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Abstract

In Bhatt and Roy’s minimal directed spanning tree (MDST) construction for a
random partially ordered set of points in the unit square, all edges must respect the
“coordinatewise” partial order and there must be a directed path from each vertex
to a minimal element. We study the asymptotic behaviour of the total length of
this graph with power weighted edges. The limiting distribution is given by the sum
of a normal component away from the boundary and a contribution introduced by
the boundary effects, which can be characterized by a fixed point equation, and is
reminiscent of limits arising in the probabilistic analysis of certain algorithms. As
the exponent of the power weighting increases, the distribution undergoes a phase
transition from the normal contribution being dominant to the boundary effects
dominating. In the critical case where the weight is simple Euclidean length, both
effects contribute significantly to the limit law.

Keywords: Spanning tree; nearest neighbour graph; weak convergence; fixed-point equa-
tion; phase transition; fragmentation process.

1 Introduction

Recent interest in graphs, generated over random point sets consisting of independent
uniform points in the unit square by connecting nearby points according to some determ-
inistic rule, has been considerable. Such graphs include the geometric graph, the nearest
neighbour graph and the minimal-length spanning tree. Many aspects of the large-sample
asymptotic theory for such graphs, when they are locally determined in a certain sense,
are by now quite well understood. See for example [9, 14, 19, 20, 25–27].

One such graph is the minimal directed spanning tree (or MDST for short), which was
introduced by Bhatt and Roy in [6]. In the MDST, each point x of a finite (random)
subset S of (0, 1]2 is connected by a directed edge to the nearest y ∈ S∪{(0, 0)} such that
y 6= x and y 4∗ x, where y 4∗ x means that each component of x − y is nonnegative.
See Figure 1 for a realisation of the MDST on simulated random points.

Motivation comes from the modelling of communications or drainage networks (see
[6, 16, 22]). For example, consider the problem of designing a set of canals to connect a
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set of hubs, so as to minimize their total length subject to a constraint that all canals
must flow downhill. The mathematical formulation given above for this constraint can
lead to significant boundary effects due to the possibility of long edges occurring near
the lower and left boundaries of the unit square; these boundary effects distinguish the
MDST qualitatively from the standard minimal spanning tree and the nearest neighbour
graph for point sets in the plane. Another difference is the fact that there is no uniform
upper bound on vertex degrees in the MDST.

In the present work, we consider the total length, with power-weighted edges, of
the MDST on random points in (0, 1]2, as the number of points becomes large. We
also consider the total power-weighted length of the minimal directed spanning forest
(MDSF), which is the MDST with edges incident to the origin removed (see Figure 1
for an example). In [6], Bhatt and Roy mention that the total length is an object of
considerable interest, although they restrict their analysis to the length of the edges
joined to the origin (subsequently also examined in [16]). A first order result for the total
power-weighted length of the MDST or MDSF is a law of large numbers; this is given
in [17] for a family of MDSFs indexed by partial orderings on R2, which include 4∗ as a
special case.

This paper is mainly concerned with establishing second order results, i.e., weak con-
vergence results for the distribution of the total power-weighted length, suitably centred
and scaled, when the partial order is 4∗. For the length of edges from points in the
region away from the boundary, we prove a central limit theorem. The boundary effects
are significant, and near the boundary the MDST can be described in terms of a one-
dimensional, on-line version of the MDST which we call the directed linear tree (DLT),
and which we examine in Section 3. In the DLT, each point in a sequence of independ-
ent uniform random points in an interval is joined to its nearest neighbour to the left,
amongst those points arriving earlier in the sequence. This DLT is of separate interest
in relation to, for example, network modelling and molecular fragmentation (see [5], [4],
and references therein).

In Theorem 3.1 we establish that the limiting distribution of the centred total length
of the DLT is characterized by a distributional fixed-point equation, which resembles
those encountered in the probabilistic analysis of algorithms such as Quicksort [7]. Such
fixed-point distributional equalities, and the so-called ‘divide and conquer’ or recursive
algorithms from which they arise, have received considerable attention recently; see, for
example, [8, 13, 23, 24].

Our weak convergence results (Theorem 2.1) demonstrate that, depending on the
value chosen for the weight exponent of the edges, there are two regimes in which either
the boundary effects dominate or those edges away from the boundary are dominant, and
that there is a critical value (when we take simple Euclidean length as the weight) for
which neither effect dominates.

In the related paper [16], we give results dealing with the weight of the edges joined
to the origin, including weak convergence results, in which the limiting distributions are
given in terms of some generalized Dickman distributions. Subsequently, it has been
shown [2] that this two dimensional case is rather special – in higher dimensions the
corresponding limits are normally distributed. [16] also deals with the maximum edge
length of the MDST (the maximum length of those edges incident to the origin was dealt
with in [6]).

In the next section we give formal definitions of the MDST and MDSF, and state our
main results (Theorem 2.1) on the total length of the MDST and MDSF. The results on
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the DLT which we present in Section 3, and the general central limit theorems which we
present in Section 4, are of some independent interest.

Figure 1: Realizations of the MDSF (left) and MDST on 50 simulated uniform random
points in the unit square, under the partial ordering 4∗.

2 Definitions and main results

We work in the same framework as [16]. Here we briefly recall the relevant terminology.
See [16] for more detail.

Suppose that V is a finite set endowed with a partial ordering 4. A minimal element,
or sink, of V is a vertex v0 ∈ V for which there exists no v ∈ V \ {v0} such that v 4 v0.
Let V0 denote the set of all sinks of V .

The partial ordering induces a directed graph G = (V,E), with vertex set V and with
edge set E consisting of all ordered pairs (v, u) of distinct elements of V such that u 4 v.
A directed spanning forest (DSF) on V is a subgraph T = (VT , ET ) of (V,E) such that
(i) VT = V and ET ⊆ E, and (ii) for each vertex v ∈ V \V0 there exists a unique directed
path in T that starts at v and ends at some sink u ∈ V0. In the case where V0 consists
of a single sink, we refer to any DSF on V as a directed spanning tree (DST) on V . If
we ignore the orientation of edges then [16] a DSF on V is indeed a forest and, if there
is just one sink, then any DST on V is a tree.

Suppose that the directed graph (V,E) carries a weight function w : E → [0,∞) on
its edges. If T is a DSF on V , we set w(T ) :=

∑

e∈ET
w(e). A minimal directed spanning

forest (MDSF) on V is a directed spanning forest T on V such that w(T ) ≤ w(T ′) for
every DSF T ′ on V . If V has a single sink, then a minimal directed spanning forest on
V is called a minimal directed spanning tree (MDST) on V .

For v ∈ V , we say that u ∈ V \ {v} is a directed nearest neighbour of v if u 4 v and
w(v, u) ≤ w(v, u′) for all u′ ∈ V \ {v} such that u′

4 v. For each v ∈ V \ V0, let nv

denote a directed nearest neighbour of v (chosen arbitrarily if v has more than one dir-
ected nearest neighbour). Then [16] the subgraph (V,EM) of (V,E), obtained by taking
EM := {(v, nv) : v ∈ V \ V0}, is a MDSF of V . Thus, if all edge-weights are distinct, the
MDSF is unique, and is obtained by connecting each non-minimal vertex to its directed
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nearest neighbour.

The partial order that we consider here is the same as in [6], and we denote it by 4∗.
In this case u 4∗ v for u = (u1, u2), v = (v1, v2) if and only if u1 ≤ v1 and u2 ≤ v2. This is
sometimes called the “coordinatewise” partial order. The symbol 4 will denote a general
partial order on R2.

The weight function is given by power-weighted Euclidean distance, i.e., to the edge
(u, v) ∈ E we assign weight w(u, v) = ‖u− v‖α, where ‖ · ‖ denotes the Euclidean norm
on R2, and α > 0 is an arbitrary fixed parameter. Thus, when α = 1 the weight of an
edge is simply its Euclidean length. Moreover, we shall assume that V ⊂ R2 is given
by V = S or V = S0 := S ∪ {0}, where 0 is the origin in R2 and S is generated in a
random manner. The random point set S will usually be either the set of points given
by a homogeneous Poisson point process Pn of intensity n on the unit square (0, 1]2, or
a binomial point process Xn consisting of n independent uniformly distributed points on
(0, 1]2.

Note that in this random setting, each point of S almost surely has a unique directed
nearest neighbour, so that V has a unique MDSF, which does not depend on the choice
of α. Denote by Lα(S) the total weight of all the edges in the MDSF on S, and let
L̃α(S) := Lα(S)− E[Lα(S)], the centred total weight.

Our main result (Theorem 2.1) presents convergence in distribution for the partial
order 4∗; the limiting distributions are of a different type in the three cases α = 1 (the
same situation as [6]), 0 < α < 1, and α > 1. We define these limiting distributions in
Theorem 2.1, in terms of distributional fixed-point equations. These fixed-point equations
are of the form

X
D
=

k
∑

r=1

ArX
{r} +B, (1)

where k ∈ N, X{r}, r = 1, . . . , k, are independent copies of the random variable X ,
and (A1, . . . , Ak, B) is a random vector, independent of (X{1}, . . . , X{k}), satisfying the
conditions

E

k
∑

r=1

|Ar|2 < 1, E[B] = 0, E[B2] < ∞. (2)

Theorem 3 of Rösler [23] (proved using the contraction mapping theorem; see also [13,24])
says that if (2) holds, there is a unique square-integrable distribution with mean zero
satisfying the fixed-point equation (1), and this will guarantee uniqueness of solutions to
all the distributional fixed-point equalities considered in the sequel.

We define our random variables of interest as (unique) solutions to distributional
fixed-point equations. For each of these equations, U denotes a uniform random variable,
and all the different random variables on the right are independent.

Define D̃1 by

D̃1
D
= UD̃

{1}
1 + (1− U)D̃

{2}
1 + U logU + (1− U) log(1− U) + U. (3)

In Section 3.4, we give a plot (Figure 2) of the probability density function of this dis-
tribution, estimated by simulation. We shall see later (in Propositions 3.5 and 3.6) that
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E[D̃1] = 0 and Var[D̃1] = 2 − π2/6; higher order moments may be obtained recurs-
ively from (3). For example, E[D̃3

1] ≈ 0.15411, which shows D̃1 is not Gaussian and is
consistent with the skewness of the plot in Figure 2.

For α > 1, define D̃α by

D̃α
D
= UαD̃{1}

α + (1− U)αD̃{2}
α +

α

α− 1
Uα +

1

α− 1
(1− U)α − 1

α− 1
. (4)

Also for α > 1, let F̃α be defined by

F̃α
D
= UαF̃α + (1− U)αD̃α +

Uα

α(α− 1)
+

(1− U)α

α− 1
− 1

α(α− 1)
, (5)

where D̃α has the distribution given by (4). In Section 3 we shall see that the random
variables D̃α, F̃α for α > 1 arise as centred versions of random variables (denoted Dα, Fα

respectively) satisfying somewhat simpler fixed point equations. Thus D̃α and F̃α both
have mean zero; their variances are given by (34) and (36) below.

Let N (0, s2) denote the normal distribution with mean zero and variance s2.

Theorem 2.1. For α > 0 and partial order 4∗, there exist constants 0 < t2α ≤ s2α such
that, for normal random variables Yα ∼ N (0, s2α) and Wα ∼ N (0, t2α):

(i) As n → ∞,

n(α−1)/2L̃α(P0
n)

D−→ Yα and n(α−1)/2L̃α(X 0
n)

D−→ Wα (0 < α < 1); (6)

L̃1(P0
n)

D−→ D̃
{1}
1 + D̃

{2}
1 + Y1 and L̃1(X 0

n)
D−→ D̃

{1}
1 + D̃

{2}
1 +W1; (7)

L̃α(P0
n)

D−→ D̃{1}
α + D̃{2}

α and L̃α(X 0
n)

D−→ D̃{1}
α + D̃{2}

α (α > 1). (8)

Here all the random variables in the limits are independent, and D̃
{i}
α , i = 1, 2 are inde-

pendent copies of D̃α as defined at (3) for α = 1 and (4) for α > 1.
(ii) As n → ∞,

n(α−1)/2L̃α(Pn)
D−→ Yα and n(α−1)/2L̃α(Xn)

D−→ Wα (0 < α < 1); (9)

L̃1(Pn)
D−→ D̃

{1}
1 + D̃

{2}
1 + Y1 and L̃1(Xn)

D−→ D̃
{1}
1 + D̃

{2}
1 +W1; (10)

L̃α(Pn)
D−→ F̃ {1}

α + F̃ {2}
α and L̃α(Xn)

D−→ F̃ {1}
α + F̃ {2}

α (α > 1) . (11)

Here all the random variables in the limits are independent, and D̃
{i}
1 , i = 1, 2, are

independent copies of D̃1 with distribution defined at (3), and for α > 1, F̃
{i}
α , i = 1, 2,

are independent copies of F̃α with distribution defined at (5).

Remarks. The normal random variables Yα or Wα arise from the edges away from the
boundary (see Section 5). The non-normal variables (the D̃s and F̃ s) arise from the edges
very close to the boundary, where the MDSF is asymptotically close to the ‘directed linear
forest’ discussed in Section 3.

Theorem 2.1 indicates a phase transition in the character of the limit law as α in-
creases. The normal contribution (from the points away from the boundary) dominates
for 0 < α < 1, while the boundary contributions dominate for α > 1. In the critical case
α = 1, neither effect dominates and both terms contribute significantly to the asymptotic
behaviour.

