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SUMMARY

The Partition of Unity Method has become an attractive apgiicfor extending the allowable frequency
range for wave simulations beyond that available usinggeitse polynomial elements. The non-uniqueness
of solution obtained from the Conventional Boundary Ingdtquation (CBIE) is well known. The CBIE
derived through Green’s identities suffers from a problefmon-uniqueness at certain characteristic
frequencies. Two of the standard methods of overcomingptablem are the so-called CHIEF method
and that of Burton and Miller. The latter method introducdsypersingular integral which may be treated
in various ways. In this paper we present the collocatiortitiRar of Unity Boundary Element Method
(PUBEM) for the Helmholtz problem and compare the perforoeanf CHIEF against a Burton-Miller
formulation regularised using the approach of Li and Hu&apyright© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Partition of Unity Method:

The fundamental work on the Partition of Unity Method (PUMaswcarried out by Melenk and
BabusSka ] as a generalised Finite Element (FE) techniggle The fundamental idea was to use
the analytical information of the problem that is being gsatl in the FE basis functions. After
Melenk and Babuska’s worl3] on Helmholtz and elasticity problems, the PUM has furtheero
extended both for FE and BE techniques by Bettess and hisockevs for solving wave problems
[4],[5],[6] and by Ortiz and Sanchez for diffraction problenT$. [Farhat et al §],[9] presented a
variant of PUM by using a discontinuous enrichment methodhéir work the finite element basis
was enriched by adding the plane waves to the polynomias rastiead of multiplication with it. Use
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2 G.C. DIWAN, J. TREVELYAN AND G. COATES

of PUM for efficiently solving practical problems in acousti10],[11],[12] and in solid mechanics
[13] using collocation BEM is also well established. The usehaf plane wave enrichment has
also been found to be advantageous in Galerkin BEN). [The improvement in the accuracy of
the numerical solution either by FE or BE techniques and #ie i the efficiency of solving the
system equations is widely reported, s&8[16],[17],[18].

Indeed, the idea of using a priori knowledge of the solutiorine approximation space can be
attributed to Trefftz. Trefftz's concept was to use the jgatar solutions in the variational approach
for solving the governing partial differential equatiodd]} Although introduced in 1926, probably
the first generalisation of Trefftz methods for solving piead problem (plate bending) with FEM
is due to Jirousek?0] in 1977. Trefftz methods have received a considerabletidie in the last
two decades in regards to extending their applicability dolving wave problems using either
FEM or the Galerkin method. The literature on the technigoased on the Trefftz methods
is vast and only a few of the relevant works are mentioned.hdi@e related Trefftz's type
works in the wave problems are the Ultra Weak Variationalnidation (UVWF)R1],[22], the
Variational Theory of Complex Rays (VTCR) for vibration ptems P3], Fourier expansion based
VTCR [24], discontinuous Galerkin FEM2E] (Helmholtz equation) and recentl2§] (Maxwell
equation). Another very recent contribution to UWVF for hidloltz equation using the first kind
Bessel function along with the usual plane waves is due testawbet al R7]. Use of plane wave
basis also finds its application in transient acoust] pnd electromagnetip] wave scattering
problems. The 'Plane Wave Time Domain’ (PWTD) algorith28][[29] has been shown to cost
O(N;N1?log N,) as aginst conventional BEM that requil@$N; N2) operations. Her&V; and IV,
are the number of temporal and spatial basis functions rktedapproximate the total field. Nair
and Shanker use a ‘Generalized Method of Moments’ (GMM) @dviag the integral equation for
electromagneticj0] and acoustic31] scattering problems. Their algorithm is shown to be flexibl
in the use of various orders and kinds of basis functions.cbmelition number of the linear system
resulting from their method is shown to be stable over a wéaigie of frequencies.

As will be discussed in Se®.2, one of the problems in using the plane wave enrichment is
the oscillatory behaviour of the plane wave basis. SinceBBM uses fundamental solution in
the integral equations (which in turn is wavenumber depehtte acoustic problems), one has
to be very careful in evaluating these oscillatory integnaarticularly at high frequencies. The
algorithm developed by Bruno et &7 is specifically aimed at handling the oscillatory integral
encountered when solving electromagnetic and acoustiesicg from large, convex obstacles with
BEM. Authors in that paper present a formulation and an itiégn scheme based on the method
of stationary phase that enables i) the use of a fixed set ofddigation points independent of
frequency and ii) the use of the GMRES solver which convevg#sn a fixed number of iterations
independent of frequency of the problem. Impressive savingCPU time are reported. Another
algorithm is due to Griebel and Schweitza8] for mesh free Galerkin FEM with partition of unity.
These authors demonstrate an exponential convergendeefpiversion of GFEM with the use of
a sparse grid integration scheme on non-overlapping ceildinlg the integration domain. Bettess
et al [4] present a semi-analytical quadrature method for the laszil integrals in PUFEM. This
however can not straight forward be implemented in PUBEMabese of the presence of Green’s
function in the boundary integrals. Honnor et &b use asymptotic expression for the Green’s
function in 2D followed by a non-oscillatory representatiaf the integrand in the complex plane
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 3

to perform the quadrature. Although significant savings lsarachieved in terms of number of
integration points, the method is not entirely robust.

1.2. The non-uniqueness problem

It is well known that the Conventional Boundary Integral Bjon (CBIE) for an exterior acoustic
problem results in a non-unique solution at irregular feagies for the corresponding interior
problem and that this is a purely mathematical phenomenao. df the available approaches
to overcome the non-uniqueness are the Combined Helmhatégrbal Equation Formulation
(CHIEF) method and the Burton-Miller method. The CHIEF noettdue to Schenck3f] uses
some additional Helmholtz integral equations evaluategaants interior to the scatterer (and
exterior to the acoustic domain) which are added in the waiggystem matrix. Although this results
in an over-determined system, CHIEF ensures a unique solati an irregular frequency. These
interior points need to be chosen such that they do not lisnembdal lines of the eigenmodes of
the interior Helmholtz problem. This however can introdureertainties at high wavenumbers
as the nodal lines become densely packed in the interiorhwinigkes it difficult to find suitable
locations for the placement of interior points. Apart fromatsg the problem with the interior
collocation points when they lie on the nodal lines of theiitr modes, Schenck has not provided
any criteria as to what number of CHIEF points be chosen tarena unique solution. To this
effect, some work has been done by Wu and SeyBéjt Juhl [36] to further enhance the CHIEF
method to obtain a unique solution. Wu and Seybert propossghted residual form of the CHIEF
method which can ensure a unique solution using the condéBtHiEF block’. A CHIEF block

