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Abstract. We study the first exit time τ from an arbitrary cone with apex at
the origin by a non-homogeneous random walk (Markov chain) on Zd (d ≥ 2)
with mean drift that is asymptotically zero. Specifically, if the mean drift at
x ∈ Zd is of magnitude O(‖x‖−1), we show that τ < ∞ a.s. for any cone. On the
other hand, for an appropriate drift field with mean drifts of magnitude ‖x‖−β ,
β ∈ (0, 1), we prove that our random walk has a limiting (random) direction and
so eventually remains in an arbitrarily narrow cone. The conditions imposed
on the random walk are minimal: we assume only a uniform bound on 2nd
moments for the increments and a form of weak isotropy. We give several
illustrative examples, including a random walk in random environment model.
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1. Introduction

The theory of time- and space-homogeneous random walks on Zd (d ≥ 2),
i.e., sums of i.i.d. random integer-component vectors, is classical and extensive;
see for example [4, 13, 23]. For random walks that are not spatially homoge-
neous the theory is less complete, and many techniques available for the study
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of homogeneous random walks can no longer be applied, or are considerably
complicated; see, for instance, [12, 20]. In the present paper we study angular
properties of non-homogeneous random walks, specifically exit times from cones
and existence of limiting directions.

In general non-homogeneous processes can be wild; thus we restrict ourselves
to walks that have mean drift that tends to zero as the distance to the origin
tends to infinity (but with no restriction on the direction of the drift) and satisfy
some weak regularity conditions on the jumps. We do not impose on the in-
crements of the random walk conditions of boundedness, symmetry, or uniform
ellipticity, as are assumed, for example, for the results on non-homogeneous
random walks in [12,20]. Importantly, we do not impose any direct restrictions
on the correlation structure of the components of the increments of the process.
Random walk models are applied in many contexts. Often, simplifying assump-
tions of homogeneity are made in order to make such models tractable, whereas
non-homogeneity is more realistic. Thus our non-homogeneous model shares
some motivation with random walks in random environments (see e.g. [25]); in
such terms, our results deal with a particular class of ‘asymptotically zero drift’
environments (cf. Example 2.5 in Section 2.3 below). In the present paper we de-
velop methods to study passage-times for certain sets for such non-homogeneous
random walks.

We now describe informally the type of non-homogeneous random walk stud-
ied in the present paper. Consider a Markovian random walk on Zd, homo-
geneous in time but not necessarily in space, so that the transition function
depends upon the walk’s current location. Suppose that the walk has one-step
mean drift function that tends to zero as the distance from the origin tends to
infinity. This asymptotically zero drift regime is the natural setting in which to
probe the transition away from behaviour that is essentially ‘zero-drift’ in char-
acter. In one dimension, the corresponding regime is rather well understood,
following fundamental work of Lamperti; see [10, 11, 16–18] and the Appendix
in [1] (some analogous results in the continuous setting of Brownian motion with
asymptotically zero drift are given more recently in [5]). Problems in higher di-
mensions of a ‘radial’ nature can often be reduced to this one-dimensional case.
The exit-from-cones problems that we consider in the present paper (which
we describe below), on the other hand, are to a large extent ‘transverse’ (and
inhomogeneous) in nature and so are truly many-dimensional. Moreover, the
many-dimensional case is qualitatively different from the one-dimensional case
(see Theorem 2.1 below).

The random walks that we consider are non-homogeneous, but some reg-
ularity assumptions are certainly required for our results. We assume a weak
isotropy condition without which highly degenerate behaviour is possible. In
addition, we restrict our attention to random walks on unbounded subsets of Zd

with some moment condition on the jumps. We need some regularity conditions
on the state-space of our walk and it is most convenient to take the structure
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of Zd. We are confident that our proofs can be adapted for more general state
spaces.

Our main theorems can be summarized as follows:

(i) a walk with mean drift of magnitude O(‖x‖−1) at x will leave any cone
in finite time almost surely (and indeed hit any cone), while

(ii) an appropriate drift field with magnitude of order O(‖x‖−β), β ∈ (0, 1)
can lead to the existence of an asymptotic direction for the walk (so that
it eventually remains in an arbitrarily thin cone).

Note that the class of random walks with mean drifts O(‖x‖−1) to which result
(i) applies is very wide: such a walk can be transient, null-recurrent, or positive-
recurrent (cf. [10, 11]) and can be diffusive or sub-diffusive (cf. [18, Section 4].)

Before stating our theorems formally, we briefly describe some of the relevant
existing literature. The theory of homogeneous zero-mean random walks stands
hand-in-hand with the corresponding continuum theory for Brownian motion.
Once the assumption of spatial homogeneity is removed, Brownian motion ceases
to be a reliable analogy for the random walk problem. In the case of one
dimension, this is exemplified by results on processes with asymptotically zero
mean drifts; see e.g. [10,11]. For the non-homogeneous random walks considered
in the present paper, we will demonstrate behaviour substantially different to
that of standard Brownian motion.

In [15] the authors give conditions under which our non-homogeneous ran-
dom walk does display essentially ‘Brownian’ behaviour. The study of the exit-
time of standard Brownian motion from cones goes back at least to Spitzer [22]
and a deep analysis was undertaken by Burkholder [3]; see [2] for some more
recent work. The random walk case has received less attention. A body of
work by Varopoulos starting with [24] deals with exit-from-cones problems for
random walks that have mean drift zero but are (at least for some of the results
in [24]) allowed to be non-homogeneous. In [24], finer behaviour (such as tails
of exit times) was studied, and consequently the conditions on the walks im-
posed in [24] are stronger than ours in several respects, such as an assumption
of orthogonality on the covariance structure of the increments.

In the next section we give the precise formulation of the model, our main
results, and a discussion. In particular, in Section 2.1 we formally define our
model and our assumptions. In Section 2.2 we state our main results. Then in
Section 2.3 we give several examples of processes to which our theorems can be
applied, including ‘centrally biased random walks’, half-plane excursions, and a
random walk in random environment model. In Section 2.4 we mention some
possible directions for future research. Finally, in Section 2.5 we give a brief
outline of the technical part of the paper, which contains the proofs of our
results.
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2. Model, results, and discussion

2.1. Description of the model

In this section we describe more precisely the probabilistic model that is
our object of study. First we collect some notation. Throughout we assume
d ∈ {2, 3, . . .} and work in Rd; 2 is the minimum number of dimensions in which
the phenomena that we study appear, although analogues of our results in the
case d = 1 are in a sense provided by Lamperti [10, 11]. For x ∈ Rd, write
x = (x1, . . . , xd) in Cartesian coordinates. Let ‖ · ‖ denote the Euclidean norm
on Rd. For a non-zero vector x ∈ Rd we use the usual notation x̂ := x/‖x‖ for
the corresponding unit vector. Write 0 := (0, . . . , 0) for the origin and e1, . . . , ed

for the standard orthonormal basis of Rd. For vectors u,v ∈ Rd we use u · v to
denote their scalar product.

