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Av. Blanco Encalada 2120 Piso 7, Santiago de Chile

Abstract. We give an explicit geometric description of the ×2,×3 system,
and use this to study a uniform family of Markov partitions related to those
of Wilson and Abramov. The behaviour of these partitions is stable across
expansive cones and transitions in this behaviour detect the non-expansive
lines.

1. Introduction. Markov partitions are a powerful tool in the study of hyperbolic
diffeomorphisms of manifolds. Explicit constructions of Markov partitions for hy-
perbolic toral automorphisms of the 2-torus T2 in the work of Adler and Weiss [3]
are an important paradigmatic example, and in special situations the tight connec-
tion between the geometry of the map and the partition found in [3] is extended
to automorphisms of Td with d > 2 by Manning [13]. On the other hand, maps
of objects that are not quite manifolds arise naturally in dynamics, notably as at-
tractors of smooth maps in work of Bowen [4] and Williams [20]. Thus a natural
extension of the classical theory of smooth maps of compact manifolds concerns
maps of solenoids; a useful overview and the history may be found in a paper of
Takens [16]. The simplest solenoids are algebraic: compact groups that are locally
isometric to products of local fields.

The structure of a tangent space comprising a product of local fields including
non-Archimedean ones may be used to study various dynamical properties of auto-
morphisms of solenoids: exotic orbit-growth properties by Chothi, Everest, Miles,
Stevens and the first author [6], [9]; entropy and structure of Zd-actions of en-
tropy rank one by Einsiedler and Lind [7]; topological entropy by Lind and the first
author [12], [18].

Our purpose here is to study geometrically natural Markov partitions like those
used by Abramov [1] and Wilson [21] for one of the simplest examples in which non-
Archimedean directions arise in the tangent space, and to study how the structure of
those partitions changes in expansive cones. This gives a simple geometrical instance
of the ‘subdynamics philosophy’ of Boyle and Lind [5]. A combinatorial instance of
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the same kind of structure appears in work of Miles and the first author [15], where
it is shown that directional zeta functions detect the non-expansive set for systems
of entropy rank one.

In order to do this, we describe the structure of the space obtained by taking
the invertible extension of the N2-action generated by the maps x 7→ 2x (mod 1)
and x 7→ 3x (mod 1) on the additive circle in a geometric way. To simplify matters
we concentrate on this one example: the same kind of construction works in those
systems of entropy rank one with an adelic covering space, but is significantly more
involved. In principle the Markov and generating properties of the partitions can
be shown from our geometric description, but for brevity we deduce some of these
properties from Wilson’s results.

2. The geometry of ×2,×3. We make use of a simple version of the adelic ma-
chinery; an elegant account may be found in Weil [19, Ch. 4]. We wish to describe

the group X = Ẑ[ 16 ] of characters on Z[ 16 ] and its metric structure: this group

carries the automorphisms α(1,0) and α(0,1) dual to the automorphisms x 7→ 2x
and x 7→ 3x on Z[ 16 ], and is a presentation of the invertible extension of the N2

action generated by x 7→ 2x (mod 1) and x 7→ 3x (mod 1) on T. For a prime p,
define the local field Qp to be the set of formal power series

∑
n>k anp

n with dig-

its an ∈ {0, 1, . . . , p− 1} and k ∈ Z, and with the non-Archimedean metric | · |p in-
duced by the p-adic norm |

∑
n>k anp

n|p = p−k if ak 6= 0. Notice that Q is a subfield

of each Qp and each Qp has a maximal compact subring Zp = {x ∈ Qp | |x|P 6 1}.
The homomorphism

∆ : Z[ 16 ] −→ R×Q2 ×Q3

r 7−→ (r, r, r)

embeds Z[ 16 ] as a discrete (and hence closed) subgroup of R×Q2×Q3 with respect
to the metric d(x, y) = max {|x∞ − y∞|, |x2 − y2|2, |x3 − y3|3}, where

x = (x∞, x2, x3) ∈ R×Q2 ×Q3.

