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Abstract

Influence of the various types of disorder on propagation of light in one-
dimensional periodic structures is studied analytically using statistical ap-
proach based on a Fokker-Planck type equation. It is shown that light local-
ization length behaves non-monotonically as a function of disorder amplitude
in all the examined models except for purely geometric disorder. This fea-
ture is explained by crossover between weak disorder regime corresponding
to gradual destruction of the reflecting properties of a photonic crystal and
strong disorder regime, when periodic component of the refractive index can
be treated as a perturbation. The region of small disorder is shown to be
universal provided that a disorder parameter is properly introduced.
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1. Introduction

Initial progress in the area of photonic crystals pioneered by Yablonovitch [1]
was based on the ideal models of photonic band structure, described in a
number of textbooks [2],[3]. Though photonic crystals operated in various
regions of the electromagnetic spectrum from radiowaves [4] to visible light [5]
were demonstrated experimentally, wide practical application of the photonic
crystal devices (lasers, waveguides and photonic circuits) is suppressed by
technological imperfections unavoidable in any fabrication process. Being
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strong enough, such imperfections result in smearing or even destruction of
the photonic band gaps, which is detrimental to the properties required for
optoelectronic device applications. This statement is supported by many
experimental studies of disordered photonic crystals carried out in recent
years [6]-[20]. Of course, it is desirable to have a theory describing optical
properties of the real, disordered photonic crystals quantitatively, while most
of the numerous theoretical works focus on modelling [21]-[47] which does not
shed enough light on general regularities.

Many results of the real and numerical experiments can be successfully
explained by analytical theories developed in Refs. [48]-[56]. While some
problems, like coherent backscattering of light from disordered photonic crys-
tals, can be treated perturbatively using Green function technique [48]-[50],
the problem of localization of light by such structures requires summation
of all the diagrams or application of the different approaches as done in
Refs. [51]-[53]. Unfortunately, the methods suggested in Refs. [51]-[52] for
two- and three-dimensional disordered photonic crystals are not strict and
their results can be treat only as estimations. Even a one-dimensional model
of Ref. [53] restricted to the case of purely geometric disorder was not solved
exactly but using a kind of heuristic assumption, namely uniform distribution
of some angle variable θ. Unfortunately, this assumption is certainly wrong
for the center and edges of the photonic band gap (i.e. regions of the most
interest), as stated in Ref. [53]. Recently the problem of light localization in
the one-dimensional case has been considered in more strict manner using the
Fokker-Planck equation [54] similar to considered in Ref. [55], however some
aspects have not been treated absolutely accurately. Namely, the authors
considered a second-order term ”η2” using a system of differential equations
of the first order (Eq.(7) of Ref. [54]), which is equivalent to the exact finite-
difference equation (17) up to the first order only. Further this quadratic
term has been averaged over disorder already in the Langevin equation, a
procedure which can be hardly called founded.

In this paper we present a fully analytical one-dimensional theory of light
localization in photonic crystals with various types of disorder, which is free
from the above mentioned shortcomings. We use generalization of the model
proposed initially in Ref. [39] and applied in Ref. [56] to the density of states,
which allows for both dielectric and geometric components of disorder and
described in Sec. 2.1. Our approach based on a notion of angle variables
and the Fokker-Planck type equation [57] provides straightforward way to
calculation of the light localization length as described in Sec. 2.2. Analyt-
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ical expressions obtained for different models of disorder are discussed and
compared with the numerical and experimental data in Sec. 3, and then our
findings are summarized in Sec. 4.

2. Theory

2.1. The models of disorder and Langevin equation

Let us consider one-dimensional two-component basically periodic pho-
tonic system disturbed by moderate amount of disorder as schematically
shown in Fig. 1. We make allowance for both components of disorder, geo-
metric (fluctuations of the layer widths d1,2) and dielectric (fluctuations of
the layer refractive indices n1,2), and for correlations between them within a
given period of a structure, but not between the different periods. Also to
avoid redundant cumbersomeness we assume the average widths of the layers
”A” and ”B” to be equal, d1 = d2 = d0, and consider only the case of small
dielectric contrast and frequency range within the first photonic band gap.
Our model involves five independent dimensionless parameters describing di-
electric contrast of the structure η, disorder amplitude δ, type of disorder
β, γ, and frequency position within the photonic band G,

η =
n1 − n2

n1 + n2

=
n1 − n2

2n0

, (1)