5



Noteworthy in the case α = 1 is the fact that by (7) and (10), the limiting distribution
is the same for L̃1(Pn) as for L̃1(P0

n), and the same for L̃1(Xn) as for L̃1(X 0
n). Note, how-

ever, that the difference L̃1(Pn) − L̃1(P0
n) is the (centred) total length of edges incident

to the origin, which is not negligible, but itself converges in distribution (see [16]) to a
non-degenerate random variable, namely a centred generalized Dickman random variable
with parameter 2 (see (25) below). As an extension of Theorem 2.1, it should be possible
to show that the joint distribution of (L̃1(Pn), L̃1(P0

n)) converges to that of two coupled
random variables, both having the distribution of D̃1, whose difference has the centred
generalized Dickman distribution with parameter 2. Likewise for the joint distribution of
(L̃1(Xn), L̃1(X 0

n)).

The remainder of this paper is organized as follows. After discussion of the DLT in
Section 3, in Section 4 we present general limit theorems in geometric probability, which
we shall use in obtaining our main results for the MDST. The proof of Theorem 2.1 is
prepared in Sections 5 and 6, and completed in Section 7. In these proofs, we repeatedly
use Slutsky’s theorem (see e.g. [14]) which says that if Xn → X in distribution and Yn → 0
in probability, then Xn + Yn → X in distribution. For reasons of space, we omit details
of some proofs. More details can be found in the longer version of this paper available
electronically [17].

3 The directed linear forest and tree

The directed linear forest (DLF) and directed linear tree (DLT) are for us a tool for
the analysis of the limiting behaviour of the contribution to the total weight of the
random MDSF/MDST from edges near the boundary of the unit square. In the present
section we derive the properties of the DLF that we need (in particular, Theorem 3.1);
subsequently, in Theorem 6.1, we shall see that the total weight of edges from the points
near the boundaries, as n → ∞, converges in distribution to the limit of the total weight
of the DLF.

The DLT is also of some intrinsic interest. It is a one-dimensional directed analogue
of the so-called ‘on-line nearest-neighbour graph’, which is of interest in the study of
networks such as the world wide web (see, e.g. [5]; also [15] and [18] for more on the on-line
nearest neighbour graph). Moreover, the DLT is constructed via a fragmentation process
similar to those seen in, for example, [4]; the tree provides a historical representation of
the fragmentation process.

For any finite sequence Tm = (x1, x2, . . . , xm) ∈ (0, 1]m, we construct the directed
linear forest (DLF) as follows. We insert the points xi in order, one at a time, starting
with i = 1. At the insertion of each point, we join the new point to its nearest neighbour
among those points already present that lie to the left of the point (provided that such
a point exists). In other words, for each point xi, i ≥ 2, we join xi by a directed edge
to the point max{xj : 1 ≤ j < i, xj < xi}. If {xj : 1 ≤ j < i, xj < xi} is empty, we
do not add any directed edge from xi. In this way we construct a ‘directed linear forest’,
which we denote by DLF (Tm). We denote the total weight (under weight function with
exponent α) of DLF (Tm) by Dα(Tm), that is, we set

Dα (Tm) :=
m
∑

i=2

(xi −max{xj : 1 ≤ j < i, xj < xi})α1{min{xj : 1 ≤ j < i} < xi}.
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Here we will take Tm to be random. In this case, set D̃α (Tm) := Dα (Tm)−E [Dα (Tm)]
the centred total weight of the DLF. In particular, let (X1, X2, X3, . . .) be a sequence of
independent uniformly distributed random variables in (0, 1], and for m ∈ N set Um :=
(X1, X2, . . . , Xm) and U0

m := (0, X1, X2, . . . , Xm). We consider Dα(Um) and Dα(U0
m).

Note that the DLF on U0
m will always be a tree rooted at 0, and in this case we call it

the directed linear tree (DLT).
For the random variables Dα(Um) and Dα(U0

m) we establish asymptotic behaviour of
the mean value in Propositions 3.1 and 3.2, along with the following convergence results,
which are the principal results of this section.

For α > 1, let Dα denote a random variable with distribution characterized by

Dα
D
= UαD{1}

α + (1− U)αD{2}
α + Uα, (12)

where U is uniform on (0, 1) and independent of the other variables on the right. Also
for α > 1, let Fα denote a random variable with distribution characterized by

Fα
D
= UαFα + (1− U)αDα, (13)

where U is uniform on (0, 1), Dα has the distribution given by (12), and the U , Dα and
Fα on the right are independent. The corresponding centred random variables D̃α :=
Dα − E[Dα] and F̃α := Fα − E[Fα] satisfy (4) and (5) respectively. The solutions to (4)
and (5) are unique by the criterion given at (2), and hence the solutions to (12) and (13)
are also unique.

Theorem 3.1. (i) As m → ∞ we have D̃1(U0
m)

L2

−→ D̃1 and D̃1(Um)
L2

−→ F̃1 where
D̃1 has the distribution given by (3), and F̃1 has the same distribution as D̃1.
Also, the variance of D̃1 (and hence also of F̃1) is 2 − π2/6 ≈ 0.355066. Finally,
Cov(D̃1, F̃1) = (7/4)− π2/6 ≈ 0.105066.

(ii) For α > 1, as m → ∞ we have Dα(U0
m) → Dα, almost surely and in L2, and

Dα(Um)
L2

−→ Fα, almost surely and in L2, where the distributions of Dα, Fα are
given by (12), (13) respectively. Also, E[Dα] = (α−1)−1 and E[Fα] = (α(α−1))−1,
while Var(Dα) and Var(Fα) are given by (34) and (36) respectively.

Proof. Part (i) follows from Propositions 3.5, 3.6 and 3.7 below. Part (ii) follows from
Propositions 3.3 and 3.4 below. We prove these results in the following sections.

An interesting property of the DLT, which we use in establishing fixed-point equations
for limit distributions, is its self-similarity (scaling property). In terms of the total weight,
this says that for any t ∈ (0, 1), if Y1, . . . , Yn are independent and uniformly distributed
on (0, t], then the distribution of Dα(Y1, . . . , Yn) is the same as that of tαDα(X1, . . . , Xn).

3.1 The mean total weight of the DLF and DLT

First we consider the rooted case, i.e. the DLT on U0
m. For m ∈ N denote by Zm the

random variable given by the gain in length of the tree on the addition of one point (Xm)
to an existing m− 1 points in the DLT on a sequence of uniform random variables U0

m−1,
i.e. with the conventions D1(U0

0 ) = 0 and X0 = 0, we set

Zm := D1(U0
m)−D1(U0

m−1) = Xm −max{Xj : 0 ≤ j < m,Xj < Xm}. (14)

Thus, with weight exponent α, the mth edge to be added has weight Zα
m.
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Lemma 3.1. (i) Zm has distribution function Fm given by Fm(t) = 0 for t < 0, Fm(t) = 1
for t > 1, and Fm(t) = 1− (1− t)m for 0 ≤ t ≤ 1.

(ii) For β > 0, Zm has moments

E[Zβ
m] =

Γ(m+ 1)Γ(1 + β)

Γ(1 + β +m)
. (15)

In particular,

E[Zm] =
1

m+ 1
; Var[Zm] =

m

(m+ 1)2(m+ 2)
. (16)

(iii) For β > 0, as m → ∞ we have

E[Zβ
m] ∼ Γ(1 + β)m−α. (17)

(iv) As m → ∞, mZm converges in distribution to an exponential random variable
with parameter 1.

Proof. For 0 ≤ t ≤ 1 we have

P [Zm > t] = P [Xm > t and none of X1, . . . , Xm−1 lies in (Xm − t, Xm)] = (1− t)m,

and (i) follows. We then obtain (ii) since for any β > 0

E[Zβ
m] =

∫ 1

0

P [Zm > t1/β ]dt =

∫ 1

0

(1− t1/β)mdt =
Γ(m+ 1)Γ(1 + β)

Γ(1 + β +m)
.

Then (iii) follows by Stirling’s formula. For (iv), we have from (i) that, for t ∈ [0,∞),
and m large enough so that (t/m) ≤ 1,

P [mZm ≤ t] = Fm

(

t

m

)

= 1−
(

1− t

m

)m

→ 1− e−t, as m → ∞.

But 1− e−t, t ≥ 0 is the exponential distribution function with parameter 1.

Note that Zm has the same distribution as the spacing Sn
1 (see Section 3.2). The

following result gives the asymptotic behaviour of the expected total weight of the DLT.
Let γ denote Euler’s constant, so that

(

k
∑

i=1

1

i

)

− log k = γ +O(k−1). (18)

Proposition 3.1. As m → ∞ the expected total weight of the DLT on U0
m satisfies

E[Dα(U0
m)] ∼ Γ(α + 1)

1− α
m1−α (0 < α < 1); (19)

E[D1(U0
m)]− logm → γ − 1; (20)

E[Dα(U0
m)] =

1

α− 1
+O(m1−α) (α > 1). (21)
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Proof. We have

E[Dα(U0
m)] =

m
∑

i=1

(

E[Dα(U0
i )]−E[Dα(U0

i−1)]
)

=
m
∑

i=1

E[Zα
i ].

In the case where α = 1, E[Zi] = (i+ 1)−1 by (16), and (20) follows by (18). For general
α > 0, α 6= 1, from (15) we have that

E[Dα(U0
m)] = Γ(1 + α)

m
∑

i=1

Γ(i+ 1)

Γ(1 + α + i)
=

1

α− 1
− Γ(1 + α)Γ(m+ 2)

(α− 1)Γ(m+ 1 + α)
, (22)

which can be proved by induction on m. By Stirling’s formula, the last term satisfies

− Γ(1 + α)Γ(m+ 2)

(α− 1)Γ(m+ 1 + α)
= −Γ(1 + α)

α− 1
m1−α(1 +O(m−1)), (23)

which tends to zero as m → ∞ for α > 1, to give us (21). For α < 1, we have (19) from
(22) and (23).

Now consider the unrooted case, i.e., the DLF. For Um as above the total weight of the
DLF is denotedDα(Um), and the centred total weight is D̃α(Um) := Dα(Um)−E[Dα(Um)].
We then see that

Dα(U0
m) = Dα(Um) + Lα

0 (U0
m), (24)

where Lα
0 (U0

m) is the total weight of edges incident to 0 in the DLT on U0
m.

The following lemma says that Lα
0 (U0

m) converges to a random variable that has the
generalized Dickman distribution with parameter 1/α (see [16]), that is, the distribution
of a random variable X which satisfies the distributional fixed-point equation

X
D
= Uα(1 +X), (25)

where U is uniform on (0, 1) and independent of the X on the right. We recall from
Proposition 3 of [16] that if X satisfies (25) then

E[X ] = 1/α, and E[X2] = (α + 2)/(2α2). (26)

Lemma 3.2. Let α > 0. There is a random variable Lα
0 with the generalized Dickman

distribution with parameter 1/α, such that as m → ∞, we have that Lα
0 (U0

m) → Lα
0 ,

almost surely and in L2.

Proof. Let δD(U0
m) denote the degree of the origin in the directed linear tree on U0

m, so
that δD(U0

m) is the number of lower records in the sequence (X1, . . . , Xm). Then

Lα
0 (U0

m) = Uα
1 + (U1U2)

α + · · ·+ (U1 · · ·UδD(U0
m))

α, (27)

where (U1, U2, . . .) is a certain sequence of independent uniform random variables on
(0, 1), namely the ratios between successive lower records of the sequence (Xn). The
sum Uα

1 + (U1U2)
α + (U1U2U3)

α + · · · has nonnegative terms and finite expectation, so
it converges almost surely to a limit which we denote Lα

0 . Then Lα
0 has the generalized

Dickman distribution with parameter 1/α (see Proposition 2 of [16]).
Since δD(U0

m) tends to infinity almost surely as m → ∞, we have Lα
0 (U0

m) → Lα
0

almost surely. Also, E[(Lα
0 )

2] < ∞, by (26), and (Lα
0 −Lα

0 (U0
m))

2 ≤ (Lα
0 )

2 for all m. Thus
E[(Lα

0 (U0
m) − Lα

0 )
2] → 0 by the dominated convergence theorem, and so we have the L2

convergence as well.
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Proposition 3.2. As m → ∞ the expected total weight of the DLF on Um satisfies

E[Dα(Um)] ∼ Γ(α + 1)

1− α
m1−α (0 < α < 1); (28)

E[D1(Um)]− logm → γ − 2; (29)

E[Dα(Um)] → 1

α(α− 1)
(α > 1). (30)

Proof. By (24) we have E[Dα(Um)] = E[Dα(U0
m)]−E[Lα

0 (U0
m)]. By Lemma 3.2 and (26),

E[Lα
0 (U0

m)] −→ E[Lα
0 ] = 1/α.

We then obtain (28), (29) and (30) from Proposition 3.1.

In the following sections we present the limiting behaviour of the DLT/DLF for the
cases α = 1 and α > 1. The case α < 1 does not concern us here. However, a divide-
and-conquer approach as used in [18] to prove a limit theorem for the total weight of the
on-line nearest-neighbour graph on (0, 1) when 1/2 < α < 1 can be used to give a similar
result for the DLT/DLF.

