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Abstract. Let ξ1, . . . , ξr be complex numbers with K = Q(ξ1, . . . , ξr) having tran-

scendence degree r − 1 over Q. Consider the equation

a1x1 + · · ·+ akxk = 1, (1)

in which the ai’s are fixed elements of K×, no proper subsum ai1xi1 + · · ·+ aijxij
vanishes, and we seek solutions xi ∈ Γ =� ξ1, . . . , ξr �. It is well–known that (1)
has only finitely many solutions; we present here an elementary proof of this fact

using results from the entropy theory of commuting group automorphisms.

1. Introduction

If α is a mixing action of Zd by automorphisms of a compact connected abelian

group, then the action is mixing of all orders (see [SW]). This result depends for its

proof on the quantitative S–unit theorem of Schlickewei, [S]. On the other hand,

the mixing theorem implies the non–quantitative S–unit theorem in a straightfor-

ward way (in fact it is enough to know that a mixing Zd action by automorphisms

of a finite–dimensional compact connected abelian group is mixing of all orders).

Unfortunately, there seems to be no internal ergodic–theoretical proof of the mix-

ing result on finite–dimensional groups. In this paper we consider instead Zd

actions with completely positive entropy on infinite–dimensional compact groups.

It is well–known that such actions are mixing of all orders, and we deduce from this

a result on additive relations between elements of a finitely–generated subgroup

of C×. The result we prove is a special case of a very general principle, illustrated

by the following theorem of van der Poorten and Schlickewei.
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Theorem. Let F be a field of characteristic zero, let c1, . . . , cn be nonzero ele-

ments of F, and let Γ1, . . . ,Γn be finitely generated subgroups of F×. Then the

equation c1γ1 + · · ·+ cnγn = 1 has only finitely many solutions in elements γi ∈ Γi
(i = 1, . . . , n) with the property that no subsum ci1γi1 + · · · + cikγik (k < i)

vanishes.

This result (Theorem 2′ of Section 6.8 in [PS]) depends on a more conventional

S–unit theorem in algebraic number fields, and the proof proceeds via induction

on the total rank of the Γi’s and a specialisation method to reduce to the algebraic

setting. A simpler argument is used in [P] to give the (no less general) finiteness

result when all the Γi’s coincide.

I am grateful to Graham Everest for several helpful conversations.

2. Actions with completely positive entropy

Consider an action T of Zd by invertible measure–preserving transformations of

a Lebesgue space (X,B, µ). For finite measurable partitions η = {A1, . . . , An} and

ξ = {B1, . . . , Bm} of X, denote by η ∨ ξ their common refinement (the partition

of X into sets of the form Ai ∩ Bj), and let H(η) = −
∑n
i=1 µ(Ai) logµ(Ai). The

entropy of T with respect to η is defined to be

h(T, η) = lim
n→∞

1

|Fn|
H

( ∨
m∈Fn

T−m(η)

)
(2.1)

where {Fn} is any Følner sequence in Zd. The action T has completely positive

entropy if h(T, η) > 0 whenever H(η) > 0.

The action T is mixing of order r if, for any collection of measurable sets

B0, . . . , Br,

lim
nl−nl′→∞ for 0≤l′<l≤r

µ (B0 ∩ T−n1
(B1) ∩ · · · ∩ T−nr

(Br)) =
r∏
l=0

µ(Bl). (2.2)

Here (and below) we adopt the convention that n0 = (0, . . . , 0).

Theorem 2.1. If T has completely positive entropy, then T is mixing of all orders.

Proof. Kaminski ([K], Theorem 2) proves this for d = 2; modification to d > 2 is

straightforward.

Let α : Zd → Aut(X) be a homomorphism into the group of continuous auto-

morphisms of the compact abelian group X (so α is a Zd action on the Lebesgue

space (X,B, λX) where B is the Borel σ–algebra on X and µ is normalized Haar

measure). Following Kitchens and Schmidt ([KS]), we associate to the pair (X,α)

a module M over the ring Rd = Z[u±11 , . . . , u±1d ] as follows: as an additive group,
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M is the dual (group of characters) of X. The module structure is determined by

identifying multiplication by ui with the automorphism of M dual to the automor-

phism αei
of X (here {e1, . . . , ed} is the standard basis for Zd.) We may similarly

associate a Zd action (XM, α
M) to any Rd–module M. Use un as shorthand for

un1
1 . . . und

d .