δ2 = τ 2, (2)

β =
µ+ ν

πδ2
, (3)

γ2 =
σ2

π2δ2
, (4)

G =
ω − ω0

∆ω/2
, (5)

ω0 =
πc

n1d1 + n2d2
=

πc

2n0d0(1 + ζ)
, (6)

∆ω =
4ηω0

π
, (7)

σ =
δn1 − δn2

n0

, (8)

τ =
δn1 + δn2

2n0

+
δd1 + δd2

2d0
, (9)
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Figure 1: (color online) Schematic profiles of an ideal (curve 1) and the imperfect one-
dimensional photonic crystals. Profiles 2-5 correspond to the different models of disorder
described later in the text, namely 2–NU, 3–NC, 4–DU, 5–DC. A real structure is assumed
to be much longer than it is schematically shown.
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µ =
δn1δn2

n2
0

, (10)

ν =
δn1δd2 + δn2δd1

2n0d0
, (11)

ζ =
δn1δd1 + δn2δd2

2n0d0
. (12)

Here ω0 is a central frequency of the first photonic band gap including possi-
ble disorder-induced shift described by ζ, ∆ω is photonic band gap width in
the linear in η approximation, and σ, τ, µ, ν and ζ stand for the unaveraged
(specific to each period) combinations of the geometric and dielectric param-
eters. Since both dielectric contrast and disorder amplitude are assumed to
be small, it is practical to introduce the parameter α actually playing a key
role,

α =
2η

π2δ2
. (13)

Focusing on the universal properties of the disordered photonic crystals we
assume that a structure is long enough so that self-averaging takes place, and
solve one-dimensional wave equation

d2E

dz2
= −n2ω2

c2
E, (14)

with the arbitrary initial conditions using transfer matrix

Ms =

(
M11 M12

M21 M22

)
(15)

with the elements given explicitly in Appendix Appendix A, and acting on
the two-component vectors

Vs =

(
E(zs)
c

n0ω
E ′(zs)

)
(16)

located at the boundary points zs between the periods s − 1 and s, so that
Vs+1 = MsVs. In terms of the logarithmical derivative Ls = (c/n0ω)E

′(zs)/E(zs)
evolution of the electric field along a structure can be written as

Ls+1 − Ls =
M21 + (M22 −M11)Ls −M12L

2
s

M11 +M12Ls

, (17)
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which is a discrete counterpart of the random equation of motion, also called
Langevin equation [58]. In the limiting case of small dielectric contrast and
disorder amplitude it is convenient to introduce angle variable Ψ = 2arccotL
and deal with the following form of the Langevin equation,

Ψs+1 −Ψs = Θs(Ψs+1), (18)

Θs(Ψ) = 4η(G+ sinΨ) + 2σ sinΨ− σ2 sin 2Ψ

+2π(τ − (µ+ ν) cosΨ + ζ − ζ). (19)

A few intermediate steps on the way to Eqs. (18-19) are described in Ap-
pendix A.

2.2. Disorder averaging and length of localization

In order to turn to statistical description let us study distribution function
of the angle Ψ instead of spatial evolution of Ψs. For a given realization of
disorder and initial condition Ψs0 = Ψ(0) these two problems are essentially
the same since evolution of the initial distribution Fs0(Ψ) = δ(Ψ − Ψ(0)) is
governed by obvious equation

Fs+1(Ψs+1)dΨs+1 = Fs(Ψs)dΨs, (20)

where Ψs as a function of Ψs+1 is given by Eq. (18). Denoting Ψ = Ψs+1 and
expanding r.h.s. of Eq. (20) up to the second order in Θs, we come to

Fs+1(Ψ) = Fs(Ψ) +
∂

∂Ψ

[
Θ2

s

2

∂Fs

∂Ψ
−Θs(Ψ)Fs(Ψ)

]
. (21)

Since distribution function Fs depends on disorder configuration only to the
left of the period s, and Θs(Ψ) includes fluctuations in the period s, they av-
erage independently, resulting in the following discrete version of the Fokker-
Planck equation:

Fs+1 − Fs =
∂

∂Ψ

[
Θ2

s

2
· ∂Fs

∂Ψ
−Θs(Ψ) · Fs

]
. (22)

Due to the notion of self-averaging Fs(Ψ) becomes independent of s far away
from the initial point s0 and we come to the stationary Fokker-Planck equa-
tion for the distribution function F (Ψ) = Fs = Fs+1:

d

dΨ

[
Θ2

2

dF

dΨ
−Θ(Ψ)F (Ψ)