Let Ξ = (ξt)t∈Z+ be a discrete-time Markov process with state-space S an
unbounded subset of Zd. Since we are concerned crucially with the spatial
aspects of the process, it is natural to view our process as a random walk on
S ⊆ Zd, although it will certainly not, in general, be a sum of i.i.d. random
vectors. The random walk Ξ will be time-homogeneous but not necessarily
space-homogeneous; we will impose some natural regularity assumptions on the
increment distribution for our walk, which we describe next.

We need to impose some form of regularity condition that ensures the walk
cannot become trapped in lower-dimensional subspaces or finite sets. To this
end, we will assume the following weak isotropy condition:

(A1) There exist κ > 0, k ∈ N and n0 ∈ N such that

min
x∈S

min
y∈{±kei, i=1,...,d}

P
[
ξt+n0 − ξt = y | ξt = x

] ≥ κ (t ∈ Z+).

Note that (A1) is an n0-step regularity condition. In terms of one-step
regularity, its implications are minimal: a simple consequence of (A1) is that
for any x ∈ S

P
[
ξt+1 = x | ξt = x

]
=

(
P
[
ξt+n0 = x, . . . , ξt+1 = x | ξt = x

])1/n0

≤ (1− 2dκ)1/n0 ≤ 1− (2dκ/n0)

(note κ ≤ 1/2d) so that

P
[
ξt+1 6= x | ξt = x

] ≥ (2dκ/n0) > 0

uniformly in x. Condition (A1) can be seen as a form of ellipticity, but is
weaker than uniform ellipticity (such as often assumed in the random walk
in random environment literature, see e.g. [25]). For example, there can be
sites x ∈ S at which the jump distribution degenerates completely and the
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walk moves deterministically. (When later we discuss walks with asymptotically
zero mean drift, for all x with ‖x‖ large enough this extreme degeneracy is
excluded, although the jump distribution at x may still be supported on a
lower-dimensional subspace.) At first sight it seems that we are losing some
generality in (A1) by enforcing a single k and n0 for each of the 2d directions in
the condition — but this is not in fact any sacrifice, as we show in Proposition 2.1
below (see Section 2.4). Finally, note that another consequence of (A1) is that
lim supt→∞ ‖ξt‖ = ∞ a.s.

Our time-homogeneity and Markov assumptions imply that the distribution
of the increment ξt+1−ξt depends only on the position ξt and not t. Our second
regularity condition is an assumption of finiteness of second moments for the
increments of Ξ :

(A2) There exists B0 ∈ (0,∞) such that

max
x∈S

E
[‖ξt+1 − ξt‖2 | ξt = x

] ≤ B0.

It is interesting that for our theorems and with our techniques 2 moments suffice,
rather than 2 + ε moments or uniformly bounded jumps as are often assumed
in similar situations. Under (A2), the mean of ξt+1 − ξt given {ξt = x} is well-
defined. Denote the one-step mean drift vector µ(x) := E [ξt+1 − ξt | ξt = x]
for x ∈ S. We are primarily interested in the case where the random walk has
asymptotically zero mean drift, i.e., lim‖x‖→∞ ‖µ(x)‖ = 0.

Write Sd := {u ∈ Rd : ‖u‖ = 1} for the unit sphere in Rd. For u ∈ Sd,
α ∈ (0, π) let Wd(u; α) be an open (circular) cone in Rd with apex 0, principal
direction u, and half-angle α:

Wd(u; α) := {x ∈ Rd : u · x̂ > cos α}.
A central quantity in this paper is the random walk’s first exit time from

the cone Wd(u; α) (starting from inside the cone). Define the random time

τα := min{t ∈ Z+ : ξt /∈ Wd(u; α)}.
The notation τα suppresses the dependence on the starting point ξ0 and the
cone direction u. Note that the complementary cone Rd \Wd(u; α) has interior
Wd(−u; π−α) so exit from a large cone is equivalent to hitting a small cone. Exit
from a small cone does not in general imply hitting any small cone for a non-
homogeneous random walk without some condition that prevents confinement
of the walk to a subspace of Rd. This is why we need a condition such as (A1).

Remark. The time-homogeneity and Markov assumptions that we make are not
crucial for our results, and are not essentially used in our proofs. However, to
avoid complicating the statements of our theorems we have not used the max-
imum generality in this respect. In fact, we essentially prove our Theorem 2.2
in the more general setting (see Section 5).
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2.2. Main results

Our first result, Theorem 2.1 below, deals with the case where the mean drift
is O(‖x‖−1); we will see that this case is critical for our properties of interest.
It is often useful to view our general model as a perturbation of the zero-drift
case. It is perhaps intuitively clear, by analogy with Brownian motion, that a
zero-drift homogeneous random walk on Zd satisfying suitable regularity condi-
tions will exit any cone in almost surely finite time. Note that care is needed
even in the zero-drift case, since random walks with zero drift can behave very
differently from Brownian motion due to correlation structure of the increments:
see e.g. [9]. It is less clear that such a result is true for random walks that are
non-homogeneous and have an arbitrary correlation structure for their incre-
ments. Theorem 2.1 provides the much stronger result that the exit time is a.s.
finite in the asymptotically zero drift setting provided that the mean drift is
O(‖x‖−1). Moreover, if this latter condition fails, the result may be false (see
Theorem 2.2 below); in this sense, Theorem 2.1 is best possible.

Theorem 2.1. Suppose that conditions (A1) and (A2) hold, and that for x∈S
as ‖x‖ → ∞,

‖µ(x)‖ = O(‖x‖−1). (2.1)

Then for any α ∈ (0, π), any u ∈ Sd, and any x ∈ S ∩Wd(u;α)

P
[
τα < ∞ | ξ0 = x

]
= 1.