3.2 Orthogonal increments for α = 1

In this section we shall show (in Lemma 3.5) that when α = 1, the variables Zi, i ≥ 1 are
mutually orthogonal, in the sense of having zero covariances, which will be used later on
to establish convergence of the (centred) total length of the DLT. To prove this, we first
need further notation.

Given X1, . . . , Xm, let us denote the order statistics of X1, . . . , Xm, taken in increasing
order, as
Xm

(1), X
m
(2), . . . , X

m
(m). Thus (Xm

(1), X
m
(2), . . . , X

m
(m)) is a nondecreasing sequence, forming

a permutation of the original (X1, . . . , Xm). Denote the existing m+1 intervals between
points by Imj := (Xm

(j−1), X
m
(j)) for j = 1, 2, . . . , m + 1, where we set Xm

(0) := 0 and

Xm
(m+1) := 1. Let the widths of these intervals (the spacings) be

Sm
j :=

∣

∣Imj
∣

∣ = Xm
(j) −Xm

(j−1),

for 1 ≤ j ≤ m+1. Then 0 ≤ Sm
j < 1 for 1 ≤ j ≤ m+1, and

∑m+1
j=1 Sm

j = 1. That is, the

vector
(

Sm
1 , Sm

2 , . . . , Sm
m+1

)

belongs to the m-dimensional simplex, ∆m. Note that only m
of the Sm

j are required to specify the vector.
We can arrange the spacings themselves (Sm

j , 1 ≤ j ≤ m+ 1) into increasing order to
give Sm

(1), S
m
(2), . . . , S

m
(m+1). Then let Fm

S denote the σ-field generated by these ordered

spacings, i.e. Fm
S = σ(Sm

(1), . . . , S
m
(m+1)). The following interpretation of Fm

S may be help-

ful. The set (0, 1) \ {X1, . . . , Xm} consists almost surely of m+ 1 connected components
(‘fragments’) of total length 1, and Fm

S is the σ-field generated by the collection of lengths
of these fragments, ignoring the order in which they appear.

By definition, the value of Zm must be one of the (ordered) spacings Sm
(1), . . . , S

m
(m+1).

The next result says that, given the values of these spacings, each of the possible values
for Zm are equally likely.
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Lemma 3.3. For m ≥ 1 we have

P
[

Zm = Sm
(i)

∣

∣Fm
S

]

=
1

m+ 1
a.s., for i = 1, . . . , m+ 1. (31)

Hence,

E [Zm |Fm
S ] =

1

m+ 1

m+1
∑

i=1

Sm
(i) =

1

m+ 1
. (32)

Proof. We have that
(

Sm
1 , . . . , Sm

m+1

)

is uniform over the m-dimensional simplex ∆m. In
particular, the Sm

j are exchangeable. Thus given Sm
(1), . . . , S

m
(m+1), i.e. Fm

S , the actual
values of Sm

1 , . . . , Sm
m+1 are equally likely to be any permutation of Sm

(1), . . . , S
m
(m+1), and

given Sm
1 , . . . , Sm

m+1 the value of Zm is equally likely to be any of Sm
1 , . . . , Sm

m (but cannot
be Sm

m+1).
Hence, given Sm

(1), . . . , S
m
(m+1) the probability that Zm = Sm

(i) is (1/m)×m/(m+ 1) =

1/(m+ 1), i.e. we have (31), and then (32) follows since
∑m+1

j=1 Sm
(j) = 1.

Lemma 3.4. Let 1 ≤ m < ℓ. Given Fm
S , Zℓ and Zm are conditionally independent.

Proof. Given Fm
S , we have Sm

(1), . . . , S
m
(m+1), and by (31), the (conditional) distribution of

Zm is uniform on {Sm
(1), . . . , S

m
(m+1)}. The conditional distribution of Zℓ, ℓ > m, given Fm

S ,
depends only on Sm

(1), . . . , S
m
(m+1) and not which one of them Zm happens to be. Hence

Zm and Zℓ are conditionally independent.

Lemma 3.5. For 1 ≤ m < ℓ, the random variables Zm, Zℓ satisfy Cov [Zm, Zℓ] = 0.

Proof. From Lemmas 3.4 and 3.3,

E [ZmZℓ|Fm
S ] = E [Zm|Fm

S ]E [Zℓ|Fm
S ] =

1

m+ 1
E [Zℓ|Fm

S ] ,

and by taking expectations we obtain

E [ZmZℓ] =
1

m+ 1
E [Zℓ] =

1

m+ 1
· 1

ℓ + 1
= E[Zm] · E[Zℓ].

Hence the covariance of Zm and Zℓ is zero.

3.3 Limit behaviour for α > 1

We now consider the limit distribution of the total weight of the DLT and DLF. In the
present section we consider the case of α-power weighted edges with α > 1; that is, we
prove part (ii) of Theorem 3.1. To describe the moments of the limiting distribution of
Dα(U0

m) and Dα(Um), we introduce the notation

J(α) :=

∫ 1

0

uα(1− u)αdu = 2−1−2α
√
π

Γ(α + 1)

Γ(α+ 3/2)
. (33)

We start with the rooted case (Dα(U0
m)), and subsequently consider the unrooted case

(Dα(Um)).

11



Proposition 3.3. Let α > 1. Then there exists a random variable Dα such that as m →
∞ we have Dα(U0

m) → Dα almost surely and in L2. Also Dα satisfies the distributional
fixed-point equality (12). Further, E[Dα] = 1/(α− 1) and

Var[Dα] =
α (α− 2 + 2(2α+ 1)J(α))

(α− 1)2(2α− 1)
. (34)

Proof. Let Zi be the length of the ith edge of the DLT, as defined at (14). Let Dα :=
∑∞

i=1 Z
α
i . The sum converges almost surely since it has non-negative terms and, by (17),

has finite expectation for α > 1. By (17) and Cauchy-Schwarz, there exists a constant
0 < C < ∞ such that

E[D2
α] =

∞
∑

i=1

∞
∑

j=1

E[Zα
i Z

α
j ] ≤ C

∞
∑

i=1

∞
∑

j=1

i−αj−α < ∞,

since α > 1. The L2 convergence then follows from the dominated convergence theorem.
Taking U = X1 here, by the self-similarity of the DLT we have that

Dα(U0
m)

D
= UαDα

{1}(U0
N) + (1− U)αDα

{2}(U0
m−1−N ) + Uα, (35)

where N ∼ Bin(m−1, U), given U , and, given U and N , Dα
{1}(U0

N) and Dα
{2}(U0

m−1−N ) are

independent with the distribution of Dα(U0
N) and Dα(U0

m−1−N ), respectively. As m → ∞,
N and m−N both tend to infinity almost surely, and so, by taking m → ∞ in (35), we
obtain the fixed-point equation (12).

The identity E[Dα] = (α− 1)−1 is obtained either from (21) of Proposition 3.1, or by
taking expectations in (12). Next, if we set D̃α = Dα − E[Dα], (12) yields (4). Then,
using the definition (33) of J(α), the fact that E[D̃α] = 0, and independence, we obtain
from (4) that

E[D̃2
α] =

2E[D̃2
α]

2α + 1
+

α2 + 1

(α− 1)2(2α+ 1)
+

2αJ(α)

(α− 1)2
− 1

(α− 1)2
,

and rearranging this gives (34).

Recall from Lemma 3.2 that Lα
0 is the limiting weight of edges attached to the origin

in the DLT on uniform points. Combining this fact with Proposition 3.3, we obtain a
similar result to the latter for the unrooted case as follows:

Proposition 3.4. Let α > 1. There is a random variable Fα, satisfying the distributional
fixed-point equality (13), such that Dα(Um) → Fα, as n → ∞, almost surely and in L2.
Further, E[Fα] = 1/(α(α− 1)), and

Var[Fα] =
1

2α
Var[Dα] +

α+ 2(2α + 1)J(α)− 2

2α2(α− 1)2
, (36)

where J(α) is given by (33) and Var[Dα] by (34).

Proof. By Lemma 3.2 and Proposition 3.3, there are random variables Dα and Lα
0 such

that as m → ∞ we have Dα(U0
m)

L2

−→ Dα and Lα
0 (U0

m)
L2

−→ Lα
0 , also with almost sure

convergence in both cases. Hence, setting Fα := Dα − Lα
0 , we have by (24) that

Dα(Um) = Dα(U0
m)−Lα

0 (U0
m) → Fα, a.s. and in L2. (37)

12



Next, we show that Fα satisfies the distributional fixed-point equality (13). The self-
similarity of the DLT implies that

Dα(Um)
D
= UαDα(UN) + (1− U)αDα(U0

m−1−N ), (38)

where N ∼ Bin(m − 1, U), given U , and Dα(UN ) and Dα(U0
m−1−N ) are independent,

given U and N . As m → ∞, N and m−N both tend to infinity almost surely, so taking
m → ∞ in (38), using Proposition 3.3 and (37), we obtain the fixed-point equation (13).

The identity E[Fα] = α−1(α−1)−1 is obtained either by (30), or by taking expectations
in (13) and using the formula for E[Dα] in Proposition 3.3. Then with F̃α := Fα−E[Fα],
we obtain (5) from (13), and using independence and the fact that E[F̃α] = E[D̃α] = 0
we obtain

2α

2α + 1
E[F̃ 2

α] =
E[D̃2

α]

2α + 1
+

2αJ(α)− 1

α2(α− 1)2
+

α2 + 1

α2(α− 1)2(2α + 1)
,

which yields (36).

3.4 Limit behaviour for α = 1

Unlike in the case α > 1, for α = 1 the mean of the total weight D1(U0
m) diverges as

m → ∞ (see Proposition 3.1), so clearly there is no limiting distribution for D1(U0
m).

Nevertheless, by using the orthogonality of the increments of the sequence (D1(U0
m), m ≥

1), we are able to show that the centred total weight D̃1(U0
m) does converge in distribution

(in fact, in L2) to a limiting random variable, and likewise for the unrooted case; this is
our next result.

Subsequently, we shall characterize the distribution of the limiting random variable
(for both the rooted and unrooted cases) by a fixed-point identity, and thereby complete
the proof of Theorem 3.1 (i).

Proposition 3.5. (i) As m → ∞, the random variable D̃1(U0
m) converges in L2 to a

limiting random variable D̃1, with E[D̃1] = 0 and Var[D̃1] = 2 − π2/6. In particular,
Var [D1(U0

m)] → 2− π2/6 as m → ∞.
(ii) As m → ∞, D̃1(Um) converges in L2 to the limiting random variable F̃1 :=

D̃1 −L1
0 + 1.

Proof. Adopt the convention D1(U0
0 ) = 0. By the orthogonality of the Zj (Lemma 3.5)

and (16), for 0 ≤ ℓ < m,

Var
[

D̃1(U0
m)− D̃1(U0

ℓ )
]

= Var

m
∑

j=ℓ+1

(Zj − E[Zj])

=

m
∑

j=ℓ+1

j

(j + 1)2(j + 2)
−→ 0 as m, ℓ → ∞.

Hence D̃1(U0
m) is a Cauchy sequence in L2, and so converges in L2 to a limiting random

variable, which we denote D̃1. Then E[D̃1] = limm→∞E[D̃1(U0
m)] = 0, and

Var[D̃1] = lim
m→∞

Var
[

D̃1(U0
m)
]

=

∞
∑

j=1

j

(j + 1)2(j + 2)

=
∞
∑

j=1

[

2

j + 1
− 2

j + 2

]

−
∞
∑

j=1

1

(j + 1)2
= 1−

(

π2

6
− 1

)

= 2− π2

6
.
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It remains to prove part (ii), the convergence for the centred total length of the DLF
D̃1(Um). We have by (24) that

D̃1(Um) = D̃1(U0
m)− L1

0(U0
m) + E[L1

0(U0
m)]

L2

−→ D̃1 −L1
0 + 1,

where the convergence follows by Lemma 3.2 and part (i). Thus D̃1(Um) converges in L2

as m → ∞.

For the next few results it is more convenient to consider the DLF defined on a Poisson
number of points. Let (X1, X2, . . .) be a sequence of independent uniformly distributed
random variables in (0, 1], and let (N(t), t ≥ 0) be the counting process of a homogeneous
Poisson process of unit rate in (0,∞), independent of (X1, X2, . . .). Thus N(t) is a Poisson
variable with parameter t. As before, let Um = (X1, . . . , Xm), and (for this section only)
let Pt := UN(t). Let P0

t := U0
N(t), so that P0

t = (0, X1, X2, . . . , XN(t)).

We construct the DLF and DLT on X1, X2, . . . , XN(t) as before. Let D̃1(P0
t ) =

D1(P0
t ) − E [D1(P0

t )] and D̃1(Pt) = D1(Pt) − E [D1(Pt)]. We aim to show that the
limit distribution for D̃1(P0

t ) is the same as for D̃1(U0
m), and likewise in the unrooted

case. We shall need the following result.

Lemma 3.6. As t → ∞,

d

dt
E[D1(Pt)] =

1

t
+O(t−2); and

d

dt
E[D1(P0

t )] =
1

t
+O(t−2). (39)

Proof. The point set {X1, . . . , XN(t)} is a homogeneous Poisson point process in (0, 1),
so we have

d

dt
E[D1(Pt)] = E[length of new arrival]

=

∫ 1

0

duE[dist. to next pt. to the left of u in Pt]

=

∫ 1

0

du

∫ u

0

ste−tsds =
1

t
+

2

t2
(

e−t − 1
)

+
e−t

t
=

1

t
+O

(

t−2
)

.

