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ABSTRACT 8 

Comparison of modelling results with observed subsidence patterns from the West 9 

Siberian Basin provides new insight into the origin of the Siberian Traps, and constrains 10 

the temperature, size, and depth of an impacting mantle plume head during and after the 11 

eruption of the Siberian Traps at the Permian-Triassic boundary (250 Ma). We compare 12 

synthetic subsidence patterns from 1-D conductive heat flow models to observed 13 

subsidence from backstripping studies on sedimentary sections from wells in the basin 14 

interior. This results in a best-fit scenario with a 50-km thick initial plume head with a 15 

temperature of 1500 °C situated 50 km below the surface, and an initial regional crustal 16 

thickness of 34 km, in agreement with published values. Backstripping and modeling 17 

results agree very well, including a 60-90 Myr delay between the rifting phase and the 18 

first regional subsidence below sea level. Regional subsidence patterns indicate that the 19 

plume head was present across a minimum area of ~2.5 million km
2
. These results re-20 

emphasize the viability of a mantle plume scenario for the Siberian Traps, provide 21 
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important constraints on the dynamics of mantle plume heads and suggest a thermal 22 

control for the subsidence of the West Siberian Basin. 23 

Keywords: plume head, Siberia, basin, subsidence. 24 

 25 

INTRODUCTION 26 

The West Siberian Basin (WSB) is one of the largest intra-continental rift basins 27 

in the world, with an area of roughly 3.5 million km
2
, including prolongations in to the 28 

Yenisey-Khatanga Trough and the Kara Sea (Fig. 1). The basin is associated with the 29 

Siberian Traps, which form the largest Phanerozoic continental flood basalt province. 30 

These events are commonly interpreted to be the result of the impact of a mantle plume 31 

head at the base of the Siberian lithosphere (e.g. Richards et al., 1989).  32 

 An important feature of the WSB is the regional delay, on the order of 60-90 33 

Myrs, in the onset of sedimentation after the initial rifting (Saunders et al., 2005). The 34 

cause of this delay has been inferred to be decay of uplift generated by the thermal effect 35 

of a mantle plume (Campbell and Griffiths, 1990; Saunders et al., 2005), but so far this 36 

hypothesis has not been quantified. The subsidence patterns within the WSB also present 37 

an ideal opportunity to examine the generic spatial extent of spreading plume material 38 

beneath lithosphere. Previously this has only been estimated from the areal extent of 39 

volcanism (d'Acremont et al., 2003) and numerical models of plume head spreading 40 

(Campbell, 2007). By comparing subsidence patterns predicted by 1-D conductive heat 41 

flow models with those from backstripping, this study provides 1) a quantitative 42 

explanation for the cause of the subsidence delay after initial rifting, 2) independent  43 
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estimates  of the lateral extent of the Siberian mantle plume head beneath the lithosphere, 44 

and 3) new constraints on mantle plume head dynamics. 45 

 46 

GEOLOGICAL BACKGROUND 47 

At the end of the Permian (~250 Ma) the WSB underwent extension associated 48 

with eruption of the Siberian flood basalts (Reichow et al., 2009). Figure 1 shows the 49 

locations of the main rifts and the extent of the flood basalts. The flood basalts reach a 50 

maximum thickness of 3 km in the northwest of the Siberian Craton. An average 51 

thickness of 2 km is deduced by Braitenberg and Ebbing (2009) from gravity modelling. 52 

Most authors agree that the flood basalts in the WSB were erupted sub-aerially (Westphal 53 

et al., 1998; Saunders et al., 2005; Vyssotski et al., 2006; Saunders et al., 2007) and 54 

therefore it is likely that the basement hadn’t started to subside at the time. 55 

 During the Triassic, sediment deposition continued within the rifts at a reduced 56 

rate, but there was no deposition (or at least preservation) outside the rifts. In areas 57 

adjacent to the major rifts, sedimentation began in the Early Jurassic (~200 Ma). The first 58 

basin wide transgression did not occur until the Callovian (~165 Ma) (Peterson and 59 

Clark, 1991; Vyssotski et al., 2006). This is visible in the backstripped subsidence curves 60 

from Saunders et al. (2005) (Fig. 2). Sedimentation throughout the rest of the Mesozoic 61 

and early Cenozoic was strongly influenced by changes in global sea level. There was 62 

little further tectonic activity within the basin after the rifting. 63 

 Vyssotski et al. (2006) reports the crustal thickness  of the WSB varying from a 64 

minumum of 34 km within the rifts to ~44 km at its margins. The average thickness 65 

across the basin is ~38 km, which is signifacantly thinner than the Siberian craton to the 66 
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east or the Ural mountains to the west. The thickness of the lithosphere beneath the WSB 67 

is not certain. Artemieva and Mooney (2001) used heat flow data to model the 68 

geothermal gradient, and calculated a lithosphere thickness of ~ 125 km across the WSB. 69 