As a special case, Theorem 2.1 includes the case of a non-homogeneous
random walk with zero drift. The only similar result that we could find explicitly
stated in the literature is in [24], where it was shown that τα < ∞ a.s. for a non-
homogeneous random walk with mean drift zero under a condition of uniformly
bounded jumps and several other technical conditions including assumptions
on correlation structure of the jumps and conditions on the reversed process.
Thus Theorem 2.1 provides a proof of the result τα < ∞ a.s. in the zero drift
setting under conditions that are weaker in several directions (in particular the
assumptions on the increments) than those in [24]. The main object of [24]
was to address the more delicate question of obtaining tight bounds for the tail
of τα. In our more general setting (with mean drift asymptotically zero) the tails
of τα depend crucially on the drift field, even in the case where the mean drift
is O(‖x‖−1), or indeed identically zero, and we do not consider the problem of
tail bounds in the present paper. However, in [15] the authors do show that,
for d = 2, if the mean drift is O(‖x‖−1) then τα has a polynomial tail under
the condition of uniformly bounded jumps. For an informative example of the
impact of increment correlation structure on the existence of exit-time moments
in a simple setting, see [9].
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We emphasize that walks Ξ satisfying Theorem 2.1 can display a wide range
of behaviour. For example, in the case of radial drift µ(x) = c‖x‖−1x̂ for
c ∈ R, it can be shown by an analysis of the process ‖ξt‖ (possibly under some
additional regularity assumptions) that, depending on c, Ξ can be positive-
recurrent, null-recurrent, or transient (see Example 2.2 in Section 2.3 below)
and that Ξ can be diffusive or sub-diffusive (see [18, Section 4]).

Theorem 2.1 contrasts sharply with the situation in one dimension [10, 11],
where a drift of O(x−1) at x does not imply finiteness of the time of exit from
a half-line. In d = 2, Theorem 2.1 gives information on the winding of the walk
around the origin; an early result on the winding number of planar Brownian
motion is also contained in Spitzer’s paper [22] and a more recent reference,
including corresponding results for homogeneous random walks, is [21]. Theo-
rem 2.1 generalizes such winding properties naturally to higher dimensions.

Now we move on to the supercritical case. Theorem 2.2 shows that for a
radial drift field, with outwards drift greater in order than ‖x‖−1, the walk now
has a limiting direction, in complete contrast to the situation in Theorem 2.1.
In other words, the random walk eventually remains in an arbitrarily thin cone.

Theorem 2.2. Suppose that (A1) and (A2) hold. Suppose that for some β ∈
(0, 1), c > 0, δ > 0, and A0 > 0,

min
x∈S:‖x‖>A0

{‖x‖βµ(x) · x̂} ≥ c, (2.2)

and

max
x∈S,‖x‖>A0

sup
u∈Sd:u·x=0

‖x‖β+δ |µ(x) · u| < ∞. (2.3)

Then for any ξ0 ∈ Zd we have that ‖ξt‖ → ∞ a.s., and there exists a random
unit vector v ∈ Sd, whose distribution is supported on all of Sd, such that a.s.
as t →∞

ξt

‖ξt‖ −→ v.

Note that Theorem 2.2 says that the random walk is transient, a fact that
does not follow immediately from known results (for instance to apply Lam-
perti’s results [10] one needs a stronger moment assumption than (A2)). A
natural example to which Theorem 2.2 applies is a walk where for some c > 0
and β ∈ (0, 1)

µ(x) · x̂ = c‖x‖−β , and |µ(x) · u| = O(‖x‖−1),

for all u orthogonal to x. See also Example 2.2 in Section 2.3 below.
Theorem 2.2 covers walks that are sub-ballistic (i.e. have zero speed, asymp-

totically). We could not find results on limiting directions for non-homogeneous
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random walks in the literature. The phenomenon of limiting direction for ho-
mogeneous walks on spaces more exotic than Zd has been studied: see e.g. [8]
and references therein. In the next section we illustrate our two main results
with some examples.

2.3. Examples and comments

We now list some particular examples of random walks with which we will
illustrate Theorems 2.1 and 2.2. In some cases we assume the following slightly
stronger version of (A2):

(A2+) There exist ε > 0 and B0 ∈ (0,∞) such that

max
x∈S

E
[‖ξt+1 − ξt‖2+ε | ξt = x

] ≤ B0.

Example 2.1 (Zero-drift non-homogeneous random walk). Let d ≥ 2.
Suppose that (A1) and (A2) hold and µ(x) ≡ 0. Note that even for this example,
the random walk is not necessarily homogeneous and the covariance structure
of the increments is arbitrary, so the walk is not covered by classical work
such as [23] or more recent work such as [24]. One can construct examples of
such walks that are transient in d = 2, or recurrent in d ≥ 3, for instance.
Theorem 2.1 immediately implies that in this case the walk leaves any cone in
finite time.

Example 2.2 (Random walk with radial drift). Let d ≥ 2. Suppose that
(A1) and (A2) hold, and that for some c ∈ R, β > 0, for x 6= 0, µ(x) = c‖x‖−βx̂.
An example of a suitable drift field (for d = 2) is illustrated in the second part of
Figure 1. This kind of model has been called a centrally biased random walk (see
e.g. [10, Section 4]). The following result is again immediate from Theorems 2.1
and 2.2.

Theorem 2.3. Suppose Ξ is as in Example 2.2. Let α ∈ (0, π) and u ∈ Sd.

(i) If β ≥ 1, then for any x ∈ Wd(u;α), P
[
τα < ∞ | ξ0 = x

]
= 1.

(ii) If β < 1 and c > 0, then for any x ∈ Wd(u;α), ‖ξt‖ → ∞ a.s. and
ξt/‖ξt‖ → v a.s. as t →∞, for some v with distribution supported on Sd.

It is worth comparing the behaviour of the walk in this example in terms of
exit from cones to its recurrence/transience behaviour (in terms of returning to
bounded sets), which can be obtained from study of the process ‖ξt‖. Results
of Lamperti [10, 11] (see also [1, 16]) imply that, at least if we assume (A2+),

• If β > 1, Ξ is recurrent in d = 2 and transient for d ≥ 3;

• If β < 1, then Ξ is transient for c > 0 and positive-recurrent for c < 0.



Angular asymptotics for multi-dimensional non-homogeneous random walks 359

Figure 1. Two examples of drift fields: cx−1
1 e1 (left) and c‖x‖−1x̂ (right).