is a volume considered inside the scatterer where the CHifg&t®n (or the interior Helmholtz
problem) is solved in a weighted residual sense. Juhl'sagmbr on the other hand uses the Singular
Value Decomposition (SVD) technique to identify the ranKidency of the coefficient matrix
and with this assess the quality of the CHIEF points. A verpontant observation of Juhl is
about the accuracy with which the scatterer geometry is ftemtland the associated possibility
to circumvent the non-uniqueness. It is known that the CBiR esult in a non-unique solution
at wavenumbers near the eigenvalues of the interior prolidera coarse mesh. This ‘band’ of
spurious wavenumbers is the major concern when solvingiektacoustic problems as one is
less likely to solve exactly at a spurious wavenumber. A€nlexl by Juhl, the non-uniqueness
in this particular spurious 'band’ may be avoided if one uaegery fine mesh. This of course
comes at the cost of excessive computation. As will be dssisater, one of the motivations for
using Partition of Unity methods (apart from obtaining ayeigh accuracy), is to be able to use a
coarse mesh. It is therefore very crucial that the geomatddelling of the scatterer be accurate
for exterior acoustic problems in view of the problem witmnamiqueness in the spurious band.
A rigorous analytical and numerical investigation of the IEA method has been presented by
Chen et al 87] for the spurious eigensolution in a multiply connected dam There are several
other variations of the CHIEF method but their mention isided only for brevity. However,
for a good discussion on the non-uniqueness problem and essawveral enhancements of the
CHIEF method, the reader is referred to a review presentddripurg and Wu (Chapter 15 iB§]).

Another method to avoid the non-uniqueness problem is dudutbon and Miller B9]. They
showed that the integral equation resulting from linear loim@ation of the CBIE and its normal
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4 G.C. DIWAN, J. TREVELYAN AND G. COATES

derivative at the collocation point always results in a ueigolution. The major problem with this
method is the evaluation of a hypersingular integral whitées as a result of the differentiation of
the CBIE at the collocation point. There are various techegpvailable to handle the hypersingular
integral in the Burton-Miller formulation. One such techué is the 'regularisation’ procedure
which is simply a subtraction of singularity technique ($bmbined with identities from
potential theory 40]. Various methods of regularisation for use with the BEMhteique for
acoustic and elastic scattering problems can be foundlif{#2],[43],[44],[45]. Another technique

is due to Guiggiani46] which is based again on the subtraction of singularity bdbes not use the
identities from the potential theory. Rather, the techaigpbased on expanding the singular kernel
in a Taylor series using polynomial shape functions. Algfftomathematically elegant and widely
applied for practical problemsg!}],[13] (Dual BEM for fracture mechanics)4g|(Stokes flow in
duct), it can become difficult to obtain complicated expansifor the fundamental solutions (the
Green’s functions). Often an exact geometry is essentidlerPUBEM techniquellf] (also recall
the discussion in Sed..2) and Guiggiani’'s method can become highly involved wherigueting
the analytical integration on the exact boundary. Also¢casithe PUBEM is specifically aimed at
solving short wavelength problems, the use of an approxammetdelling of the scatterer geometry
can introduce numerical dispersion in the solution. It istfids reason that we use the regularisation
procedure40] where the singularity subtraction is analytical.

The BEM system of equations, formed using either the CHIEBwton-Miller formulation, is
dense and often ill-conditioned (in the case of plane wagethanethods). This may be become a
problem for high frequency problems when using conventidimact solvers as the cost of solving
the system scales wit!(/NV?) where N is the total number of equations in the BEM system. One
of the many techniques to accelerate the BEM solution is #s Multipole Method (FMM). An
adaptive version of FMM49],[50] has been used to solve several 3D acoustic scatteringgmmabl
using Burton and Miller formulation. The authors show thigh#icant savings in CPU time can
be achieved compared to the conventional BEM or non-adaptM. Load balancing is known
to be a problem for parallel implementation of FMM. Harihaed al 1] present an algorithm that
avoids the load balancing steps and demonstrate considesabed-up for the parallel FMM for
electromagnetic scattering problems.

In this paper we present a comparison between the CHIEF miedimal the Burton-Miller
method for the PUBEM solution of the classical single andtiplé exterior acoustic scattering
problems in two dimensions. For handling the hypersingutdegral in the Burton-Miller
formulation, we use the regularisation proposed by Li an@hdufd(0]. It may be noted that the
Burton-Miller formulation contains only weakly singulantegrals after the application of the
regularisation procedure of Li and Huang to the hypersiagaihd the strongly singular kernel. The
two methods are compared for their accuracy, solution effigy and conditioning of the coefficient
matrix.
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 5

2. GOVERNING EQUATION

The well known equation for time harmonic acoustic scaitgrand wave propagation is the
Helmholtz equation

V2¢(q) + k*¢(q) = 0 g€ @)

where k is the acoustic wavenumbep, the spatially dependent{’* time dependence) total
acoustic potential that we seek in the computational dofandV? is the Laplacian operator. For
exterior acoustic problems, the total (or scattered) d@opstential has to satisfy Sommerfeld’s
radiation condition given by

lim 77 <2 - zk:) $=0 )
r—00 or

wherer is the distance of a point if from the origin,n is the dimension of the space and
i = v/—1. The mathematical formulation for deriving the CBIE fromethielmholtz equation is
well establishedq2]. The CBIE for an acoustic scattering (or radiation) problgoverned by the
Helmholtz differential equation is given by

o) + [ Groir) = [ ¢Eare +6'w). paer @
wherep is the collocation or source pointthe field point,G the free space Green'’s function for the
Helmholtz problems,, the outward normal at poigton the boundar¥, ¢(¢) the unknown acoustic
potential andp®(p) the known incident acoustic wave. The tee(p) is the free coefficient which
depends on the local geometrybfat p. In this study we assumi is smooth and take(p) = 1.
Thus when the normal derivative of the acoustic potentiptéscribed on the boundarg)(can be
used to compute the acoustic potential.