In comparison, Priestley and McKenzie  (2006) used shear wave velocity gradients to 70 

calculate a thickness of ~180 km.  71 

 It is important to assess the viable range of possible temperatures, thicknesses and 72 

depths of a plume head impacting on the base of the WSB lithosphere. The temperature 73 

can be estimated from the composition of the erupted volcanics. Saunders et al. (2005) 74 

used trace element ratios to argue for a decrease in the depth of melting from > 100 km to 75 

100-50 km over the evolution of the flood basalts. We interpret this to show that the 76 

plume effectively thins the overlying lithosphere to ~50 km.  77 

The thickness of a plume head spreading out beneath continental lithosphere was 78 

investigated by Nyblade and Sleep (2003) who calculated thickness in the order of 10s of 79 

km. They also calculate that a 40 km thick plume head with an excess temperature of 200 80 

˚C will thin the lithosphere by 50 km.  In contrast, Campbell’s (2007) model of plumes 81 

originating at the core mantle boundary show that the plume head may have had a 82 

thickness of 175 ± 25 km. Therefore this parameter is not well-constrained for any 83 

possible plume head, including the Siberian example. 84 

 85 

 METHODOLOGY 86 

 A 1-D forward thermal model was used to examine whether the cooling of a 87 

thermal anomaly generated by a plume head could cause the subsidence in the WSB. 88 

Conductive heat flow through the lithosphere and upper mantle and the associated 89 
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subsidence of the column are calculated numerically. An in-depth description of the 90 

model is found in Holt et al. (2010). Temperature T for each depth z is integrated over 91 

time t by combining Fourier’s law for conductive heat flow with conservation of energy 92 

and a radiogenic heat production A: 93 

(1). 94 

Specific heat Cp is related to the rock type, while density ρ is dependent on both 95 

temperature and rock type (Holt et al., 2010). The resulting density profile is used to 96 

calculate the isostatic height of the column relative to sea level calibrated to a column of 97 

mid-ocean ridge material with 2.7 km of water overlying a 7 km basaltic-gabbroic crust 98 

above a peridotitic upper mantle. For negative surface heights we extend the top of the 99 

column to sea level with water. This allows comparison with water-loaded tectonic 100 

subsidence calculations from backstripping. Similarly to water loading, sediment loading 101 

is also calculated to compare the model to the observed Moho depths. The sedimentation 102 

rate is assumed to keep pace with the subsidence.  Since the Moho depths are those 103 

observed today and not the initial conditions, the model was run to produce a final crustal 104 

thickness, including sediments deposited in the basin that matches the present-day crustal 105 

thicknesses. 106 

 The temperature at the top (0 °C) and bottom (1381 °C) of the model are fixed 107 

using a potential temperature at the surface of 1330 °C, an adiabatic temperature increase 108 

of 0.3 °C/km and a model depth of 170 km.  The model is benchmarked against sea-floor 109 

spreading models (Parsons and Sclater, 1977; Stein and Stein, 1992) for heat flow and 110 

bathymetry. 111 
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 The initial conditions of the model are set up to match our current knowledge of 112 

the WSB as closely as possible. The crust is composed of a layer of flood basalt at the 113 

surface above a granitic upper crust and a lower crust with a density corresponding to 114 

granulite and mafic intrusions related to the volcanics at the surface. The thickness of the 115 

crust is varied, as are the flood basalt thickness and the upper – lower crust ratio to model 116 

the changes across the WSB. The crust is underlain by mantle lithosphere down to the top 117 

of the plume head. The initial temperature profile is a linear gradient from the surface, 118 

and intersects the mantle adiabat at the top of the plume head. The (initially constant) 119 

temperature, thickness and position of the underlying plume head are varied. Below the 120 

plume head, the temperature follows the mantle adiabat.  This results in the base of the 121 

lithosphere settling at ~ 150 km (using the 1200 °C definition of Stein and Stein (1992)) 122 

after 250 Myrs, which is an intermediate value of the various estimates of present-day 123 

lithospheric thickness. 124 

 125 

THERMAL SUBSIDENCE CURVES 126 

Backstripped wells from Saunders et al. (2005) were used to test the models as 127 

they cover a broad range of locations within the WSB, with different crustal and 128 

sedimentary thicknesses (Fig. 1). The backstripping analysis showed earlier onset of 129 

sedimentation in the rifts, around 250 – 240 Ma, and a greater amount of subsidence than 130 

the wells from the wider basin, where the onset of sedimentation was between 200 and 131 

