high elevation) to red (low elevation). Labeled positions are discussed in the text. Base image:
Landsat scene acquired 11 September 2011 and provided by USGS GLOVIS. (b) AG frontal position over
time (colored crosses), relative to upstream reference line. (c) Fjord width parallel to the glacier terminus for
each available frontal position. (d) Fjord width perpendicular to the centerline at 500m intervals from the
upstream reference line (sample locations indicated by white triangles in Figure 5a).
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during the past two decades [Carr et al., 2013]. Summer
(JJA) air temperatures showed a similar warming trend of
0.20°C per year (R2 = 0.68) between 1990 and 2010, which
was particularly marked from 1996 onwards (Figure 4b).
The number of PDDs at Kitsissorsuit were very high in
1995 and then showed a strong positive trend between
1996 and 2001, followed by a further period of warming
between 2004 and 2009 (Figure 4b).

[23] Mean summer (JJA) and autumn (SON) sea ice
concentrations showed a decreasing trend from 1997 to
2004 and then increased between 2004 and 2007, before
declining once more from 2007 to 2009 (Figure 4c). The
glacier fjords became seasonally ice free during the summers
of 2000 to 2003, 2005 and 2009, with the number of ice free
months peaking in 2001, 2003, and 2009 (Figure 4d).
MODIS SST data show warming between 2000 and 2002,

Figure 6. Frontal position of Igdlugdlip Sermia in relation to basal elevation, fjord width parallel to the
glacier terminus, and fjord width perpendicular to the centerline. (a) IGD frontal position over time
(colored lines) in to ice-bottom elevations from CReSIS radar depth sounder flightlines, color coded from
green (high elevation) to red (low elevation). Labeled positions are discussed in the text. Base image:
Landsat scene acquired 11 September 2011 and provided by USGS GLOVIS. (b) IGD frontal position over
time (colored crosses), relative to upstream reference line. (c) Fjord width parallel to the glacier terminus,
for each available frontal position. (d) Fjord width perpendicular to the centerline (sample locations
indicated by white triangles in Figure 6a).
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followed by cooling of approximately 1°C between 2002 and
2008 (Figure 4e). SSTs then increased by 1.5°C between
2009 and 2010. The Reynolds SST data show no net trend
between 1990 and 1995, followed by warming of almost
2°C between 1996 and 1999. SSTs cooled gradually
until 2005 and then warmed between 2008 and 2010
(Figure 4e). The two SST data sets follow a similar overall
pattern, but the MODIS values are consistently cooler than
the Reynolds data (Figure 4e).

4. Discussion

[24] All glaciers underwent net retreat during the study
period, but despite comparable glacier sizes and forcing, the
magnitude, pattern, and rate of retreat varied dramatically
between individual glaciers (Table 1, Figures 1 and 4). We
first discuss glacier response to atmospheric and oceanic forcing
at seasonal timescales, in order to investigate the factors
influencing calving rates and net frontal position, and then
consider these relationships at interannual to decadal timescales,
before assessing the role of glacier-specific factors.

4.1. Influence of Atmospheric and Oceanic Forcing on
Seasonal Glacier Behavior

4.1.1. Alison Glacier
[25] Between 2004 and 2007, seasonal variations in

frontal position at AG corresponded closely to changes in
sea ice concentrations within the glacier fjord at the start
and the end of the calving season (Figure 3a). This is
exemplified by its behavior in 2005, when summer sea ice
concentrations were particularly low and the transition
between fast ice and ice free conditions was particularly
rapid (Figure 3a). Seasonal retreat began from 26 June
2005, coincident with sea ice reducing from 100% to 10%
between 20 June and 4 July (Figure 3a). Conversely, sea
ice concentrations reached 100% by 21 November 2005,
which was rapidly followed by the onset of winter advance
from 29 November 2005 (Figure 3a).
[26] The onset of seasonal retreat/advance shows a similar