The Green’s function for the Helmholtz equation in two-dimei®ns is given by
G = iHo(kr) (4)

where Hy(+) is the first kind Hankel function of order zero. The normalidsive of (3) at the
collocation point is given by

9¢(p) G 9G 9¢(q)

7 d¢' (p)
on, - anon, ¢(q)dl'(q) =

ony,

c(p)

dl'(q) +

(®)

r On, Ong
and the Combined Hypersingular BIE (CHBIE) due to Burton ifilder [ 39] is

el
B, P DI (@) =

9¢' (p)
ony,

c(p)e(p) + 046(1?)85.(]5—3 + A g—ié(q)dF(q) + a/F

JG 04(q)

r On, Ong

dl'(q) + ¢'(p) + «

/FGa;)—?E;DdF(q) +a (6)
where« is a coupling constant most commonly takeni@k. In the present study, we analyse
the acoustic scattering from sound hard surface(s) for lwktie normal derivative of the total
acoustic potential vanishes. Therefore, all the term8)im{olving the normal derivative of acoustic
potential vanish. Althoughg] results in a unigue solution, its main drawback remainsithraerical
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6 G.C. DIWAN, J. TREVELYAN AND G. COATES

treatment of the hypersingular integral, i.e. the lastgraeon the left hand side. Li and Huang]
presented the following weakly singular form of the hypegsilar integral

PG ar(e) = / [ 0°G_ 9Co | () @)

r On,0ng Inydn,  dn,dn,
+ 160 - 60) ~ Vo(0) - (a - ) G _ir(g)
. q p p q—0p anpanq q

Gy
ony,

+ [ Vo) n Gotir(a) = 596() - m,

whereG is the free space Green'’s function for the Laplace equatidnsgiven as
1 1
Go= Lo <_) | ®)
2w r

Again, for the present case of a hard boundary, the last tetmei right hand side of7§ vanishes.
Consequently, the final equation for this case of a hard baynchn be expanded as

o)+ [ G0t +a [ |70 - I s ©
o [ 1606 = 6(p) = Volo) - (a =) 5 g la)+

o [ Vo), 524 (0) = () + a5

ony,

3. PLANE WAVE BASIS AND AND DISCRETIZATION OF CHBIE

We now introduce the plane wave basis for approximation efatoustic potential at a poirton
the boundany

J M;
P(x) = Z N; Z A ethdimx xel, (10)
j=1 m
whereN; is the jt* shape functiond;,, the unknown which can be thought of as the amplitude
of them!" plane wave with wave numbérassociated with nodg The direction of then'" plane
wave at nodg is given by the unit vectod;,, andx is the location of point where the potential

¢ is sought. {0) is general in the sense that the total number of notles an element and the
associated total number of waves with each nddg,can vary on the boundaiy. In the context of

the BEM, the plane wave basis definedig)(can be used to express the unknown acoustic potential
on the boundary'. There are significant changes introduced when moving fizeconventional
polynomial basis to plane wave basis viz.

e the unknowns are now the amplitudes of the plane waves,) located around boundary
element nodes as against the nodal potential in case of goliahbasis,

e with the use of the plane wave basis, it is possible to use niager elements for
modelling the boundary. A typical boundary element with plane wave approximatian c
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 7

accommodate many wavelengths as against the use of a miniemunodes per wavelength
with the polynomial basis, and,

e the exponential function in the plane wave basis makes tBecaged integrals highly
oscillatory in nature. This necessitates special attantibien performing the numerical
integration.

It is now convenient to write the following discretized fowh(9) using (L0)

s=4 ne
Cr+ ) ) If=Cy+Ch (11)
s=1e=1
where
3 M;
Cr=c(p) Y NP AP ethdimx®) (12)
Jj=1 m=1
Ii = / ( o )ZN‘I ZA] e X Ddre (g) (13)
re 4 =1 m=1

m=1 m=1

zsa/ anp<ZNqZA et (0) ZN]”ZAW"' m”‘“”)dre(q) (14)
re

IE — Nq Aq ethdjm-x(q) _ Np Ap ikdjm-x(p) | _ 15
o [ (B ) o
o 3 M; P 3 M;
% ZNJ;D Afmetkdjm'x(l)) re+ a_y ZNJP Z Afmezkdjmx(;v) Ty dre(q>
j=1 m=1 j=1 m=1
9 3 M;
If =« o ZNJP Z AR eihdimx@) | + 5 ZNP Z AP hdimx®) | ) D (q)
re Jj=1 m=1 m=1
(16)
and oo
Co=6') 1 Cy =20 a7
np

wheren, is the total number of boundary elements dividing the bomn@laandT¢ is the division
of I' corresponding to the!” boundary element4” (47,,) the amplitude ofm!”" plane wave
associated withj*” node on the element that contains the collocation ppifield pointg), N]’.’
(N}) the polynomial shape function for nogeof the element containing the collocation point
p (field pointg), n,, andngy, thex andy components of the unit outward normal at pajndn
the boundany’. r, = z(q) — z(p) andr, = y(¢) — y(p) wherexz andy are simply the Cartesian
coordinates. Choosing appropriate locations on the bayridas collocation pointg yields the

jm
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8 G.C. DIWAN, J. TREVELYAN AND G. COATES

following set of linear equations

[Hi{a} = {b} (18)

where the vectos contains the amplitudes of plane waves. Vettds obtained as
{b} ={C2 + Cs} (19)

where{C.} and{C3} are the vectors formed usinfq). The matrixH is obtained by evaluating
the boundary integrals. The solution of linear systé®s) yields the amplitudes of the plane waves,
A, which can be used to quickly recover the acoustic potentidhe boundary" using (LO).