The case β = 1 is critical from the point of view of the recurrence classification
(see in particular the discussion around (4.13) in [10]), and, for any d, Ξ can
be either positive-recurrent, null-recurrent, or transient, depending on c. In
particular, there exist c0, c1 ∈ (0,∞) (depending on d and B0) such that Ξ is
positive-recurrent for c < −c1 < 0 but transient for c > c0 > 0. Thus when
β = 1 and c > c0, Ξ is transient and so eventually leaves every bounded region,
but, on the other hand (by Theorem 2.3 (i)) such a walk will also eventually
leave any wedge. In other words, although ‖ξt‖ → ∞ the walk has no limiting
direction.

Example 2.3 (Random walks with drift in the principal direction).
Let d ≥ 2. It is interesting to contrast two apparently similar types of ran-
dom walk on the half-space Wd(e1; π/2). Suppose that (A1) and (A2+) hold.
Suppose either

(a) for some c ∈ R, β > 0, for x ∈ Wd(e1;π/2), µ(x) = c‖x‖−βe1; or

(b) for some c ∈ R, β > 0, for x ∈ Wd(e1;π/2), µ(x) = cx−β
1 e1.

An example of a suitable drift field in case (b) (d = 2) is illustrated in the first
part of Figure 1. The following result is again a consequence of Theorems 2.1
and 2.2, but requires some extra work: we present its proof at the end of
Section 3.

Theorem 2.4. Suppose Ξ is as in Example 2.3. Suppose β = 1. If α ∈ (0, π/2),
then in either case (a) or (b), for any x ∈ Wd(e1; α),

P
[
τα < ∞ | ξ0 = x

]
= 1.

On the other hand, in case (a), for any x ∈ Wd(e1; π/2),

P
[
τπ/2 < ∞ | ξ0 = x

]
= 1,
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but in case (b) there exists c0 ∈ (0,∞) such that for c > c0 and any x ∈
Wd(e1; π/2),

‖ξt‖ −→ ∞, and ξt · e1 −→∞ -a.s..

Theorem 2.4 shows that the difference in qualitative behaviour between
cases (a) and (b) is manifest in terms of leaving the half-space. In particu-
lar, when the mean drift is c/x1 in the e1 direction, the walk leaves a wedge
of angle α < π/2, but, for c large enough, with positive probability eventually
remains in the half-plane. However when the mean drift is c/‖x‖ in the e1

direction, the walk always leaves the wedge, even when α = π/2. The instance
of Example 2.3, case (b), when α = π/2 demonstrates homogeneity in the e2

direction, and so is related to the one-dimensional so-called Lamperti problem
named after [10,11]. In the case α = π/2, case (a) demonstrates a more localized
perturbation, since near the boundary of the half-plane we can have ‖x‖ À x1.

The primary interest of Example 2.3 is the case β = 1. For reasons of space
we do not consider here the case β ∈ (0, 1) of Example 2.3 (either (a) or (b));
we expect that this case too can be studied using our methods.

Example 2.4 (Random walk half-plane excursion). We point out a par-
ticularly simple case of Example 2.3, case (b) above, which is of interest in its
own right. This is the so-called random walk half-plane excursion (see [14],
pp. 1–2). This process is obtained, loosely speaking, by conditioning a simple
symmetric random walk on Z2 never to exit a half-plane: see [14] for details.
The construction readily extends to general dimensions d ≥ 2, but for simplicity
we discuss the planar case. In this case Ξ has transition probabilities

P
[
ξt+1 = (x1, x2 ± 1) | ξt = (x1, x2)

]
=

1
4
,

P
[
ξt+1 = (x1 ± 1, x2) | ξt = (x1, x2)

]
=

x1 ± 1
4x1

,

for (x1, x2) ∈ Z2, x1 ≥ 1. Hence µ(x) = (1/2x1) e1, and we are in the case of Ex-
ample 2.3 (b) as described above. Theorem 2.4 implies that for any α ∈ (0, π/2),
the walk leaves the wedge W2(e1; α) in finite time almost surely. On the other
hand, note that Ξ is transient and in fact ξt · e1 → ∞ almost surely, by for
instance Lamperti’s results [10] (in fact one can take c0 = 1/4 in Theorem 2.4
above, so the final statement of that theorem applies: see the proof of Theo-
rem 2.4 in Section 3).

Example 2.5 (Random walk in random environment). We give a final
example of a slightly different flavour. Let d ≥ 2. Suppose that each site x ∈ Zd

carries random d-vectors Yx and χx, all independent, where Yx = (Y x
1 , . . . , Y x

d )
has an arbitrary distribution (possibly even dependent on x) on the simplex
{(y1, . . . , yd) ∈ [0,∞)d : y1 + · · ·+yd = 1}, and χx = (χx

1 , . . . , χx
d) is an indepen-

dent copy of χ = (χ1, . . . , χd), whose components |χi| are bounded uniformly
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in i. Let ω := ((Yx, χx))x∈Zd be the random environment. Given ω, define a
nearest-neighbour Markovian random walk Ξ on Zd via its transition law Pω

given by, for i ∈ {1, . . . , d},

Pω

[
ξt+1 − ξt = ei | ξt = x

]
=

1
4d

+
Y x

i

4
+

χx
i

‖x‖ ,

Pω

[
ξt+1 − ξt = −ei | ξt = x

]
=

1
4d

+
Y x

i

4
− χx

i

‖x‖ ,

unless either of these quantities lies outside the interval [1/4d, 1 − 1/4d], in
which case we replace both probabilities in question by 1/4d+Y x

i /4 (for almost
every ω, this modification will only apply within a finite ball around the origin).
Thus Ξ is a random walk in random environment (RWRE). Then, given ω,
µ(x) = 2‖x‖−1(χx

1 , . . . , χx
d), so that ‖µ(x)‖ = O(‖x‖−1), uniformly for almost

every ω, by the conditions on χ. Thus a consequence of Theorem 2.1 is that
for almost every ω, for any α ∈ (0, π), τα < ∞ a.s.. To the best of the authors’
knowledge, the recurrence/transience classification of this RWRE is at present
an open problem. An analogous model in d = 1 where Y x

1 ≡ 1 for all x (random
perturbation of the simple symmetric random walk on Z+) was studied in [19]:
Theorem 2 parts (iii)–(v) in [19] give the complete recurrence classification in
that case.