coincidence with sea ice loss/formation during each calving
season between 2004 and 2007 (Figure 3a), suggesting that
sea ice may be a primary control on seasonal frontal position
variations at AG during this period. This is supported by
comparison of ice velocities and terminus advance rates
for winter 2005–2006 (Table 1), which suggest that the
calving front advanced at approximately 95% of the glacier
flow speed and that winter calving was therefore minimal.
These results agree with findings from elsewhere on the
GrIS, which suggest that sea ice may suppress winter
calving rates by up to a factor of six by forming a weak
seasonal ice shelf, or mélange, which inhibits calving from
the terminus [Amundson et al., 2010; Joughin et al.,
2008b; Sohn et al., 1998]. In contrast, spring-time
disintegration of the mélange may promote retreat by
allowing high summer calving rates to commence [Ahn
and Box, 2010; Amundson et al., 2010; Howat et al.,
2010; Joughin et al., 2008b]. Thus, sea ice is likely to be
an important control on the frontal position and calving rate
of AG at seasonal timescales.
[27] The onset of seasonal retreat at AG also partially

coincided with the seasonal increase in air temperatures to
above 0°C, although with a delay of approximately three

to four weeks (Figure 3b). In spring 2005, for example,
SATs first exceeded 0°C on 17 May, prior to terminus
retreat on 26 June (Figure 3b). In general, air temperatures
at AG rose above 0°C between mid-May and mid-June
and glacier retreat began in late June (Figure 3b). The
seasonal increase in air temperatures could promote retreat
via a number of mechanisms [Carr et al., 2013], including:
(i) meltwater enhanced crevassing at the glacier terminus
[Andersen et al., 2010; Sohn et al., 1998; Vieli and Nick,
2011]; (ii) melting of sea ice/ice mélange; and (iii) enhancement
of submarine melt rates by subglacial plume flow [Motyka
et al., 2003; Motyka et al., 2011; Straneo et al., 2011]. The
lack of available data precludes investigation of the latter
mechanism, but the first two processes are supported by
the presence of numerous water-filled crevasses and
supraglacial lakes close to AG’s terminus during summer,
as observed from satellite imagery (Figure 1), and by the
strong correlation between SATs and sea ice (r = 0.72). At
the end of the calving season, air temperatures at AG fall
below freezing approximately 1.5 to 2.5months before the
onset of winter advance (Figure 3b). This is exemplified
by winter June 2005/2006, when air temperatures were be-
low freezing by 18 September, but seasonal retreat persisted
until 29 November (Figure 3b). These observations suggest
that air temperatures may contribute to seasonal retreat at
AG, but their influence on seasonal advance may be limited,
which is consistent with previous findings from Jakobshavn
Isbrae (JI), west Greenland [Sohn et al., 1998].
[28] Between 2004 and 2007, SST warming from June

onwards was coincident with the onset of seasonal retreat
at AG (Figure 3c). However, the most rapid retreat did not
coincide with peak SSTs: in 2005, for example, the warmest
SSTs occurred in August, yet the glacier front advanced
slightly between 6 and 29 August (Figure 3c). Similarly,
in 2006, peak SSTs in July and August were coincident with
a small terminus advance between 23 July and 5 September
(Figure 3c). This suggests that the frontal position responds
to SST warming, as opposed to peak SSTs, which may result
from the relationship between SSTs and sea ice concentrations.
SST warming early in the season would melt sea ice at the
glacier terminus and could thus promote retreat, given the
apparent sensitivity of AG to sea ice concentrations. In
contrast, peak SSTs would have a lesser affect, as sea ice
has largely melted by this point in the season (Figure 3a).
This mechanism is supported by the moderate correlation
between SSTs and sea ice at AG (r = 0.52) and the coincidence
of SST warming with the seasonal disintegration of fast ice
(i.e., 100%) at the glacier front (Figure 3). The limited
correspondence between peak SSTs and retreat rates also
suggests that undercutting at the waterline [Benn et al.,
2007; Vieli et al., 2002] due to SST warming is not a primary
driver of retreat.
[29] At present, subsurface oceanographic data are not