3.1. Collocation

As mentioned earlier, the PUBEM necessitates the use of act geometry to obtain accurate
results. We therefore use the exact geometry of the scatterthatl’* becomes analytical and is
given as

Ie={y(¢§:-1<¢< 1} (20)

It is a common practice in the conventional BEM to use the blemy element nodes as the
collocation points. However, in view ofl(), we require additional collocation points as the
total number of unknowns has now increase® ton. x M as againsg x n. for conventional
collocation BEM, for the case of a 3-noded continuous eldnieis therefore convenient to write,

ps:{'ye(f):fza—Q—i-mT_l}a:1,2,m:1,2,..M. (22)

wheres = 1,2,...,2M, 2M being the total number of degrees of freedom for the elerhént

It follows immediately that Z1) generates the collocation points that are regularly spaced in
{£: -1 <¢<1}. A theoretical restriction on the continuity of the acoagpiotential requires
further attention to the placement of pojnin the case where two adjacent elements are concerned.
A frequently mentioned problem with the continuous eleraeiotr the use with hypersingular
integrals is the Holder continuity requirement on the dgnfsinction ( or the acoustic potential
in the present case). The Holder continuity requiremeridaehe density functions to @'
continuous whereas the continuous elements are Gy continuous at the inter-element edges.
Although satisfactory results have been presented bytinglahis condition #1], we will follow

a collocation strategy where the collocation points alwkgntirely inside an element which
automatically satisfies thé'-~ condition B3).

3.2. Numerical integration

It is known that the boundary integrals i) (become oscillatory in nature due to the introduction
of the plane wave basis apart from the inherent oscillat@tune of the fundamental solution
present in the kernel of the integral equation, i.e., thee@rsefunction. A complicating factor
for the integration is that the PUBEM formulation encousgee use of elements spanning many
wavelengths, so there is the requirement to evaluate aety@ghly oscillatory integrals. Apart
from the requirement of using an analytical geometry wheyssible, accuracy of the PUBEM
solution heavily depends on how accurately these osadijlattegrals are evaluated. We use a
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 9

subdivision of the-1 < ¢ < 1l interval intoC cells of equal size to evaluate the oscillatory integrals
using Gauss quadrature. In the present work, we use 10 Gairgs per cell, and cells of length
approximately equal ta/3. We acknowledge the more sophisticated integration scherited

in Sec.1.1, but adopt this scheme, namely, element subdivisioty iaqual length cells, for its
robustness. To make this concept clear, let us rewrite orteeoboundary integrals, sayf (see

(13)),

If = / ( ) ZNq Z Al etkdim (@) gpe g) (22)

m=1

Using the first parametric mappingQ), /7 can be written as

=1
I = / (56’) > Z AL, im0, (€)de g) (23)
e=—1

m=1

whereJ(¢) is the Jacobian of transformati@i — £. Now, using the division of the interval inC
cells, we can writeZ3) as

C n=1
=> <6n ) ZNq Z AY, e XD () dn(q). (24)

Now is the local coordinate in each individual cell ai@) is the Jacobian of transformatidfi —

7. It should be noted that even after the regularisation,rtegrals in 9) that contain derivatives of
the Green'’s function are still weakly singular. This regsia suitable coordinate transformation to
be applied so that the integrals are evaluated correctliyoCihe several coordinate transformation
methods available, we compare the performance of fourrdiftenethods for evaluating the weakly
singular integrals in9). The coordinate transformations methods investigatesldwe i) Telles$4],

i) Monegato - Sloan (MSH5]), iii) bicubic [56] and iv) Wu’s transformationg7]. The Telles and
MS transformations are applied in the entire local interyal (—1, 1) if it contains the singular
point, p. Bicubic and Wu's scheme, on the other hand, split this lou@ival (;) towards the left
and right of the singularityy) and then apply the transformation in each individual weérin the
next section we present error analyses for two acoustitestag problems namely i) scattering from
a single sound hard cylinder and ii) scattering from an aofdpur cylinders. This will be followed
by an example of acoustic scattering from a long sound hardguta to examine the stability of the
CHIEF method alone.

4. SCATTERING FROM SOUND HARD CYLINDER(S)

Before we present the error analyses for the cylinder problat will be prudent to define a
parameterr which gives the number of degrees of freedom per wavelerggth fyiven problem,
ie.,

T=— (25)

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
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10 G.C. DIWAN, J. TREVELYAN AND G. COATES

whereT is the total number of degrees of freedom in the system forcghieder andu is the radius
of the cylinder. Thus for the problem of scattering from ag#ércylinder with unit radiusy = T'/k
whereT will be simply the multiplication of the total number of naglen the scatterer boundary and
number of plane waves per node. It should be noted that wenesantegration cell per collocation
point and thus the total number of degrees of freedorfin 25) is equal to the total number of
integration cells used on the boundary of one cylinder, i.e,

T=nexC (26)

Note thatC is the number of integration cells per element (8ée For all the results presented here
the parameter ~ 3.0 unless otherwise mentioned. This value has been found taflieient to
recover solutions with acceptable engineering accuracy’ofaind moderate condition numbers
which can be effciently handled with the SVD algorithm, sé&€].[ For smooth scatterers this
accuracy will be shown to be much bettege 10~%). Also all the results are obtained with 30
integration (Gauss) points per wavelength unless othermisntioned. For both the single cylinder
and four cylinder examples, we use two 3-noded continuceraenhts per cylinder along with the
trigonometric shape functions presented by Peake éhlThus the single cylinder case has only
two continuous elements and the four cylinder case usestBhoons elements. For all computations
the integration points are placed analytically on the scattboundary. We now define the relative
L? error for the total acoustic potentialon the boundary, E?(¢) as

> l¢ — ¢l
B2(p) = 124 27
(¢) 19 (27)

where¢ is the numerically computed solution agdthe analytical solution computed using the
infinite or approximate series for a given scattering probl@he coefficient matri¥ generated
using the plane wave basis is always highly ill-condition&dypical condition number for the
coefficient matrixH for a moderately high value of > 100 is ~ 10*°. The problem of poorly
conditioned systems because of the use of the plane wavebeeaswidely reported, see the
discussion in 17] and the references therein. In general, the condition raurfdr a plane wave
enriched BEM grows as the wavenumber increases. Cleaydier to obtain accurate and reliable
results from such highly ill-conditioned systems one mustee that sufficient arithmetic precision
is maintained in the computation of the matrix terms. We umébte precision arithmetic for all the
computations in this study. A natural choice for obtainiogurate solution from the ill-conditioned
system {8) is therefore the SVD technique. The applicability of SVDr fabtaining accurate
solutions from ill-conditioned systems is very well esiglhéd and the readers may be referred
to the benchmark paper by Golub and Kaha for the underlying theory. In this paper, we obtain
the solution vectoa in (18) by solving the following complex linear least squares o

min ||b — Ha||? (28)

using the SVD ofH.
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CHIEF AND BURTON-MILLER COMPARISON FOR PUBEM IN ACOUSTICS 11