Write G = R× Q2 × Q3 and Γ = ∆(Z[ 16 ]). The group X is the quotient G/Γ (this
may be seen from Weil [19, Ch. 4]), and we wish to describe this quotient space in
a concrete way. In order to motivate this, notice that a toral automorphism may be
constructed as follows. The identity map embeds Zd as a discrete subgroup of Rd,
and a choice of coset representatives for Rd/Zd gives an explicit geometric descrip-
tion of the map induced on the torus by any automorphism of Rd preserving Zd.
In order to make this note self-contained and to rehearse the kind of calculation
needed later, we include the proof of the following two lemmas, which are simple
instance of a well-known principle (see Weil [19, Ch. 4] or Hewitt and Ross [11,
§ II.10, Th. 10.15]).

Lemma 2.1. The set F = [0, 1)× Z2 × Z3 is a fundamental domain for Γ in G.

Proof. The first step is to check that F is big enough: given x ∈ G, can we find

some γ = (r, r, r) ∈ Γ with x−γ ∈ F? To do this, write {
∑

n>k anp
n} =

∑
−1
n=k anp

n

for the fractional part of x ∈ Qp; {t} for the fractional part and ⌊t⌋ for the integer
part of t ∈ R. A calculation shows that if

r = {x2}+ {x3}+ ⌊(x∞ − {x2} − {x3}⌋

then r ∈ Z[ 16 ] and (x∞ − r, x2 − r, x3 − r) ∈ F as required.
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The second step is to check that F is small enough: if x, y ∈ F define the
same coset of Γ then they are equal. Assume therefore that x, y ∈ F are given
with the property that x − y = (r, r, r) ∈ Γ. Then x2 − y2 ∈ Z2 ∩ Z[ 16 ] = Z[ 13 ]

and x3−y3 ∈ Z3∩Z[
1
6 ] = Z[ 12 ], so r ∈ Z[ 13 ]∩Z[

1
2 ] = Z, and therefore {x∞} = {y∞},

so x∞ = y∞ and r = 0 as required.

This means that there is a bijection G/Γ←→ F ; to go further we need to describe
the image of the group operation on G/Γ under this bijection.

Lemma 2.2. For s, t ∈ G,

(t+ Γ) + (s+ Γ) = ({t∞ + s∞}, t2 + s2 − ⌊t∞ + s∞⌋, t3 + s3 − ⌊t∞ + s∞⌋) + Γ

is the unique coset representative for t+ s in F .

Proof. We wish to find the unique u ∈ F with the property that there is some (r, r, r)
in Γ with u = t + s − r. We must have u∞ = {t∞ + s∞}, which forces r to
be ⌊t∞ + s∞⌋; notice that we also then have

u2 = t2 + s2 − ⌊t∞ + s∞⌋ ∈ Z2

and

u3 = t3 + s3 − ⌊t∞ + s∞⌋ ∈ Z3

since Z2,Z3 are rings.

Lemma 2.2 may be written as follows: the operation

t⋊ s = ({t∞ + s∞}, t2 + s2 − ⌊t∞ + s∞⌋, t3 + s3 − ⌊t∞ + s∞⌋) (1)

makes F into a group X = (F,⋊) isomorphic to G/Γ. An explicit metric on X is
given by

d(x+ Γ, y + Γ) = min
r∈Z[ 16 ]

max{|x∞ − y∞ + r|∞, |x2 − y2 + r|2, |x3 − y3 + r|3}.