available from AG’s fjord, and the only data available for
the region are model outputs from the Hadley Centre EN3
quality controlled subsurface ocean temperature and salin-
ity data set [Ingleby and Huddleston, 2007]. As noted, these
data only provide information on water temperature on the
continental shelf and are therefore unlikely to be representa-
tive of conditions at the glacier front. However, the modeled
depth profile sampled from the continental shelf, immediately
offshore of the study region, suggests that warm water is
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present at depth (~100 to 150m) and underlies cooler
surface water (Figure 7). This profile is consistent with
empirical data from central-west Greenland [Holland
et al., 2008], and previous studies have shown that warm
Atlantic Water can access Greenland outlet glacier fjords
from the continental shelf at depth [Christoffersen et al.,
2011; Holland and Thomas, 2008; Johnson et al., 2011;
Mayer et al., 2000; Straneo et al., 2011; Straneo et al.,
2010]. Given that high summer submarine melt rates have
been linked to seasonal mass loss in central-west
Greenland [Rignot et al., 2010], it is possible that similar
processes may influence seasonal glacier behavior at AG.
This is supported by estimated submarine melt rates of
0.26m d�1 at AG, which may account for a significant
portion of ice volume loss {Enderlin, 2013 #379}. However,
the current lack of data from within the fjord precludes a more
detailed assessment of this potential control on seasonal
behavior. It is clear therefore, that there is an urgent need
for subsurface measurements of ocean temperature at AG
and other Greenland outlet glacier fjords. Such data are
required for numerical models that incorporate oceanic
forcing and would also allow a more detailed assessment
of the influence of meltwater plumes on submarine melt
rates: subglacial discharge may increase melting by forming
a plume of cool, buoyant water at the terminus and promoting
a compensatory inflow of warmer ocean water at depth
[Motyka et al., 2003; Motyka et al., 2011; Straneo et al.,

2011]. This interaction is currently poorly understood
[Straneo et al., 2011], but may be significant at AG, given
the very dramatic warming observed during the past two
decades (Figure 4b).
[30] In summary, we suggest that seasonal retreat at

AG may be initiated by a combination of spring-time sea
ice loss and meltwater-enhanced crevassing. Winter sea
ice formation may slow calving rates and promote seasonal
advance and air temperatures and SSTs may indirectly
influence frontal position, via their relationship with sea
ice concentrations. These results indicate that multiple
atmospheric and oceanic forcing factors influence seasonal
frontal position variations at AG, but that their relative
contribution varies during the year.
4.1.2. Additional Study Glaciers
[31] In contrast to the close correspondence observed at

AG, the relationship between sea ice and glacier frontal
position is less apparent on the other study glaciers. NW1
and IGD show a pattern of response to seasonal forcing that
was representative of the other glaciers within the study
region (Figure 3, see auxiliary materials). At both glaciers,
the onset of seasonal retreat and advance sometimes coincided
with sea ice clearance and re-formation, respectively, but it
also predated it on a number of occasions and instead
often showed a closer correspondence to periods when air
temperatures rose above freezing. At NW1, for example,
retreat began between 6 and 31May 2005, which significantly

Figure 7. Mean annual ocean temperature profile from Hadley Center EN3 reanalysis data. Profiles area
color coded according to year.
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predated sea ice clearance between 20 June and 4 July
(Figure 3d) and coincided with air temperatures rising above
freezing on 17 May in 2005 (Figure 3e). Similarly, IGD
retreated between 14 April and 28 June 2009, but sea ice
clearance did not occur until 22 June – 7 July (Figure 3g).
[32] Although the onset of winter advance at NW1 and

IGD was generally concurrent with winter sea ice formation
and occurred substantially after air temperatures fell below
zero (Figure 3), this was not always the case. In winter
2009, for example, terminus advance began at both glaciers
between 31 August and 8 October and therefore predated
winter sea ice formation between 23 November and 7
December (Figures 3d and 3g). Furthermore, comparison of
winter advance rates and ice velocities (Table 1) indicates
that calving does not cease entirely at IGD, suggesting that
winter sea ice formation may exert a weaker influence on
seasonal glacier advance than at AG. In contrast to AG, the
onset of seasonal retreat at NW1 and IGD frequently
preceded SST warming (Figures 3f and 3i). This differing
response may reflect the weaker influence of sea ice at
NW1 and IGD, which may reduce the contribution of SSTs
to frontal retreat via sea ice melt.
[33] These observations indicate that seasonal frontal