The 2-norm condition number for the matilik, ~(H) may be defined as

H(H) _ Omax (H>

Omin (H) (29)

whereo,.x (H) andonm,i, (H) are respectively the maximum and minimum singular valuehef
matrix H computed using the SVD. Relevant routines from the LAPACQKdry are used to solve
(28) [59]. As discussed in Sed..2, the placement of interior collocation points for the CHIEF
method can become an issue. For the numerical examplesifgdsde this paper, the interior points
are placed completely randomly in the interior of the cyéin@). The number of interior points (or
the number of CHIEF equations) used herg(i% of the total number of equations ih) since this
has been found to give stable results for the CHIEF methasb #le CHIEF points in the interior
of the cylinder(s) are placed such that they are sufficieatlgty from the boundary.

4.1. Scattering from a single sound hard cylinder

We first investigate the performance of CHIEF and Burtonkdilnethods for the classical problem
of plane wave scattering from an acoustically hard cyliradénfinite extent. The analytical solution
for the scattered potential on the surface of a hard cylindetred at origir{0, 0) due to an incident
acoustic plane wave with directigr-1, 0) is given by the infinite serie$[).

o0

¢°(x) = — I‘?O (('Z‘;)) Ho(kr) — 2" i"%ﬂy(kﬂ cos(v0), (30)

v=1

wherex = r(cos(#),sin(¢)), H, () is the Hankel function of the first kind and orderJ,(-) is the
Bessel function of the first kind and orderThe prime sign denotes a derivative with respectrto
The total acoustic potentiglcan be computed by simply performing a complex addition citient
wave to the scattered potential given ), i.e., ¢ = ¢* + ¢*. The relativeL? error for the total
acoustic potential is then computed usiag)(

4.1.1. Truncated SVD

Before proceeding to the error analyses for the scattermodl@ms with different coordinate
transformation schemes for singular integrals, we firss@méresults that demonstrate the ability of
SVD to produce stable and accurate results via the singledgi scattering problem. As mentioned
earlier, the coefficient matri¥l is ill-conditioned (or rank deficient) and this makes thelpemn
stated in 28) ill-posed because a small perturbation in the right hadd sectorb can result in
a significantly large perturbation in the solution veciorlt is therefore important to be able to
solve @8) reliably whenx(H) is significantly high to obtain stable and accurate solutlarthe
present study, we use the truncated SVD routine ZGELSS fraRACK to solve ¢8). The idea
used in ZGELSS is to obtain a minimupa|| solution from the set of least squares solutions that
minimize |b — Ha||? over a solution space that is spanned by the singular vewiitiissingular
values greater thag,, wheree, is the user input for the truncation threshold of singulduea.
This essentially means filtering out those singular valves fthe SVD ofH that are below, and
solve £8) with a modifiedH, possibly with an improved rank. A well known method to estien
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12 G.C. DIWAN, J. TREVELYAN AND G. COATES

the suitable value for the parameigris the so called L-curve metho®]]. Fig. 1 shows the
L-curves for (L8) for the problem of plane wave scattering from a single dginfor three different
wavenumbers, namely; = 32, £ = 100 and k = 150. The singular valueso{) computed using
SVD for each wavenumber case corresponding to the respectourve corner points are also
shown in Fig.1. For eg. the corner value fér= 32 is o.(k = 32) = 1.82E-04, indicating that it
is possible to obtain accurate solution by truncating thgudar values that are below.(k = 32),
i.e. by settingsy = 1.82E-04 fork = 32 case. Although the threshold valagis dependent on the
wavenumber of the problem being solved, in this paper, we tiak threshold, = 1.0E-10, as this
was found to give satisfactory results for all the examptesered. This is demonstrated through
numerical results for various values @fas shown in Fig2. The results shown in Fi@ are only
for the CHIEF method, however, similar behaviour is obserivethe results for the Burton-Miller
method as well. As seen from Fig, it is clear that the SVD algorithm witk = 1.0E-10 produces
stable results with very good accuracy.

k=32
—e— k =100 3
—A— k=152 3

0,(k=100) = 2.0E-12

solution norm || a ||2
=
o

=
(=]
(N
1

0,(k=152) = 2.5E-11

105'

1 I I I I

10"
107 1077 107° 10° 10° 10 1077 10° 107

residual norm ||b-Ha ||2

Figure 1. L-curve for Z8) for scattering from single cylinder.

4.1.2. Comparison of CHIEF and Burton-Miller methods wittgsilar integration schemes

We now present the comparison between the CHIEF and the Biilbler methods with
various singular integration schemes. Figshows the relativd.? error, E2(¢) for CHIEF and
Burton-Miller methods and Figt gives the comparison for the condition number define®). (
The multiple lines for the Burton-Miller method in Fig8:4 correspond to various coordinate
transformation schemes used to handle the weakly singukgrals.
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—_— = 1E-6 - CHIEF
1074 Y 5 " &= 1E-8 - CHIEF 4
—_— = 1E-10 - CHIEF
B = = = & =1E-12 - CHIEF
\ 0
10°F <
g
N
L
10°F 5
10 1
10‘3 ! ! ! ! ! !
20 40 60 80 100 120 140 160
ka
Figure 2. PUBEM results for various valuesegffor single cylinder problem.
107
10+ :
10° F :
&
R
10° F BM with unsplit Telles transformation T
BM with 5th order MS transformation
—8— BM with Bicubic transformation
o +  BM with Wu'’s transformation
10 BM with split Telles transformation 7
—=©— BM with unsplit Telles transformation and 300 gpA
—— CHIEF with split Telles transformation
10’12 I I I I I I I

40 60 80 100 120 140 160
ka

Figure 3.E2(¢) for the single cylinder problem.

