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SUMMARY

The Partition of Unity Method has become an attractive approach for extending the allowable frequency
range for wave simulations beyond that available using piecewise polynomial elements. The non-uniqueness
of solution obtained from the Conventional Boundary Integral Equation (CBIE) is well known. The CBIE
derived through Green’s identities suffers from a problem of non-uniqueness at certain characteristic
frequencies. Two of the standard methods of overcoming thisproblem are the so-called CHIEF method
and that of Burton and Miller. The latter method introduces ahypersingular integral which may be treated
in various ways. In this paper we present the collocation Partition of Unity Boundary Element Method
(PUBEM) for the Helmholtz problem and compare the performance of CHIEF against a Burton-Miller
formulation regularised using the approach of Li and Huang.Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Partition of Unity Method:

The fundamental work on the Partition of Unity Method (PUM) was carried out by Melenk and

Babuška [1] as a generalised Finite Element (FE) technique [2]. The fundamental idea was to use

the analytical information of the problem that is being analysed in the FE basis functions. After

Melenk and Babuška’s work [3] on Helmholtz and elasticity problems, the PUM has further been

extended both for FE and BE techniques by Bettess and his co-workers for solving wave problems

[4],[5],[6] and by Ortiz and Sanchez for diffraction problems [7]. Farhat et al [8],[9] presented a

variant of PUM by using a discontinuous enrichment method. In their work the finite element basis

was enriched by adding the plane waves to the polynomial basis instead of multiplication with it. Use
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2 G.C. DIWAN, J. TREVELYAN AND G. COATES

of PUM for efficiently solving practical problems in acoustics [10],[11],[12] and in solid mechanics

[13] using collocation BEM is also well established. The use of the plane wave enrichment has

also been found to be advantageous in Galerkin BEM [14]. The improvement in the accuracy of

the numerical solution either by FE or BE techniques and the gain in the efficiency of solving the

system equations is widely reported, see [15],[16],[17],[18].

Indeed, the idea of using a priori knowledge of the solution in the approximation space can be

attributed to Trefftz. Trefftz’s concept was to use the particular solutions in the variational approach

for solving the governing partial differential equations [19]. Although introduced in 1926, probably

the first generalisation of Trefftz methods for solving practical problem (plate bending) with FEM

is due to Jirousek [20] in 1977. Trefftz methods have received a considerable attention in the last

two decades in regards to extending their applicability forsolving wave problems using either

FEM or the Galerkin method. The literature on the techniquesbased on the Trefftz methods

is vast and only a few of the relevant works are mentioned here. More related Trefftz’s type

works in the wave problems are the Ultra Weak Variational Formulation (UVWF)[21],[22], the

Variational Theory of Complex Rays (VTCR) for vibration problems [23], Fourier expansion based

VTCR [24], discontinuous Galerkin FEM [25] (Helmholtz equation) and recently [26] (Maxwell

equation). Another very recent contribution to UWVF for Helmholtz equation using the first kind

Bessel function along with the usual plane waves is due to Luostari et al [27]. Use of plane wave

basis also finds its application in transient acoustic [28] and electromagnetic [29] wave scattering

problems. The ’Plane Wave Time Domain’ (PWTD) algorithm [28],[29] has been shown to cost

O(NtN
1.5
s logNs) as aginst conventional BEM that requiresO(NtN

2
s ) operations. HereNt andNs

are the number of temporal and spatial basis functions needed to approximate the total field. Nair

and Shanker use a ‘Generalized Method of Moments’ (GMM) for solving the integral equation for

electromagnetic [30] and acoustic [31] scattering problems. Their algorithm is shown to be flexible

in the use of various orders and kinds of basis functions. Thecondition number of the linear system

resulting from their method is shown to be stable over a wide range of frequencies.

As will be discussed in Sec.3.2, one of the problems in using the plane wave enrichment is

the oscillatory behaviour of the plane wave basis. Since theBEM uses fundamental solution in

the integral equations (which in turn is wavenumber dependent for acoustic problems), one has

to be very careful in evaluating these oscillatory integrals particularly at high frequencies. The

algorithm developed by Bruno et al [32] is specifically aimed at handling the oscillatory integrals

encountered when solving electromagnetic and acoustic scattering from large, convex obstacles with

BEM. Authors in that paper present a formulation and an integration scheme based on the method

of stationary phase that enables i) the use of a fixed set of discretization points independent of

frequency and ii) the use of the GMRES solver which convergeswithin a fixed number of iterations

independent of frequency of the problem. Impressive savings in CPU time are reported. Another

algorithm is due to Griebel and Schweitzer [33] for mesh free Galerkin FEM with partition of unity.

These authors demonstrate an exponential convergence for thep version of GFEM with the use of

a sparse grid integration scheme on non-overlapping cells dividing the integration domain. Bettess

et al [4] present a semi-analytical quadrature method for the oscillatory integrals in PUFEM. This

however can not straight forward be implemented in PUBEM because of the presence of Green’s

function in the boundary integrals. Honnor et al [10] use asymptotic expression for the Green’s

function in 2D followed by a non-oscillatory representation of the integrand in the complex plane
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 3

to perform the quadrature. Although significant savings canbe achieved in terms of number of

integration points, the method is not entirely robust.

1.2. The non-uniqueness problem

It is well known that the Conventional Boundary Integral Equation (CBIE) for an exterior acoustic

problem results in a non-unique solution at irregular frequencies for the corresponding interior

problem and that this is a purely mathematical phenomenon. Two of the available approaches

to overcome the non-uniqueness are the Combined Helmholtz Integral Equation Formulation

(CHIEF) method and the Burton-Miller method. The CHIEF method due to Schenck [34] uses

some additional Helmholtz integral equations evaluated atpoints interior to the scatterer (and

exterior to the acoustic domain) which are added in the original system matrix. Although this results

in an over-determined system, CHIEF ensures a unique solution at an irregular frequency. These

interior points need to be chosen such that they do not lie on the nodal lines of the eigenmodes of

the interior Helmholtz problem. This however can introduceuncertainties at high wavenumbers

as the nodal lines become densely packed in the interior which makes it difficult to find suitable

locations for the placement of interior points. Apart from stating the problem with the interior

collocation points when they lie on the nodal lines of the interior modes, Schenck has not provided

any criteria as to what number of CHIEF points be chosen to ensure a unique solution. To this

effect, some work has been done by Wu and Seybert [35], Juhl [36] to further enhance the CHIEF

method to obtain a unique solution. Wu and Seybert propose a weighted residual form of the CHIEF

method which can ensure a unique solution using the concept of ’CHIEF block’. A CHIEF block

is a volume considered inside the scatterer where the CHIEF equation (or the interior Helmholtz

problem) is solved in a weighted residual sense. Juhl’s approach on the other hand uses the Singular

Value Decomposition (SVD) technique to identify the rank deficiency of the coefficient matrix

and with this assess the quality of the CHIEF points. A very important observation of Juhl is

about the accuracy with which the scatterer geometry is modelled and the associated possibility

to circumvent the non-uniqueness. It is known that the CBIE can result in a non-unique solution

at wavenumbers near the eigenvalues of the interior problemfor a coarse mesh. This ‘band’ of

spurious wavenumbers is the major concern when solving exterior acoustic problems as one is

less likely to solve exactly at a spurious wavenumber. As observed by Juhl, the non-uniqueness

in this particular spurious ’band’ may be avoided if one usesa very fine mesh. This of course

comes at the cost of excessive computation. As will be discussed later, one of the motivations for

using Partition of Unity methods (apart from obtaining a very high accuracy), is to be able to use a

coarse mesh. It is therefore very crucial that the geometricmodelling of the scatterer be accurate

for exterior acoustic problems in view of the problem with non-uniqueness in the spurious band.