Wilson [21] describes the same solenoid in a different way, as a projective limit of
circles

X ∼= {z ∈ TN0 | 6zk+1 = zk (mod 1) for all k > 1}; (2)

points z, z′ in this description are close if their coordinates zk, z
′

k are close in T

for 1 6 k 6 K for large K. The isomorphism in (2) may be thought of as
follows. A given point z = (zk)k>0 in the right-hand side of (2) defines an el-

ement z0 ∈ T; each choice of zk+1 given zk defines a unique pair x
(k)
2 ∈ {0, 1}

and x
(k)
3 ∈ {0, 1, 2} satisfying zk+1 = 1

6zk +
x
(k)
2

2 +
x
(k)
3

6 (thinking of zk+1 as a
real number in [0, 1)). The isomorphism is then defined by sending z to the

point
(
z0,

∑
k>0 x

(k)
2 2k,

∑
k>0 x

(k)
3 3k

)
∈ X . This isomorphism respects the met-

ric structures (nearby points in X correspond to nearby points in the projective
limit) and is equivariant with respect to the automorphisms we study. The auto-
morphisms α(1,0) : x 7→ 2x and α(0,1) : x 7→ 3x on G preserve Γ and therefore define
automorphisms of X = (F,⋊).

To see how the group X works, we compute the automorphisms α(0,1) (mul-
tiplication by 3), α(−1,0) (multiplication by 1

2 ), and α(−1,1) (multiplication by 3
2 )

explicitly. By (1),

α(0,1)(x) = x⋊ x⋊ x = ({3x∞}, 3x2 − ⌊3x∞⌋, 3x3 − ⌊3x∞⌋) .
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Table 1. Stable and unstable directions.

region R Q2 Q3

a > 0, b > 0 u s s

a < 0, b > 0, 2a3b > 1 u u s
a > 0, b < 0, 2a3b > 1 u s u

a < 0, b < 0 s u u

a > 0, b < 0, 2a3b < 1 s s u

a < 0, b > 0, 2a3b < 1 s u s

Notice that the map α(0,1) locally expands the real component by a factor of 3,
locally contracts the 3-adic component by a factor of 3, and is a local isometry on
the 2-adic component.

Write xp =
∑

n>k x
(n)
p pn with digits x

(n)
p ∈ {0, 1, . . . , p− 1} for n > k. Then

α(−1,0)(x) =
(

1
2 + 1

2x
(0)
2 , 1

2x2 +
1
2x

(0)
2 , 12x3 +

1
2x

(0)
2

)

(this is most easily verified by doubling the right-hand side).
Finally, by combining the two calculations we see that α(−1,1)(x) is

({
3
2x∞ + 3

2x
(0)
2

}
, 3
2x2 +

3
2x

(0)
2 −

⌊
3
2x∞ + 3

2x
(0)
2

⌋
, 3
2x3 +

3
2x

(0)
2 −

⌊
3
2x∞ + 3

2x
(0)
2

⌋)
.

Locally the action of α(a,b) multiplies by 2a3b, and therefore acts on each of the
three directions in the tangent space as shown in Table 1 (u, s denote unstable and
stable directions).

The first three regions shown in Table 1 are the expansive regions in the sense
of [5] and [8] (expansive regions are defined in the Grassmannian space of lines
in R2, of which the circle is a two-fold cover; the table shows the six regions in the
cover). There are three non-expansive lines a = 0 (containing maps like α(0,1), which
behaves like an isometry on the 2-adic direction), b = 0 (containing maps like α(1,0),
which behaves like an isometry on the 3-adic direction) and 2a3b = 1 (which does not
contain any lattice points, but has a sequence of lattice points (ak, bk) converging to
it with the property that the real Lyapunov exponent log |2ak3bk | of the map α(ak,bk)

converges to zero as k →∞).

3. Stable Markov partitions. It is clear that there cannot be a single finite parti-
tion that is generating for all the maps α(a,b) as (a, b) varies inside an expansive cone
because the set of topological entropies of the maps in a cone is unbounded. Thus,
what we mean by “stable” is that the Markov partition for α(a,b) is constructed in
a uniform manner across all (a, b) ∈ Z2. We will see later that the geometry of how
the map acts on an atom of the partition is uniform across each expansive cone but
changes at each non-expansive direction.