As seen from Fi@, CHIEF provides better accuracy compared to Burton-Misults obtained
with various singular integration schemes mentionedeyaali 30 integration points per wavelength.
Note that when the weak singularity i8)(is handled with the Telles scheme without splitting
the interval containing the singularity) € (—1, 1)), the Burton-Miller formulation needs at least
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10%°

1014 | _

1012 | _

K(H)

10

BM with unsplit Tells transformation
BM with 5th order MS transformation
—8— BM with Bicubic transformation

10" + ——4—— BM with Wu's transformation -
BM with split Telles transformation

—&6— BM with unsplit Telles transformation and 300 gpA
—— CHIEF with split Telles transformation

10 I I T T T T
20 40 60 80 100 120 140 160

ka

Figure 4.<(H) for the single cylinder problem.

300 integration points per wavelength to achieve a compaedzruracy to that of CHIEF with 30
integration points per wavelength. It should be mentiorere that although the regularised form of
the Burton-Miller formulation used here is only weakly sitar, the third integral on the left hand
side of @) converges extremely slowly. Consequently, Burton-Mitleeds a very high number of
integration points in order to achieve an accuracy comparabthat from the CHIEF method, if
it uses the Telles transformation without interval spiigti The efficacy of the Telles scheme for
handling the weakly singular integrals has been investjby many researchersg],[62],[63]. It

is clear from these studies that the Telles transformatioenaused without partitioning gives poor
results. Singh and Tanal&]] report at least 3 orders of magnitude improvement for aritigaic
singularity when the Telles transformation is used with plaetition of the interval for 10 Gauss
points. We see from Fig.that splitting the local interva} € (—1, 1) indeed improves the Burton-
Miller result in comparison with the result obtained withsplitting the interval. Similar numerical
experiments carried out with conventional polynomial BEMw that theL, errors with various
singular integration schemes discussed do not vary signific For instance, thé, errors for
the single cylinder problem using the quadratic discomtirmielements are of th@(10—3) for

all the singular integration schemes discussed and for20. The collocation points used are the
nodal locations of the discontinuous element which is a compractice followed in conventional
polynomial BEM. We use discontinuous elements for polyradEM in order to satisfy the Holder
continuity requirement on the hypersingular integralsifaund that when the element nodes are
used as the collocation points, the convergence of the glomriverging integral in9) mentioned
earlier is possible with relatively low number (10 to 12) ad@s points irrespective of the singular
integration scheme used. Therefore, the results obtaifthdmarious singular integration schemes
remain within the same order of magnitude for polynomial BEMis disparity in the results with
various singular integration schemes for PUBEM and polyiabBEM can be attributed to the fact
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that the collocation points used in PUBEM are not elemenesadusing the integrals for PUBEM
to converge slowly.

The condition numbers for CHIEF fdr < 64 are better in comparison with Burton-Miller but
degrade with increasing (see Figd). Interestingly an accurately computed Burton-Millengadn
provides a better conditioning of the system matrix. Amimd ddarris p4] studied the dependence
of the condition number on the wavenumterThe numerical examples they presented are with
conventional BEM and witlt < 20 for a 3D problem. It follows from their work that the conditio
number for a regularised Burton-Miller formulation incsea steadily with growing: and the
coupling parametex. In a PUBEM context, as shown in Fig.the ill-conditioning arising from the
plane wave basis is the dominant effect and the steady sematiced by Amini and Harris is no
longer evident. However, despite the very high conditiombars encountered, the SVD algorithm
is able to find a unique solution. It is evident from Fighat the PUBEM implementations of both
CHIEF and Burton-Miller are accurate and stable over thgeaof wavenumbers considered here.

As mentioned before, the number of CHIEF equations usedh&€CHIEF results shown in Fig.
is 20% of the total equations in the systef8] and that their locations in the interior are completely
random. This randomness can practically guarantee that ti# always be enough CHIEF points
to provide the linear independence needed to obtain a usiguéon.

4.2. Scattering from an array of four cylinders

The scattering from a multi-cylinder array presents a mbgdlenging case as it involves multiple
reflections from individual cylinders which ultimately fos the total acoustic field. The recursive
multiple reflections make this problem an ideal candidaties$t the efficacy of PUBEM to obtain
an accurate solution. We consider a setting of four unitusdiound hard cylinders of infinite
extent with their centres placed at (-2,-2), (2,-2), (2/%) &2,2) in a two dimensional homogeneous
unbounded acoustic medium (air). A unit amplitude planeenaith wavenumbek is taken to be
incident on this cylinder array at an anglesdf= 45° with the horizontal. There are various methods
to solve a multiple scattering boundary value problem suhhas and a good review of these
methods can be found i8%]. We use the formula proposed by Linton and Evéf} [eq. 2.15) to
compare our PUBEM solution for the total acoustic poterdiathe surface of each cylinder. The
formula proposed by Linton and Evans is based on the addhiiEorem that combines the separable
solutions of Helmholtz equation, se@ for details. The addition theorems can be efficiently used
to compute the solution but the infinite series has to be atatkin practice. Theoretically of course,
an infinite sum should result in a converged solution. Howewéen solving even the truncated
system of linear equations, the addition of extra terms éngéries can make the system matrix
highly ill-conditioned. Fig5 shows the dependence of the condition number of the systemxma
formed from (2.15) in $6] on the number of terms included in the series. Note that2.4048 is

an irregular wavenumber (first zero of the first kind Bessetfion, Jy). Clearly the reason for such
significantly high condition numbers is the wide spread geavalues with the growing number of
terms in the series.

In light of the result shown in Fi§.it becomes imperative to find the number of terms needed to
include in the series in order to obtain a correct solutiomfithe truncated series. This is because
the relativeL? errors will depend heavily on how accurately the serie$&i fs computed. A good
discussion on the upper and lower bounds on the number o$teriye included in the series can be
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Figure 5. Stability of Linton-Evans series, eq. (2.15)60][

found in [67]. More related works from the acoustics domaig][ [69] give an empirical relation
for a two cylinder problem, for the number of terms that nezté included for a given value of
ka, a being the radius of the cylinder. Recently, Antoine et &l] [have presented an empirical
relationship for the number of terms to be used in the infiséges for scattering from multiple
circular cylinders