]
= 0. (23)
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Averaging over fluctuations in the l.h.s. of Eq. (23), using the notions given
by Eqs. (1-13) and introducing the stationary flow J we obtain final form of
the stationary Fokker-Planck equation,

(1 + γ2 sin2Ψ)
dF

dΨ
−
[
α(G+ sinΨ)− β cosΨ− γ2

2
sin 2Ψ

]
F = −J. (24)

In principle, the value of J has to be determined from the conditions of
periodicity F (Ψ+2π) = F (Ψ) and normalization

∫ 2π

0
F (Ψ)dΨ = 1 of the full

distribution function F (Ψ), however, solution of the homogeneous equation,

F0(Ψ) =
exp

[
− αΛ√

1+γ2
− β

γ
arctan(γ sinΨ)

]
√
1 + γ2 sin2 Ψ

, (25)

Λ = γ−1arctanh
( γ cosΨ√

1 + γ2

)
−G

(
arctan(

√
1 + γ2 tanΨ) + π

[Ψ
π
+

1

2

])
(26)

shall be sufficient for our purposes ([x] in Eq. (26) denotes the integer part
of x).

Taking in hand explicit expression for the distribution function one can
evaluate localization length ξ using a definition

2d0
ξ

= ln
(Es+1

Es

)2

= ⟨ln(M11 +M12Ls)2⟩. (27)

Disorder averaging in the r.h.s. of Eq. (27) can be split into a part containing
everything to the left of the period s (denoted by the angle brackets) and
averaging on the period s (denoted by overlining). Carrying out partial
averaging of Eq. (27) under the conditions of small dielectric contrast and
disorder amplitude results in the following expression for the dimensionless
decay rate Υ,

Υ =
2d0
π2δ2ξ

= 2α(1 +G⟨L⟩)− ⟨1 + 2βL+ L2⟩. (28)

This involves averaging over the distribution function F (Ψ) only, i.e. reduces
to one-dimensional integration, which can be even done analytically in the
particular cases discussed below.
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Figure 2: (color online) Normalized light localization length obtained by numerical solution
of Eq. (14) is shown as a function of disorder amplitude δ for six different models of disorder
described in the text, two values of η, and in different scales (linear and log-log).
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3. Results and discussion

To check predictions of the theory we have performed direct numerical
computation of light localization length as a function of dielectric contrast
η, disorder amplitude δ and dimensionless frequency G using various models
of disorder. Numerical results for the case of G = 0 (central frequency of
the first photonic band gap) are shown in Fig. 2 for two values of dielectric
contrast (η = 0.1 and η = 0.01) and six different models of disorder. The
models NC and NU consider purely dielectric disorder with equal amplitudes
of the fluctuations in the layers (δn2

1 = δn2
2), fully correlated in the model

NC (so that β = π−1, γ = 0) and uncorrelated in the model NU (so that
β = 0, γ = 2π−1). The models DC and DU correspond to fully correlated and
uncorrelated cases of the purely geometric disorder, so that β = γ = 0, and
they are indistinguishable in terms of these parameters. The models MC and
MU consider the case of mixed disorder with equal amplitudes of dielectric
and geometric fluctuations (δn2

1,2/n
2
0 = δd21,2/d

2
0) and full correlation between

the corresponding components (MC, β = (2π)−1, γ = 0) or without any
correlations (MU, β = 0, γ =

√
2π−1). It is clearly seen that initial region

of different curves in Fig. 2a is universal and can be described by positive
parabolic additive while large-disorder behaviour is specific to a model, and
it can be both increasing or decreasing. Interestingly, the curves 1, 5, 2,
6 on the right side of Fig. 2b are going almost in parallel but with the
approximate factors of 1, 2, 4, 16. In order to explain these features let us
turn to the particular cases treatable analytically to the very end, focusing
primarily on the central frequency of the photonic band gap. In this case,
G = 0, Eqs. (25,26) delivers 2π-periodic function, which is an exact solution
of Eq. (24) since J = 0.