A rigorous analytical and numerical investigation of the CHIEF method has been presented by

Chen et al [37] for the spurious eigensolution in a multiply connected domain. There are several

other variations of the CHIEF method but their mention is avoided only for brevity. However,

for a good discussion on the non-uniqueness problem and on the several enhancements of the

CHIEF method, the reader is referred to a review presented byMarburg and Wu (Chapter 15 in [38]).

Another method to avoid the non-uniqueness problem is due toBurton and Miller [39]. They

showed that the integral equation resulting from linear combination of the CBIE and its normal
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4 G.C. DIWAN, J. TREVELYAN AND G. COATES

derivative at the collocation point always results in a unique solution. The major problem with this

method is the evaluation of a hypersingular integral which arises as a result of the differentiation of

the CBIE at the collocation point. There are various techniques available to handle the hypersingular

integral in the Burton-Miller formulation. One such technique is the ’regularisation’ procedure

which is simply a subtraction of singularity technique (SST) combined with identities from

potential theory [40]. Various methods of regularisation for use with the BEM technique for

acoustic and elastic scattering problems can be found in [41],[42],[43],[44],[45]. Another technique

is due to Guiggiani [46] which is based again on the subtraction of singularity but it does not use the

identities from the potential theory. Rather, the technique is based on expanding the singular kernel

in a Taylor series using polynomial shape functions. Although mathematically elegant and widely

applied for practical problems [47],[13] (Dual BEM for fracture mechanics), [48](Stokes flow in

duct), it can become difficult to obtain complicated expansions for the fundamental solutions (the

Green’s functions). Often an exact geometry is essential inthe PUBEM technique [16] (also recall

the discussion in Sec.1.2) and Guiggiani’s method can become highly involved when performing

the analytical integration on the exact boundary. Also, since the PUBEM is specifically aimed at

solving short wavelength problems, the use of an approximate modelling of the scatterer geometry

can introduce numerical dispersion in the solution. It is for this reason that we use the regularisation

procedure [40] where the singularity subtraction is analytical.

The BEM system of equations, formed using either the CHIEF orBurton-Miller formulation, is

dense and often ill-conditioned (in the case of plane wave based methods). This may be become a

problem for high frequency problems when using conventional direct solvers as the cost of solving

the system scales withO(N3) whereN is the total number of equations in the BEM system. One

of the many techniques to accelerate the BEM solution is the Fast Multipole Method (FMM). An

adaptive version of FMM [49],[50] has been used to solve several 3D acoustic scattering problems

using Burton and Miller formulation. The authors show that significant savings in CPU time can

be achieved compared to the conventional BEM or non-adaptive FMM. Load balancing is known

to be a problem for parallel implementation of FMM. Hariharan et al [51] present an algorithm that

avoids the load balancing steps and demonstrate considerable speed-up for the parallel FMM for

electromagnetic scattering problems.

In this paper we present a comparison between the CHIEF method and the Burton-Miller

method for the PUBEM solution of the classical single and multiple exterior acoustic scattering

problems in two dimensions. For handling the hypersingularintegral in the Burton-Miller

formulation, we use the regularisation proposed by Li and Huang [40]. It may be noted that the

Burton-Miller formulation contains only weakly singular integrals after the application of the

regularisation procedure of Li and Huang to the hypersingular and the strongly singular kernel. The

two methods are compared for their accuracy, solution efficiency and conditioning of the coefficient

matrix.
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2. GOVERNING EQUATION

The well known equation for time harmonic acoustic scattering and wave propagation is the

Helmholtz equation

∇2φ(q) + k2φ(q) = 0 q ∈ Ω (1)

where k is the acoustic wavenumber,φ the spatially dependent (e−iωt time dependence) total

acoustic potential that we seek in the computational domainΩ and∇2 is the Laplacian operator. For

exterior acoustic problems, the total (or scattered) acoustic potential has to satisfy Sommerfeld’s

radiation condition given by

lim
r→∞

r
n−1

2

(

∂

∂r
− ik

)

φ = 0 (2)

where r is the distance of a point inΩ from the origin,n is the dimension of the space and

i =
√
−1. The mathematical formulation for deriving the CBIE from the Helmholtz equation is

well established [52]. The CBIE for an acoustic scattering (or radiation) problem governed by the

Helmholtz differential equation is given by

c(p)φ(p) +

∫

Γ

∂G

∂nq

φ(q)dΓ(q) =

∫

Γ

G
∂φ(q)

∂nq

dΓ(q) + φi(p), p, q ∈ Γ (3)

wherep is the collocation or source point,q the field point,G the free space Green’s function for the

Helmholtz problem,nq the outward normal at pointq on the boundaryΓ, φ(q) the unknown acoustic

potential andφi(p) the known incident acoustic wave. The termc(p) is the free coefficient which

depends on the local geometry ofΓ at p. In this study we assumeΓ is smooth and takec(p) = 1
2 .

Thus when the normal derivative of the acoustic potential isprescribed on the boundary, (3) can be

used to compute the acoustic potential.

The Green’s function for the Helmholtz equation in two-dimensions is given by

G =
i

4
H0(kr) (4)

whereH0(·) is the first kind Hankel function of order zero. The normal derivative of (3) at the

collocation pointp is given by

c(p)
∂φ(p)

∂np

+

∫

Γ

∂2G

∂np∂nq

φ(q)dΓ(q) =

∫

Γ

∂G

∂np

∂φ(q)

∂nq

dΓ(q) +
∂φi(p)

∂np

(5)

and the Combined Hypersingular BIE (CHBIE) due to Burton andMiller [ 39] is

c(p)φ(p) + αc(p)
∂φ(p)

∂np

+

∫

Γ

∂G

∂nq

φ(q)dΓ(q) + α

∫

Γ

∂2G

∂np∂nq

φ(q)dΓ(q) =

∫

Γ

G
∂φ(q)

∂nq

dΓ(q) + α

∫

Γ

∂G

∂np

∂φ(q)

∂nq

dΓ(q) + φi(p) + α
∂φi(p)

∂np

(6)

whereα is a coupling constant most commonly taken asi/k. In the present study, we analyse

the acoustic scattering from sound hard surface(s) for which the normal derivative of the total

acoustic potential vanishes. Therefore, all the terms in (6) involving the normal derivative of acoustic

potential vanish. Although (6) results in a unique solution, its main drawback remains thenumerical
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6 G.C. DIWAN, J. TREVELYAN AND G. COATES

treatment of the hypersingular integral, i.e. the last integral on the left hand side. Li and Huang [40]

presented the following weakly singular form of the hypersingular integral

∫

Γ

∂2G

∂np∂nq

φ(q)dΓ(q) =

∫

Γ

[

∂2G

∂np∂nq

− ∂2G0

∂np∂nq

]

φ(q)Γ(q) (7)

+

∫

Γ

[φ(q) − φ(p)−∇φ(p) · (q − p)]
∂2G0

∂np∂nq

dΓ(q)

+

∫

Γ

∇φ(p) · nq

∂G0

∂np

dΓ(q)− 1

2
∇φ(p) · np

whereG0 is the free space Green’s function for the Laplace equation and is given as

G0 =
1

2π
ln

(

1

r

)

. (8)

Again, for the present case of a hard boundary, the last term in the right hand side of (7) vanishes.