Similarly,

d

dt
E[D1(P0

t )] =

∫ 1

0

duE[dist. to next pt. to the left of u in Pt ∪ {0}]

=

∫ 1

0

du

∫ u

0

e−tsds =
1

t
+

e−t − 1

t2
=

1

t
+O

(

t−2
)

.

Lemma 3.7. (i) As t → ∞, D̃1(P0
t ) converges in distribution to D̃1, the L2 large-m

limit of D̃1(U0
m).

(ii) As t → ∞, D̃1(Pt) converges in distribution to F̃1, the L
2 large-m limit of D̃1(Um).

Proof. (i) From Proposition 3.5, we have D̃1(U0
m)

L2

−→ D̃1 as m → ∞. Let at :=
E[D1(P0

t )] and µm := E[D1(U0
m)]. Since µm = E

∑m
i=1 Zi =

∑m
i=1(1 + i)−1 by (16),

for any positive integers ℓ,m we have

|µm − µℓ| =
max(m,ℓ)
∑

j=min(m,ℓ)+1

1

j + 1
≤ log

(

max(m, ℓ) + 1

min(m, ℓ) + 1

)

=

∣

∣

∣

∣

log

(

m+ 1

ℓ+ 1

)
∣

∣

∣

∣

. (40)
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Note the distributional equalities

L(D1(P0
t )|N(t) = m) = L(D1(U0

m));

L(D1(P0
t )− µN(t)|N(t) = m) = L(D̃1(U0

m)). (41)

First we aim to show that at − µ⌊t⌋ → 0 as t → ∞. Set pm(t) := e−t tm

m!
. Then we can

write

at − µ⌊t⌋ =
∞
∑

m=0

pm(t)(µm − µ⌊t⌋)

=
∑

|m−⌊t⌋|≤t3/4

pm(t)(µm − µ⌊t⌋) +
∑

|m−⌊t⌋|>t3/4

pm(t)(µm − µ⌊t⌋). (42)

We examine these two sums separately. First consider the sum for |m− ⌊t⌋| ≤ t3/4. By
(40), we have

sup
m:|m−⌊t⌋|≤t3/4

∣

∣µm − µ⌊t⌋

∣

∣ ≤ max

(

log

(⌊t⌋ + 1 + t3/4

⌊t⌋ + 1

)

, log

( ⌊t⌋ + 1

⌊t⌋ + 1− t3/4

))

= O
(

t−1/4
)

→ 0 as t → ∞.

Hence the first sum in (42) tends to zero as t → ∞. To estimate the second sum, observe
that

∑

|m−⌊t⌋|>t3/4

pm(t)(µm − µ⌊t⌋) ≤
∑

|m−⌊t⌋|>t3/4

pm(t)(m+ t)

= E
[

(N(t) + t)1{|N(t)− ⌊t⌋| > t3/4}
]

≤
(

E
[

(N(t) + t)2
]

· P
[

|N(t)− ⌊t⌋| > t3/4
])1/2

. (43)

By Chernoff bounds on the tail probabilities of a Poisson random variable (e.g. Lemma
1.4 of [14]), the expression (43) is O(t exp(−t2/18)) and so tends to zero. Hence the
second sum in (42) tends to zero, and thus

at − µ⌊t⌋ → 0 as t → ∞. (44)

Now we show that D̃1(P0
t )

D−→ D̃1 as t → ∞. We have

D̃1(P0
t ) =

(

D1(P0
t )− µN(t)

)

+
(

µN(t) − µ⌊t⌋

)

+
(

µ⌊t⌋ − at
)

. (45)

The final bracket tends to zero, by (44). Also, by (41) and the fact that N(t) → ∞ a.s.
as t → ∞, we have

D1(P0
t )− µN(t)

D−→ D̃1.

Finally, using (40), we have

∣

∣µN(t) − µ⌊t⌋

∣

∣ ≤
∣

∣

∣

∣

log
N(t) + 1

⌊t⌋ + 1

∣

∣

∣

∣

P−→ 0,

as t → ∞, since N(t)/⌊t⌋ P−→ 1. So Slutsky’s theorem applied to (45) yields D̃1(P0
t )

D−→
D̃1 as t → ∞, completing the proof of (i).

The proof of (ii) follows in the same way as that of (i), except that in (40) the first
equals sign is replaced by an inequality ≤. This does not affect the rest of the proof.
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The next two propositions complete the proof of Theorem 3.1.

Proposition 3.6. The limiting random variable D̃1 of Proposition 3.5 (i) satisfies the
fixed-point equation (3).

Proof. For integer n > 0, let Tn := min{s : N(s) ≥ n}, the nth arrival time of the Poisson
process with counting process N(·). Set T := T1, and set U := X1 (which is uniform on
(0, 1)).

By the Marking Theorem for Poisson processes [10], the two-dimensional point process
Q := {(Xn, Tn) : n ≥ 1} is a homogeneous Poisson process of unit intensity on (0, 1) ×
(0,∞). Given the value of (U, T ), the restriction ofQ to (0, U ]×(T,∞) and the restriction
of Q to (U, 1]× (T,∞) are independent homogeneous Poisson processes on these regions.
Hence, by scaling properties of the Poisson process (see the Mapping Theorem in [10])
and of the DLT, writing D1

{i}(·), i = 1, 2 for independent copies of D1(·), we have

D1(P0
t )

D
=

(

UD1
{1}(P0

U(t−T )) + (1− U)D1
{2}(P0

(1−U)(t−T )) + U
)

1{t > T}. (46)

Let as = 0 for s ≤ 0, and as = E[D1(P0
s )] for s > 0. Then D̃1(P0

t ) = D1(P0
t ) − at, so

that by (46),

D̃1(P0
t )

D
=

(

UD̃1
{1}(P0

U(t−T )) + (1− U)D̃1
{2}(P0

(1−U)(t−T )) + U
)

1{t > T}
+U

(

aU(t−T ) − at
)

+ (1− U)
(

a(1−U)(t−T ) − at
)

. (47)

From Lemma 3.6 we have dat
dt

= 1
t
+O(t−2). Hence, if T < t, then

at − aU(t−T ) =

∫ t

U(t−T )

das
ds

ds = log t− log{U(t− T )}+O
(

(U(t− T ))−1
)

,

and hence as t → ∞,

at − aU(t−T ) → − logU, a.s.. (48)

Since P [T < t] tends to 1, by making t → ∞ in (47) and using Slutsky’s theorem we
obtain (3).

Proposition 3.7. The limiting random variable F̃1 of Proposition 3.5 (ii) satisfies the
fixed-point equation (3), and so has the same distribution as D̃1. Also, Cov(F̃1, D̃1) =
(7/4)− π2/6.

Proof. The proof follows similar lines to that of Proposition 3.6. Once more let as =
E[D1(P0

s )], for s ≥ 0, and as = 0 for s < 0. Let bs = E[D1(Ps)] for s > 0, and bs = 0 for
s ≤ 0, and let T := min{t : N(t) ≥ 1}, Then

D1(Pt)
D
=

(

UD1
{1}(PU(t−T )) + (1− U)D1

{2}(P0
(1−U)(t−T ))

)

1{t > T}, (49)

where D1
{1}(·) and D1

{2}(·) are independent copies of D1(·). Then D̃1(Pt) = D1(Pt) − bt

and D̃1(P0
t ) = D1(P0

t )− at, so that (49) yields

D̃1(Pt)
D
=

(

UD̃1
{1}(PU(t−T )) + (1− U)D̃1

{2}(P0
(1−U)(t−T ))

)

1{t > T}
+U

(

bU(t−T ) − bt
)

+ (1− U)
(

a(1−U)(t−T ) − bt
)

. (50)
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From Lemma 3.6 we have dbt
dt

= 1
t
+ O(t−2). Hence, by the same argument as used at

(48),
bt − bU(t−T ) → − logU a.s.

Also, at − bt = E[L1
0(P0

t )] by (24), so that limt→∞(at − bt) = 1, by Lemma 3.2 and the
fact that E[L1

0] = 1 (by (26)). Using also (48) we find that as t → ∞,

a(1−U)(t−T ) − bt = (a(1−U)(t−T ) − at) + (at − bt) → 1 + log (1− U), a.s.

Taking t → ∞ in (50), and using Slutsky’s theorem, we obtain

F̃1
D
= UF̃1 + (1− U)D̃1 + U logU + (1− U) log (1− U) + (1− U). (51)

The change of variable (1− U) 7→ U then shows that D̃1 as defined at (3) satisfies (51),
and so by the uniqueness of solution, F̃1 has the same distribution as D̃1 and satisfies (3).

To obtain the covariance of F̃1 and D̃1, observe from Proposition 3.5 (ii) that L1
0 =

D̃1 − F̃1 + 1, and therefore by (26), we have that

1/2 = Var[L1
0] = Var[D̃1] + Var[F̃1]− 2Cov(D̃1, F̃1). (52)

Since Var[F̃1] = Var[D̃1] = 2− π2/6 by Proposition 3.5 (i), rearranging (52) we find that
Cov(D̃1, F̃1) = (7/4)− π2/6.

Remark. Figure 2 is a plot of the estimated probability density function of D̃1. This
was obtained by performing 106 repeated simulations of the DLT on a sequence of 103

uniform (simulated) random points on (0, 1]. For each simulation, the expected value of
D1(U103) (which is precisely (1/2) + (1/3) + · · · (1/1001) by Lemma 3.1) was subtracted
from the total length of the simulated DLT to give an approximate realization of D̃1.
The density function was then estimated from the sample of 106 approximate realizations
of D̃1, using a window width of 0.0025. The simulated sample from which the density
estimate for D̃1 was taken had sample mean ≈ −2× 10−4 and sample variance ≈ 0.3543,
which are reasonably close to the expectation and variance of D̃1.

Figure 2: Estimated probability density function for D̃1.
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4 General central limit theorems in geometric prob-

ability

Notions of stabilizing functionals of point sets have recently proved to be a useful basis
for a general methodology for establishing limit theorems for functionals of random point
sets in Rd. In particular, Penrose and Yukich [19] provide general central limit theorems
for stabilizing functionals. One might hope to apply these results in the case of the MDSF
weight. However, to obtain the central limit theorem for edges away from the boundary
in the MDSF and MDST, we need an extension of the general result in [19], which we
describe in the present section.

For our general results, we use the following notation. Let d ≥ 1 be an integer.
For X ⊂ Rd, constant a > 0, and y ∈ Rd, let y + aX denote the transformed set
{y + ax : x ∈ X}. Let diam(X ) := sup{‖x1 − x2‖ : x1,x2 ∈ X}, and let card(X ) denote
the cardinality (number of elements) of X (when finite).

For x ∈ Rd and r > 0, let B(x; r) denote the closed Euclidean ball with centre x and
radius r, and let Q(x; r) denote the corresponding l∞ ball, i.e., the d-cube x+[−r, r]d. For
bounded measurable R ⊂ Rd let |R| denote the Lebesgue measure of R, let ∂R denote the
topological boundary of R and for r > 0, set ∂rR := ∪x∈∂RQ(x; r), the r-neighbourhood
of the boundary of R.

Let ξ(x;X ) be a measurable R+-valued function defined for all pairs (x,X ), where
X ⊂ Rd is finite and x ∈ X . Assume ξ is translation invariant, that is, for all y ∈ Rd,
ξ(y + x;y + X ) = ξ(x;X ). When x /∈ X , we abbreviate the notation ξ(x;X ∪ {x}) to
ξ(x;X ). For τ ∈ (0,∞), let Hτ be a homogeneous Poisson process of intensity τ on Rd.

A translation invariant real-valued functional ξ(x;X ) defined for finite X ⊂ Rd and
x ∈ X induces a translation invariant functional H(X ;S) defined on all finite point sets
X ⊂ Rd and all Borel-measurable regions S ⊆ Rd by

H(X ;S) :=
∑

x∈X∩S

ξ(x;X ). (53)

It is this ‘restricted’ functional that interests us here, while [19] is concerned rather with
the global functional H(X ;Rd). In our particular application (the length of edges of the
MDST on random points in a square), the global functional fails to satisfy the conditions
of the central limit theorems in [19], owing to boundary effects. Here we generalize the
result in [19] to the ‘restricted’ functional H(X ;S). It is this generalized result that we
can apply to the MDST, when we take S to be a region ‘away from the boundary’ of the
square in which the random points are placed.

We use a notion of stabilization forH . Loosely speaking, ξ is stabilizing if when a point
inserted at the origin into a homogeneous Poisson process, only nearby Poisson points
affect the inserted point; for H to be stabilizing we require also that the the inserted
point affects only nearby points.

For B ⊆ Rd, let ∆(X ;B) denote the ‘add one cost’ of the functionalH on the insertion
of a point at the origin,

∆(X ;B) := H(X ∪ {0};B)−H(X ;B).

Let P := H1 (a homogeneous Poisson point process of unit intensity on Rd). Let Qn :=
P ∩ Rn (the restriction of P to Rn). Adapting the ideas of [19], we make the following
definitions.
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Definition 4.1. We say the functional H is strongly stabilizing if there exist almost
surely finite random variables R (a radius of stabilization) and ∆(∞) such that, with
probability 1, for any B ⊇ B(0;R),

∆(P ∩ B(0;R) ∪A;B) = ∆(∞), ∀ finite A ⊂ Rd \B(0;R).