3.1. Purely geometric disorder

Distribution function in the case of geometric disorder (models DC, DU,
β = γ = 0) has particularly simple form,

F0(Ψ) =
exp(−α cosΨ)

2πI0(α)
. (29)

Averaging of L and L2 in Eq. (28) over this distribution gives the following
answer,

Υ =
2αI1(α)

I0(α)
∼

{
α2, α ≪ 1
2α− 1, α ≫ 1

(30)
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which means that light localization length grows like ∼ δ2 in the limit of
large disorder, in agreement with numerical computations (cf. curves 3, 4 in
Fig. 2b). Indeed, localization in the case of pure geometric disorder becomes
possible only due to the finite value of the dielectric contrast η, therefore
small-α asymptotics of Υ contains only positive powers of α. More dramatic
here is a cancellation of the linear term in this series, leading to power growth
of ξ with δ. In other words, purely geometric disorder can really efficiently
destroy localization of light induced by periodic modulation of the refractive
index.

3.2. Disorder with equal dielectric fluctuations

In the case of equal dielectric fluctuations δn1 = δn2 (γ = 0) the distri-
bution function reads

F0(Ψ) =
exp(−α cosΨ− β sinΨ)

2πI0(
√
α2 + β2)

, (31)

and the decay rate can be written as

Υ =
2
√

α2 + β2I1(
√
α2 + β2)

I0(
√
α2 + β2)

, (32)

as shown in Appendix B. In the limiting case of large disorder (α → 0) this
replicates Eq. (30) with a substitution for α by β,

Υ =
2βI1(β)

I0(β)
≈ β2. (33)

The latter approximation, Υ ≈ β2, gives ∼ 1% accuracy for the values of
β less than π−1, corresponding to the numerical examples discussed above.
Indeed, precise asymptotics are 2d0ξ

−1 ≈ 0.988δ2 for the model NC and
2d0ξ

−1 ≈ 0.249δ2 for the model MC, which can be treated in the same way
as NC but with the half value of β. Since approximately Υ ∝ β2, this leads
to the discussed fourfold difference between the curves 2 and 6 on the right
side of Fig. 2b.

3.3. Uncorrelated dielectric component

In the general case of non-zero parameters α, β and γ the integrals in-
volved in the r.h.s. of Eq. (28) becomes complicated and can be represented
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only in terms of the formal series, which is not really practical. However,
in the case of uncorrelated dielectric fluctuations β = 0 the limit of strong
disorder can be treated exactly. Distribution function in this limit reduces
to

F0(Ψ) =
1

4K(iγ)
√

1 + γ2 sin2Ψ
, (34)

and the inverse localization length is given by the ratio of two elliptic func-
tions,

Υ = 2

(
E(iγ)

K(iγ)
− 1

)
≈ γ2. (35)

The latter approximation holds for γ < 2π−1 (considered in the numeri-
cal examples) within the accuracy of 4%, and the precise asymptotics for
the inverse localization length are 2d0ξ

−1 ≈ 3.830δ2 for the model NC and
2d0ξ

−1 ≈ 1.954δ2 for the model MC. These values in comparison with those
presented in the preceding paragraph finally explain the difference between
large disorder behaviour of the localization length observed in the numerically
studied models.

Good numerical convergence suggests that expansion in γ may be efficient
in the case of arbitrary α and β as well. Fortunately, corrections to the
distribution function (31) of any order in γ can be written in the form

δFn

F0

= γ2n(An +Bn cosΨ)
∑
k

Ck sin
k Ψ, (36)

suitable for analytical integration in terms of the modified Bessel functions.
In the case of uncorrelated dielectric fluctuations the answer including cor-
rection of the first order in γ2,

Υ = 2αI +
γ2

3

[
3− 4α2 + 4αI + (4α2 − 1)I2

]
, (37)

where I = I1(α)/I0(α), gives better than 5% agreement with the numeri-
cal curves of the models NU and MU at any amplitudes of disorder δ pro-
vided that dielectric contrast is sufficiently small. Thus, Eqs. (30), (32) and
(37) provides explicit expressions for all the considered models in the linear
regime, and similar expressions can be derived for other cases, say γ ̸= 0 and
β ̸= 0.
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3.4. Frequency dependence at small disorder

In the case of small disorder, α ≫ 1, the distribution function given by
Eq. (25) has exponentially sharp maximum at the minimum of Λ, Ψ∗ =
π + arcsinG, and the simplest approximation is F0(Ψ) = δ(Ψ − Ψ∗), which
leads to disorder free answer for the localization length,

2d0
ξ

= 4η
√
1−G2. (38)

In order to make allowance for disorder, more refined approximation is needed,
namely