Consequently, the final equation for this case of a hard boundary can be expanded as

c(p)φ(p) +

∫

Γ

∂G

∂nq

φ(q)dΓ(q) + α

∫

Γ

[

∂2G

∂np∂nq

− ∂2G0

∂np∂nq

]

φ(q)Γ(q) (9)

+ α

∫

Γ

[φ(q) − φ(p)−∇φ(p) · (q − p)]
∂2G0

∂np∂nq

dΓ(q)+

α

∫

Γ

∇φ(p) · nq

∂G0

∂np

dΓ(q) = φi(p) + α
∂φi(p)

∂np

.

3. PLANE WAVE BASIS AND AND DISCRETIZATION OF CHBIE

We now introduce the plane wave basis for approximation of the acoustic potential at a pointx on

the boundaryΓ

φ(x) =

J
∑

j=1

Nj

Mj
∑

m

Ajmeikdjm ·x
x ∈ Γ, (10)

whereNj is thejth shape function,Ajm the unknown which can be thought of as the amplitude

of themth plane wave with wave numberk associated with nodej. The direction of themth plane

wave at nodej is given by the unit vectordjm andx is the location of point where the potential

φ is sought. (10) is general in the sense that the total number of nodesJ on an element and the

associated total number of waves with each node,Mj, can vary on the boundaryΓ. In the context of

the BEM, the plane wave basis defined in (10) can be used to express the unknown acoustic potential

on the boundaryΓ. There are significant changes introduced when moving from the conventional

polynomial basis to plane wave basis viz.

• the unknowns are now the amplitudes of the plane waves (Ajm) located around boundary

element nodes as against the nodal potential in case of polynomial basis,

• with the use of the plane wave basis, it is possible to use muchlarger elements for

modelling the boundaryΓ. A typical boundary element with plane wave approximation can

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 7

accommodate many wavelengths as against the use of a minimumten nodes per wavelength

with the polynomial basis, and,

• the exponential function in the plane wave basis makes the associated integrals highly

oscillatory in nature. This necessitates special attention when performing the numerical

integration.

It is now convenient to write the following discretized formof (9) using (10)

C1 +

s=4
∑

s=1

ne
∑

e=1

Ies = C2 + C3 (11)

where

C1 = c(p)

3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm·x(p) (12)

Ie1 =

∫

Γe

(

∂G

∂nq

)

3
∑

j=1

N q
j

Mj
∑

m=1

Aq
jmeikdjm ·x(q)dΓe(q) (13)

Ie2 = α

∫

Γe

∂2G

∂nq∂np

(

3
∑

j=1

N q
j

Mj
∑

m=1

Aq
jmeikdjm ·x(q) −

3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm·x(p)

)

dΓe(q) (14)

Ie3 = α

∫

Γe

∂2G0

∂np∂nq

((

3
∑

j=1

N q
j

Mj
∑

m=1

Aq
jmeikdjm ·x(q) −

3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm·x(p)

)

− (15)





∂

∂x





3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm·x(p)



 rx +
∂

∂y





3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm·x(p)



 ry



 dΓe(q)

Ie4 = α

∫

Γe





∂

∂x





3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm·x(p)



nqx +
∂

∂y





3
∑

j=1

Np
j

Mj
∑

m=1

Ap
jmeikdjm ·x(p)



nqy



 dΓe(q)

(16)

and

C2 = φi(p) ; C3 = α
∂φi(p)

∂np

(17)

wherene is the total number of boundary elements dividing the boundary Γ andΓe is the division

of Γ corresponding to theeth boundary element,Ap
jm (Aq

jm) the amplitude ofmth plane wave

associated withjth node on the element that contains the collocation pointp (field point q), Np
j

(N q
j ) the polynomial shape function for nodej of the element containing the collocation point

p (field point q), nqx andnqy the x andy components of the unit outward normal at pointq on

the boundaryΓ. rx = x(q) − x(p) andry = y(q)− y(p) wherex andy are simply the Cartesian

coordinates. Choosing appropriate locations on the boundary Γ as collocation pointsp yields the

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
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8 G.C. DIWAN, J. TREVELYAN AND G. COATES

following set of linear equations

[H]{a} = {b} (18)

where the vectora contains the amplitudes of plane waves. Vectorb is obtained as

{b} = {C2 +C3} (19)

where{C2} and{C3} are the vectors formed using (17). The matrixH is obtained by evaluating

the boundary integrals. The solution of linear system (18) yields the amplitudes of the plane waves,

Ajm which can be used to quickly recover the acoustic potential on the boundaryΓ using (10).

3.1. Collocation

As mentioned earlier, the PUBEM necessitates the use of an exact geometry to obtain accurate

results. We therefore use the exact geometry of the scatterer so thatΓe becomes analytical and is

given as

Γe = {γe(ξ) : −1 ≤ ξ ≤ 1}. (20)

It is a common practice in the conventional BEM to use the boundary element nodes as the

collocation points. However, in view of (10), we require additional collocation points as the

total number of unknowns has now increased to2× ne ×M as against2× ne for conventional

collocation BEM, for the case of a 3-noded continuous element. It is therefore convenient to write,

ps =

{

γe(ξ) : ξ = a− 2 +
m− 1

M

}

a = 1, 2, m = 1, 2, ..M. (21)

wheres = 1, 2, ..., 2M , 2M being the total number of degrees of freedom for the elementΓe.

It follows immediately that (21) generates the collocation pointsps that are regularly spaced in

{ξ : −1 ≤ ξ ≤ 1}. A theoretical restriction on the continuity of the acoustic potential requires

further attention to the placement of pointp in the case where two adjacent elements are concerned.

A frequently mentioned problem with the continuous elements for the use with hypersingular

integrals is the Hölder continuity requirement on the density function ( or the acoustic potential

in the present case). The Hölder continuity requirement needs the density functions to beC1,α

continuous whereas the continuous elements are onlyC0,α continuous at the inter-element edges.

Although satisfactory results have been presented by violating this condition [41], we will follow

a collocation strategy where the collocation points alwayslie entirely inside an element which

automatically satisfies theC1,α condition [53].

3.2. Numerical integration

It is known that the boundary integrals in (9) become oscillatory in nature due to the introduction

of the plane wave basis apart from the inherent oscillatory nature of the fundamental solution

present in the kernel of the integral equation, i.e., the Green’s function. A complicating factor

for the integration is that the PUBEM formulation encourages the use of elements spanning many

wavelengths, so there is the requirement to evaluate accurately highly oscillatory integrals. Apart

from the requirement of using an analytical geometry where possible, accuracy of the PUBEM

solution heavily depends on how accurately these oscillatory integrals are evaluated. We use a

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 9

subdivision of the−1 ≤ ξ ≤ 1 interval intoC cells of equal size to evaluate the oscillatory integrals

using Gauss quadrature. In the present work, we use 10 Gauss points per cell, and cells of length

approximately equal toλ/3. We acknowledge the more sophisticated integration schemes cited

in Sec.1.1, but adopt this scheme, namely, element subdivision inC equal length cells, for its

robustness. To make this concept clear, let us rewrite one ofthe boundary integrals, sayIe1 (see

(13)),

Ie1 =

∫

Γe

(

∂G

∂nq

)

3
∑

j=1

N q
j

Mj
∑

m=1

Aq
jmeikdjm ·x(q)dΓe(q) (22)