We say that the functional H is polynomially bounded if, for all B ∋ 0, there exists a
constant β such that for all finite sets X ⊂ Rd,

|H(X ;B)| ≤ β (diam(X ) + card(X ))β . (54)

We say that H is homogeneous of order γ if for all finite X ⊂ Rd and Borel B ⊆ Rd,
and all a ∈ R, H(aX ; aB) = aγH(X ;B).

Let (Rn, Sn), for n = 1, 2, . . ., be a sequence of ordered pairs of bounded Borel subsets
of Rd, such that Sn ⊆ Rn for all n. Assume that for all r > 0, n−1|∂rRn| → 0 and
n−1|∂rSn| → 0 (the vanishing relative boundary condition). Assume also that |Rn| = n
for all n, and |Sn|/n → 1 as n → ∞; that Sn tends to Rd, in the sense that ∪n≥1 ∩m≥n

Sm = Rd; and that there exists a constant β such that diam(Rn) ≤ βnβ for all n (the
polynomial boundedness condition on (Rn, Sn)n≥1). Subject to these conditions, the choice
of (Rn, Sn)n≥1 is arbitrary.

Let U1,n,U2,n, . . . be i.i.d. uniform random vectors on Rn. Let

Um,n = {U1,n, . . . ,Um,n}

(a binomial point process), and for Borel A ⊆ Rd with 0 < |A| < ∞, let Um,A be the
binomial point process of m i.i.d. uniform random vectors on A.

Let R be the collection of all pairs (A,B) with A,B ⊂ Rd of the form (A,B) =
(x+Rn,x+ Sn) with x ∈ Rd and n ∈ N. That is, R is the collection of all the (Rn, Sn)
and their translates.

We say that the functional H satisfies the uniform bounded moments condition on R
if

sup
(A,B)∈R:0∈A

(

sup
|A|/2≤m≤3|A|/2

{E[∆(Um,A;B)4]}
)

< ∞. (55)

Our first general result extends Theorem 2.1 of [19]. We omit the proof here, but give
it in [17].

Theorem 4.1. Suppose that H is strongly stabilizing, is polynomially bounded (54), and
satisfies the uniform bounded moments condition (55) on R. Then there exist constants
s2, t2, with 0 ≤ t2 ≤ s2, such that as n → ∞,

(i) n−1Var (H (Qn;Sn)) → s2;

(ii) n−1/2 (H (Qn;Sn)−E [H (Qn;Sn)])
D−→ N (0, s2);

(iii) n−1Var (H (Un,n;Sn)) → t2;

(iv) n−1/2 (H (Un,n;Sn)− E [H (Un,n;Sn)])
D−→ N (0, t2).

Also, s2 and t2 are independent of the choice of the (Rn, Sn). Further, if the distribution
of ∆(∞) is nondegenerate, then s2 ≥ t2 > 0.
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Our second general result generalizes Corollary 2.1 of [19]. Let R0 be a fixed bounded
Borel subset of Rd with |R0| = 1 and |∂R0| = 0. Let (S0,n, n ≥ 1) be a sequence of
Borel sets with S0,n ⊆ R0 such that |S0,n| → 1 as n → ∞ and for all r > 0 we have
|∂n−1/drS0,n| → 0 as n → ∞

Let R0 be the collection of all pairs of the form (x+ n1/dR0,x+ n1/dS0,n) with n ≥ 1
and x ∈ Rd. Let Xn be the binomial point process of n i.i.d. uniform random vectors on
R0, and let Pn be a homogeneous Poisson point process of intensity n on R0.

Corollary 4.1. Suppose H is strongly stabilizing, satisfies the uniform bounded moments
condition on R0, is polynomially bounded and is homogeneous of order γ. Then with s2, t2

as in Theorem 4.1 we have that, as n → ∞

(i) n(2γ/d)−1Var (H (Pn;S0,n)) → s2;

(ii) n(γ/d)−1/2 (H (Pn;S0,n)− E [H (Pn;S0,n)])
D−→ N (0, s2);

(iii) n(2γ/d)−1Var (H (Xn;S0,n)) → t2;

(iv) n(γ/d)−1/2 (H (Xn;S0,n)− E [H (Xn;S0,n)])
D−→ N (0, t2).

Proof. The corollary follows from Theorem 4.1 by taking Rn = n1/dR0 and Sn = n1/dS0,n

(or suitable translates thereof), and scaling, since H is homogeneous of order γ.

5 Central limit theorem away from the boundary

While it should be possible to adapt the argument of the present section to more general
partial orders, from now on we take the partial order 4 onR2 to be 4∗. For each n, define
the region S0,n := (nε−1/2, 1]2, where ε ∈ (0, 1/2) is a small constant to be chosen later.
In this section, we use the general central limit theorems of Section 4 to demonstrate a
central limit theorem for the contribution to the total weight of the MDSF, under 4∗,
from edges away from the boundary, that is from points in the region S0,n.

Given α > 0, consider the MDSF total weight functional H = Lα on point sets in
R2. We take ξ(x;X ) to be d(x;X )α, where d(x;X ) is the distance from point x to its
directed nearest neighbour in X under 4∗, if such a neighbour exists, or zero otherwise.
Thus in our case

ξ(x;X ) = (d(x;X ))α with d(x;X ) := min {‖x− y‖ : y ∈ X \ {x},y 4
∗ x} (56)

with the convention that min{} = 0. For R ⊆ R2, set

Lα(X ;R) =
∑

x∈X∩R

ξ(x;X ), (57)

and set Lα(X ) := Lα(X ;R2).
Let Xn be the binomial point process of n i.i.d. uniform random vectors on (0, 1]2,

and let Pn be the homogeneous Poisson process of intensity n on (0, 1]2. The main result
of this section is the following.

Theorem 5.1. Suppose that α > 0 and the partial order is 4∗. Then there exist constants
0 < tα ≤ sα, not depending on the choice of ε, such that, as n → ∞,
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(i) nα−1Var [Lα (Xn;S0,n)] → t2α;

(ii) n(α−1)/2L̃α (Xn;S0,n)
D−→ N (0, t2α);

(iii) nα−1Var [Lα (Pn;S0,n)] → s2α;

(iv) n(α−1)/2L̃α (Pn;S0,n)
D−→ N (0, s2α).

The following corollary states that Theorem 5.1 remains true in the rooted cases too,
i.e. with Xn replaced by X 0

n and Pn replaced by P0
n.

Corollary 5.1. Suppose that α > 0 and the partial order is 4∗. Then, with tα, sα as
given in Theorem 5.1, we have that as n → ∞,

(i) nα−1Var [Lα (X 0
n ;S0,n)] → t2α;

(ii) n(α−1)/2L̃α (X 0
n ;S0,n)

D−→ N (0, t2α);

(iii) nα−1Var [Lα (P0
n;S0,n)] → s2α;

(iv) n(α−1)/2L̃α (P0
n;S0,n)

D−→ N (0, s2α).

Theorem 5.1 and Corollary 5.1 are proved in [17]. The proof of the theorem relies on
showing that the functional Lα satisfies suitable versions of the conditions of Theorem
4.1 and Corollary 4.1; that is Lα is polynomially bounded (see (54)), homogeneous of
order α, and strongly stabilizing (see Definition 4.1). Also the distribution of ∆(∞) is
non-degenerate. Also, with R0 := (0, 1]2, recalling that S0,n := (nε−1/2, 1]2 throughout
this section, andR0 as defined just before Corollary 4.1, Lα satisfies the uniform bounded
moments condition (55) on R0. For the details, see [17].

6 The edges near the boundary

Next in our analysis of the MDST on random points in the unit square, we consider the
length of the edges close to the boundary of the square. The limiting structure of the
MDSF and MDST near the boundaries is described by the directed linear forest model
discussed in Section 3.

Initially we consider the ‘rooted’ case where we insert a point at the origin. Later
we analyse the multiple sink (or ‘unrooted’) case, where we do not insert a point at the
origin, in a similar way.

Fix σ ∈ (1/2, 2/3). Let Bn denote the L-shaped boundary region (0, 1]2 \ (n−σ, 1]2.
Recall from (57) that Lα(X ;R) denotes the contribution to the total weight of the MDST
on X from edges starting at points of X ∩ R. When X is a random point set, set
L̃α(X ;R) := Lα(X ;R)− ELα(X ;R).

Theorem 6.1. Suppose the partial order is 4∗. Then as n → ∞ we have

L̃α(P0
n;Bn)

D−→ D̃{1}
α + D̃{2}

α (α ≥ 1); (58)

L̃α(X 0
n ;Bn)

D−→ D̃{1}
α + D̃{2}

α (α ≥ 1), (59)
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where D̃
{1}
α , D̃

{2}
α are independent random variables with the distribution of D̃α given by

the fixed-point equation (3) for α = 1 and by (4) for α > 1. Also, as n → ∞,

L̃α(Pn;Bn)
D−→ F̃ {1}

α + F̃ {2}
α (α ≥ 1); (60)

L̃α(Xn;Bn)
D−→ F̃ {1}

α + F̃ {2}
α (α ≥ 1), (61)

where F̃
{1}
α , F̃

{2}
α are independent random variables with the same distribution as D̃1 for

α = 1 and with the distribution given by the fixed-point equation (5) for α > 1. Also, as
n → ∞,

n(α−1)/2Lα(Pn;Bn)
L1

−→ 0 (0 < α < 1); (62)

n(α−1)/2Lα(P0
n;Bn)

L1

−→ 0 (0 < α < 1). (63)

The idea behind the proof of Theorem 6.1 is to show that the MDSF near each of
the two boundaries is close to a DLF system defined on a sequence of uniform random
variables coupled to the points of the MDSF. To do this, we produce two explicit sequences
of random variables on which we construct the DLF coupled to Pn, a Poisson process of
intensity n on (0, 1]2, on which the MDSF is constructed.

Let Bx
n be the rectangle (n−σ, 1]× (0, n−σ], let By

n be the rectangle (0, n−σ]× (n−σ, 1],
and let B0

n be the square (0, n−σ]2; see Figure 3. Then Bn = B0
n ∪Bx

n ∪By
n.

1

B0
n

B
y
n

Bx
n

0

n−σ

Figure 3: The boundary regions

Define the point processes

Vx
n := Pn ∩ (Bx

n ∪ B0
n), Vy

n := Pn ∩ (By
n ∪ B0

n), and V0
n := Pn ∩ B0

n. (64)

Let Nx
n := card(Vx

n), N
y
n := card(Vy

n) and N0
n := card(V0

n). List Vx
n in order of increasing

y-coordinate as Xx
i , i = 1, 2, . . . , Nx

n . In coordinates, set Xx
i = (Xx

i , Y
x
i ) for each i.

Similarly, list Vy
n in order of increasing x-coordinate as X

y
i = (Xy

i , Y
y
i ), i = 1, . . . , Ny

n .
Set Ux

n = (Xx
i , i = 1, 2, . . . , Nx

n) and Uy
n = (Y y

i , i = 1, 2, . . . , Ny
n). Then Ux

n and Uy
n

are sequences of uniform random variables in (0, 1], on which we may construct a DLF.
Also, we write Ux,0

n for the sequence (0, Xx
1 , X

x
2 , . . . , X

x
Nx

n
), and Uy,0

n for the sequence
(0, Y y

1 , Y
y
2 , . . . , Y

y
Ny

n
).

With the total DLF/DLT weight functional Dα(·) defined in Section 3 for random
finite sequences in (0, 1), the DLF weight Dα(Ux

n) is coupled in a natural way to the MDSF

22



contribution Lα(Vx
n), and likewise forDα(Uy

n) and Lα(Vy
n), forD

α(Ux,0
n ) and Lα(Vx

n∪{0}),
and for Dα(Uy,0

n ) and Lα(Vy
n ∪ {0}).

Lemma 6.1. For any α ≥ 1, as n → ∞,

Lα(Vx
n)−Dα(Ux

n)
L2

−→ 0, and Lα(Vy
n)−Dα(Uy

n)
L2

−→ 0; (65)

Lα(Vx
n ∪ {0})−Dα(Ux,0

n )
L2

−→ 0, and Lα(Vy
n ∪ {0})−Dα(Uy,0

n )
L2

−→ 0. (66)

Further, for 0 < α < 1, as n → ∞,

E
[

|Lα(Vx
n)−Dα(Ux

n)|2
]

= O
(

n2−2σ−2ασ
)

, (67)

and the corresponding result holds for Vy
n and Uy

n , and for the rooted cases (with the
addition of the origin).

Proof. We approximate the MDSF in the region Bn by two DLFs, coupled to the MDSF.
Consider Vx

n ; the argument for Vy
n is entirely analogous.

We have the set of points Vx
n = {(Xx

i , Y
x
i ), i = 1, . . . , Nx

n}. We construct the MDSF
on these points, and construct the DLF on the x-coordinates, Ux

n = (Xx
i , i = 1, . . . , Nx

n ).
Consider any point (Xx

i , Y
x
i ). For any single point, either an edge exists from that point

in both constructions, or in neither. Suppose an edge exists, that is suppose Xx
i is joined

to a point Xx
D(i), D(i) < i in the DLF model, and (Xx

i , Y
x
i ) to a point (Xx

N(i), Y
x
N(i)) in

the MDST (we do not necessarily have N(i) = D(i)). By construction, we know that
|Xx

i − Xx
D(i)| ≤ |Xx

i − Xx
N(i)|, since N(i) < i by the order of our points. It then follows

that
‖(Xx

i , Y
x
i )− (Xx

N(i), Y
x
N(i))‖α ≥ |Xx

i −Xx
N(i)|α ≥ |Xx

i −Xx
D(i)|α,

and so we have established that, for all α > 0,

Dα(Ux
n) ≤ Lα(Vx

n); and Dα(Ux,0
n ) ≤ Lα(Vx

n ∪ {0}).