160 Ma (Fig. 2).  132 

The backstripped wells are shown alongside the modeled subsidence in Fig.2. 133 

Best fits are obtained with a plume head from 50 km to 100 km depth, with a temperature 134 
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of 1500 °C. An initial crustal thickness of 34 km produces a subsidence curve that fits the 135 

wells outside the rifts (N, Sa, Sl, Su), giving a final crustal thickness including the 136 

sediments of 37 km. This is equivalent to present crustal thicknesses across the WSB, 137 

outside of the main rifts (Vyssotski et al., 2006). Subsidence curves for wells within the 138 

rifts are successfully modeled by an initial crustal thickness of 30 km (Fig. 2). Changes in 139 

only the initial crustal thickness are sufficient to fit subsidence patterns in the rifts and in 140 

the wider basin. Well data from outside the rifts is representative of more regional 141 

subsidence patterns. The 3 km contour of sediment thickness from Vyssotski et al. (2006) 142 

is a proxy for regional subsidence on the scale described above, and implies that the 143 

plume head lay under this area of over 2.5 million km
2
, with little variation in depth to 144 

the top of the plume head.  145 

Sensitivities of model parameters are shown in Fig. 3. In each case one parameter 146 

is varied compared to a standard set up (Fig 3a). Results are very sensitive to crustal 147 

thicknesses (Fig. 3b); a 46 km thick crust never subsides below sea level so is unlikely to 148 

form a basin, whereas a 38 km thick crust starts with an elevation of 1400 m, which then 149 

subsides, dropping below sea level after 88 Myrs. For a crustal thickness of 34 km, the 150 

initial elevation is 360 m and the model drops below sea level after 14 Myrs. The likely 151 

variation in the flood basalt thickness in the WSB has a much smaller effect on the 152 

subsidence of the basin than the crustal thickness.  153 

 Plume temperatures were varied between 1400 – 1600 °C to cover the range of 154 

plausible temperatures following melting and thinning of the lithosphere (Fig.3c). Results 155 

reveal that a hotter plume results in more initial uplift and increases the length of time 156 

before a basin begins to form. However, plume temperature has only a relatively minor 157 
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influence. Furthermore, for all model runs the final temperature profile, and therefore the 158 

final subsidence, is the same.  159 

To test the effect of the depth of the plume the model was run for a 50 km thick 160 

plume head situated various depths. The effect of plume head thickness was also tested. 161 

Fig. 3d shows that where the plume reaches a depth of 50 km the model starts 162 

significantly above sea-level regardless of its thickness. For a 120 km thick plume the 163 

initial elevation is 1700 m whereas a 50 km thick plume has an initial elevation of 1400 164 

m and the onset of sedimentation is hastened. There is little difference when compared to 165 

varying the depth of the plume. If a 50 km thick plume begins at 100 km depth then its 166 

initial elevation is 350 m above sea level, whereas if the plume is 20 km deeper then the 167 

initial elevation of the plume is 250 m below sea level. The results illustrate that the 168 

subsidence curve is much more sensitive to the depth of the plume head than the 169 

thickness of the plume head. This is because the temperature contrast of the plume with 170 

the normal geotherm is greater at shallower depth, which will cause a greater reduction in 171 

the density of the material and therefore more initial uplift. Variations in radioactive heat 172 

production were previously shown to have little effect on the either the total subsidence 173 

or the shape of the subsidence curve (Holt et al., 2010), and therefore are not discussed in 174 

this study. 175 

 176 

DISCUSSION 177 

Uplift has been suggested in conjunction with the eruption of a number of other 178 

large igneous provinces (LIP’s) including the Emeishan traps, the Deccan traps, the North 179 

Atlantic LIP and Yellowstone (Saunders et al., 2007). Our modeling shows that if the 180 
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lithosphere is significantly thinned or heated, then isostasy alone will be enough to cause 181 

the uplift seen. This is in agreement with the recently proposed isostatic cause for the 182 

abnormal elevation seen in the American Cordillera (Hyndman and Currie, 2011) 183 

although the reason for the temperature anomaly is markedly different in each case. We 184 

have not included dynamic uplift in our model as it is a transient effect only acting while 185 

the plume was beneath the basin. Whether a plume can thin lithosphere, as our results 186 

indicate, is matter of debate both in active plume such as Hawaii and in numerical 187 

models. Ribe and Christensen (1999) calculated that the majority of the Hawaiian swell 188 

could be accounted for by dynamic uplift with only minor thinning of the lithosphere to 189 