Recall that the näıve height (in the sense of Diophantine geometry) of a non-zero
rational r/s is defined to be H(r/s) = max{|r|, |s|}. Thus Abramov’s formula [1]
for the entropy of an automorphism of a one-dimensional solenoid may be writ-
ten h(T ) = logH(r/s) if T is the map dual to multiplication by r/s.

Main Theorem. For each (a, b) ∈ Z2 \ {(0, 0)} let ξ(a,b) denote the partition
{
Aj =

[
j

H(2a3b)
, j+1
H(2a3b)

)
× Z2 × Z3 | 0 6 j < H(2a3b)

}
.
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Then {ξ(a,b)} is a stable family of Markov partitions whose geometry detects the

non-expansive directions of α. The partition ξ(a,b) is generating for α(a,b) if and

only if α(a,b) is expansive.

The theory of Markov partitions in the topological (rather than smooth) set-
ting is developed by Adler [2]; by ‘Markov’ we mean that the partition obtained
from ξ(a,b) by using open intervals in the real coordinate instead of half-open in-
tervals satisfies [2, Def. 6.1]. Much of the proof of Theorem 3 will use results from
Wilson [21] that conceal the geometry of the actions. In order to see how the maps
act geometrically, we illustrate the result by describing the partition and the action
of the map on the partition in some representative directions. In each figure the
image of the atom A0 of the partition is shaded.

Example 3.1. Consider the direction (1, 0), with corresponding map

α(1,0)(x) = ({2x∞}, 2x2 − ⌊2x∞⌋, 2x2 − ⌊2x∞⌋) .

The partition ξ(1,0) simply divides the real coordinate into [0, 12 ) and [ 12 , 1). We
compute

α(1,0)(ξ(1,0)) = {[0, 1)× 2Z2 × Z3, [0, 1)× (1 + 2Z2)× Z3}

and

α(2,0)(ξ(1,0)) = {[0, 1)× (4Z2 ∪ 1 + 4Z2)× Z3, [0, 1)× (2 + 4Z2 ∪ 3 + 4Z2)× Z3}.

Similarly,

α(−1,0)(ξ(1,0)) = {([0, 14 ) ∪ [ 12 ,
3
4 ))× Z2 × Z3, ([

1
4 ,

1
2 ) ∪ [ 34 , 1))× Z2 × Z3}

and α(−2,0)(ξ(1,0)) is the partition into the sets
(
[0, 1

8 ) ∪ [ 14 ,
3
8 ) ∪ [ 12 ,

5
8 ) ∪ [ 34 ,

7
8 )
)
× Z2 × Z3

and (
[ 18 ,

1
4 ) ∪ [ 38 ,

1
2 ) ∪ [ 58 ,

3
4 ) ∪ [ 78 , 1)

)
× Z2 × Z3.

α(1,0) α(1,0)

[0, 1)

Z2

Z3

0 1

A0

Figure 1. ξ(1,0), α(1,0)(ξ(1,0)) and α(2,0)(ξ(1,0)).

These partitions are illustrated in Figure 1 for the forward direction and Figure 2
for the reverse direction. Notice that

∨
∞

n=−∞
α(n,0)(ξ(1,0)) does not separate the Z3

coordinate, so the partition is not generating for α(1,0). However, this does show
that the system (X,α(1,0)) may be realized as an isometric extension of a base
system (which is an almost 1-1 image of a full Bernoulli 2-shift) by Z3.
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α(−1,0)

Figure 2. α(−1,0)(ξ(1,0)) and α(−2,0))(ξ(1,0)).

Example 3.2. The expansive region ab > 0 is particularly simple because the
system (X,α(a,b)) is (at each point with a > 0, b > 0) simply the invertible extension
of the map x 7→ 2a3bx (mod 1) on the circle, and ξ(a,b) is the usual partition into
intervals of width 1

2a3b
on [0, 1) lifted to X . The action of α(1,1) (multiplication

by 6) is illustrated in Figure 3 for the forward direction and Figure 4 for the reverse
direction.