2.4. Extensions, open problems, and further remarks

As we have already indicated, we essentially prove Theorem 2.2 without the
assumptions of time-homogeneity or the Markov property (see Section 5 below).
It should be possible to prove an appropriate extension of Theorem 2.1 in similar
generality. The assumption of the state-space being Zd is not essentially used
in the proof of Theorem 2.2, which we could have stated for more general walks
on Rd under an appropriate analogue of (A1); the state-space assumption is
central to the decomposition idea in the proof of Theorem 2.1 (see Section 4),
but we believe that the method should extend to more general state-spaces
assuming an appropriate generalization of the isotropy condition (A1).

As mentioned above, condition (A1) is more general than it might first ap-
pear. In fact it is equivalent to the following.

(A1′) There exist κ > 0, and ki ∈ N, ni ∈ N for i ∈ {±1,±2, . . . ,±d} such that

min
x∈S

min
i∈{±1,...,±d}

P
[
ξt+ni − ξt = kisgn(i)e|i| | ξt = x

] ≥ κ (t ∈ Z+).

Proposition 2.1. Conditions (A1) and (A1′) are equivalent.

We prove Proposition 2.1 in Section 3. It seems unlikely that the condi-
tions (A1) and (A2) can be relaxed to any significant degree in Theorems 2.1
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and 2.2. If (A1) is absent, Theorem 2.1 may fail by the walk getting trapped in
a low-dimensional subspace. For example, if the only possible jumps of the walk
are in the ±e1 directions, it will be trapped on a line. Then one-dimensional
results (see e.g. [10]) imply that even for a mean drift of magnitude O(‖x‖−1)
the process can be transient in the positive e1 direction, and so will with pos-
itive probability never leave any cone with principal axis in the e1 direction,
contradicting Theorem 2.1.

In Theorem 2.2, some condition such as (A1) is needed to ensure that
lim supt→∞ ‖ξt‖ = +∞ a.s., or else the walk can get stuck in a finite ball
around the origin before the drift asymptotics take effect. We suspect that the
moment condition (A2) is close to optimal in Theorem 2.1. It seems likely that
in Theorem 2.2, (A2) can be replaced by a uniform bound on 1 + β + ε < 2
moments (ε > 0), by a more delicate analysis in Lemma 5.2 below. To avoid ad-
ditional complications, here we are satisfied with the uniform assumption (A2)
throughout.

Several open problems remain. Perhaps the most interesting, and the natu-
ral next question to address, is the study of the tails (or moments) of τα when
‖µ(x)‖ = O(‖x‖−1). It is not hard to see (for instance by comparison with
one-dimensional results such as [1,11]) that there exists a wide array of possible
tail behaviours for τα. The authors have studied the case d = 2, under some ad-
ditional assumptions, in [15]: of course, covariance structure of the increments
is crucial here (cf. [9]). In particular, in [15] we show that in d = 2, when
‖µ(x)‖ = o(‖x‖−1) the tails of τα are, to first order, the same as in the Brown-
ian motion case under assumptions on correlations (cf. Spitzer’s theorem [22]).
However, the general picture when ‖µ(x)‖ = O(‖x‖−1) is far from complete
even in d = 2.

2.5. Paper outline

The outline of the remainder of the paper is as follows. In Section 3 we
collect some preparatory results and prove Proposition 2.1 and Theorem 2.4.
Sections 4 and 5 are devoted to the proofs of Theorems 2.1 and 2.2 respectively.
The two proofs are essentially independent, so either of these two sections may
be read in isolation. In the first part of each of Sections 4 and 5 we give an
outline of the main ideas of the proofs before proceeding with the technical
details.

3. Preliminaries

In this section we collect some technical results that we need. The first is a
martingale-type criterion for proving P [T = ∞] > 0 for hitting times T . The
result is based on a well-known idea (see e.g. [6, Theorem 2.2.2] in the countable
Markov chain case).
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Lemma 3.1. Let (Xt)t∈Z+ be a stochastic process on R adapted to a filtration
(Ft)t∈Z+ . Suppose g : R→ [0,∞) and A ⊂ R (possibly infinite) are such that

E
[
g(Xt+1)− g(Xt) | Ft

] ≤ 0 on {Xt ∈ R \ A}, (3.1)

for all t ∈ Z+. Write g0 := infx∈A g(x). Then for x0 ∈ R \ A, on {X0 = x0}

P
[
min{t ∈ Z+ : Xt ∈ A} = ∞ | F0

] ≥ 1− g(x0)
g0

.

Proof. Let T = min{t ∈ Z+ : Xt ∈ A}, an (Ft)t∈Z+ -stopping time; we need
to show P [T = ∞] > 0. By (3.1), we have that g(Xt∧T ) is a supermartingale
adapted to (Ft)t∈Z+ . Moreover, g is nonnegative so g(Xt∧T ) converges a.s. to
some limit, say L. Then if X0 = x0 we have

g(x0) ≥ E
[
L

] ≥ E[
L1{T < ∞}] ≥ g0P

[
T < ∞]

,

which implies that P[T < ∞] ≤ g(x0)/g0, as required. 2

The following maximal inequality is Lemma 3.1 in [18].

Lemma 3.2. Let (Yt)t∈Z+ be a stochastic process on [0,∞) adapted to a fil-
tration (Ft)t∈Z+ . Suppose that Y0 = y0 and for some b ∈ (0,∞) and all t ∈ Z+

E
[
Yt+1 − Yt | Ft

] ≤ b -a.s..

Then for any x > 0 and any t ∈ N

P
[

max
0≤s≤t

Ys ≥ x
] ≤ (bt + y0)x−1.

Next we prove Proposition 2.1. The proof is elementary and we do not give
all the formal details.

Proof of Proposition 2.1. Clearly (A1) implies (A1′). So suppose that (A1′)
holds. The following four-step argument shows that (A1) follows.

(i) First we show that without loss of generality we may take n−i = ni

for each i. This is straightforward, since with positive probability the walk
sequentially takes n−i ‘jumps’ of size ki in the ei direction and also with positive
probability the walk sequentially takes ni ‘jumps’ of size k−i in the−ei direction.
In either case, the walk has moved a positive distance in time nin−i.