Using the first parametric mapping (20), Ie1 can be written as

Ie1 =

∫

ξ=1

ξ=−1

(

∂G

∂nq

)

3
∑

j=1

N q
j

Mj
∑

m=1

Aq
jmeikdjm ·x(q)J(ξ)dξ(q) (23)

whereJ(ξ) is the Jacobian of transformationΓe → ξ. Now, using the division of theξ interval inC

cells, we can write (23) as

Ie1 =

C
∑

∫

η=1

η=−1

(

∂G

∂nq

)

3
∑

j=1

N q
j

Mj
∑

m=1

Aq
jmeikdjm ·x(q)J(η)dη(q). (24)

Nowη is the local coordinate in each individual cell andJ(η) is the Jacobian of transformationΓe →
η. It should be noted that even after the regularisation, the integrals in (9) that contain derivatives of

the Green’s function are still weakly singular. This requires a suitable coordinate transformation to

be applied so that the integrals are evaluated correctly. Out of the several coordinate transformation

methods available, we compare the performance of four different methods for evaluating the weakly

singular integrals in (9). The coordinate transformations methods investigated here are i) Telles [54],

ii) Monegato - Sloan (MS [55]), iii) bicubic [56] and iv) Wu’s transformation [57]. The Telles and

MS transformations are applied in the entire local intervalη ∈ (−1, 1) if it contains the singular

point, p. Bicubic and Wu’s scheme, on the other hand, split this localinterval (η) towards the left

and right of the singularity (p) and then apply the transformation in each individual interval. In the

next section we present error analyses for two acoustic scattering problems namely i) scattering from

a single sound hard cylinder and ii) scattering from an arrayof four cylinders. This will be followed

by an example of acoustic scattering from a long sound hard capsule to examine the stability of the

CHIEF method alone.

4. SCATTERING FROM SOUND HARD CYLINDER(S)

Before we present the error analyses for the cylinder problems, it will be prudent to define a

parameterτ which gives the number of degrees of freedom per wavelength for a given problem,

i.e.,

τ =
T

ka
(25)

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
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10 G.C. DIWAN, J. TREVELYAN AND G. COATES

whereT is the total number of degrees of freedom in the system for onecylinder anda is the radius

of the cylinder. Thus for the problem of scattering from a single cylinder with unit radius,τ = T/k

whereT will be simply the multiplication of the total number of nodes on the scatterer boundary and

number of plane waves per node. It should be noted that we use one integration cell per collocation

point and thus the total number of degrees of freedomT (in 25) is equal to the total number of

integration cells used on the boundary of one cylinder, i.e,

T = ne × C (26)

Note thatC is the number of integration cells per element (see24). For all the results presented here

the parameterτ ≈ 3.0 unless otherwise mentioned. This value has been found to be sufficient to

recover solutions with acceptable engineering accuracy of1% and moderate condition numbers

which can be effciently handled with the SVD algorithm, see [16]. For smooth scatterers this

accuracy will be shown to be much better(≈ 10−4). Also all the results are obtained with 30

integration (Gauss) points per wavelength unless otherwise mentioned. For both the single cylinder

and four cylinder examples, we use two 3-noded continuous elements per cylinder along with the

trigonometric shape functions presented by Peake et al [12]. Thus the single cylinder case has only

two continuous elements and the four cylinder case uses 8 continuous elements. For all computations

the integration points are placed analytically on the scatterer boundary. We now define the relative

L2 error for the total acoustic potentialφ on the boundaryΓ, E2(φ) as

E2(φ) =
‖φ− φ̃‖
‖φ̃‖

(27)

whereφ is the numerically computed solution and̃φ the analytical solution computed using the

infinite or approximate series for a given scattering problem. The coefficient matrixH generated

using the plane wave basis is always highly ill-conditioned. A typical condition number for the

coefficient matrixH for a moderately high value ofk > 100 is ≈ 1015. The problem of poorly

conditioned systems because of the use of the plane waves hasbeen widely reported, see the

discussion in [17] and the references therein. In general, the condition number for a plane wave

enriched BEM grows as the wavenumber increases. Clearly, inorder to obtain accurate and reliable

results from such highly ill-conditioned systems one must ensure that sufficient arithmetic precision

is maintained in the computation of the matrix terms. We use double precision arithmetic for all the

computations in this study. A natural choice for obtaining accurate solution from the ill-conditioned

system (18) is therefore the SVD technique. The applicability of SVD for obtaining accurate

solutions from ill-conditioned systems is very well established and the readers may be referred

to the benchmark paper by Golub and Kahan [58] for the underlying theory. In this paper, we obtain

the solution vectora in (18) by solving the following complex linear least squares problem:

min ‖b−Ha‖2 (28)

using the SVD ofH.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme



CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 11

The 2-norm condition number for the matrixH, κ(H) may be defined as

κ(H) =
σmax(H)

σmin(H)
(29)

whereσmax(H) andσmin(H) are respectively the maximum and minimum singular values ofthe

matrixH computed using the SVD. Relevant routines from the LAPACK library are used to solve

(28) [59]. As discussed in Sec.1.2, the placement of interior collocation points for the CHIEF

method can become an issue. For the numerical examples presented in this paper, the interior points

are placed completely randomly in the interior of the cylinder(s). The number of interior points (or

the number of CHIEF equations) used here is20% of the total number of equations in (18) since this

has been found to give stable results for the CHIEF method. Also the CHIEF points in the interior

of the cylinder(s) are placed such that they are sufficientlyaway from the boundary.

4.1. Scattering from a single sound hard cylinder

We first investigate the performance of CHIEF and Burton-Miller methods for the classical problem

of plane wave scattering from an acoustically hard cylinderof infinite extent. The analytical solution

for the scattered potential on the surface of a hard cylindercentred at origin(0, 0) due to an incident

acoustic plane wave with direction(−1, 0) is given by the infinite series [60].

φs(x) = − J′0(ka)

H′

0(ka)
H0(kr) − 2

∞
∑

ν=1

iν
J′ν(ka)

H′

ν(ka)
Hν(kr) cos(νθ), (30)

wherex = r(cos(θ), sin(θ)), Hν(·) is the Hankel function of the first kind and orderν, Jν(·) is the

Bessel function of the first kind and orderν. The prime sign denotes a derivative with respect tokr.

The total acoustic potentialφ can be computed by simply performing a complex addition of incident

wave to the scattered potential given by (30), i.e.,φ = φi + φs. The relativeL2 error for the total

acoustic potential is then computed using (27).

4.1.1. Truncated SVD

Before proceeding to the error analyses for the scattering problems with different coordinate

transformation schemes for singular integrals, we first present results that demonstrate the ability of

SVD to produce stable and accurate results via the single cylinder scattering problem. As mentioned

earlier, the coefficient matrixH is ill-conditioned (or rank deficient) and this makes the problem

stated in (28) ill-posed because a small perturbation in the right hand side vectorb can result in

a significantly large perturbation in the solution vectora. It is therefore important to be able to

solve (28) reliably whenκ(H) is significantly high to obtain stable and accurate solution. In the

present study, we use the truncated SVD routine ZGELSS from LAPACK to solve (28). The idea

used in ZGELSS is to obtain a minimum||a|| solution from the set of least squares solutions that

minimize ‖b−Ha‖2 over a solution space that is spanned by the singular vectorswith singular

values greater thanǫ0, whereǫ0 is the user input for the truncation threshold of singular values.