position variations at NW1, IGD, and the other study glaciers
are influenced by both air temperatures and sea ice. However,
sea ice concentrations and SSTs may be a less significant
control than at AG, suggesting that glacier-specific factors
may be modulating the response to seasonal forcing. In
contrast to the other study glaciers, AG initially terminated
in a floating ice tongue, and a number of lines of evidence
suggest that this tongue was near to floatation between
2004 and 2007. First, it calved several large, tabular icebergs
(Figure 2), which are only thought to occur from floating
termini [Amundson et al., 2010]. Second, the tabular icebergs
often calved back to large rifts (Figure 2), which are associated
with near-floating ice [Joughin et al., 2008a]. Third, the
tongue’s surface elevation profile was very flat [McFadden
et al., 2011]. The presence of a floating ice tongue may
account for AG’s greater sensitivity to seasonal sea ice forcing,
and hence to SSTs, as basal shear stresses would be low over
areas close to floatation, meaning that the relative contribution
of longitudinal stresses to the force balance would increase
[Echelmeyer et al., 1994] and that variations in longitudinal
stresses associated with changes in sea ice buttressing may
have had a greater influence on retreat rates. This is supported
by AG’s behavior subsequent to 2007, when evidence sug-
gests that the terminus began to reground and the correspon-
dence between seasonal sea ice disintegration and the
onset of retreat became less pronounced, with retreat
predating sea ice clearance in 2009 (Figure 3a). These re-
sults suggest that the seasonal response of the study glaciers
to atmospheric and oceanic forcing varies according to ter-
minus type and that this relationship may change as the gla-
cier terminus evolves during retreat.

4.2. Interannual Glacier Behavior and Atmospheric
and Oceanic Controls

[34] All glaciers in the study area retreated between 1993
and 2010 (Figures 1 and 4), coincident with declining
summer (JJA) and autumn (SON) sea ice concentrations
and a dramatic air temperature increase of almost 8°C
(Figure 4). Given the influence of sea ice and air temperatures

on seasonal glacier behavior within the study region, we
suggest that these factors are likely to also be primary
controls at interannual timescales, via their influence on
net frontal position and calving rates.
[35] At AG, retreat followed increased air temperatures

and sea ice decline, with peak retreat rates occurring within
one year of minimum sea ice concentrations in 2003
(Figure 4). Seasonal results suggest that sea ice is a key con-
trol on the timing of retreat/advance at AG (Figure 3a) and so
early disintegration/late formation of sea ice may have trig-
gered net terminus retreat by extending the duration of sea-
sonally high summer calving rates, as proposed for other
Greenland outlet glaciers [e.g., Howat et al., 2010; Joughin
et al., 2008b]. This is consistent with the pattern of
interannual retreat at AG (Figure 4a), where very large sea-
sonal retreats in 2004 and 2005, totaling almost 6 km,
followed a prolonged decline in sea ice concentrations and
substantial increase in the duration of ice free conditions
(Figure 3a). The very strong increase in air temperatures
may also have contributed to net retreat at AG, potentially
via meltwater enhanced crevassing at the terminus [Sohn
et al., 1998; Vieli and Nick, 2011], increased sea ice melting
and/or enhanced submarine melt rates due to increased sub-
glacial discharge. These observations are in agreement with
previous results from the Uummannaq region of west
Greenland [Howat et al., 2010] and JI [Joughin et al.,
2008b; Vieli and Nick, 2011], which suggest that extension
of the seasonal calving cycle through reduced sea ice con-
centrations and/or increased air temperatures may be suffi-
cient to trigger rapid interannual retreat.
[36] Output from the EN3 model indicates that ocean

temperatures at depth increased substantially between
1998 and 1999 at the continental shelf (Figure 7), which is
broadly consistent with the sudden increase in subsurface
ocean temperatures recorded on the central-west Greenland
continental shelf between 1997 and 1998 {Holland, 2008
#41}. However, the modeled warming substantially
predates the onset retreat at AG (Figure 4). Moreover,
estimated melt rates at AG showed no clear trend between
2002 and 2007 {Enderlin, 2013 #379}, whereas glacier
retreat rates varied dramatically during this period
(Figure 4a). This is consistent with previous results, which
found no statistically significant relationship between
estimated melt rate and either glacier retreat or velocity at
AG {Enderlin, 2013 #379}. The very limited available
evidence shows no clear relationship between subsurface
oceanic warming, submarine melt rates, and glacier retreat
at AG. However, very little information is available, and
detailed subsurface oceanographic measurements from within
the fjord would be required to investigate the potential
influence of subsurface ocean warming on AG.
[37] The MODIS and Reynolds SST data follow a similar