α(1,1) α(1,1)

Figure 3. ξ(1,1), α(1,1)(ξ(1,1)) and α(2,2)(ξ(1,1)).

Figure 4. α(−1,−1)(ξ(1,1)).

Example 3.3. Now consider the map α(−1,1) (multiplication by 3
2 ). For this map

the real and the 2-adic directions are unstable and the 3-adic direction is stable.
The partition ξ(−1,1) divides the real coordinate into three pieces. A calculation
shows that α(−1,1)(ξ(−1,1)) consists of the sets

[0, 12 )× Z2 × 3Z3 ∪ [ 12 , 1)× Z2 × (3Z3 + 2),

[ 12 , 1)× Z2 × 3Z3 ∪ [0, 1
2 )× Z2 × (3Z3 + 1),

and
[0, 12 )× Z2 × (3Z3 + 2) ∪ [ 12 , 1)× Z2 × (3Z3 + 1).

The image of A0 under the maps α(−1,1) and α(1,−1) are shown in Figure 5.
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α(−1,1)α(1,−1)

Figure 5. α(1,−1)(ξ(−1,1)), ξ(−1,1) and α(−1,1)(ξ(−1,1)).

A similar calculation shows that α(1,−1)(ξ(−1,1)) consists of the sets

[0, 29 )× 2Z2 × Z3 ∪ [ 13 ,
5
9 )× (1 + 2Z2)× Z3 ∪ [ 23 ,

8
9 )× 2Z2 × Z3,

[ 29 ,
4
9 )×2Z2×Z3∪[

5
9 ,

7
9 )×(1+2Z2)×Z3∪

(
[ 89 , 1)× 2Z2 × Z3 ∪ [0, 19 )× (1 + 2Z2)× Z3

)
,

and the complement of their union. Notice that (for example) α−1A0 ∩ A1 ∩ αA0

does not consist of a single rectangle.

Proof of Theorem 3 in the region ab > 0. Assume first that a and b are both pos-
itive, so that 2a3b ∈ N, and write α = α(a,b), ξ = ξ(a,b) throughout; the parti-
tions α−1(ξ), ξ, α(ξ) are illustrated in Figures 3 and 4 with the image and pre-image
of A0 shaded for the case (a, b) = (1, 1). We claim that the combinatorics of a full
shift on 6 symbols suggested by Figures 3 and 4 is indeed the case. This (and other
steps flagged below) may in principle be extracted from Wilson’s paper [21] but we
prove it here to show how the map works. We first need to check that an atom of
the form

α(Ai1 ) ∩ · · · ∩ αn(Ain),

for any choice of i1, . . . , in ∈ {0, 1, . . . , 2a3b − 1}, is a rectangle of the shape

[0, 1)× (tn + 2anZ2)× (sn + 3bnZ3)

with an explicit description of tn ∈ {0, 1, . . .2
an−1} and sn ∈ {0, 1, . . . , 3

bn−1}. In
order to do this, we need some notation for the sets arising as the map is iterated.
The first iteration is straightforward, and we can write

α(Ak) = [0, 1)× (2aZ2 − k)× (3bZ3 − k)

for 0 6 k 6 2a3b − 1. The next iteration is more complicated, because the image
involves reduction modulo Γ. We compute

α2(Ak) =

2a3b−1⊔

ℓ1=0

Ak,ℓ1 , (3)

where

Ak,ℓ1 = [0, 1)×
(
2a3b(2aZ2 − k)− ℓ1

)
×
(
2a3b(3bZ3 − k)− ℓ1

)