This essentially means filtering out those singular values from the SVD ofH that are belowǫ0 and

solve (28) with a modifiedH, possibly with an improved rank. A well known method to estimate

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
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12 G.C. DIWAN, J. TREVELYAN AND G. COATES

the suitable value for the parameterǫ0 is the so called L-curve method [61]. Fig. 1 shows the

L-curves for (18) for the problem of plane wave scattering from a single cylinder for three different

wavenumbers, namely,k = 32, k = 100 and k = 150. The singular values (σc) computed using

SVD for each wavenumber case corresponding to the respective L-curve corner points are also

shown in Fig.1. For eg. the corner value fork = 32 is σc(k = 32) = 1.82E-04, indicating that it

is possible to obtain accurate solution by truncating the singular values that are belowσc(k = 32),

i.e. by settingǫ0 = 1.82E-04 fork = 32 case. Although the threshold valueǫ0 is dependent on the

wavenumber of the problem being solved, in this paper, we take the thresholdǫ0 = 1.0E-10, as this

was found to give satisfactory results for all the examples considered. This is demonstrated through

numerical results for various values ofǫ0 as shown in Fig.2. The results shown in Fig.2 are only

for the CHIEF method, however, similar behaviour is observed in the results for the Burton-Miller

method as well. As seen from Fig.2, it is clear that the SVD algorithm withǫ0 = 1.0E-10 produces

stable results with very good accuracy.
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Figure 1. L-curve for (28) for scattering from single cylinder.

4.1.2. Comparison of CHIEF and Burton-Miller methods with singular integration schemes

We now present the comparison between the CHIEF and the Burton-Miller methods with

various singular integration schemes. Fig.3 shows the relativeL2 error, E2(φ) for CHIEF and

Burton-Miller methods and Fig.4 gives the comparison for the condition number defined in (29).

The multiple lines for the Burton-Miller method in Figs.3-4 correspond to various coordinate

transformation schemes used to handle the weakly singular integrals.
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Figure 2. PUBEM results for various values ofǫ0 for single cylinder problem.
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CHIEF with split Telles transformation

Figure 3.E2(φ) for the single cylinder problem.

As seen from Fig.3, CHIEF provides better accuracy compared to Burton-Millerresults obtained

with various singular integration schemes mentioned earlier at 30 integration points per wavelength.

Note that when the weak singularity in (9) is handled with the Telles scheme without splitting

the interval containing the singularity (η ∈ (−1, 1)), the Burton-Miller formulation needs at least
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Figure 4.κ(H) for the single cylinder problem.

300 integration points per wavelength to achieve a comparable accuracy to that of CHIEF with 30

integration points per wavelength. It should be mentioned here that although the regularised form of

the Burton-Miller formulation used here is only weakly singular, the third integral on the left hand

side of (9) converges extremely slowly. Consequently, Burton-Miller needs a very high number of

integration points in order to achieve an accuracy comparable to that from the CHIEF method, if

it uses the Telles transformation without interval splitting. The efficacy of the Telles scheme for

handling the weakly singular integrals has been investigated by many researchers,[56],[62],[63]. It

is clear from these studies that the Telles transformation when used without partitioning gives poor

results. Singh and Tanaka[62] report at least 3 orders of magnitude improvement for a logarithmic

singularity when the Telles transformation is used with thepartition of the interval for 10 Gauss

points. We see from Fig.3 that splitting the local intervalη ∈ (−1, 1) indeed improves the Burton-

Miller result in comparison with the result obtained without splitting the interval. Similar numerical

experiments carried out with conventional polynomial BEM show that theL2 errors with various

singular integration schemes discussed do not vary significantly. For instance, theL2 errors for

the single cylinder problem using the quadratic discontinuous elements are of theO(10−3) for

all the singular integration schemes discussed and forτ = 20. The collocation points used are the

nodal locations of the discontinuous element which is a common practice followed in conventional

polynomial BEM. We use discontinuous elements for polynomial BEM in order to satisfy the Hölder

continuity requirement on the hypersingular integral. It is found that when the element nodes are

used as the collocation points, the convergence of the slowly converging integral in (9) mentioned

earlier is possible with relatively low number (10 to 12) of Gauss points irrespective of the singular

integration scheme used. Therefore, the results obtained with various singular integration schemes

remain within the same order of magnitude for polynomial BEM. This disparity in the results with

various singular integration schemes for PUBEM and polynomial BEM can be attributed to the fact

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme



CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 15

that the collocation points used in PUBEM are not element nodes causing the integrals for PUBEM

to converge slowly.

The condition numbers for CHIEF fork < 64 are better in comparison with Burton-Miller but

degrade with increasingk (see Fig.4). Interestingly an accurately computed Burton-Miller solution

provides a better conditioning of the system matrix. Amini and Harris [64] studied the dependence

of the condition number on the wavenumberk. The numerical examples they presented are with

conventional BEM and withk < 20 for a 3D problem. It follows from their work that the condition

number for a regularised Burton-Miller formulation increases steadily with growingk and the

coupling parameterα. In a PUBEM context, as shown in Fig.4, the ill-conditioning arising from the

plane wave basis is the dominant effect and the steady increase noticed by Amini and Harris is no

longer evident. However, despite the very high condition numbers encountered, the SVD algorithm

is able to find a unique solution. It is evident from Fig.3 that the PUBEM implementations of both

CHIEF and Burton-Miller are accurate and stable over the range of wavenumbers considered here.

As mentioned before, the number of CHIEF equations used for the CHIEF results shown in Fig.3

is 20% of the total equations in the system (18) and that their locations in the interior are completely

random. This randomness can practically guarantee that there will always be enough CHIEF points

to provide the linear independence needed to obtain a uniquesolution.

4.2. Scattering from an array of four cylinders

The scattering from a multi-cylinder array presents a more challenging case as it involves multiple

reflections from individual cylinders which ultimately forms the total acoustic field. The recursive

multiple reflections make this problem an ideal candidate totest the efficacy of PUBEM to obtain

an accurate solution. We consider a setting of four unit radius sound hard cylinders of infinite

extent with their centres placed at (-2,-2), (2,-2), (2,2) and (-2,2) in a two dimensional homogeneous

unbounded acoustic medium (air). A unit amplitude plane wave with wavenumberk is taken to be

incident on this cylinder array at an angle ofθI = 45◦ with the horizontal. There are various methods

to solve a multiple scattering boundary value problem such as this and a good review of these

methods can be found in [65]. We use the formula proposed by Linton and Evans [66] (eq. 2.15) to

compare our PUBEM solution for the total acoustic potentialon the surface of each cylinder. The

formula proposed by Linton and Evans is based on the additiontheorem that combines the separable

solutions of Helmholtz equation, see [65] for details. The addition theorems can be efficiently used

to compute the solution but the infinite series has to be truncated in practice. Theoretically of course,

an infinite sum should result in a converged solution. However, when solving even the truncated

system of linear equations, the addition of extra terms in the series can make the system matrix

highly ill-conditioned. Fig.5 shows the dependence of the condition number of the system matrix

formed from (2.15) in [66] on the number of terms included in the series. Note thatk = 2.4048 is

an irregular wavenumber (first zero of the first kind Bessel function,J0). Clearly the reason for such

significantly high condition numbers is the wide spread of eigenvalues with the growing number of

terms in the series.