interannual pattern (Figure 4), although MODIS values are
consistently cooler than the Reynolds data set. We attribute
this difference to the greater spatial resolution of the
MODIS data, which allows SSTs to be sampled closer to
the glacier termini. Consequently, glacial meltwater
discharge and icebergs from the termini would have a
greater influence on the MODIS SSTs and would thus give
cooler values. The MODIS data indicate that SSTs warmed
by 1°C between 2000 and 2002, which was coincident with
the onset of retreat at AG, low summer sea ice concentrations
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and an extended duration of ice-free conditions (Figure 4).
Based on relationships observed at seasonal timescales,
warmer SSTs may have initiated retreat by causing early
sea ice loss and thus extending the duration of high summer
calving rates. However, the MODIS data then show a
cooling between 2002 and 2008 and the Reynolds data
demonstrate little trend during this period, despite AG
continuing to retreat rapidly (Figure 4). Furthermore, significant
SST warming occurred in 1996–1999 and 2008–2010, yet
the front exhibited little change. This suggests that AG’s
response to SST changes is nonlinear, so that the magnitude
of retreat does not depend only on the magnitude of forcing.
A similar nonlinearity is evident in the relationship with sea
ice and air temperature trends. This was particularly notable
in 2009 when sea ice concentrations and duration were
comparable to 2001 and JJA SATs and PDDs reached their
maximum for the study period, yet retreat rates remained
low (Figure 4). Together, this evidence indicates that the
response of AG to these potential controls was modulated
by glacier-specific factors.
[38] Interannual retreat of the other study glaciers was

also coincident with sea ice decline and atmospheric
warming (Figure 4), which is consistent with controls oper-
ating at seasonal timescales. However, despite being subject
to very similar forcing, the magnitude and rate of retreat dif-
fered dramatically between individual glaciers (Table 1,
Figures 1 and 4). These results agree with previous findings
from western Greenland, which found no consistent rela-
tionship between marine-terminating outlet glacier behavior
and atmospheric or oceanic forcing [McFadden et al.,
2011]. Furthermore, the pattern of retreat varied markedly
across the study region: net retreat at AG and NW1 largely
occurred via very large seasonal retreats with limited seasonal
readvance (Figures 3a, 3d, and 4a), whereas the other
glaciers retreated more gradually, with limited variation in

the magnitude of seasonal frontal position variations
(Figures 3g and 4a). This contrasting behavior suggests that
the study glaciers reacted very differently to external forc-
ing and that factors specific to each glacier are a key
determinate of their response.
[39] On the majority of the study glaciers, retreat rates were

substantially higher during the past decade than between
1976 and 2001 (Table 1 and Figures 5 and 6), and this is
consistent with a previous study which identified a large
episode of mass loss in northwest Greenland between 2005
and 2010 [Kjær et al., 2012]. It has also been proposed that
northwest Greenland underwent an earlier event between
1985 and 1993, during which dynamic mass loss exceeded
that between 2005 and 2010. Furthermore, AG was
highlighted as an area of rapid thinning between 1985 and
2005 [Kjær et al., 2012]. Our results suggest that majority
of the study glaciers showed limited net retreat between
1976 and 2001 (Table 1 and Figure 6), and AG in particular
showed very little change during this period (Figure 5 and
Table 1). This contrasts dramatically with observed retreat
rates of almost 2.5 km a�1 between 2001 and 2005 at AG
(Figure 5). We therefore suggest that the observed thinning
at AG between 1985 and 2005 was a response to rapid retreat
and loss of the floating tongue between 2001 and 2005, as
opposed to an earlier mass loss event. Furthermore, we
highlight recent retreat rates at AG as exceptional since at
least 1976. Our data record substantial retreats on NW1
and NW2 (Figure 8 and Table 1), but the vast majority of
these changes occurred prior to 1986 and therefore predate
the proposed dynamic event. At NW7, retreat largely
occurred on the western portion of the terminus and was
coincident with the loss of a section of ice adjoining the
lateral margin of the glacier. We therefore suggest that
retreat at NW7 was a response to the reduction in
buttressing associated with this ice loss, as opposed to a