Now, by the construction of the MDST, we have that

‖(Xx
i , Y

x
i )− (Xx

N(i), Y
x
N(i))‖ ≤ ‖(Xx

i , Y
x
i )− (Xx

D(i), Y
x
D(i))‖. (68)

If (x, y) ∈ (0, 1]2 then ‖(x, y)‖ ≤ x+ y, and by the Mean Value Theorem for the function
t 7→ tα, for α ≥ 1,

‖(x, y)‖α − xα ≤ (x+ y)α − xα ≤ α2α−1y (α ≥ 1).

Hence, for α ≥ 1,

‖(Xx
i , Y

x
i )− (Xx

D(i), Y
x
D(i))‖α − (Xx

i −Xx
D(i))

α ≤ α2α−1(Y x
i − Y x

D(i)). (69)

Then (68) and (69) yield, for α ≥ 1,

‖(Xx
i , Y

x
i )− (Xx

N(i), Y
x
N(i))‖α − (Xx

i −Xx
D(i))

α ≤ α2α−1(Y x
i − Y x

D(i)).

Hence, for α ≥ 1,

0 ≤ Lα(Vx
n)−Dα(Ux

n) ≤ α2α−1

Nx
n
∑

i=1

(Y x
i − Y x

D(i)).
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Thus, for α ≥ 1,

0 ≤ Lα(Vx
n)−Dα(Ux

n) ≤ α2α−1Nx
nn

−σ;

and 0 ≤ Lα(Vx
n ∪ {0})−Dα(Ux,0

n ) ≤ α2α−1Nx
nn

−σ. (70)

We have Nx
n ∼ Po (n1−σ), so that since σ > 1/2, we have

E[(Lα(Vx
n ∪ {0})−Dα(Ux,0

n ))2] ≤ α222α−2n−2σE[(Nx
n)

2] → 0, α ≥ 1.

An entirely analogous argument leads to the same statement for Uy
n and Vy

n, and we
obtain (65), and (66) in identical fashion.

We now consider 0 < α < 1. By the concavity of the function t 7→ tα for α < 1, we
have for x > 0, y > 0 that

‖(x, y)‖α − xα ≤ (x+ y)α − xα ≤ yα (0 < α < 1).

Then, by a similar argument to (70) in the α ≥ 1 case, we obtain

0 ≤ Lα(Vx
n)−Dα(Ux

n) ≤ Nx
nn

−ασ.

Then (67) follows since Nx
n ∼ Po (n1−σ), and the rooted case is similar.

Lemma 6.2. Suppose D̃1 has distribution given by (3), D̃α, α > 1, has distribution given
by (4), and F̃α, α > 1, has distribution given by (5). Then as n → ∞,

L̃1(Vx
n ∪ {0}) D−→ D̃1, and L̃1(Vx

n)
D−→ D̃1; (71)

L̃α(Vx
n ∪ {0}) D−→ D̃α, and L̃α(Vx

n)
D−→ F̃α (α > 1). (72)

Moreover, (71) and (72) also hold with Vx
n replaced by Vy

n.

Proof. As usual we present the argument for Vx
n only, since the result for Vy

n follows in
the same manner. First consider the α > 1 case. We have the distributional equality

L
(

Dα(Ux,0
n )
∣

∣Nx
n = m

)

= L
(

Dα(U0
m)
)

; L (Dα(Ux
n)|Nx

n = m) = L (Dα(Um)) .

But Nx
n is Poisson with mean n1−σ, and so tends to infinity almost surely. Thus by

Theorem 3.1 (ii), Dα(Ux,0
n )

D−→ Dα and Dα(Ux
n)

D−→ Fα as n → ∞, and so by Lemma
6.1 and Slutsky’s theorem, we obtain

Lα(Vx
n ∪ {0}) D−→ Dα and Lα(Vx

n)
D−→ Fα as n → ∞. (73)

Also, E[Dα(Ux,0
n )] → (α−1)−1 by (21), so by Lemma 6.1 and Proposition 3.3, E[Lα(Vx

n ∪
{0})] → (α − 1)−1 = E[Dα]. Similarly, by (30), Lemma 6.1 and Proposition 3.4,
E[Lα(Vx

n)] → (α(α − 1))−1 = E[Fα]. Hence, (73) still holds with the centred variables,
i.e., (72) holds.

Now suppose α = 1. Since Nx
n is Poisson with parameter n1−σ, Lemma 3.7 (i), with

t = n1−σ, then shows that D̃1(Ux,0
n )

D−→ D̃1 as n → ∞. Slutsky’s theorem with Lemma

6.1 then implies that L̃1(Vx
n ∪ {0}) D−→ D̃1. In the same way we obtain L̃1(Vx

n)
D−→ D̃1,

this time using part (ii) instead of part (i) of Lemma 3.7, along with Proposition 3.7.
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Note that Dα(Ux
n) and Dα(Uy

n) are not independent. To deal with this, we define

Ṽx
n := Pn ∩ Bn

x , and Ṽy
n := Pn ∩ Bn

y .

Also, recall the definition of V0
n at (64). Let Ñx

n := card(Ṽx
n) and Ñy

n := card(Ṽy
n). Since

Bx
n and By

n are disjoint, Lα(Ṽx
n) and Lα(Ṽy

n) are independent, by the spatial independence
property of the Poisson process Pn.

Now we make the following observation. Following notation from Section 4, for k ∈ N,
and for a < b and c < d let Uk,(a,b]×(c,d] denote the point process consisting of k independent
random vectors uniformly distributed on the rectangle (a, b] × (c, d]. Before proceeding
further, we recall that if M(X ) denotes the number of minimal elements (under the
ordering 4∗) of a point set X ⊂ R2, then

E[M(Uk,(a,b]×(c,d])] = E[M(Xk)] = 1 + (1/2) + · · ·+ (1/k) ≤ 1 + log k. (74)

The first equality in (74) comes from some obvious scaling which shows that the distri-
bution of M(Uk,(a,b]×(c,d]) does not depend on a, b, c, d. For the second equality in (74),
see [3] or the proof of Theorem 1.1(a) of [6].

Lemma 6.3. Suppose α > 0. Then:
(i) As n → ∞,

Lα(Vx
n)−Lα(Ṽx

n)
L1

−→ 0, and Lα(Vy
n)− Lα(Ṽy

n)
L1

−→ 0; (75)

Lα(Vx
n ∪ {0})− Lα(Ṽx

n ∪ {0}) L1

−→ 0, and Lα(Vy
n ∪ {0})− Lα(Ṽy

n ∪ {0}) L1

−→ 0. (76)

(ii) As n → ∞, we have Lα(V0
n)

L1

−→ 0, and Lα(V0
n ∪ {0}) L1

−→ 0.

Proof. We first prove (i). We give only the argument for Vx
n ; that for Vy

n is analogous.
Set ∆ := Lα(Vx

n)− Lα(Ṽx
n). Let β = (σ + (1/2))/2. Then 1/2 < β < σ.

Assume without loss of generality that Pn is the restriction to (0, 1]2 of a homogeneous
Poisson process Hn of intensity n on R2. Let X− = (X−, Y −) be the point of Hn ∩
((0, n−β]× (0,∞)) with minimal y-coordinate. Then X− is uniform on (0, n−β]. Let En

be the event that X− > 3n−σ; then P [Ec
n] = 3nβ−σ for n large enough.

Let ∆1 be the the contribution to ∆ from edges starting at points in (0, n−β]×(0, n−σ].
Then the absolute value of ∆1 is bounded by the product of (

√
2n−β)α and the number

of points of Pn in (0, n−β]× (0, n−σ]. Hence, for any α > 0,

E [|∆1|] ≤ (
√
2n−β)αE

[

card
(

Pn ∩ ((0, n−β]× (0, n−σ])
)]

= 2α/2n1−β−σ−αβ → 0. (77)

Let ∆2 := ∆−∆1, the contribution to ∆ from edges starting at points in (n−β , 1]×
(0, n−σ]. Then by the triangle inequality, if En occurs then these edges are unaffected by
points in B0

n, so that ∆2 is zero if En occurs. Also, only minimal elements of Pn∩(n−β, 1]×
(0, n−σ] can possibly have their directed nearest neighbour in (0, n−σ] × (0, n−σ]; hence,
if Mn denotes the number of such minimal elements then |∆2| is bounded by 2α/2Mn.
Hence, using (74), we obtain

E[|∆2|] ≤ 2α/2P [Ec
n]E[Mn] = O(nβ−σ logn)
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which tends to zero. Combined with (77), this gives us (75). The same argument gives
us (76).

For (ii), note that

E
[

Lα(V0
n)
]

≤ (
√
2n−σ)αE[N0

n] = 2α/2n1−2σ−σα → 0, as n → ∞,

for any α > 0. Thus Lα(V0
n)

L1

−→ 0, and similarly Lα(V0
n ∪ {0}) L1

−→ 0.

In proving our next lemma (and again later on) we use the following elementary fact.
If N(n) is Poisson with parameter n, then as n → ∞ we have

E[|N(n)− n| logmax(N(n), n)] = O(n1/2 logn). (78)

To see this, set Yn := |N(n) − n| logmax(N(n), n). Then Yn1{N(n)≤2n} ≤ |N(n) −
n| log(2n), and the expectation of this isO(n1/2 log n) by Jensen’s inequality since Var(N(n)) =
n. On the other hand, the Cauchy-Schwarz inequality shows that E[Yn1{N(n)>2n}] → 0,
and (78) follows.

We now state a lemma for coupling Xn and Pn. The α ≥ 1 part will be used in the
proof of Theorem 6.1. The 0 < α < 1 part will be needed later, in the proof of Theorem
2.1. As in Section 5, let S0,n denote the ‘inner’ region (nε−1/2, 1]2, with ε ∈ (0, 1/2) a
constant. The boundary region Bn is disjoint from S0,n; let Cn denote the intermediate
region (0, 1]2 \ (Bn ∪ S0,n), so that Bn ∪ Cn = (0, 1]2 \ S0,n.

Lemma 6.4. There exists a coupling of Xn and Pn such that:

(i) For 0 < α < 1, provided ε < (1− α)/2, we have that as n → ∞,

n(α−1)/2E[|Lα(Xn;Bn ∪ Cn)− Lα(Pn;Bn ∪ Cn)|] → 0 (79)

and

n(α−1)/2E[|Lα(X 0
n ;Bn ∪ Cn)−Lα(P0

n;Bn ∪ Cn)|] → 0. (80)

(ii) For α ≥ 1, we have that as n → ∞,

E[|Lα(Xn;Bn)−Lα(Pn;Bn)|] → 0 (81)

and

E[|Lα(X 0
n ;Bn)− Lα(P0

n;Bn)|] → 0. (82)

Proof. We couple Xn and Pn in the following standard way. Let X1,X2,X3, . . . be in-
dependent uniform random vectors on (0, 1]2, and let N(n) ∼ Po(n) be independent of
(X1,X2, . . .). For m ∈ N (and in particular for m = n) set Xm := {X1, . . . ,Xm}; set
Pn := {X1, . . . ,XN(n)}.

For each m ∈ N, let Ym denote the in-degree of vertex Xm in the MDST on Xm.
Suppose Xm = x. Then an upper bound for Ym is provided by the number of minimal
elements of the restriction of Xm−1 to the rectangle {y ∈ (0, 1]2 : x 4∗ y}. Hence,
conditional onXm = x and on there being k points of Xm−1 in this rectangle, the expected
value of Ym is bounded by the expected number of minimal elements in a random uniform
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sample of k points in this rectangle, and hence (see (74)) by 1 + log k. Hence, given the
value of Xm, the conditional expectation of Ym is bounded by 1 + logm.

First we prove the statements in part (i) (0 < α < 1). Suppose ε < (1− α)/2. Then

|Lα(Xm;Bn ∪ Cn)− Lα(Xm−1;Bn ∪ Cn)| ≤ 2α/2(Ym + 1)1{Xm ∈ Bn ∪ Cn}. (83)

Since Bn ∪ Cn has area 2nε−1/2 − n2ε−1, we obtain

E[(Ym + 1)1{Xm ∈ Bn ∪ Cn}] ≤ (2 + logm)2nε−1/2.

Hence, by (83) there is a constant C such that

n(α−1)/2E[(|Lα(Pn;Bn ∪ Cn)− Lα(Xn;Bn ∪ Cn)|)|N(n)]

≤ C|N(n)− n| log(max(N(n), n))n(α+2ε−2)/2,

and since we assume α+ 2ε < 1, by (78) the expected value of the right hand side tends
to zero as n → ∞, and we obtain (79). Likewise in the rooted case (80).