In light of the result shown in Fig.5 it becomes imperative to find the number of terms needed to

include in the series in order to obtain a correct solution from the truncated series. This is because

the relativeL2 errors will depend heavily on how accurately the series in [66] is computed. A good

discussion on the upper and lower bounds on the number of terms to be included in the series can be
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Figure 5. Stability of Linton-Evans series, eq. (2.15) in [66].

found in [67]. More related works from the acoustics domain [68], [69] give an empirical relation

for a two cylinder problem, for the number of terms that need to be included for a given value of

ka, a being the radius of the cylinder. Recently, Antoine et al [70] have presented an empirical

relationship for the number of terms to be used in the infiniteseries for scattering from multiple

circular cylinders

Mu =

[

kau +

(

1

2
√
2
ln
(

2
√
2πkauǫ

−1
)

)
2

3

(kau)
1

3 + 1

]

, (31)

whereMu is the minimum number of terms that need to be included in the infinite series foruth

cylinder with the radiusau, andǫ is the desired error bound on the Fourier coefficients that need

to be computed in the infinite series. The value of error boundon the Fourier coefficients used by

Antonie et al was10−8. For our case of scattering from identical circular cylinders (all cylinders

are unit radius), the number of termsMu obtained from (31) for each cylinder is the same (sayM ).

We use (31) only as a guideline to find the number of terms (M ) needed in the Linton-Evans series

(2.15 in [66]) with ǫ = 10−8 in (31). A system of linear equations of sizeNc(2M + 1) is then formed

whereNc is the number of cylinders (4 in the present case). We use a linear least squares solver with

QR factorisation to solve this system of linear equations using suitable routines from the LAPACK

library and obtain the total acoustic potential on each cylinder surface. This solution is considered as

the reference solution and used to compute the relativeL2 error (see (27)) for our PUBEM solution
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Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4
CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 3.0 5.98E-04 1.03 2.15E-04 2.71 2.78E-04 6.26 1.67E-04 2.01
τ ≈ 3.5 8.67E-06 4.06E-05 1.28E-05 9.39E-05 7.6E-06 3.29E-05 516E-06 3.82E-05
τ ≈ 3.9 2.01E-07 4.07E-06 1.87E-07 4.01E-06 3.46E-07 6.32E-06 1.92E-07 5.17E-06

Table I. PUBEM results -E2(φ) for scattering from four cylinder array fork = 36.9171 andθI = 45◦, 100
terms in Linton-Evans series.

Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4
CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 2.2 43.80 39.34 24.83 16.80 30.95 20.84 24.52 28.28
τ ≈ 2.6 7.66E-05 2.30E-03 1.27E-04 4.72E-03 3.52E-04 3.10E-02 8.88E-05 5.17E-03
τ ≈ 3.0 3.77E-07 8.18E-06 5.65E-07 1.09E-05 5.08E-07 9.83E-06 5.78E-07 2.04E-05

Table II. PUBEM results -E2(φ) for scattering from four cylinder array fork = 100 andθI = 45◦, 150
terms in Linton-Evans series.

Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4
CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 2.2 8.26 15.26 12.53 27.67 42.43 98.36 15.68 37.90
τ ≈ 2.6 6.73E-05 3.0E-03 7.30E-05 2.6E-03 7.23E-05 4.8E-03 7.98E-05 7.0E-03
τ ≈ 3.0 6.48E-05 6.47E-05 6.40E-05 6.39E-05 6.68E-05 6.70E-05 6.40E-05 6.46E-05

Table III. PUBEM results -E2(φ) for scattering from four cylinder array fork = 150 andθI = 45◦, 200
terms in Linton-Evans series.

k = 36.9171
CHIEF BM

τ ≈ 3.0 3.78E+08 1.01E+10
τ ≈ 3.5 3.67E+09 1.39E+10
τ ≈ 3.9 1.31E+12 1.24E+11

Table IV. PUBEM conditioning -κ(H) for CHIEF and regularised Burton-Miller method for four cylinder
problem,k = 36.9171.

with the CHIEF and Burton-Miller methods. For the error analysis of the four cylinder problem,

we consider three cases of the wavenumber, namely,k = 36.9171, k = 100 andk = 150. It may be

noted that out of the three cases mentioned,k = 36.9171 andk = 150 are irregular wavenumbers.

The regularised Burton-Miller results included for comparison here are obtained with the Telles

scheme for the weakly singular integrals in conjunction with splitting the intervalη ∈ (−1, 1). The

L2 error results shown in TablesI-III are obtained using two continuous elements per cylinder with

trigonometric shape functions as before. All the results are obtained with 30 integration points per

wavelength. The condition numbers for the first case ofk = 36.9171 is given in TableIV and for

the latter two cases ofk = 100, 150 in TableV.

We have usedM = 100 fork = 36.9171, M =150 fork = 100, andM =200 fork = 150, in the

Linton-Evans series. It may be noted that the number of termsused for the cases studied here (M )
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k = 100 k = 150
CHIEF BM CHIEF BM

τ ≈ 2.2 1.35E+06 6.54E+05 2.88E+07 4.46E+07
τ ≈ 2.6 1.32E+08 9.41E+09 2.07E+11 2.13E+10
τ ≈ 3.0 3.0E+14 2.89E+10 9.96E+14 5.11E+10

Table V. PUBEM conditioning -κ(H) for CHIEF and regularised Burton-Miller method for four cylinder
problem.

is higher than those prescribed by (31) and this is done in order to obtain the maximum possible

accuracy for the solution obtained from Linton-Evans series. We reiterate the fact that the errors

listed in TablesI-III are for the particular number of terms used in the Linton-Evans series. A

thorough investigation into the stability issues of the superposition methods is beyond the scope

of this paper and the reader may be referred to the textbook ofMartin for a complete review [71].

The condition number of the coefficient matrix for the Linton-Evans series fork = 36.9171 with

100 terms was14.28, for k = 100 with 150 terms was12.28 and that fork = 150 with 200 terms

was 16.29. It can be noted from TablesI-III that the accuracy of both CHIEF and regularised

Burton-Miller methods improves with more plane waves per node i.e. by increasing the value of

the parameterτ . Finally we present a polar plot for the total acoustic potential, φ, on the surface

of the first cylinder with centre at (-2,-2) for the case ofk = 150 (Fig. 6). The case ofk = 150 is

chosen as at such a high wavenumber, the recursive reflections give rise to an interesting scattering

pattern. An additional plot is shown in Fig.7 for the same case but only for the regionθ ∈ [0, π4 ] on

the first cylinder whereθ is measured anticlockwise. This is the region where the effect of recursive

reflections is the most prominent. The plots shown correspond to the result presented in TableIII

with τ = 3.0. From Figs.6-7 , it is evident that the PUBEM solution is able to capture efficiently

a complex pattern of the scattered wave at a reasonably high wavenumber. It is not possible to

distinguish the CHIEF and Burton-Miller results from Linton-Evans series solution as all three of

them visually lie on top of each other.

5. SCATTERING FROM A LONG CAPSULE

It is known that the density of characteristic wavenumbers for a given scatterer geometry increases

as the wavenumber increases. As noted earlier, this is a major concern for the CHIEF method when

choosing the interior collocation points. For an elongatedobject the problem may get worse as the

characteristic wavenumbers get very closely spaced. For this purpose, we will investigate PUBEM

implementation of only the CHIEF method for an elongated body. In order to study this problem, we

consider the geometry that of a long capsule (Fig.8). The overall length of the capsule is(b+ 2R)

whereb is the length of the straight edge andR is the radius of the semicircular end of the capsule. A

few cases are presented for two values of the ratiob/a, wherea is the perimeter of the semicircular

end. For all the cases, three noded continuous elements withtrigonometric shape functions are used.