Figure 8. Frontal position of NW1 in relation to basal elevation and fjord width parallel to the glacier
terminus. (a) NW1 frontal position over time (colored lines) in relation to ice-bottom elevations from
CReSIS radar depth sounder flightlines, color coded from green (high elevation) to red (low elevation).
Labeled positions are discussed in the text. Base image: Landsat scene acquired 11 September 2011 and
provided by USGSGLOVIS. (b) NW1 frontal position over time (colored crosses), relative to upstream ref-
erence line. (c) Fjord width perpendicular to the centerline at 500m intervals from the upstream reference
line (sample locations indicated by white triangles in a).

CARR ET AL.: CONTROLS OF OUTLET GLACIER BEHAVIOR

1222



direct dynamic response to changes in atmospheric or oce-
anic forcing at its terminus. Consequently, we do not ob-
serve substantial and widespread changes in frontal
position within our study region at the time of the proposed
discharge event.

4.3. Role of Glacier-Specific Factors

[40] We examined retreat rates in relation to a number of
glacier-specific factors, including initial glacier width, ice
velocity, bed topography, fjord geometry, and terminus type.
We found no statistically significant relationship between the
mean glacier retreat rate for 1993 to 2010 and either initial
glacier terminus width in January 1993 (r =�0.085) or with
initial ice velocity in winter 2000–2001 (r =�0.080).
However, our results suggest that along-flow variations in
fjord width may play an important role in ice dynamics within
the study region, via their influence on lateral stresses.
[41] The pattern of retreat at AG suggests that along-flow

variations in fjord width and potentially basal pinning points
may be important controls on retreat. Peak retreat rates
immediately followed terminus recession into a comparatively
wide section of its fjord from July 2004 onwards (Figure 5;
Point I) and persisted until the calving front reached a lateral
constriction in late August 2005 (Figure 5; Point II). At this
point, retreat slowed dramatically, and the terminus position
remained comparatively stable until July 2010. Narrowing
of the glacier fjord may have temporarily slowed retreat
via two mechanisms [Jamieson et al., 2012]: (i) due to the
principle of mass conservation, the glacier needs to thicken
and the surface slope to steepen in order to maintain the
same ice flux, which would reduce thinning rates and the
vulnerability of the ice to full thickness fracture, thus
decreasing calving rates and slowing retreat [O’Neel et al.,
2005]; and (ii) lateral stresses tend to increase with reducing
width [Raymond, 1996], thus increasing resistance to flow
and promoting deceleration, thickening, and slower retreat.
Furthermore, a number of lines of evidence suggest that AG’s
terminus began to ground at this point: (i) the substantial re-
duction in the magnitude of seasonal frontal position
variation, particularly seasonal retreat, from winter 2005
onwards (Figure 3A), (ii) the change in calving style from
tabular to capsizing icebergs, (iii) the increased occurrence
of glacial earthquakes, which are associated with grounded
termini [Veitch and Nettles, 2012], and (iv) the development
of a steeper surface profile near the terminus from 2006
onwards [McFadden et al., 2011]. Although grounding
is unconfirmed, it may have produced further positive
feedbacks between glacier thickening, increased basal
stresses and reduced frontal retreat rates [Schoof, 2007;
Vieli et al., 2001].
[42] Based on these observations, we suggest that the

comparative stability of AG’s floating tongue between
1976 and 2001 (Figure 5; Point III) was also facilitated by
the relatively narrow width of the fjord and/or the presence
of basal pinning points. Although fjord bathymetry data are
currently unavailable, a bedrock island and a possible ice
rumple are apparent at the northern margin of AG
(Figure 5; Inset 1). Terminus retreat past this feature and
into a wider section of the fjord immediately preceded the
first phase of rapid retreat at AG (Figure 5: Point IV),
providing empirical support for the contribution of basal
and lateral pinning points to the comparative stability of