Now we prove part (ii). For α ≥ 1, we have

|Lα(Xm;Bn)− Lα(Xm−1;Bn)| ≤ 2α/2(Ym + 1)1{Xm ∈ Bn}. (84)

Since Bn has area 2n−σ − n−2σ, by (84) there is a constant C such that

E[(|Lα(Pn;Bn)− Lα(Xn;Bn)|)|N(n)] ≤ C|N(n)− n| log(max(N(n), n))n−σ,

and since σ > 1/2, by (78) the expected value of the right hand side tends to zero as
n → ∞, and we obtain (81). We get (82) similarly.

Proof of Theorem 6.1. Suppose α ≥ 1. We have that

L̃α(Ṽx
n) = L̃α(Vx

n) + (L̃α(Ṽx
n)− L̃α(Vx

n)).

The final bracket converges to zero in probability, by Lemma 6.3 (i). Thus by Lemma

6.2 and Slutsky’s theorem, we obtain L̃α(Ṽx
n)

D−→ F̃α (where we have F̃1
D
= D̃1). Now

L̃α(Vx
n) + L̃α(Vy

n) = L̃α(Ṽx
n) + L̃α(Ṽy

n) + (L̃α(Vx
n)− L̃α(Ṽx

n)) + (L̃α(Vy
n)− L̃α(Ṽy

n)).

The last two brackets converge to zero in probability, by Lemma 6.3 (i). Then the
independence of L̃α(Vx

n) and L̃α(Vy
n) and another application of Slutsky’s theorem yield

L̃α(Vx
n) + L̃α(Vy

n)
D−→ F̃ {1}

α + F̃ {2}
α ,

where F̃
{1}
α and F̃

{2}
α are independent copies of F̃α. Similarly,

L̃α(Vx
n ∪ {0}) + L̃α(Vy

n ∪ {0}) D−→ D̃{1}
α + D̃{2}

α .

Finally, since L̃α(Pn;Bn) = L̃α(Vx
n)+L̃α(Vy

n)−L̃α(V0
n) (with a similar statement including

the origin) Lemma 6.3 (ii) and Slutsky’s theorem complete the proof of (58) and (60).
To deduce (59) and (61), assume without loss of generality that Xn and Pn are coupled

in the manner of Lemma 6.4. Then L̃α(Pn;Bn)−L̃α(Xn;Bn) tends to zero in probability
by (81), and L̃α(P0

n;Bn) − L̃α(X 0
n ;Bn) tends to zero in probability by (82). Hence by
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Slutsky’s theorem, the convergence results (58) and (60) carry through to the binomial
point process case, i.e., (59) and (61) hold.

Now suppose 0 < α < 1. Then (67) gives us

E
[

∣

∣n(α−1)/2 (Lα(Vx
n)−Dα(Ux

n))
∣

∣

2
]

= O
(

n(α+1)(1−2σ)
)

, (85)

which tends to 0 as n → ∞, since σ > 1/2. Likewise for the rooted case,

E
[

∣

∣n(α−1)/2
(

Lα(Vx
n ∪ {0})−Dα(Ux,0

n )
)
∣

∣

2
]

= O
(

n(α+1)(1−2σ)
)

, (86)

By Proposition 3.2 we have

E[n(α−1)/2Dα(Ux
n)] = O(n(α−1)/2E[(Nx

n )
1−α]) = O(n(α−1)(σ−1/2)) → 0,

and combined with (85) this completes the proof of (62). Similarly, by Proposition 3.1,

E[n(α−1)/2Dα(Ux,0
n )] = O(n(α−1)/2E[(Nx

n)
1−α]) = O(n(α−1)(σ−1/2)) → 0,

and combined with (86) this gives us (63).

7 Proof of Theorem 2.1

Let σ ∈ (1/2, 2/3). Let ε > 0 with

ε < min(1/2, (1− σ)/3, (3− 4σ)/10, (2− 3σ)/8). (87)

In addition, if 0 < α < 1, we impose the further condition that ε < (1 − α)/2. As in
Section 5, denote by S0,n the region (nε−1/2, 1]2. As in Section 6, let Bn denote the region
(0, 1]2 \ (n−σ, 1]2, and let Cn denote (0, 1]2 \ (Bn ∪ S0,n).

We know from Sections 5 and 6 that, for large n, the weight of edges starting in
S0,n satisfies a central limit theorem, and the weight of edges starting in Bn can be
approximated by the directed linear forest. We shall show in Lemmas 7.2 and 7.3 that
(with a suitable scaling factor for α < 1) the contribution to the total weight from
points in Cn has variance converging to zero. To complete the proof of Theorem 2.1
in the Poisson case, we shall show that the lengths from Bn and S0,n are asymptotically
independent by virtue of the fact that the configuration of points in Cn is (with probability
approaching one) sufficient to ensure that the configuration of points in Bn has no effect
on the edges from points in S0,n. To extend the result to the binomial point process case,
we shall use a de-Poissonization argument related to that used in [19].

First consider the region Cn. We naturally divide this into three regions. Let

Cx
n := (nε−1/2, 1]× (n−σ, nε−1/2], Cy

n := (n−σ, nε−1/2]× (nε−1/2, 1],

C0
n := (n−σ, nε−1/2]2.

Also, as in Section 6, let

Bx
n := (n−σ, 1]× (0, n−σ], By

n := (0, n−σ]× (n−σ, 1], B0
n := (0, n−σ]2.

We divide the Cn and Bn into rectangular cells as follows (see Figure 4.) We leave C0
n

undivided. We set

kn := ⌊n1−σ−2ε⌋ (88)
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and divide Cx
n lengthways into kn cells. For each cell,

width = (1− nε−1/2)/kn ∼ n2ε+σ−1; height = nε−1/2 − n−σ ∼ nε−1/2. (89)

Label these cells Γx
i for i = 1, 2, . . . , kn from left to right. For each cell Γx

i , define the
adjoining cell of Bx

n, formed by extending the vertical edges of Γx
i , to be βx

i . The cells βx
i

then have width (1− nε−1/2)/kn ∼ n2ε+σ−1 and height n−σ.
In a similar way we divide Cy

n into kn cells Γy
i of height (1 − nε−1/2)/kn and width

nε−1/2 − n−σ, and divide By
n into the corresponding cells βy

i , i = 1, . . . , kn.

n−σ

1

Γx
i

S0,n

(1 − nε−1/2)/kn

0

βy
j Γy

j

nε−1/2
− n−σ

n−σ βx
i

C0

n

Figure 4: The regions of [0, 1]2.

For i = 2, . . . , kn, let Ex,i denote the event that the cell βx
i−1 contains at least one

point of Pn, and let Ey,i denote the event that βy
i−1 contains at least one point of Pn.

Lemma 7.1. For n sufficiently large, and for 1 ≤ j < i ≤ kn with i − j > 3, if Ex,i

(respectively Ey,i) occurs then no point in the cell Γx
i (respectively Γy

i ) has a directed
nearest neighbour in the cell Γx

j or βx
j (Γy

j or βy
j ).

Proof. Consider a point X , say, in cell Γx
i in Cx

n. Given Ex,i, we know that there is a
point, Y say, in the cell βx

i−1 to the left of the βx
i cell immediately below Γx

i , such that
Y 4∗ X , but the difference in x-coordinates between X and Y is no more than twice the
width of a cell. So, by the triangle inequality, we have

‖X − Y ‖ ≤ 2(1− nε−1/2)/kn + nε−1/2 ∼ 2n2ε+σ−1, (90)

since σ > 1/2. Now, consider a point Z in a cell Γx
j or βx

j with j ≤ i − 4. In this case,
the difference in x-coordinates between X and Z is at least the width of 3 cells, so that

‖X − Z‖ ≥ 3(1− nε−1/2)/kn ∼ 3n2ε+σ−1. (91)

Comparing (90) and (91), we see that X is not connected to Z, which completes the
proof.
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Recall from (57) that for a point set S ⊂ R2 and a region R ⊆ R2, Lα(S;R) denotes
the total weight of edges of the MDSF on S which originate in the region R.

Lemma 7.2. As n → ∞, we have that

Var[Lα(Pn;Cn)] → 0 and Var[Lα(P0
n;Cn)] → 0 (α ≥ 1); (92)

Var[n(α−1)/2Lα(Pn;Cn)] → 0 (0 < α < 1); (93)

Var[n(α−1)/2Lα(P0
n;Cn)] → 0 (0 < α < 1). (94)

Proof. For ease of notation, write Xi = Lα(Pn; Γ
x
i ) and Yi = Lα(Pn; Γ

y
i ), for i =

1, 2, . . . , kn. Also let Z = Lα(Pn;C
0
n). Then

Var[Lα(Pn;Cn)] = Var

[

Z +
kn
∑

i=1

Xi +
kn
∑

i=1

Yi

]

. (95)

Let Nx
i , Ny

i , N0, respectively, denote the number of points of Pn in Γx
i , Γy

i , C0
n, re-

spectively. Then by (89), Nx
i is Poisson with parameter asymptotic to n3ε+σ−1/2, while

Nx
1 +Ny

1 +N0 is Poisson with parameter asymptotic to 2n3ε+σ−1/2; hence as n → ∞ we
have

E[(Nx
i )

2] ∼ n6ε+2σ−1, E[(Nx
1 +Ny

1 +N0)
2] ∼ 4n6ε+2σ−1. (96)

Edges from points in Γx
1 ∪ Γy

1 ∪ C0
n are of length at most 2n2ε+σ−1, and hence,

Var[X1 + Y1 + Z] ≤ (2n2ε+σ−1)2αE[(Nx
1 +Ny

1 +N0)
2]

∼ 22+2αn6ε+2σ−1+2α(2ε+σ−1). (97)

For α ≥ 1, since ε is small (87), the expression (97) is O(n10ε+4σ−3) and in fact tends to
zero, so that

Var(X1 + Y1 + Z) → 0 (α ≥ 1). (98)

By Lemma 7.1 and (90), given Ex,i, an edge from a point of Γx
i can be of length no

more than 3n2ε+σ−1. Thus using (96) we have

Var[Xi1{Ex,i}] ≤ E[X2
i 1{Ex,i}] ≤ (3n2ε+σ−1)2αE[(Nx

i )
2]

= O(n6ε+2σ−1+2α(2ε+σ−1)). (99)

Next, observe that Cov[Xi1{Ex,i}, Xj1{Ex,j}] = 0 for i − j > 3, since by Lemma 7.1,
Xi1{Ex,i} is determined by the restriction of Pn to the union of the regions Γx

ℓ ∪βx
ℓ , i−3 ≤

ℓ ≤ i. Thus by (88), Cauchy-Schwarz and (99), we obtain

Var

[

kn
∑

i=2

Xi1{Ex,i}
]

=

kn
∑

i=2

Var[Xi1{Ex,i}]

+

kn
∑

i=2

∑

j:1≤|j−i|≤3

Cov[Xi1{Ex,i}, Xj1{Ex,j}]

= O(n4ε+σ+2α(2ε+σ−1)). (100)
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For α ≥ 1, the bound in (100) tends to zero as n → ∞, since 1/2 < σ < 2/3 and ε is
small (87).

By (88), the cells βx
i , i = 1, . . . , kn, have width asymptotic to n2ε+σ−1 and height n−σ,

so the mean number of points of Pn in one of these cells is asymptotic to n2ε; hence for
any cell βx

i or βy
i , i = 1, . . . , kn, the probability that the cell contains no point of Pn

is given by exp{−n2ε(1 + o(1))}. Hence for n large enough, and i = 2, . . . , kn, we have
P [Ec

x,i] ≤ exp(−nε), and hence by (96),

Var[Xi1{Ec
x,i}] ≤ E[X2

i |Ec
x,i]P [Ec

x,i] ≤ 2αE[(Nx
i )

2]P [Ec
x,i]

= O(n6ε+2σ−1 exp(−nε)). (101)

Hence by Cauchy-Schwarz we have

Var

[

kn
∑

i=2

Xi1{Ec
x,i}
]

=

kn
∑

i=2

Var[Xi1{Ec
x,i}] +

∑

i 6=j

Cov[Xi1{Ec
x,i}, Xj1{Ec

x,j}]

= O
(

k2
nn

6ε+2σ−1 exp(−nε)
)

→ 0, (102)

as n → ∞. Then by (100), (102), and the analogous estimates for Yi, along with the
Cauchy-Schwarz inequality, we obtain for α ≥ 1 that

Var

[

kn
∑

i=2

Xi1{Ex,i}+
kn
∑

i=2

Yi1{Ey,i}+
kn
∑

i=2

Xi1{Ec
x,i}+

kn
∑

i=2

Yi1{Ec
y,i}
]

→ 0, (103)

as n → ∞. By (95) with (98), (103), and Cauchy-Schwarz again, we obtain the first part
of (92). The argument for P0

n is the same as for Pn, so we have (92).
Now suppose 0 < α < 1. We obtain (93) and (94) in a similar way to (92), since (97)

implies that
Var(n(α−1)/2(X1 + Y1 + Z)) = O(n6ε+2σ−2+α(4ε+2σ−1))

and (100) implies

Var

(

n(α−1)/2
kn
∑

i=2

Xi1{Ex,i}
)

= O(n4ε+σ−1+α(4ε+2σ−1)),

and both of these bounds tend to zero when 0 < α < 1, 1/2 < σ < 2/3, and ε is small
(87).

To prove those parts of Theorem 2.1 which refer to the binomial process Xn, we need
further results comparing the processes Xn and Pn when they are coupled as in Lemma
6.4.