(⊔ denoting a disjoint union). Continue, arriving at the notation

αn(Ak) =
2a3b−1⊔

ℓ1=0

· · ·
2a3b−1⊔

ℓn−1=0

Ak,ℓ1,...,ℓn−1 (4)

for n > 2, in which each Ak,ℓ1,...,ℓn−1 is a set of the form

[0, 1)× (2anZ2 − C(k, ℓ1, . . . , ℓn−2)− ℓn−1)×
(
3bnZ3 − C(k, ℓ1, . . . , ℓn−2)− ℓn−1

)
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where

C(k, ℓ1, . . . , ℓn−2) = k(2a3b)n−1 + ℓ1(2
a3b)n−2 + ℓ2(2

a3b)n−3 + · · ·+ ℓn−22
a3b.

Using this description, we claim that an atom in
∨n

j=1 α
j(ξ) can be written in the

form

α(Ai1 ) ∩ α2(Ai2) ∩ · · · ∩ αn(Ain) = Ain,in−1,...,i1 (5)

for n > 2 and some 0 6 ij < 2a3b, 1 6 j 6 n where the right-hand side is defined
as above.

We prove the claim in (5) by induction on the length n starting with n = 2.
Clearly α2(Ai2) ⊇ Ai2,i1 by definition. Now

Ai2,i1 = [0, 1)×
(
22aZ2 − i22

a3b − i1
)
×
(
32bZ3 − i22

a3b − i1
)

⊆ [0, 1)× (2aZ2 − i1)×
(
3bZ3 − i1

)
= α(Ai1 )

since i22
a3bZ2 ⊆ 2aZ2, and similarly for the other terms, so α(Ai1 ) ⊇ Ai2,i1 . Thus

α(Ai1 ) ∩ α2(Ai2 ) ⊇ Ai2,i1 .

We now claim that α(Ai1 ) ∩ α2(Ai2 ) = Ai2,i1 by using (3) and showing that

Ai2,ℓ ∩ α(Ai1 ) 6= ∅

for 0 6 ℓ < 2a3b implies that ℓ = i1. To see this, note first that if Ai2,ℓ∩α(Ai1 ) 6= ∅
then Ai2,ℓ ⊂ α(Ai1 ). Suppose that there is some i′1 6= i1, both in {0, . . . , 2a3b − 1},
with Ai2,i

′

1
∩α(Ai1 ) 6= ∅. Then i1− i′1 = 2ak1 and i1− i′1 = 3bk2 for some k1, k2 ∈ Z,

so (since 2 and 3 are coprime), i1 ≡ i′1 (mod 2a3b) and therefore i1 = i′1.
Now assume that (5) holds for n 6 k. First notice that

αk+1(Aik+1
) ⊃ Aik+1,ik,...,i1 ,

and we claim that

Aik,...,i1 ⊃ Aik+1,ik,...,i1 . (6)

Since

Aik,...,i1 = [0, 1)×
(
2akZ2 − ik(2

a3b)k−1 − ik−1(2
a3b)k−2 − · · · − i1

)

×
(
3bkZ3 − ik(2

a3b)k−1 − ik−1(2
a3b)k−2 − · · · − i1

)
,

Aik+1,ik,...,i1 = [0, 1)×
(
2a(k+1)Z2 − ik+1(2

a3b)k − ik(2
a3b)k−1 − · · · − i1

)

×
(
3b(k+1)Z3 − ik+1(2

a3b)k − ik(2
a3b)k−1 − · · · − i1

)
,

and

2a(k+1)Z2 ⊆ 2akZ2

3b(k+1)Z3 ⊆ 3bkZ3

ik+1(2
a3b)kZ2 ⊆ 2akZ2,

ik+1(2
a3b)kZ3 ⊆ 3bkZ3,

we have (6), and therefore

Aik ,...,i1 ∩ αk+1(Aik+1
) ⊇ Aik+1,...,i1 . (7)