The integration points are placed analytically on the geometry. As before, the value of parameterτ is

taken as 3.0. Since we intend to investigate the performanceof CHIEF method at high wavenumbers,

it will be convenient to define the relativeL2 error in total acoustic potential on the boundary of
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Figure 6.|φ| for cylinder 1,k = 150.

capsule as

E2(φj) =
‖φj − φ1‖

‖φ1‖
(32)

whereφj is the solution obtained fromjth instance of CHIEF method andφ1 is the solution from

the first instance of CHIEF method at a given wavenumber. Notethat for each instance of the

CHIEF method, the location of the interior collocation points will be different as they are positioned

completely randomly each time. Therefore solution at everyinstance from CHIEF method will

differ from each other. This potentially forms the basis fortesting the stability of the method

for elongated geometry where the characteristic wavenumbers are very closely spaced. A total of

hundred instances are tried for each case to examine the stability of the CHIEF method. For this

problem, each of the semicircular end of the capsule is modelled with one element. The parameters

used for this problem are summarized in TableVI .

As is evident from Fig. (9), the CHIEF method is stable even for a considerably elongated

geometry atb/a = 10 and 20. For such a geometry, one would expect the eigenvaluesfor the interior

Dirichlet problem to be extremely close to each other makingCHIEF method susceptible to find

the correct solution. However as seen from Fig. (9), the strategy described earlier to position the
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Figure 7.|φ| for cylinder 1 forθ ∈ [0, π4 ], k = 150.

b/a k P/λ ne T
10 48 528 22 1548
10 100 1100 22 3300
20 32 672 42 2016
20 64 1344 42 4032

Table VI. Parameters for capsule problem,P = 2a + 2b, T : total degrees of freedom for capsule problem.

(-b/2, 0) (0, 0) (b/2, 0)2R

Figure 8. Capsule geometry.

CHIEF points completely randomly with sufficient offset from the boundary gives good results.

Interestingly, the CHIEF results become increasingly stable as the wavenumber increases. Note that

two of the cases solved here have more than 1000 wavelengths around the scatterer which is a

particularly attractive problem to be solved with PUBEM.

6. CONCLUSIONS

1. We have presented a plane wave enriched BEM formulation ofthe regularised Burton-Miller

equations for the exterior acoustic scattering problem in two dimensions. The error analyses

presented for the classical single and the multiple scattering problems show that the CHIEF

method outperforms Burton-Miller method by at least 1 orderof magnitude for the problems
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Figure 9.E2(φ) for the capsule problem.

considered in this paper. The Burton-Miller method can prove competitive despite the difficult

and slowly converging integrals if suitable coordinate transformations are implemented.

Investigation of several coordinate transformation techniques for the weakly singular integrals

in the regularised Burton-Miller formulation shows that the Telles transformation with interval

splitting is the most accurate method. For both single and multiple scattering problems, the

enriched form of the regularised Burton-Miller formulation has smaller condition numbers

when compared to the CHIEF method. The last example shows that the CHIEF results are

stable even for an elongated capsule problem for the medium range of wavenumbers. This

indicates that the CHIEF method may be preferred over the Burton-Miller formulation, at

least for simpler geometries and moderate wavenumbers (k < 200) as the former does not

have the problem of hypersingular integrals and provided that a sufficient number of interior

collocation points are chosen that ensure the linear independence of the coefficient matrix

H. The stability and accuracy of the PUBEM scheme have both been clearly demonstrated

in previous works [12],[15],[16],[18] and here we provide further evidence. In Fig.9, we

show the stability through repeated instances of the CHIEF formulation, and highly accurate

solutions are demonstrated in Figs.3, 7 and TablesI-III .

2. Future work: Iterative solver:As demonstrated via results presented in the paper, the number

of degrees of freedom per wavelength (τ ) needed for PUBEM is close to 3 for the examples

considered and can go below 3 for higher wavenumbers. This is3-4 times smaller than that

required in the polynomial based BEM whereτ needs to be≈ 10 to obtain solutions within

the engineering accuracy of 1-2%. For 3D cases, the benefits are substantially increased since
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the factor of 3-4 applies in two orthogonal directions [15]. However, this substantial saving

in τ comes at the cost of solving the linear system with SVD which costsO(N3) operations.

In view of the computational cost involved at higher wavenumbers than those considered in

this paper, further study and development of iterative solvers with efficient preconditioners is

needed.

Scattering from non-smooth obstacles and 3D problems:Wave scattering from sharp tips or

from non-smooth obstacles can be modelled with the present PU based algorithm, though,

for such problems, Bessel function basis is more suitable, see [72]. Numerical results (not

included here) for plane wave scattering from a single cylinder indicate thatτ ≈ 8 is needed

in order to achieve an accuracyO(10−4) when Bessel functions are used in the basis thus

indicating the plane wave to be more efficient for the smooth geometries considered here . The

results presented are expected to extend to 3D problems, however, for a proper comparison, an

appropriate convergence of the integrals in the regularized form of Burton-Miller formulation

needs to be ensured. Also, previous study by E. Perrey-Debain et al [15] shows that the

conditioning of the coefficient matrix improves for 3D problems making it possible to use

more efficient solvers than SVD, such as QR decomposition.
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23. Ladeveze P, Arnaud L, Rouch P, Blanzé C. The variationaltheory of complex rays for the calculation of medium-
frequency vibrations.Engineering Computations2001;18(1/2):193–214.

24. Kovalevsky L, Ladeveze P, HRiou. The fourier version of the variational theory of complex rays for medium-
frequency acoustics.Computer Methods in Applied Mechanics and Engineering2012;225228(0):142–153.

25. Gittelson C, Hiptmair R, Perugia I. Plane wave discontinuous Galerkin methods: Analysis of the h-version.ESAIM:
Mathematical Modelling and Numerical Analysis2009;43(02):297–331.

26. Hiptmair R, Moiola A, Perugia I. Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic
Maxwell equations.Mathematics of Computation2013;82:247–268.

27. Luostari T, Huttunen T, Monk P. The ultra weak variational formulation using Bessel basis functions.
Communications in Computational Physics2012;11(2):400.

28. Ergin A, Shanker B, Michielssen E. Fast analysis of transient acoustic wave scattering from rigid bodies using the
multilevel plane wave time domain algorithm.The Journal of the Acoustical Society of America2000;107:1168.

29. Shanker B, Ergin AA, Aygun K, Michielssen E. Analysis of transient electromagnetic scattering from closed
surfaces using a combined field integral equation.Antennas and Propagation, IEEE Transactions on2000;
48(7):1064–1074.

30. Nair NV, Shanker B. Generalized method of moments: A novel discretization technique for integral equations.
Antennas and Propagation, IEEE Transactions on2011;59(6):2280–2293.

31. Nair N, Shanker B, Kempel L. Generalized method of moments: A boundary integral framework for adaptive
analysis of acoustic scattering.The Journal of the Acoustical Society of America2012;132:1261.

32. Bruno OP, Geuzaine CA, Monro JA, Reitich F. Prescribed error tolerances within fixed computational times for
scattering problems of arbitrarily high frequency: the convex case.Philosophical Transactions of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences2004;362(1816):629–645.

33. Griebel M, Schweitzer M. A particle-partition of unity method–part ii: Efficient cover construction and reliable
integration.SIAM Journal on Scientific Computing2002; 23(5):1655–1682, doi:10.1137/S1064827501391588.
URL http://epubs.siam.org/doi/abs/10.1137/S1064827501391588.