F0(Ψ) = P (Ψ−Ψ∗) exp
(
−α

√
1−G2(Ψ−Ψ∗)2

2(1 + γ2G2)

)
, (39)

where P (x) = 1+
∑

n Pnx
n takes into account higher-order terms in the main

exponent, exponent with β and the denominator of Eq. (25). Carrying out
evaluation of ⟨L⟩ and ⟨L2⟩ with such a distribution function as explained
in Appendix C, we come to the following answer for light localization length
including corrections of the first order in α−1:

2d0
ξ

= 4η
√
1−G2 − π2δ2

1 + γ2G2

1−G2
. (40)

In the case of the central frequency of the first photonic band gap, G = 0,
this expression reduces to

2d0
ξ

= 4η − π2δ2, (41)

proving universal (independent of the type of disorder) behaviour of the
different curves in Fig. 2 in the region of moderate disorder once a disorder
parameter is introduced by Eq. (2). In order to check frequency dependence
of the localization length given by Eq. (40) we plot numerical results obtained
in the models NC and NU and approximations given by Eqs. (38,40) in
Fig. 3. As one can see from the plots, the corrections introduced by Eq. (40)
slightly improve quantitative agreement in the domain of moderate disorder
amplitudes and dimensionless frequencies G.
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Figure 3: (color online) Inverse light localization length obtained by numerical solution of
Eq. (14) is shown as a function of the dimensionless frequency G for two different models of
disorder described in the text and two values of disorder amplitude δ = 0.03 and δ = 0.06
at the dielectric contrast η = 0.05.
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Figure 4: (color online) Normalized light localization length obtained by numerical solution
of Eq. (14) is shown as a function of the reduced disorder amplitude α−1/2 for six values
of the dielectric contrast η ranging from 0.1 to 0.6 and two models of disorder, (a) NU
and (b) NC.
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3.5. Discussion on non-small dielectric contrast and comparison with the
experimental data

In the very beginning of our consideration we assumed that dielectric
contrast of a photonic crystal is small, an assumption being applicable only
to some specific part of the experimental systems. In order to check status
of our results at higher dielectric contrasts we have analyzed numerically
dependence of the localization length on the reduced disorder parameter
α−1/2 ∝ δ for the values of η from 0.1 to 0.6 (i.e. up to n1 = 4 at n2 = 1, the
range enclosing most of the experimentally fabricated systems). Numerical
curves presented in Fig. 4 for the models NU and NC show that quantitative
agreement between analytical and numerical results becomes rather poor at
significant dielectric contrasts, η & 0.1. Since such deviation occurs already
at δ = 0, it is not a consequence of the incorrect accounting for disorder
alone but is due to an expansion started by Eq. (A.5). On the other hand,
numerical curves in Fig. 4 still exhibit non-monotonic behaviour, confirm-
ing that qualitative conclusions of our analytical theory can be applied to
dielectric contrast of the arbitrary magnitude. In principle, it is possible to
generalize presented theory for the arbitrary magnitudes of dielectric con-
trast and fluctuations, however this leads to integral equation instead of the
Fokker-Planck type (Eq. (23)), and currently it is not straightforward how
to deal with it. We hope to address the case of non-small dielectric contrast
further in future publications.

Finally, in order to check practical consistency of the presented approach
let us give an example of how our analytical results can be used to describe
puzzling experimental data obtained in Ref. [8]. Though experimentally stud-
ied structures were three-dimensional photonic crystals, their distinctive fea-
ture is a small dielectric contrast (less than 0.1) and extensive thickness,
up to D = 1mm. Thanks to this, measured spectra, presented in Fig. 3 of
Ref. [8], are really smooth and reproducible. However, attenuation lengths
determined from those measurements are by almost an order of magnitude
higher than predicted from by both one-dimensional and three-dimensional
computations [8, 59]. In order to solve this discrepancy we suggest using the
model DC/DU discussed in Sec. 3.1 (of course, we consider this model only as
a ”cartoon” on the true disorder in those samples). Using theoretical curves
depicted in Fig. 3 of Ref. [8] as a reference, we are able to determine effective
value of the model parameter d0 = 0.5µm. Together with the values of di-
electric contrast listed for two different samples in Table I of Ref. [8] and the
only fitting parameter α = 0.2, this allows us to obtain reasonable agreement
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with the experimental spectra as shown in Fig. 5. Estimation of the local-
ization length for two samples studied in Ref. [8] (infiltrated with ethanol
and cyclohexane) using Eq. (30) gives ξeth ≈ 240µm, ξcyc ≈ 70µm, allowing
us to estimate numerical accuracy as 20 − 30%, which is not too bad for a
”toy”, one-dimensional model of the complicated three-dimensional problem.
In addition to absolute value of the localization length, our theory nicely de-
scribes smearing of the spectra, another puzzle of Ref. [8]. Thus, we have
demonstrated that a mere one-dimensional analytical theory is able to give
consistent description of the localization of light even in three dimensional
photonic crystals.