We now claim that there is equality in (7). To see this, assume that there is a
choice of ℓ1, . . . , ℓk ∈ {0, . . . , 2a3b− 1} with Aik+1,ℓk,...,ℓ1 ∩Aik,ik−1,...,i1 6= ∅. By (6),
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and noting that Aik+1,ℓk,...,ℓ1 ∩Aik,ik−1,...,i1 6= ∅ implies that Aik+1,ℓk,...,ℓ1 is a subset
of Aik,ik−1,...,i1 , it follows that

2a(k+1)Z2 − ik+1(2
a3b)k − ik(2

a3b)k−1 − · · · − i1

and

2a(k+1)Z2 − ik+1(2
a3b)k − ℓk(2

a3b)k−1 − · · · − ℓ1

are both subsets of

2akZ2 − ik(2
a3b)k−1 − · · · − i1,

and similarly for the Z3 component. Thus

(ik − ℓk)(2
a3b)k−1 + (ik−1 − ℓk−1)(2

a3b)k−2 + · · ·+ (i1 − ℓ1) ≡ 0 (mod (2a3b)k).

Reducing this identity modulo 2a3b shows that i1 = ℓ1, reducing modulo (2a3b)2

shows that i2 = ℓ2, and so on. Using (4), it follows that there is equality in (7) as
required, proving (5).

Now we consider an atom of the form

Ai0 ∩ α−1(Ai1) ∩ · · · ∩ α−n(Ain);

we wish to prove a statement like (5) for these atoms, by showing that each such
atom is a rectangle of the form J ×Z2×Z3 for an explicitly described interval J of
width 1

(2a3b)n+1 . A calculation shows that

α−1(Ak) =

2a3b−1⊔

ℓ=0

[
k

(2a3b)2
+ ℓ

2a3b
, k+1
(2a3b)2

+ ℓ
2a3b

)
× Z2 × Z3 =

2a3b−1⊔

ℓ=0

Ak,ℓ,

and in general we have

α−n(Ak) =

2a3b−1⊔

ℓ1=0

· · ·
2a3b−1⊔

ℓn=0

Ak,ℓ1,...,ℓn (8)

for n > 1, with

Ak,ℓ1,...,ℓn =
[

k
(2a3b)n+1 +D(ℓ1, . . . , ℓn),

k+1
(2a3b)n+1 +D(ℓ1, . . . , ℓn)

)
× Z2 × Z3

where

D(ℓ1, . . . , ℓn) =
ℓ1

(2a3b)n
+

ℓ2
(2a3b)n−1

+ · · ·+
ℓn
2a3b

.

We claim that

Ai0 ∩ α−1(Ai1 ) ∩ · · · ∩ α−n(Ain) = Ain,in−1,...,i0 . (9)

for n > 1. For n = 1,

Ai0 ∩ α−1(Ai1) ⊇
[

i0
2a3b

, i0+1
2a3b

)
× Z2 × Z3 ∩ Ai1,i0 = Ai1,i0

since [ i0
2a3b

, i0+1
2a3b

) ⊇ [ i1
(2a3b)2

+ i0
2a3b

, i1+1
(2a3b)2

+ i0
2a3b

). Thus Ai0∩α
−1(Ai1) = Ai1,i0 since

the width of the real interval defining Ai0 is 1
2a3b and by (8) the real coordinates of

the sets in α−1(Ai1 ) are intervals, each of width 1
(2a3b)2 and with the property that

the left end-points of distinct intervals are at least 1
2a3b

apart.

Now assume that (9) holds for n 6 k, so that
⋂k+1

j=0 α
−j(Aij ) can be written as

the intersection of[
D(ik, . . . , i0),

1
(2a3b)k+1 +D(ik, . . . , i0)

)
× Z2 × Z3 = Aik,...,i0
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with ⊔

06j1,...,jk+1<2a3b

Aik+1,j1,...,jk+1 .

It follows that
k+1⋂

j=0

α−j(Aij )⊇
[
D(ik+1, . . . , i0),

1
(2a3b)k+2 +D(ik+1, . . . , i0)

)
× Z2 × Z3=Aik+1,...,i0 .