34. Schenck HA. Improved integral formulation for acousticradiation problems.Journal of the Acoustical Society of
America1968;44(1):41–58.

35. Wu T, Seybert A. A weighted residual formulation for the CHIEF method in acoustics.The Journal of the Acoustical
Society of America1991;90:1608.

36. Juhl P. A numerical study of the coefficient matrix of the boundary element method near characteristic frequencies.
Journal of sound and vibration1994;175(1):39–50.

37. Chen J, Lin J, Kuo S, Chyuan S. Boundary element analysis for the Helmholtz eigenvalue problems with a multiply
connected domain.Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences2001;457(2014):2521–2546.

38. Marburg S, Wu T.Computational acoustics of noise propagation in fluids-Finite and Boundary Element Methods,
chap. 15. Springer, 2008.

39. Burton A, Miller G. The application of integral equationmethods to the numerical solution of some exterior
boundary-value problems.Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences1971;323(1553):201–210.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme

http://epubs.siam.org/doi/abs/10.1137/S1064827501391588


24 G.C. DIWAN, J. TREVELYAN AND G. COATES

40. Li S, Huang Q. An improved form of the hypersingular boundary integral equation for exterior acoustic problems.
Engineering Analysis with Boundary Elements2010;34(3):189–195.

41. Liu Y, Rizzo F. A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic
wave problems.Computer Methods in Applied Mechanics and Engineering1992;96(2):271 – 287.

42. Hwang WS. Hypersingular boundary integral equations for exterior acoustic problems.The Journal of the
Acoustical Society of America1997;101(6):3336–3342.

43. Chien CC, Rajiyah H, Atluri SN. An effective method for solving the hyper-singular integral equations in 3-D
acoustics.The Journal of the Acoustical Society of America1990;88(2):918–937.

44. Liu Y, Rudolphi T. Some identities for fundamental solutions and their applications to weakly-singular boundary
element formulations.Engineering Analysis with Boundary Elements1991;8(6):301–311.

45. Li S, Huang Q. A fast multipole boundary element method based on the improved Burton–Miller formulation for
three-dimensional acoustic problems.Engineering Analysis with Boundary Elements2011;35(5):719–728.

46. Guiggiani M, Krishnasamy G, Rudolphi T, Rizzo F. A general algorithm for the numerical solution of hypersingular
boundary integral equations.ASME Journal of Applied Mechanics1992;59(3):604–614.

47. Mi Y, Aliabadi M. Dual boundary element method for three-dimensional fracture mechanics analysis.Engineering
Analysis with Boundary Elements1992;10(2):161 – 171.

48. Silva JR, Power H, Wrobel L. A hypersingular integral equation formulation for Stokes’ flow in ducts.Engineering
Analysis with Boundary Elements1993;12(3):185 – 193.

49. Shen L, Liu Y. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems
based on the burtonmiller formulation.Computational Mechanics2007;40(3):461–472.

50. Wu H, Liu Y, Jiang W. A fast multipole boundary element method for 3d multi-domain acoustic scattering problems
based on the burton–miller formulation.Engineering Analysis with Boundary Elements2012;36(5):779–788.

51. Hariharan B, Aluru S, Shanker B. A scalable parallel fastmultipole method for analysis of scattering from perfect
electrically conducting surfaces.Supercomputing, ACM/IEEE 2002 Conference, 2002; 42–42, doi:10.1109/SC.
2002.10012.

52. Ciskowski R, Brebbia C.Boundary Element Methods in Acoustics. CMP and Elsevier Applied Science, 1991.
53. Krishnasamy G, Rizzo F, Rudolphi T. Continuity requirements for density functions in the boundary integral

equation method.Computational Mechanics1992;9(4):267–284.
54. Telles J. A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element

integrals.International Journal for Numerical Methods in Engineering 1987;24(5):959–973.
55. Monegato G, Sloan I. Numerical solution of the generalized airfoil equation for an airfoil with a flap.SIAM Journal

on Numerical Analysis1997;34(6):2288–2305.
56. Cerrolaza M, Alarcon E. A bi-cubic transformation for the numerical evaluation of the Cauchy principal value

integrals in boundary methods.International Journal for Numerical Methods in Engineering 1989;28(5):987–999.
57. Wu T, Seybert A.Boundary element acoustics: Fundamentals and computer codes, vol. 7, chap. 2. WIT press,

2000.
58. Golub G, Kahan W. Calculating the singular values and pseudo-inverse of a matrix.Journal of the Society for

Industrial & Applied Mathematics, Series B: Numerical Analysis1965;2(2):205–224.
59. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S,

McKenney A,et al.. LAPACK Users’ guide, vol. 9. Society for Industrial Mathematics, 1987.
60. Bowman J, Senior T, Uslenghi P ( (eds.)).Electromagnetic and Acoustic Scattering by Simple Shapes. North-

Holland Pub. Co., 1970.
61. Hansen PC. The L-Curve and its use in the numerical treatment of inverse problems.in Computational Inverse

Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, vol. 4, 2000; 119–
142. URLhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6040.

62. Singh KM, Tanaka M. On non-linear transformations for accurate numerical evaluation of weakly singular
boundary integrals.International Journal for Numerical Methods in Engineering 2001;50(8):2007–2030.

63. Johnston P. Semi-sigmoidal transformations for evaluating weakly singular boundary element integrals.
International Journal for Numerical Methods in Engineering 2000;47(10):1709–1730.

64. Amini S, Harris P. A comparison between various boundaryintegral formulations of the exterior acoustic problem.
Computer Methods in Applied Mechanics and Engineering1990;84(1):59–75.

65. Martin PA. Integral-equation methods for multiple-scattering problems I. Acoustics.The Quarterly Journal of
Mechanics and Applied Mathematics1985;38(1):105–118.

66. Linton C, Evans D. The interaction of waves with arrays ofvertical circular cylinders.Journal of Fluid Mechanics
1990;215:549–569.

67. Pawliuk P, Yedlin M. Truncating cylindrical wave modes in two-dimensional multiple scattering.Optics Letters
2010;35(23):3997–3999.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6040


CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 25

68. Young J, Bertrand J. Multiple scattering by two cylinders. The Journal of the Acoustical Society of America1975;
58:1190.

69. Decanini Y, Folacci A, Gabrielli P, Rossi J. Algebraic aspects of multiple scattering by two parallel cylinders:
Classification and physical interpretation of scattering resonances.Journal of Sound and Vibration1999;
221(5):785–804.

70. Antoine X, Chniti C, Ramdani K. On the numerical approximation of high-frequency acoustic multiple scattering
problems by circular cylinders.Journal of Computational Physics2008;227(3):1754–1771.

71. Martin PA. Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, Encyclopedia of
Mathematics and its Applications, vol. 10. Cambridge University Press, 2006.

72. Betcke T. A GSVD formulation of a domain decomposition method for planar eigenvalue problems.IMA journal
of numerical analysis2007;27(3):451–478.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme


	1 Introduction
	1.1 Partition of Unity Method:
	1.2 The non-uniqueness problem

	2 Governing equation
	3 Plane wave basis and and discretization of CHBIE
	3.1 Collocation
	3.2 Numerical integration

	4 Scattering from sound hard cylinder(s)
	4.1 Scattering from a single sound hard cylinder
	4.1.1 Truncated SVD
	4.1.2 Comparison of CHIEF and Burton-Miller methods with singular integration schemes

	4.2 Scattering from an array of four cylinders

	5 Scattering from a long capsule
	6 Conclusions