(ii) Next we show that we may take ki = k−i for each i. Fix i. In view of
part (i), we may take ni = n−i = n, say. Let

si := (ki + k−i)max{ki, k−i}.
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Without loss of generality, we may suppose k−i ≥ ki. Then each of the follow-
ing two events has positive probability: (a) the walk can perform (ki + k−i)k−i

successive ‘jumps’ of size ki in the ei direction; (b) the walk can perform
(ki + k−i)ki successive ‘jumps’ of size k−i in the −ei direction followed by
(ki + k−i)(k−i − ki) successive ‘jumps’ of size ki in the ei direction. In either
case (a) or (b), the walk ends up at distance (ki + k−i)kik−i from its starting
point after time n(ki + k−i)k−i.

(iii) Next we show that we can take ni = n−i = n for all i. Given parts (i)
and (ii), we may take ki = k−i and ni = n−i for each i. Set n :=

∏
i ni. For

any i, the walk has positive probability of performing in succession n/ni ‘jumps’
of size ki in either of the ±ei directions. Such an event takes a total time n and
leads to a positive displacement, equal in opposite directions.

(iv) Finally we show that we may take ki = k−i = k for all i. Given parts
(i)–(iii) we can take ki = k−i and ni = n for all i. Set r :=

∏
i ki. Then for

any i, with positive probability the walk can perform 2r/ki ‘jumps’ of size ki

in the direction ±ei, taking time 2nr/ki. Then in time 2n(r/ki)(ki − 1) (an
even multiple of n) the walk can go back and forth to achieve an additional net
displacement of 0. The walk is then at distance 2r from its starting point after
a total time 2nr. Thus (A1) holds with n0 = 2nr and k = 2r. This completes
the proof. 2

Finally for this section, we give the proof of Theorem 2.4.

Proof of Theorem 2.4. Suppose β = 1. Suppose we are in case (a), so that
µ(x) = c‖x‖−1e1. Then Theorem 2.1 applies and P[τα < ∞] = 1 for any
α ≤ π/2. Now suppose we are in case (b), so that µ(x) = cx−1

1 e1. In this case
we have for any α ∈ (0, π/2)

0 < cos α ≤ inf
x∈Wd(e1;α)

x1

‖x‖ ≤ sup
x∈Wd(e1;α)

x1

‖x‖ ≤ 1,

so that (2.1) holds throughout Wd(e1; α). It follows from Theorem 2.1 that
P [τα < ∞] = 1 for α < π/2. Finally consider τπ/2. Let Xt = ξt · e1; then
τπ/2 = min{t ∈ Z+ : Xt ≤ 0}. From our conditions on Ξ in this case we have

E
[
Xt+1 −Xt | ξt = (x1, x2)

]
= cx−1

1 ,

sup
x∈Wd(e1;π/2)

E
[
(Xt+1 −Xt)2+ε | ξt = x

]
< ∞.

Thus we can apply results of Lamperti [10, Theorem 3.2] to Xt to conclude that
P [τπ/2 = ∞] > 0 for c > c0 where

c0 =
1
2

sup
x∈Wd(e1;π/2)

E
[
(Xt+1 −Xt)2 | ξt = x

] ∈ (0,∞).

This completes the proof. 2
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4. Finite exit times: proof of Theorem 2.1

4.1. Outline of the proof

We show in this section that Theorem 2.1 holds: under the conditions of the
theorem, with probability 1 the random walk Ξ will leave any cone Wd(u; α),
α ∈ (0, π) after a finite time. There are several steps to the proof but the overall
scheme is based on some intuitive ideas, which we now sketch.

The basic element to the proof of Theorem 2.1 is Lemma 4.8, which says
that, roughly speaking, starting in any small cone there is positive probability,
uniform in the current position of the walk, that the walk hits a neighbouring
small cone. To prove this result we need to study hitting-time properties of the
walk. Specifically, we need to show that there is a good probability that the
walk hits a reasonably-sized set at distance of the order of ‖x‖ starting from x.
The conditions (A1), (A2), and (2.1) are of course crucial here.

In view of (A1) it is natural to work with the ‘n0-skeleton’ process (ξtn0)t∈Z+ ,
which we denote Ξ∗. In Section 4.2 we define a decomposition of the walk Ξ∗

based on the regularity condition (A1). The basic idea is that since, by (A1),
every jump of the walk Ξ∗ has positive probability of being one of ±kei, we can
extract a symmetric random walk from Ξ∗, leaving a residual process that retains
some of the regularity of the original walk, despite no longer being Markovian.

Next, in Section 4.3, we prove our basic hitting-time estimates. The idea
now is to treat the two parts of the decomposition separately. The symmetric
process is more straightforward to study, and is the part of the walk that will
ensure that there is good probability of the walk hitting a particular set some
distance away without returning too close to the origin. The technical estimate
here is Lemma 4.4.

The next step is to show that the residual process, which has inherited
appropriate drift conditions from Ξ, will with good probability not travel too
far in the same time, so that the walk as a whole has good probability of hitting
the desired set. There are complications introduced here as the residual process
depends on the realization of the symmetric process; thus we condition on that
in our estimates. Under suitable behaviour of both processes, the walk stays far
enough from the origin that the drift remains controlled. The technical estimate
here is Lemma 4.5.

Based on the estimates for the two parts of our decomposition, we show (in
Lemma 4.7) that Ξ hits a suitable set with positive probability. In Section 4.4
we translate this result into our exit-from-cones result, Lemma 4.8, which we
use to complete the proof of Theorem 2.1. Our three conditions (A1), (A2),
and (2.1) all appear very naturally in this scheme. Having outlined the idea, we
now proceed with the technical work.
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4.2. Decomposition

In view of condition (A1), it is convenient to consider the random walk at
time spacing n0, i.e. the embedded (‘skeleton’) process (ξtn0)t∈Z+ . For nota-
tional convenience, set

ξ∗t := ξtn0 (t ∈ Z+).

Then Ξ∗ = (ξ∗t )t∈Z+ is a Markovian random walk on S ⊆ Zd with transition
probabilities

P
[
ξ∗t+1 = y | ξ∗t = x

]
= P

[
ξn0 = y | ξ0 = x

]
,

and ξ∗0 = ξ0. The walk Ξ∗ inherits regularity from Ξ, as the next result shows.

Lemma 4.1.