AG’s terminus between 1976 and 2001. These findings
agree with empirical results from southern Greenland,
which highlighted the role of fjord topography, particularly
lateral pinning points, in determining glacier frontal posi-
tion and modulating glacier response to climatic forcing
[Warren and Glasser, 1992] and with recent numerical
modeling studies, which have highlighted the influence of
variations in trough width on ice stream retreat [Jamieson
et al., 2012]. The presence of a floating tongue at AG may
have further contributed to its rapid retreat, as it would be vul-
nerable to basal crevassing [van der Veen, 1998] and positive
feedbacks associated with dynamic thinning, once the glacier
had been dislodged from its lateral/basal pinning points
[Meier and Post, 1987; Schoof, 2007; Vieli and Nick, 2011].
[43] Our data suggest that width may also have influenced

the rate and pattern of retreat at NW1. The glacier occupied a
fairly constant position between 1992 and 2001 and retreat
rates were low (24.8m a�1) (Figure 8; Point I). During this
period, the terminus was located in a relatively narrow
section of the fjord, and the northern margin was in contact
with a lateral pinning point (Figure 8; Point I), which together
would promote slower retreat. Retreat rates then increased
substantially as the glacier front moved through a wider
section of fjord between June 2001 and July 2006
(Figure 8; Point II), as observed at AG. NW1 underwent
the most rapid retreat of the study period between 3 July
and 9 September 2006, when the central portion of the front
retreated inland of the rock islands that had previously
bounded the terminus, which would have significantly
reduced lateral stresses and promoted dynamic thinning and
retreat [Jamieson et al., 2012; O’Neel et al., 2005; Raymond,
1996]. The central section continued to retreat rapidly and
formed a large, concave bay by the end of the study period
(Figure 8). The influence of the islands on the frontal position
of NW1 is further supported by its earlier behavior: in 1976,
NW1 terminated on a rock island (Figure 8; Point IV) and then
retreated by 6 km by 1986, at which point the terminus
reached the narrow section between the rock islands
(Figure 8; Point I). Although the exact timing and pattern of
retreat are unknown, this suggests that the front may have
retreated rapidly after losing contact with the outer island.
The most recent data from NW1 show that retreat has slowed
(Figure 8) and the retreat pattern indicates that the terminus
may have reached a basal pinning point and/or shallower sec-
tion (Figure 8; Point V), although bathymetric data would be
needed to confirm whether this is the case.
[44] The termini of most of the other study glaciers were

bounded laterally by rock islands, as at NW1, but they did
not retreat beyond these lateral constraints during the study
period (Figure 1). The exception to this was IGD, which had
a similar fjord configuration to AG (Figure 1). However,
IGD’s terminus occupied a relatively narrow section of fjord
for the majority of the study period (Figure 6; Inset; Point I).
The variation in fjord width in the along-flow direction was
much less at IGD (10%) than at AG (17%), within the section
over which the termini retreated (Figures 5 and 6), and this
would limit the contribution of variations in lateral stresses
to retreat. On the basis of these observations, we suggest
that differences in lateral topography may largely account
for the high retreat rates observed at AG and NW1 and for
their differing dynamic response to atmospheric and oce-
anic forcing. The lateral/basal topography at AG and NW1
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implies that even a comparatively small additional seasonal re-
treat, in response to external forcing, may be sufficient to
move the termini into a position where rapid retreat can oc-
cur via a series of positive feedbacks. In contrast, the other
study glaciers did not retreat beyond the confines of their
bounding islands and/or undergo significant changes in
fjord width, thus minimizing variations in resistive stresses
during retreat. Consequently, sea ice decline and/or atmospheric
warming may not yet be sufficient to initiate rapid retreat on
the majority of the study glacier termini.