Notice that the width of the real interval defining the set Aik,...,i0 is 1
(2a3b)k+1 . Now

by (8) each member of the real projection of α−(k+1)(Aik+1
) has length 1

(2a3b)k+2 and

each of these intervals has the property that the left end-points of distinct intervals
are at least distance 1

(2a3b)k+1 apart, showing (9) for n = k + 1 and hence for all n

by induction.
By (5) and (9), the atom

n⋂

j=−n

αj(Aij ) = Ain,...,i0 ∩Ain,...,i1

is a rectangle with real width 1
(2a3b)n+1 , 2-adic width 1

(2a)n and 3-adic width 1
(3b)n .

It follows that ξ satisfies a strong form of the condition [2, Exercise 6.1]. Moreover,

diam
( n∨

j=−n

αj(ξ)
)
→ 0

as n→∞, so ξ is a generating Markov partition in the sense of [2].

Proof of Theorem 3 in other regions. Away from the positive and negative quad-
rants ab > 0 the behaviour of ξ = ξ(a,b) under the map α = α(a,b) is more compli-
cated. In particular, as seen in Figure 5, an atom in ξ ∨αξ need not be a rectangle
even in expansive directions. However, in an expansive direction the partition ξ cor-
responds under the map described after (2) to the partition π−1

0 S(H(2a3b)) used
by Wilson [21, Th. 2.4]. Notice that for any (a, b) in an expansive region, the
group Σmn in the notation of [21], where m

n
= 2a3b, is X . Wilson shows that this

partition is a Bernoulli generator, so

n⋂

j=0

αj(Aij ) 6= ∅,
0⋂

j=−n

αj(Aij ) 6= ∅ =⇒
n⋂

j=−n

αj(Aij ) 6= ∅

(as in [2, Exercise 6.1]); he also shows that an atom in
∨n

j=−n αj(ξ) lies inside a

cylinder defined by small intervals in many coordinates in the description (2), so

diam




n∨

j=−n

αj(ξ)


→ 0.

It follows that ξ is a generating Markov partition for α(a,b).
There are three non-expansive directions, but only two of them contain non-

trivial lattice points: Example 3.1 shows that ξ(1,0) is not generating under α(1,0);
the other direction (0, 1) is similar.

An impression of the complexity of a generating Markov partition may be gained
by comparing the dynamical zeta function of the resulting symbolic cover shift
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map σ(a,b) to the zeta function of the original map α(a,b). In the positive quad-
rant a > 0, b > 0, where we have seen that the partition ξ behaves very simply, we
have ζσ(a,b)(z) = 1

1−H(a,b)z while ζα(a,b)(z) = 1−z
1−H(a,b)z since only one pair of points

of each period are identified by the factor map defined by the partition. In con-
trast, in the region a < 0, b > 0, 2a3b > 1 (for example) we have ζσ(a,b)(z) = 1

1−3bz

while ζα(a,b)(z) = 1−2az
1−3bz

, reflecting the fact that more periodic points in the full 3b-
shift are identified under the factor map. Finally, in a non-expansive direction
(like a = 1, b = 0) the zeta function of α(a,b) is not even a rational function (it is
shown in [10] that the zeta function has a natural boundary on the circle |z| = 1

2
in this case; the influence on the zeta function of further directions in which an
automorphism of a solenoid acts like an isometry is studied by Miles [14] and the
first author [17]).

Q3

Q2

R

2x3y = 1

×2

×3

Figure 6. Geometry of α(a,b)(A0) in expansive cones.

The variation in geometrical properties of the partition ξ(a,b) across each expan-
sive cone is illustrated in Figure 6: a representative shape of α(a,b)(A0) is shown
shaded in each expansive cone. The transitions across the axes are clear; at the
line 2x3y = 1 all that changes is the sign of the real Lyapunov exponent.
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