(i) If (A1) holds, then

min
x∈S

min
i∈{1,...,d}

E
[|(ξ∗t+1 − ξ∗t ) · ei|2 | ξ∗t = x

] ≥ 2κk2 > 0. (4.1)

(ii) If (A2) holds, then

max
x∈S

E
[‖ξ∗t+1 − ξ∗t ‖2 | ξ∗t = x

] ≤ n2
0B0 < ∞. (4.2)

(iii) If (A2) and (2.1) hold, then
∥∥E[

ξ∗t+1 − ξ∗t | ξ∗t = x
]∥∥ = O(‖x‖−1). (4.3)

Proof. By time-homogeneity, it suffices to simplify notation by taking t = 0
throughout. Part (i) is immediate from (A1). For part (ii), we have by the
triangle inequality that E [‖ξ∗1 − ξ∗0‖2 | ξ∗0 = x] is equal to

E
[∥∥∥∥

n0∑

j=1

(ξj − ξj−1)
∥∥∥∥

2 ∣∣∣ ξ0 = x
]
≤ E

[( n0∑

j=1

‖ξj − ξj−1‖
)2 ∣∣∣ ξ0 = x

]

=
n0∑

j=1

n0∑

k=1

E
[‖ξj − ξj−1‖ ‖ξk − ξk−1‖ | ξ0 = x

]

≤
( n0∑

j=1

(
E

[‖ξj − ξj−1‖2 | ξ0 = x
])1/2

)2

,

by the Cauchy – Schwarz inequality. Here for j ≥ 1, by the Markov property,

E
[‖ξj − ξj−1‖2 | ξ0 = x

]

=
∑

y∈S
E

[‖ξj − ξj−1‖2 | ξj−1 = y
]
P
[
ξj−1 = y | ξ0 = x

] ≤ B0,
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by (A2). Thus we obtain (4.2). Finally we prove part (iii). First we show that
the event

E(x) :=
{

max
0≤s≤n0

‖ξs − x‖ >
1
2
‖x‖

}

has small probability given ξ0 = x. For x ∈ Rd and t ∈ Z+, set Wx
s := ‖ξs−x‖2.

We have

E
[
Wx

s+1 −Wx
s | ξs = y

]
= E

[‖ξs+1 − ξs‖2 + 2(y − x) · (ξs+1 − ξs) | ξs = y
]

≤ B0 + 2‖y − x‖ ‖µ(y)‖,
using (A2). Now using (2.1) we see that there exists C ∈ (0,∞) such that

E
[
Wx

s+1 −Wx
s | ξs = y

] ≤ C(1 + ‖x‖−1‖y‖). (4.4)

Now define T (x) := min{s ∈ Z+ : Wx
s > ‖x‖2/4}. Note that for s < T (x),

‖x‖/2 ≤ ‖ξs‖ ≤ 3‖x‖/2. Then given ξ0 = x, on {s < T (x)} we have from (4.4)
that E [Wx

s+1 − Wx
s | ξs] ≤ 5C/2 < ∞. Hence we can apply Lemma 3.2 to

Wx
s∧T (x) to obtain

P
[

max
0≤s≤n0

Wx
s∧T (x) >

1
4
‖x‖2 | ξ0 = x

]
≤ C‖x‖−2,

for some C ∈ (0,∞). However T (x) ≤ n0 implies that

max
0≤s≤n0

Wx
s∧T (x) ≥ Wx

T (x) >
1
4
‖x‖2,

by definition of T (x). Hence

P
[
E(x) | ξ0 = x

]
= P

[
T (x) ≤ n0 | ξ0 = x

] ≤ C‖x‖−2. (4.5)

Now by partitioning on E(x) and applying the triangle inequality,
∥∥E[

ξ∗1 − ξ∗0 | ξ∗0 = x
]∥∥ (4.6)

≤
n0∑

s=1

∥∥E[
ξs − ξs−1 | Ec(x), ξ0 = x

]∥∥ +
n0∑

s=1

∥∥E[
(ξs − ξs−1)1{E(x)} | ξ0 = x

]∥∥,

where Ec(x) is the complementary event to E(x). Now using the elementary
inequality that for X a random d-vector ‖E [X]‖ ≤ dE‖X‖, we have that

∥∥E[
(ξs − ξs−1)1{E(x)} | ξ0 = x

]∥∥ ≤ dE
[‖ξs − ξs−1‖1{E(x)} | ξ0 = x

]
,

so that by Cauchy – Schwarz, (A2), and (4.5),
∥∥E [

(ξs − ξs−1)1{E(x)} | ξ0 = x
]∥∥

≤ d
(
E

[‖ξs − ξs−1‖2 | ξ0 = x
])1/2(P[E(x) | ξ0 = x

])1/2 ≤ C‖x‖−1,
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for some C ∈ (0,∞). On the other hand, on Ec(x) ∩ {ξ0 = x} we have from
(2.1) that

max
0≤s≤n0

∥∥E[
ξs − ξs−1 | Ec(x), ξ0 = x

]∥∥ ≤ max
y∈S: (1/2)‖x‖≤‖y‖≤(3/2)‖x‖

‖µ(y)‖−1,

which is again O(‖x‖−1). Combining the two estimates for the terms on the
right-hand side of (4.6) we obtain (4.3). 2

The next result establishes the decomposition. Specifically, we decompose
the jump of Ξ∗ at time t into a symmetric component (Vt+1), and a residual
component (ζt+1), such that at any time t only one of the two components is
present in a particular realization.

Lemma 4.2. Suppose (A1) holds. There exist sequences of random variables
(Vt)t∈N and (ζt)t∈N such that:

(i) the (Vt)t∈N are i.i.d. with V1 ∈ {0,±ke1, . . . ,±ked} and

P
[
V1 = 0

]
= 1− 2dκ, P

[
V1 = −kei

]
= P

[
V1 = +kei

]
= κ;

(ii) ζt+1 ∈ Zd with P [ζt+1 = 0 | Vt 6= 0] = 1 and

ζt+1 = (ξ∗t+1 − ξ∗t − Vt+1)1{Vt+1 = 0} = (ξ∗t+1 − ξ∗t )1{Vt+1 = 0}; (4.7)

(iii) we can decompose the jumps of Ξ∗ via

ξ∗t+1− ξ∗t = Vt+1 + ζt+1 = Vt+11{Vt+1 6= 0}+ ζt+11{Vt+1 = 0} (t ∈ Z+).
(4.8)

Proof. The statement of the lemma follows directly from (A1), but for clarity
let us give an explicit construction of the variables Vt and ζt. By the time-
homogeneity and Markov assumptions on Ξ (hence Ξ∗) for each x ∈ Zd there
exists a sequence of i.i.d. random vectors ∆x