Lemma 7.3. Suppose α ≥ 1. With Xn and Pn coupled as in Lemma 6.4, we have that
as n → ∞

Lα(Xn;Cn)−Lα(Pn;Cn)
L1

−→ 0 and Lα(X 0
n ;Cn)− Lα(P0

n;Cn)
L1

−→ 0. (104)

Proof. Let Pn and Xm (m ∈ N) be coupled as described in Lemma 6.4. Given n, for
m ∈ N define the event

Em,n := ∩1≤i≤kn({Xm−1 ∩ βx
i 6= ∅} ∩ {Xm−1 ∩ βy

i 6= ∅}),
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with the sub-cells βx
i and βy

i of Bn as defined near the start of Section 7. Then by similar
arguments to those for P [Ec

x,i] above, we have

P [Ec
m,n] = O(n1−σ−2ε exp(−nε/2)), m ≥ n/2 + 1.

As in the proof of Lemma 6.4, let Ym denote the in-degree of vertex Xm in the MDST on
Xm. Then

|Lα(Xm;Cn)−Lα(Xm−1;Cn)| ≤ (Ym + 1)1{Xm ∈ Cn}
(

(3n2ε+σ−1)α + 2α/21{Ec
m,n}

)

.

Thus, given N(n),

|Lα(Xn;Cn)− Lα(Pn;Cn)| ≤∑max(N(n),n)
m=min(N(n),n) (Ym + 1)1{Xm ∈ Cn}

×
(

3αnα(2ε+σ−1) + 2α/21{Ec
m,n}

)

.

Since Cn has area less than 2nε−1/2, by (74) there exists a constant C such that, for n
sufficiently large and N(n) ≥ n/2 + 1,

E [ (|Lα(Xn;Cn)−Lα(Pn;Cn)|)|N(n)] ≤ 2α/2n1{N(n)<n/2+1}

+C|N(n)− n| log(max(N(n), n))nα(2ε+σ−1)+ε−1/21{N(n)≥n/2+1}. (105)

By tail bounds for the Poisson distribution, we have nP [N(n) < n/2+1] → 0 as n → ∞,
and hence, taking expectations in (105) and using (78), we obtain

E [|Lα(Xn;Cn)−Lα(Pn;Cn)|] = O(nα(2ε+σ−1)+ε logn) + o(1),

which tends to zero since α ≥ 1, 1/2 < σ < 2/3 and ε is small (see (87)). So we obtain
the unrooted part of (104). The argument is the same in the rooted case.

Lemma 7.4. Suppose Xn and Pn are coupled as described in Lemma 6.4, with N(n) :=
card(Pn). Let ∆(∞) be given by Definition 4.1 with H = L1, and set α1 := E[∆(∞)].
Then as n → ∞ we have

L1(Pn;S0,n)− L1(Xn;S0,n)− n−1/2α1(N(n)− n)
L2

−→ 0; (106)

L1(P0
n;S0,n)−L1(X 0

n ;S0,n)− n−1/2α1(N(n)− n)
L2

−→ 0. (107)

We omit the proof of this lemma. See [17] for details. We are now in a position to
prove Theorem 2.1. We divide the proof into two cases: α 6= 1 and α = 1. In the latter
case, to prove the result for the Poisson process Pn, we need to show that L1(Pn;Bn) and
L1(Pn;S0,n) are asymptotically independent; likewise for P0

n. We shall then obtain the
results for the binomial process Xn and for X 0

n from those for Pn and P0
n via the coupling

described in Lemma 6.4.

Proof of Theorem 2.1 for α 6= 1. First suppose 0 < α < 1. For the Poisson case, we have

n(α−1)/2L̃α(Pn) = n(α−1)/2L̃α(Pn;S0,n) + n(α−1)/2L̃α(Pn;Bn)

+n(α−1)/2L̃α(Pn;Cn). (108)

The first term in the right hand side of (108) converges in distribution to N (0, s2α) by
Theorem 5.1 (iv), and the other two terms converge in probability to 0 by (62) and
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(93). Thus Slutsky’s theorem yields the first (Poisson) part of (9). To obtain the second
(binomial) part of (9), we use the coupling of Lemma 6.4. We write

n(α−1)/2L̃α(Xn) = n(α−1)/2L̃α(Xn;S0,n) + n(α−1)/2(L̃α(Pn;Bn ∪ Cn))

+n(α−1)/2(L̃α(Xn;Bn ∪ Cn)− L̃α(Pn;Bn ∪ Cn)). (109)

The first term in the right side of (109) is asymptotically N (0, t2α) by Theorem 5.1 (ii).
The second term tends to zero in probability by (62) and (93). The third term tends to
zero in probability by (79). Thus we have the binomial case of (9).

The rooted case (6) is similar. Now, for the first (Poisson) part of (6), we use Corollary
5.1 (iv) with (63) and (94), and Slutsky’s theorem. The second part of (6) follows from
the analogous statement to (109) with the addition of the origin, using Corollary 5.1 (ii)
with (63), (94), (80), and Slutsky’s theorem again.

Next, suppose α > 1. We have

L̃α(Pn) = L̃α(Pn;S0,n) + L̃α(Pn;Cn) + L̃α(Pn;Bn). (110)

The first term in the right hand side converges to 0 in probability, by Theorem 5.1 (iii).
The second term also converges to 0 in probability, by the first part of (92). Then by (60)
and Slutsky’s theorem, we obtain the first (Poisson) part of (11). To obtain the rooted
version, i.e. the first part of (8), we replace Pn by P0

n in (110), and combine (58) with
Corollary 5.1 (iii) and the second part of (92), and apply Slutsky’s theorem again.

To obtain the binomial versions of the results (8) and (11), we again make use of the
coupling described in Lemma 6.4. We have

L̃α(Xn) = L̃α(Xn;S0,n) + L̃α(Xn;Cn) + L̃α(Xn;Bn). (111)

The first term in the right hand side converges in probability to zero by Theorem 5.1 (i).
The second term converges in probability to zero by the first part of (92) and the first

part of (104). The third part converges in distribution to F̃
{1}
α + F̃

{2}
α by by (61). Hence,

Slutsky’s theorem yields the binomial part of (11).
Similarly, by replacing Pn by P0

n and Xn by X 0
n in (111), and using Corollary 5.1 (i),

the second part of (92) and of (104), (59) and Slutsky’s theorem, we obtain the binomial
part of (8). This completes the proof for α 6= 1.

Proof of Theorem 2.1 for α = 1: the Poisson case. We now prove the first part of (7) and
the first part of (10). Given n, set qn := 4⌊nε+σ−1/2⌋. Split each cell Γx

i of Cx
n into 4qn

rectangular sub-cells, by splitting the horizontal edge into qn segments and the vertical
edge into 4 segments by a rectangular grid. Similarly, split each cell Γy

i by splitting the
vertical edge into qn segments and the horizontal edge into 4 segments. Finally, add a
single square sub-cell in the top right-hand corner of C0

n, of side (1/4)nε−1/2, and denote
this “the corner sub-cell”.

The total number of all such sub-cells is 1 + 8knqn ∼ 32n(1/2)−ε. Each of the sub-cells
has width asymptotic to (1/4)nε−1/2 and height asymptotic to (1/4)nε−1/2, and so the
area of each cell is asymptotic to (1/16)n2ε−1. So for large n, for each of these sub-cells,
the probability that it contains no point of Pn is bounded by exp(−nε).

Let En be the event that each of the sub-cells described above contains at least one
point of Pn. Then

P [Ec
n] = O

(

n(1/2)−ε exp(−nε)
)

→ 0. (112)
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Suppose x lies on the lower boundary of S0,n. Consider the rectangular sub-cell of Γx
i

lying just to the left of the sub-cell directly below x (or the corner sub-cell if that lies just
to the left of the sub-cell directly below x). All points y in this sub-cell satisfy y 4∗ x,
and for large n, satisfy ‖y− x‖ < (3/4)nε−1/2, whereas the nearest point to x in Bn is at
a distance at least (3/4)nε−1/2. Arguing similarly for x on the left boundary of S0,n, and
using the triangle inequality, we see that if En occurs, no point in S0,n can be connected
to any point in Bn, provided n is sufficiently large.

For simplicity of notation, set Xn := L̃1(Pn;Bn) and Yn := L̃1(Pn;S0,n). Also, set

X := D̃
{1}
1 + D̃

{2}
1 and Y ∼ N (0, s21), independent of X , with s1 as given in Theorem 5.1.

We know from Theorem 6.1 and Theorem 5.1 that Xn
D−→ X and Yn

D−→ Y as n → ∞.

We need to show that Xn + Yn
D−→ X + Y , where X and Y are independent random

variables. We show this by convergence of the characteristic function,

E[exp (it(Xn + Yn))] −→ E[exp (itX)]E[exp (itY )]. (113)

With ω denoting the configuration of points in Cn, we have

E [exp (it(Xn + Yn))] =

∫

En

E
[

eitXneitYn
∣

∣ω
]

dP (ω) + E
[

eit(Xn+Yn)1Ec
n

]

=

∫

En

E
[

eitXn
]

E
[

eitYn
∣

∣ω
]

dP (ω) + E
[

eit(Xn+Yn)1Ec
n

]

,

where we have used the fact that Xn and Yn are conditionally independent, given ω ∈ En,
for n sufficiently large, and that Xn is independent of the configuration in Cn. Then
E[eit(Xn+Yn)1Ec

n
] → 0 as n → ∞, since P [Ec

n] → 0. So

E [exp (it(Xn + Yn))]− E
[

eitXn
]

E
[

eitYn1En

]

→ 0,

and we obtain (113) since E[eitYn1En] = E[eitYn ]−E[eitYn1Ec
n
], E[eitYn1Ec

n
] → 0, E[eitXn ] →

E[eitX ], and E[eitYn ] → E[eitY ] as n → ∞.
We can now prove the first (Poisson) part of (10). We have the α = 1 case of (110).

The contribution from Cn converges in probability to 0 by the first part of (92). Slutsky’s
theorem and (113) then give the first (Poisson) part of (10). The rooted Poisson case
(7) follows from the rooted version of (110), this time applying the argument for (113)
taking Xn := L̃1(P0

n;Bn), Yn := L̃1(P0
n;S0,n) and X , Y as before, and then using the

second part of (92) and Slutsky’s theorem again. Thus we obtain the first (Poisson) part
of (7).

Proof of Theorem 2.1 for α = 1: the binomial case. It remains for us to prove the second
part of (7) and the second part of (10). To do this, we use the coupling of Lemma 6.4
once more. Considering first the unrooted case, we here set Xn := L1(Xn;Bn) and
Yn := L1(Xn;S0,n). Set X ′

n := L1(Pn;Bn) and Y ′
n := L1(Pn;S0,n) (note that all these

random variables are uncentred).

Set Y ∼ N (0, s21) with s1 as given in Theorem 5.1. Set X := D̃
{1}
1 +D̃

{2}
1 , independent

of Y . Then by (113) we have (in our new notation)

X ′
n − EX ′

n + Y ′
n − EY ′

n
D−→ X + Y. (114)

By (81), we have Xn − X ′
n

P−→ 0 and EXn − EX ′
n → 0. Also, with α1 as defined in

Lemma 7.4, (106) of that result gives us

Y ′
n − Yn − n−1/2α1(N(n)− n)

L2

−→ 0 (115)
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so that E[Y ′
n]−E[Yn] → 0. Combining these observations with (114), and using Slutsky’s

theorem, we obtain

Xn − EXn + Yn −EYn + n−1/2α1(N(n)− n)
D−→ X + Y. (116)

By Theorem 5.1 (iii) we have Var(Y ′
n) → s21 as n → ∞. By (115), and the independence

of N(n) and Yn, we have

s21 = lim
n→∞

Var[Yn + n−1/2α1(N(n)− n)] = lim
n→∞

(Var[Yn] + α2
1) (117)

so that α2
1 ≤ s21. Also, n

−1/2α1(N(n)− n) is independent of Xn + Yn, and asymptotically
N (0, α2

1). Since the N (0, s2) characteristic function is exp(−s2t2/2), for all t ∈ R we
obtain from (116) that

E[exp(it(Xn − EXn + Yn −EYn))] → exp(−(s21 − α2
1)t

2/2)E[exp(itX)]

so that

Xn − EXn + Yn −EYn
D−→ X +W, (118)

where W ∼ N (0, s21 − α2
1), and W is independent of X .

We have the α = 1 case of (111). By the first part of (92) and the first part of (104),
the contribution from Cn tends to zero in probability. Hence by (118) and Slutsky’s
theorem, we obtain the second (binomial) part of (10).

For the rooted case, we apply the argument for (118), now taking Xn := L1(X 0
n ;Bn),

Yn := L1(X 0
n ;S0,n), with X , Y and W as before. The rooted case of (114) follows from

the rooted case of (113), and now we have Xn −X ′
n

P−→ 0 and EXn −EX ′
n → 0 by (82).

In the rooted case (115) still holds by (107), and then we obtain the rooted case of (118)
as before.

To obtain the second (binomial) part of (7), we start with the rooted version of the
α = 1 case of (111). By the second part of (92) and of (104), the contribution from Cn

tends to zero in probability. Hence by the rooted version of (118) and Slutsky’s theorem,
we obtain the second part of (7).

This completes the proof of the α = 1 case, and hence the proof of Theorem 2.1 is
complete.
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