4. Summary

We have presented a detailed study of the effect of disorder on local-
ization of light in the one-dimensional photonic crystals. A variety of the
models with short-range disorder have been considered, allowing for both in-
dependent and correlated fluctuations of the refractive index and layer widths
within a period. In order to describe evolution of the electromagnetic wave
along a structure under the conditions of small dielectric contrast η and dis-
order amplitude δ statistically we introduced slowly varying angle variable
Ψ and derived the Fokker-Planck type equation for the distribution function
of this variable. Then we have shown how to evaluate the light localization
length using solution of the Fokker-Planck equation (24), and proved that
initial region of dependence of light localization length ξ on disorder param-
eter δ is universal, provided that the latter is defined by Eq. (2). However,
this universality disappears at δ ∼ √

η, and subsequent behaviour is spe-
cific to a model. In most of the models, except for a particular case of the
purely geometric disorder, ξ(δ) is non-monotonic, the fact being explained
by crossover between weak disorder regime describable by graceful suppres-
sion of the reflecting properties of a photonic crystal and strong disorder
regime, when periodic component of the refractive index can be almost fully
neglected. In addition, we have checked practical consistency of the theory
by comparison with the numerical computations carried out for non-small
values of the dielectric contrast and the experimental data of Ref. [8] dealing
with small contrast three-dimensional photonic crystals.
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Figure 5: (color online) Transmission spectra simulated for the two samples studied in
Ref. [8] (thickness D = 300µm, infiltration with (a) ethanol (b) cyclohexane) using a
definition T = exp(−D/ξ) and the light localization length determined from the model
DC. Dashed curves plotted for reduced amplitude of fluctuations indicate photonic band
gaps of the ideal structures.

17



5. Acknowledgments

This work has been supported by Dynasty Foundation, RFBR (11-02-
00573) and Russian President Grant for Young Scientists MK-1431.2013.2.

Appendix A. Derivation of the Langevin equation from transfer
matrix approach

Multiplication of transfer matrices of the individual layers ”A” and ”B”
of a given period gives transfer matrix (15) with the elements

M11 = cosφ1 cosφ2 −
n1

n2

sinφ1 sinφ2, (A.1)

M22 = cosφ1 cosφ2 −
n2

n1

sinφ1 sinφ2, (A.2)

M12 =
n0

n1

sinφ1 cosφ2 +
n0

n2

sinφ2 cosφ1, (A.3)

M21 = −n1

n0

sinφ1 cosφ2 −
n2

n0

sinφ2 cosφ1, (A.4)

where φi = kidi = nidiω/c. Both phases φ1,2 are close to π/2 inside the
first photonic band gap and can be expanded in terms of the small dielectric
contrast η and amplitude of the fluctuations δ. Since any quantities propor-
tional to the fluctuations δn1,2 or δd1,2 vanishes on average, this expansion
must be extended at least to the terms quadratic in fluctuations and linear
in η. Formally, it is convenient to represent each fluctuation as a product of δ
and a random quantity of the order of unity, and put η = απ2δ2/2 according
to Eq. (13). Expansion of the phases

φi ≃
π

2

[
1 +

δni

n0

+
δdi
d0

+
δniδdi
δn0δd0

− ζ +
2G

π
η − (−1)iη

]
, (A.5)

should be substituted into the foregoing expressions for the matrix elements,
resulting in

M11 ≃ −1− 2η − σ + µ+ π2τ 2/2, (A.6)

M22 ≃ −1 + 2η + σ + µ+ π2τ 2/2, (A.7)

M12 ≃ −2ηG+ π(µ+ ν − τ − ζ + ζ), (A.8)

M21 ≃ 2ηG+ π(µ+ ν + τ + ζ − ζ), (A.9)

18



where the notions given by Eqs. (9-12) are used. In turn, substitution of
these expansions into the equation

Ψs = 2arccot

(
M21 −M11 cot(Ψs+1/2)

M12 cot(Ψs+1/2)−M22

)
(A.10)

gives after some algebra Eqs. (18,19).