89 km. Likewise in the model of Nyblade and Sleep (2003) there is some lithospheric 190 

thinning, but it limited to the rheological boundary layer at the base of the lithosphere. In 191 

contrast Li et al., (2004) showed that seismic data indicates that the lithosphere beneath 192 

Hawaii is only 50-60 km thick. Similarly the model of d’Acremont et al., (2003) that 193 

focus on implementing a realistic crust and mantle lithosphere rheology shows that strain 194 

rate and stress weakening of the lithosphere enhances its erosion by a plume head. Our 195 

study provides another line of independent evidence supporting thinning of the 196 

lithosphere. Geochemical evidence from the North Atlantic LIP (Kerr, 1994) shows such 197 

thinning is associated with other flood basalt provinces. The areal extent that the 198 

lithosphere is thinned over will likely vary somewhat between LIP’s as the volumes of 199 

flood basalts do. d’Acremont et al (2003) use the extent of flood basalts visible at the 200 

surface to estimate that the plume head thins the lithosphere over an area ~3 million km
2
. 201 

Our method, using the subsidence patterns to give an indication of this, is preferable as 202 



10 

 

flood basalts can flow large distances from where they are erupted whereas the 203 

subsidence is more directly linked to the state of the lithosphere beneath it. 204 

 205 

CONCLUSIONS 206 

Comparing thermal subsidence curves from numerical heat flow models with 207 

backstripping results illustrates that the West-Siberian Basin subsidence is well explained 208 

by a 1500 C, 50-km-thick plume head, impinging on a overlying lithosphere that is 209 

~50 km thick after plume head emplacement with a 30 km thick crust in the rifts and a 34 210 

km thick crust in the wider basin. The modeling predicts that the subsidence in the WSB 211 

is most sensitive to the crustal thickness within the basin and depth to the top of the 212 

plume head, and shows less sensitivity to (reasonable) variation in the temperature and 213 

thickness of the plume head and the thickness of the flood basalts. Thermal modeling 214 

results show an excellent fit to both the magnitude and timing of subsidence, within the 215 

rifts and the wider basin. We conclude that the flood basalts, rifting and subsequent basin 216 

formation associated with the West Siberian Traps are best explained by a plume head 217 

which spreads out beneath the entire basin, while eroding the lithosphere to ~50 km 218 

thickness, and covering an area of over 2.5 million km
2
. We propose that quantitative 219 

comparison between modeled and observed subsidence of continental flood basalt 220 

provinces is a fruitful way to provide tighter constraints on the volume, lateral extent, and 221 

thermal erosion effects of mantle plume heads.   222 
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Figure Captions 292 
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Figure 1. Location of the West Siberian Basin (dashed line), the 3 km sedimentary thickness contour 293 

(dotted line) and the neighboring Siberian Craton (dot dash line). Red dots mark backstripped 294 

wells from Saunders et al. (2005). N=Novoporto-130, S=SG-6, Sa=Samotlar-39, Sl=Salym-184, 295 

Su=Surgot-51, U=Urengoy-414. Modified from Allen et al. (2006). 296 

Figure 2. Backstripped water-loaded subsidence from wells across the basin (Saunders et al., 2005) is 297 

compared to the subsidence produced by the forward model. The wells within the rifts are fitted 298 

best by a model with an initial 30 km thick crust. This does not fit the rift phase of SG-6 well 299 

because rifting is not included in the model, however it is a close fit to the thermal subsidence 300 

phase. Delayed onset in sedimentation seen from the wells outside the rifts is matched by a model 301 

with an initial crustal thickness of 34 km. In each of the above models the plume lies at 50-100 km 302 

depth and has an initial temperature of 1500 ˚C.  303 

Figure 3. The sensitivity of the model to b) the thickness of the crust, and the variation in the flood basalt 304 

thickness, c) the temperature of the plume head and d) effect of the depth and thickness of the 305 

plume head. In each case only one parameter is varied while the rest are kept as a standard model, 306 

shown in a) and described in the text. It represents initial set up of the model and does not 307 

represent the best fitting model. The gray area on each graph encapsulates the backstripped 308 

subsidence curves shown in Fig. 2 from Saunders et al., (2005). 309 
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