M, = kau+<2i\/§1n (2\/§7Tkaue_1)> (ka)t +1], (31)

wherel/,, is the minimum number of terms that need to be included inrfiaite series for'"
cylinder with the radius:,,, ande is the desired error bound on the Fourier coefficients thatine
to be computed in the infinite series. The value of error boamthe Fourier coefficients used by
Antonie et al wasl0~8. For our case of scattering from identical circular cyliredéall cylinders
are unit radius), the number of term$, obtained from 81) for each cylinder is the same (say).
We use 81) only as a guideline to find the number of termig) needed in the Linton-Evans series
(2.15in [6)) with e = 10~% in (31). A system of linear equations of si2&.(2M + 1) is then formed
whereN. is the number of cylinders (4 in the present case). We use@arlierast squares solver with
QR factorisation to solve this system of linear equationisgusuitable routines from the LAPACK
library and obtain the total acoustic potential on eachnaldr surface. This solution is considered as
the reference solution and used to compute the reldfiverror (seeZ7)) for our PUBEM solution
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Cyl. 1

Cyl. 2

Cyl. 3

Cyl. 4

CHIEF

BM

CHIEF

BM

CHIEF

BM

CHIEF

BM

7~3.0

5.98E-04

1.03

2.15E-04

271

2.78E-04

6.26

1.67E-04

2.01

T~ 3.5

8.67E-06

4.06E-05

1.28E-05

9.39E-05

7.6E-06

3.29E-05

516E-06

3.82E-05

7~3.9

2.01E-07

4.07E-06

1.87E-07

4.01E-06

3.46E-07

6.32E-06

1.92E-07

5.17E-06

Table I. PUBEM results £2(¢) for scattering from four cylinder array fdr = 36.9171 and#’ = 45°, 100
terms in Linton-Evans series.

Cyl. 1

Cyl. 2

Cyl. 3

Cyl. 4

CHIEF

BM

CHIEF

BM

CHIEF

BM

CHIEF

BM

T 2.2

43.80

39.34

24.83

16.80

30.95

20.84

24.52

28.28

T~2.06

7.66E-05

2.30E-03

1.27E-04

4.72E-03

3.52E-04

3.10E-02

8.88E-05

5.17E-03

7~3.0

3.77E-07

8.18E-06

5.65E-07

1.09E-05

5.08E-07

9.83E-06

5.78E-07

2.04E-05

Table Il. PUBEM results £2(¢) for scattering from four cylinder array for = 100 and#! = 45°, 150
terms in Linton-Evans series.

Cyl. 1

Cyl. 2

Cyl. 3

Cyl. 4

CHIEF

BM

CHIEF

BM

CHIEF

BM

CHIEF

BM

T 2.2

8.26

15.26

12.53

27.67

42.43

98.36

15.68

37.90

T~2.06

6.73E-05

3.0E-03

7.30E-05

2.6E-03

7.23E-05

4.8E-03

7.98E-05

7.0E-03

7~3.0

6.48E-05

6.47E-05

6.40E-05

6.39E-05

6.68E-05

6.70E-05

6.40E-05

6.46E-05

Table ll. PUBEM results -E2(¢) for scattering from four cylinder array fdr = 150 and6? = 45°, 200
terms in Linton-Evans series.

k=36.9171

CHIEF

BM

730

3.78E+08

1.01E+10

T~35

3.67E+09

1.39E+10

7~39

1.31E+12

1.24E+11

Table IV. PUBEM conditioning +(H) for CHIEF and regularised Burton-Miller method for four inder
problem,k = 36.9171.

with the CHIEF and Burton-Miller methods. For the error asé of the four cylinder problem,
we consider three cases of the wavenumber, nariely36.9171, k = 100 andk = 150. It may be
noted that out of the three cases mentioried, 36.9171 andk = 150 are irregular wavenumbers.
The regularised Burton-Miller results included for cormipan here are obtained with the Telles
scheme for the weakly singular integrals in conjunctiorhveplitting the intervah € (—1,1). The

L? error results shown in Tabledl!l are obtained using two continuous elements per cylinddr wit
trigonometric shape functions as before. All the resulésaitained with 30 integration points per
wavelength. The condition numbers for the first casé ef 36.9171 is given in TablelV and for

the latter two cases @& = 100, 150 in TableV.

We have used/ = 100 fork = 36.9171, M =150 for &k = 100, and M =200 for k = 150, in the
Linton-Evans series. It may be noted that the number of teses for the cases studied heid)(
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k=100 k =150
CHIEF BM CHIEF BM
T~22 | 1.35E+06| 6.54E+05| 2.88E+07| 4.46E+07
T~ 2.6 | 1.32E+08| 9.41E+09| 2.07E+11| 2.13E+10
7~30 | 3.0E+14 | 2.89E+10| 9.96E+14| 5.11E+10
Table V. PUBEM conditioning «(H) for CHIEF and regularised Burton-Miller method for four inder
problem.

is higher than those prescribed B4) and this is done in order to obtain the maximum possible
accuracy for the solution obtained from Linton-Evans seri&e reiterate the fact that the errors
listed in Tablesl-lll are for the particular number of terms used in the LintonfSvaeries. A
thorough investigation into the stability issues of theeyppsition methods is beyond the scope
of this paper and the reader may be referred to the textbotaotin for a complete reviewrl].
The condition number of the coefficient matrix for the LintBuans series fok = 36.9171 with

100 terms wasl4.28, for & = 100 with 150 terms wasl2.28 and that fork = 150 with 200 terms
was 16.29. It can be noted from Tableslll that the accuracy of both CHIEF and regularised
Burton-Miller methods improves with more plane waves pedenoe. by increasing the value of
the parameter. Finally we present a polar plot for the total acoustic ptgneg, on the surface
of the first cylinder with centre at (-2,-2) for the casekof 150 (Fig. 6). The case ok = 150 is
chosen as at such a high wavenumber, the recursive reflegiomrise to an interesting scattering
pattern. An additional plot is shown in Fig for the same case but only for the regipg [0, 5] on
the first cylinder wheré is measured anticlockwise. This is the region where theefferecursive
reflections is the most prominent. The plots shown corredporihe result presented in Tallé
with 7 = 3.0. From Figs6-7, it is evident that the PUBEM solution is able to capture &ffidy

a complex pattern of the scattered wave at a reasonably hagiermmber. It is not possible to
distinguish the CHIEF and Burton-Miller results from Lint&Evans series solution as all three of
them visually lie on top of each other.