Appendix B. Localization length at γ = 0

In the case of equal dielectric fluctuations, γ = 0, it is convenient to
introduce unnormalized version of the distribution function (31),

F0(Ψ) =
1

2π
exp

(
2α sin2 Ψ

2
− 2β sin

Ψ

2
cos

Ψ

2

)
. (B.1)

Mean values of the powers of logarithmical derivative L = cot(Ψ/2) can be
related to normalization integral of the distribution (B.1),

N = eαI0(
√
α2 + β2), (B.2)

via obvious equality
∂n(N⟨Ln⟩)

∂nα
= (−1)n

∂nN

∂nβ
. (B.3)

Applying this relation to the r.h.s of Eq. (28) multiplied by the normalization
integral N , we come to the equation

∂2(NΥ)

∂α2
= 4

∂N

∂α
+(2α−1)

∂2N

∂α2
−∂2N

∂β2
+2β

∂2N

∂α∂β
= 2eα

[
(2α+1)I0(κ)+

(2α2 + β2)I1(κ)

κ

]
,

(B.4)
where κ =

√
α2 + β2. Double integration of Eq. (B.4) results in

NΥ = 2eα
√

α2 + β2I1(
√

α2 + β2), (B.5)

which immediately gives Eq. (33).
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Appendix C. Localization length at small disorder

In the case of arbitrary frequency, G ̸= 0, full solution of Eq. (24) can be
written in the form

F (Ψ) = JF0(Ψ)

[
P

P − 1

3π/2∫
−π/2

dΨ′

F̃0(Ψ′)
−

Ψ∫
−π/2

dΨ′

F̃0(Ψ′)

]
, (C.1)

where

P =
F0(Ψ + 2π)

F0(Ψ)
= exp

( 2παG√
1 + γ2

)
, (C.2)

F̃0(Ψ) = (1 + γ2 sin2Ψ)F0(Ψ), (C.3)

the flow J has to be determined from the normalization requirement, and
Ψ is assumed to be inside [−π/2, 3π/2] interval. While F0(Ψ) has sharp

maximum at Ψ∗ = π + arcsinG according to Eq. (39), the function F̃0(Ψ)
has deep minimum at Ψ⋆ = − arcsinG, therefore upper limit of the second
integral in the r.h.s. of Eq. (C.1) can be put the same as in the first integral
within the exponential accuracy, for any values of Ψ between π/2 and 3π/2,
so that

F(Ψ) =
JF0(Ψ)θ(Ψ− π

2
)

P − 1

3π/2∫
−π/2

dΨ′

F̃0(Ψ′)
+ θ

(π
2
−Ψ

)
F (Ψ), (C.4)

where F (Ψ) is given by Eq. (C.1). Since any integral containing F0(Ψ) sits
on Ψ∗ > π/2, this distribution is essentially equivalent to Eq. (39) in the
limit of small disorder, α ≫ 1, up to the exponentially small corrections.
Then, in order to derive the first correction in α−1 to expression for the
light localization length we have to evaluate Eq. (28) using the distribution
function (39) with P (x) = P0(x) + P1(x), where

P0(x) = 1 + ax2 + bαx4 + cα2x6, (C.5)

P1(x) =

√
1−G2(β − γ2G)x

1 + γ2G2
+

[1 + γ2(4− 3G2)]Gαx3

6(1 + γ2G2)2
, (C.6)

and explicit form of the coefficients a, b, c is inessential. In fact almost all the
terms in Eq. (28) can be averaged just using a substitution ⟨L⟩ → cot(Ψ∗/2)

20



except one, ∝ G⟨L⟩, where we have to take into account a correction

2αGδ⟨L⟩ = −2αG⟨xP1(x)⟩0
1 +

√
1−G2

− αG2⟨x2⟩0
(1 +

√
1−G2)2

= 2β cot
Ψ∗

2
+csc2

Ψ∗

2
−1 + γ2G2

1−G2
,

(C.7)
coming from simultaneous expansion of cot(Ψ/2) and the distribution func-
tion (39) near Ψ = Ψ∗ (here ⟨. . .⟩0 denotes averaging over the distribu-
tion (39) with P (x) = 1). While the first and second terms in the r.h.s.
of Eq. (C.7) cancel out, the third gives required correction in the r.h.s of
Eq. (40).
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