By expanding the characteristic function of the sets B0, . . . , Br in (2.2), we see

that α is mixing of order r if and only if, for all characters χ0, . . . , χr ∈ X̂ (not all

trivial),

lim
nl−nl′→∞ for 0≤l′<l≤r

∫
(χ0)(χ1 · αn1

) · · · (χr · αnr
) dλX = 0. (2.3)

In terms of the module M associated to (X,α), r–mixing is therefore equivalent

to the condition that, for all nonzero elements (a0, . . . , ar) ∈Mr+1,

a0 + um1 · a1 + · · ·+ umr · ar 6= 0 (2.4)

whenever ml ∈ Zd and ml −ml′ lies outside some sufficiently large finite subset

of Zd for all 0 ≤ l′ < l ≤ r (we have again taken m0 = 0).

Theorem 2.2. Let M = Rd/p be a cyclic Rd–module, with p a prime ideal.

The associated Zd action αM has completely positive entropy if and only if p is

principal, and generated by a polynomial not of the form umφ(un) where φ is a

cyclotomic polynomial.

Proof. This follows immediately from Theorems 4.2 and 6.5 of [LSW], together

with Example 5.4 of [LSW].

Following [LSW], call an ideal positive if it is prime and αRd/p has completely

positive entropy. The proof of Theorem 2.2 requires the generalization of Kro-

necker’s theorem to several variables.

From Theorems 2.1 and 2.2, together with the characterization of r–mixing

given at (2.4), we obtain the following corollary. Let Q ⊂ C denote the algebraic

closure of Q.

Corollary 2.3. Let p ⊂ R be a positive ideal and let M = Rd/p. Assume that M

is torsion–free as an additive group. Let a0, . . . , ar ∈M⊗Q be non–zero. Then

a0 + um1 · a1 + · · ·+ umr · ar 6= 0

whenever ml ∈ Zd and ml −ml′ lies outside some sufficiently large finite subset

of Zd for all 0 ≤ l′ < l ≤ r.
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Proof. By (2.4), it is sufficient to show that the Zd action corresponding to the

Rd–module M ⊗ Q has completely positive entropy if the action corresponding

to M has. Assume therefore that αM has completely positive entropy and M is

torsion free. For each n ∈ N, M ∼= M⊗ 1
nZ, so αM⊗ 1

nZ is isomorphic (as a measure–

preserving action) to αM. It follows that αM⊗ 1
nZ has completely positive entropy.

Now notice that

M⊗Q = lim−→
(
M⊗ 1

n!Z, ιM ⊗ ιn
)

where ιM is the identity on M and ιn : 1
n!Z ↪→ 1

(n+1)!Z is the inclusion map, so

that

XM⊗Q = lim←−XM⊗ 1
n!Z
. (2.5)

It follows that αM⊗Q also has completely positive entropy: if η is a non–trivial

partition of XM⊗Q then by (2.5) it must project to a non–trivial partition η of

XM⊗ 1
n!Z

for some n, so h(αM⊗Q, η) ≥ h(αM⊗ 1
n!Z, η) > 0.

Now assume we have shown that αM⊗k has completely positive entropy for

some algebraic number field k, and let θ be algebraic with degree s over k. Then,

as Rd–modules,

M⊗ k[θ] ∼= (M⊗ k)s,

so that αM⊗k[θ] is simply the s–fold Cartesian power of αM⊗k. It follows that

αM⊗k[θ] has completely positive entropy. Choose a chain of simple extensions

Q ⊂ k1 = Q[θ1] ⊂ k2 = k1[θ2] ⊂ . . . with Q = lim−→ kn. Since M⊗Q ∼= lim−→M⊗ kn,

and each of the αM⊗kn has completely positive entropy (by the above inductive

argument), we conclude that αM⊗Q has completely positive entropy as required.

3. Proof of theorem

Theorem 3.1. Let ξ1, . . . , ξr be complex numbers with the property that K =

Q(ξ1, . . . , ξr) has transcendence degree r − 1 over Q. Then the equation

a1x1 + · · ·+ akxk = 1, (3.1)

in which the ai’s are fixed elements of K×, has only finitely many solutions xi in

Γ =� ξ1, . . . , ξr � for which no proper subsum ai1xi1 + · · ·+ aijxij vanishes.