4.4. Summary and Future Outlook

[45] Our results suggest that the response of individual
glaciers to atmospheric and oceanic forcing is substantially
modulated by variations in fjord width, terminus type, and,
potentially, basal pinning points. Based on the observed
relationships, the following factors are likely to predispose
outlet glaciers to rapid retreat: the loss of contact with
lateral/basal pinning points; significant widening of the fjord
during retreat; and/or the presence of a floating ice tongue.
Our findings are in accordance with previous results from
western Greenland, which found no consistent relationship
between glacier retreat and initial glacier width [McFadden
et al., 2011]. However, in contrast to McFadden et al.
[2011], who used a single measurement of glacier width prior
to the onset of retreat, our data suggest that even subtle
variations in the along-flow width of the constraining fjord
may be a primary controlling factor on glacier retreat rates,
once retreat has been initiated [c.f. Jamieson et al., 2012].
[46] The role of fjord geometry may be particularly

significant in the near future in the study region, as data
suggest that IGD and AG may be close to retreating inland
of their fjords and into areas of comparatively deep basal
topography (Figures 5 and 6). This is supported by the most
recent data from AG, which show that its northern margin
retreated by 2.3 km between July 2010 and September
2011 (Figure 5; Point V) but then halted at another lateral
constriction, formed by a rock outcrop (Figure 5; Point VI
and Inset 2), where it remained until the last-available image
in May 2012. This suggests that the lateral pinning point
may have temporarily halted retreat and highlights the
potentially strong influence of variations in fjord width on
the pattern of retreat at AG. Importantly, no further lateral
constrictions are visible at the northern margin of AG and
the ice flow appears to diverge markedly upglacier
(Figure 5). Basal data suggest that the area inland of the cur-
rent terminus is up to 700m deep (Figure 5). This deeper area
may initially facilitate rapid retreat via buoyancy-driven feed-
backs [e.g., Joughin et al., 2008b; Vieli and Nick, 2011],
once the terminus ice has thinned sufficiently to remove it
from its current lateral pinning point. However, the basal
topography becomes shallower approximately 6 km inland
and may therefore eventually promote slower retreat.
[47] Following decades of minimal variation in terminus

position, IGD began to retreat in winter 2008 and may also
be close to moving inland of the lateral margins of its fjord
(Figure 6; Inset; Point II). Bed depths inland of the present
terminus reach up to 600m and the combined effects of the
terminus moving beyond the constraints of its fjord and into
an area of deep topography could facilitate rapid retreat.
However, two channels of up to 800m depth begin
approximately 7 km inland of the front (Figure 6). Dependent

on their detailed geometry, these channels could promote
lower retreat rates, once the terminus retreats into them, by
constraining flow and increasing resistive stresses. The
other glaciers within the study region currently terminate on
a series of rock outcrops (Figure 1). Based on observations
from NW1, these glaciers may also begin to retreat rapidly
if future atmospheric and oceanic forcing is sufficient to
force the termini beyond the constraining influence of
these islands.

5. Conclusions

[48] Our results suggest that marine-terminating outlet
glacier behavior is influenced by a combination of atmospheric,
oceanic, and glacier-specific controls within the study
region. At seasonal timescales, sea ice and air temperatures
appear to be the primary external controls on frontal
position. The response to seasonal forcing varies between
study glaciers and can evolve during retreat, with AG
showing a greater sensitivity to sea ice when its floating
tongue existed. All of the study glaciers underwent net
retreat between 1993 and 2010, coincident with marked
sea ice decline and almost 8°C of atmospheric warming.
Retreat at AG reached rates of almost 2.5 km a�1 between
2001 and 2005, prior to which the terminus had occupied
a very similar position since at least 1976. The magnitude,
rate, and pattern of retreat varied substantially between
individual glaciers, with retreat rates at AG and NW1 far
exceeding the regional average. This suggests that glacier-
specific factors play an important role in determining outlet
glacier response to external forcing, and we identify
variations in fjord width and terminus type as key factors.
Fjord geometry may be a key control on the near-future
evolution of AG and IGD, as both glaciers are close to
retreating beyond the confining influence of their fjord
margins and the inland basal topography may significantly
influence their future pattern of retreat. We highlight the
need for very high temporal resolution data and in situ
measurements, particularly of fjord water conditions, in
order to fully understand the relative importance of each
forcing factor and the role of feedbacks such as plume-
enhanced submarine melting. Furthermore, high-resolution
information on subglacial topography and fjord bathymetry is
needed to further assess the influence of fjord geometry on
outlet glacier behavior. Our results underscore the importance
of glacier-specific factors in determining the response of
marine-terminating outlet glaciers to atmospheric and
oceanic forcing, and we highlight the need to consider these
factors when interpreting outlet glacier retreat rates and
forecasting future behavior.
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