5. SCATTERING FROM A LONG CAPSULE

It is known that the density of characteristic wavenumbersafgiven scatterer geometry increases
as the wavenumber increases. As noted earlier, this is a w@jcern for the CHIEF method when
choosing the interior collocation points. For an elongatbjgct the problem may get worse as the
characteristic wavenumbers get very closely spaced. Fopthipose, we will investigate PUBEM
implementation of only the CHIEF method for an elongatedybbdorder to study this problem, we
consider the geometry that of a long capsule (B)gThe overall length of the capsule(is+ 2R)
whereb is the length of the straight edge aRds the radius of the semicircular end of the capsule. A
few cases are presented for two values of the fgtio wherea is the perimeter of the semicircular
end. For all the cases, three noded continuous elementgrigidhometric shape functions are used.
The integration points are placed analytically on the gaomas before, the value of parameteis
taken as 3.0. Since we intend to investigate the performafificelIEF method at high wavenumbers,
it will be convenient to define the relativie, error in total acoustic potential on the boundary of
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180 0
270
CHIEF
— — — Burton-Miller
— - —- Linton—Evans, 200 terms
Figure 6.|¢| for cylinder 1,k = 150.
capsule as
l¢; — &l
E2(¢) = — (32)
l[ 1]l

whereg; is the solution obtained frorf” instance of CHIEF method ang is the solution from
the first instance of CHIEF method at a given wavenumber. Nuwié for each instance of the
CHIEF method, the location of the interior collocation psiwill be different as they are positioned
completely randomly each time. Therefore solution at evesyance from CHIEF method will
differ from each other. This potentially forms the basis festing the stability of the method
for elongated geometry where the characteristic waventsrdre very closely spaced. A total of
hundred instances are tried for each case to examine thiitgtabthe CHIEF method. For this
problem, each of the semicircular end of the capsule is nedlelith one element. The parameters
used for this problem are summarized in Talle

As is evident from Fig. ), the CHIEF method is stable even for a considerably el@tyat
geometry ab/a = 10 and 20. For such a geometry, one would expect the eigenvalue interior
Dirichlet problem to be extremely close to each other makihf EF method susceptible to find
the correct solution. However as seen from Fi), the strategy described earlier to position the
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2 T

X CHIEF
Burton-Miller
—O— Linton-Evans series with 200 terms

1.5

¢l on T’

Figure 7.]¢| for cylinder 1 foré € [0, §], k = 150.

bja | k | P/\ | ne T

10 | 48 | 528 | 22| 1548
10 | 100 | 1100| 22| 3300
20 | 32 | 672 | 42| 2016
20 | 64 | 1344 | 42 | 4032
Table VI. Parameters for capsule problefh= 2a + 2b, T total degrees of freedom for capsule problem.

(+ (-b/2,0) 0,0)+ 2R (b/2,0) +)

Figure 8. Capsule geometry.

CHIEF points completely randomly with sufficient offset rincthe boundary gives good results.
Interestingly, the CHIEF results become increasinglylstab the wavenumber increases. Note that
two of the cases solved here have more than 1000 wavelengihedathe scatterer which is a
particularly attractive problem to be solved with PUBEM.

6. CONCLUSIONS

1. We have presented a plane wave enriched BEM formulatitimeofegularised Burton-Miller
equations for the exterior acoustic scattering problemvimdimensions. The error analyses
presented for the classical single and the multiple séagigrroblems show that the CHIEF
method outperforms Burton-Miller method by at least 1 omfanagnitude for the problems
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Figure 9.E2(¢) for the capsule problem.

considered in this paper. The Burton-Miller method can provmpetitive despite the difficult
and slowly converging integrals if suitable coordinatengfarmations are implemented.
Investigation of several coordinate transformation téghes for the weakly singular integrals
in the regularised Burton-Miller formulation shows thag ffelles transformation with interval
splitting is the most accurate method. For both single antiiphel scattering problems, the
enriched form of the regularised Burton-Miller formulatibas smaller condition numbers
when compared to the CHIEF method. The last example showsh&aCHIEF results are
stable even for an elongated capsule problem for the medmger of wavenumbers. This
indicates that the CHIEF method may be preferred over theéoBtMliller formulation, at
least for simpler geometries and moderate wavenumliets200) as the former does not
have the problem of hypersingular integrals and provided ahsufficient number of interior
collocation points are chosen that ensure the linear intibgpece of the coefficient matrix
H. The stability and accuracy of the PUBEM scheme have both bksarly demonstrated
in previous works 12],[15],[16],[18] and here we provide further evidence. In Bigwe
show the stability through repeated instances of the CHtEmdlation, and highly accurate
solutions are demonstrated in Figs7 and Tables-IIl .

2. Future work lterative solver:As demonstrated via results presented in the paper, theerumb
of degrees of freedom per wavelengtf) fieeded for PUBEM is close to 3 for the examples
considered and can go below 3 for higher wavenumbers. Ti3glisimes smaller than that
required in the polynomial based BEM wheraneeds to bes 10 to obtain solutions within
the engineering accuracy of 1-2%. For 3D cases, the beneditaistantially increased since
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the factor of 3-4 applies in two orthogonal directiod$][ However, this substantial saving
in 7 comes at the cost of solving the linear system with SVD whiz$tsO(N?) operations.

In view of the computational cost involved at higher wavelens than those considered in
this paper, further study and development of iterativeaslwith efficient preconditioners is
needed.

Scattering from non-smooth obstacles and 3D probléiesve scattering from sharp tips or
from non-smooth obstacles can be modelled with the presgrtd®ed algorithm, though,
for such problems, Bessel function basis is more suitalele,[&]. Numerical results (not
included here) for plane wave scattering from a single dgirindicate that ~ 8 is needed
in order to achieve an accurac)(10—*) when Bessel functions are used in the basis thus
indicating the plane wave to be more efficient for the smoetingetries considered here . The
results presented are expected to extend to 3D problemgMeoyor a proper comparison, an
appropriate convergence of the integrals in the reguldfiaam of Burton-Miller formulation
needs to be ensured. Also, previous study by E. Perrey-Dediaal [L5] shows that the
conditioning of the coefficient matrix improves for 3D prebis making it possible to use
more efficient solvers than SVD, such as QR decomposition.
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