Proof. Assume first that the multiplicative group Γ has maximal rank, so Γ ∼= Zr.
Assume that (3.1) does have infinitely many solutions xi ∈ Γ with non–vanishing

subsums. Parametrize the infinite family of solutions to obtain

a′0 + a′1x
(n)
1 + · · ·+ a′kx

(n)
k = 0, (3.2)

where a′i ∈ Q[ξ1, . . . , ξr], no subsums vanish, the equation holds for n = 1, 2, . . . ,

and without loss of generality (x
(n)
1 , . . . , x

(n)
k ) 6= (x

(m)
1 , . . . , x

(m)
k ) if n 6= m.
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Denote by η : Rr ⊗ Q → C the evaluation map η(h) = h(ξ1, . . . , ξr). The

transcendence assumption implies that the kernel of η is a principal prime ideal,

p = 〈f〉 say (by the transcendence assumption, there is an algebraic relation

F (ξ1, . . . , ξr) = 0; let V = {z ∈ Qr | F (z) = 0}. The kernel of η is then the

ideal attached to V , and this is the radical of 〈F 〉, which is still principal). If

f(u) = umφ(un) where φ is a cyclotomic polynomial, then ξn1
1 . . . ξnr

r is a unit

root, so ξsn1
1 . . . ξsnr

r = 1 for some s ∈ N. This relation is forbidden by the

requirement that the set {ξ1, . . . , ξr} multiplicatively generate a group of rank r.

Since η induces an isomorphism η : Rr ⊗ Q/p → Q[ξ1, . . . , ξr], we may pull the

equation (3.2) up to the module M = Rr ⊗Q/p to obtain

m0 +m1u
m

(n)
1 + · · ·+mku

m
(n)
k = 0, (3.3)

where mi ∈ M, no subsums vanish, the equation holds for n = 1, 2, . . . , and

(m
(n)
1 , . . . ,m

(n)
k ) 6= (m

(m)
1 , . . . ,m

(m)
k ) if n 6= m.

We now claim that from the infinite family of solutions to (3.3) we can find an

infinite family of solutions to an equation of the form

m′1u
m

(np)

i1 + · · ·+m′su
m

(np)

is = 0 (3.4)

in which the m′i are non–zero, and m
(np)
ir
−m

(np)
it
→ ∞ as p → ∞ for r 6= t. We

allow the possibility that one of the is’s is 0, and make m
(np)
0 = 0 for all p. The

equation (3.4) is obtained as follows. If the exponents m
(n)
i in (3.3) are all moving

apart then (3.4) is chosen to be identical to (3.3). If this is not the case, then for

each pair of terms that do not move apart, say um(n)
r and um

(n)
t , we may pass to

a subsequence (in n) along which um(n)
r − um

(n)
t is a constant. Grouping this into

one term contributes one term to (3.4). This process has to stop with a non–trivial

equation of the form (3.4) because there are infinitely many solutions to (3.3).

The equation (3.4) contradicts Corollary 2.3, so the original equation (3.1) can

have only finitely many solutions if Γ has rank r.

If Γ has smaller rank, then Γ ∼= Zr−d × F for some d > 0 and finite group

F , and we may therefore replace the equation (3.1) with finitely many different

equations, each corresponding to a field extension of the form Q(ξi1 , . . . , ξir−d
)

with � ξi1 , . . . , ξir−d
� having rank r − d.

4. Remark

The connection between equations of the form (3.1) and Zr actions by auto-

morphisms of compact groups provides an interesting context in which to see the

effect of the transcendence degree of K. Consider the equation

a1x1 + · · ·+ akxk = 1, (4.1)
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where we seek solutions in Γ =� ξ1, . . . , ξr � with no vanishing subsums, and let

K = Q(ξ1, . . . , ξr) have transcendence degree t over Q. For brevity let us assume

that Γ has maximal rank.

(1) If t = r then it is clear that (4.1) has only finitely many solutions. The

corresponding dynamical system is the full Zr shift with alphabet T: this

is an infinite entropy Bernoulli shift, which is clearly mixing of all orders.

(2) If t = r − 1, then we have seen above that the corresponding dynamical

system is a finite entropy system with completely positive entropy. Such

systems are mixing of all orders, and we deduce that there can be only

finitely many solutions to (4.1). These dynamical systems are conjectured

to be isomorphic to finite entropy Bernoulli shifts (see [LSW], Section 6).

(3) If t = r − d, for some d > 1, then the corresponding Zr dynamical system

has zero entropy (though subsystems obtained by restriction to copies of

Zr−d+1 do have completely positive entropy). These systems are mixing of

all orders, but the proof of this fact uses the S–unit theorem for number

fields (see [SW] for the details).

(4) If t = 0 then the ξi are algebraic numbers, and the corresponding dynamical

system is an r–tuple of commuting automorphisms of a finite–dimensional

compact group (or solenoid); here (4.1) is exactly the usual S–unit equation

for number fields, and mixing of all orders in the dynamical system is

exactly the same statement as the non–quantitative S–unit theorem.
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