1 , ∆x
2 , . . ., independent for each x,

such that we can realize ξ∗t+1 − ξ∗t as

ξ∗t+1 − ξ∗t =
∑

x∈S
∆x

t+11{ξ∗t = x}. (4.9)

Condition (A1) implies that

min
x∈S

P
[
∆x

t+1 = kei

] ≥ κ,

and similarly for −kei. It follows that we can write ∆x
t+1 = Vt+1 + ζx

t+1 where
Vt+1 is as described in part (i) of the lemma. Then (4.9) becomes

ξ∗t+1 − ξ∗t = Vt+1 +
∑

x∈S
ζx
t+11{ξ∗t = x};

this final sum we denote by ζt+1, and parts (ii) and (iii) of the lemma follow.
2
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For t ∈ N, (4.8) yields a decomposition for ξ∗t as

ξ∗t − ξ0 =
t∑

s=1

(Vs + ζs). (4.10)

Note that the residual increments ζ1, ζ2, . . . have a rather complicated struc-
ture (and are certainly not independent); however, they do inherit regularity
properties from Ξ, as we summarize in the next lemma.

Lemma 4.3. Suppose (A1) and (A2) hold, and ζt+1 is as in Lemma 4.2. Then

max
x∈S

E
[‖ζt+1‖2 | ξ∗t = x

] ≤ n2
0B0 < ∞ (4.11)

∥∥E[
ζt+1 | ξ∗t = x

]∥∥ =
∥∥E[

ξ∗t+1 − ξ∗t | ξ∗t = x
]∥∥. (4.12)

Proof. From (4.7) we have ‖ζt+1‖ ≤ ‖ξ∗t+1 − ξ∗t ‖ a.s., while conditioning on
ξ∗t = x, taking expectations on both sides of the first equality in (4.8) and
noting that E [Vt+1 | ξ∗t = x] = 0, we have

E
[
ζt+1 | ξ∗t = x

]
= E

[
ξ∗t+1 − ξ∗t | ξ∗t = x

]
.

These two facts combined with Lemma 4.1 yield the stated results. 2

4.3. Hitting-time estimates

Having established our decomposition, we will eventually use it to show
that under the conditions of Theorem 2.1, Ξ will exit any cone in any particular
direction with good probability: see Section 4.4 below. In order to establish this
result, the main ingredient will be the somewhat more specific Lemma 4.7 below,
which says that, under appropriate conditions, Ξ hits some suitable ball with
positive probability. In order to prove Lemma 4.7, we need to work separately
on the two parts of the decomposition. We deal with the residual process in
Lemma 4.5. First we study the symmetric process, building up to Lemma 4.4.

Set Y0 := 0 and for t ∈ N

Yt := Y0 +
t∑

s=1

Vs. (4.13)

The process (Yt)t∈Z+ is a symmetric, homogeneous random walk on Zd with
P [Yt = Yt−1] = P[Vt = 0] = 1− 2dκ < 1 and jumps of size k. For r > 0, y ∈ Rd

write Br(y) for the Euclidean d-ball Br(y) := {x ∈ Rd : ‖x − y‖ < r}; set
Br := Br(0). Let Λ ⊂ Rd be a convex set and r > 0. Define stopping times

σ(Λ) := min{t ∈ Z+ : Yt ∈ Λ}, ρ(r) := min{t ∈ Z+ : ‖Yt‖ ≥ r}. (4.14)
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Our first result is to show that with positive probability (uniformly in N) in
time εN2, for small enough ε, the symmetric walk Yt hits a subset of BN of
volume λNd before Bh0N , where λ > 0 is fixed and h0 depends only on the
parameters in condition (A1).

Lemma 4.4. Let d ≥ 2. Let N ≥ 1. Let ΛN ⊆ BN be a convex set with d-
dimensional volume at least λNd for some λ > 0. Then with σ and ρ as defined
at (4.14), there exist constants (not depending on N) N1 ≥ 1, h0 ∈ [2−1/2,∞),
and ε1 ∈ (0, 1) such that for all N ≥ N0, any h ≥ h0, and any ε ∈ (0, ε1)

P
[
σ(ΛN ) ≤ bεN2c ∧ ρ(hN)

] ≥ δ

for some δ > 0 depending only on ε, k, κ, λ and d, but not on N .

Proof. Let ε > 0. Note that P [σ(ΛN ) ≤ bεN2c] ≥ P[YbεN2c ∈ ΛN ]. By the
standard multivariate central limit theorem for sums of i.i.d. random vectors,
and the fact that E [(V1 · e1)2] = 2k2κ by Lemma 4.2 (i), we have that for
measurable A ⊂ Rd

P
[
(2k2κt)−1/2Yt ∈ A

] −→ (2π)−d/2

∫

A

exp{−‖x‖2/2}dx,

as t →∞. Taking A = (2k2κt)−1/2ΛN and t = bεN2c, we have that the volume
of A is at least (2k2κε)−1/2λ, so that for some N1 ≥ 1 and all N ≥ N1

P
[
YbεN2c ∈ ΛN

] ≥ 1
2
(2π)−d/2(2k2κε)−1/2λ exp

{
− 1

2
(2k2κεN2)−1 sup

x∈ΛN

‖x‖2
}

≥ 1
2
(2π)−d/2(2k2κε)−1/2λ exp

{
− 1

4k2κε

}
, (4.15)

since ΛN ⊆ BN . On the other hand, we claim that for any r > 0 and t ∈ N,

P
[
ρ(r) ≤ t

]
= P

[
max
0≤s≤t

‖Ys‖ ≥ r
] ≤ 4d exp

{
− r2

2dk2t

}
. (4.16)

To obtain the inequality in (4.16), note that

P
[

max
0≤s≤t

‖Ys‖ ≥ r
] ≤ dP

[
max
0≤s≤t

|Ys · e1| ≥ d−1/2r
]
,

and then combine inequalities of Lévy (see e.g. [7, p. 139]) and Hoeffding (see
e.g. [7, p. 120]) on sums of i.i.d. mean-zero bounded random variables to obtain

P
[

max
0≤s≤t

|Ys · e1| ≥ d−1/2r
] ≤ 2P

[|Yt · e1| ≥ d−1/2r
] ≤ 4 exp

{
− r2

2dk2t

}
.
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Hence combining (4.15) and the r = hN , t = bεN2c case of (4.16)

P
[{ρ(hN) ≤ bεN2c} ∪ {σ(ΛN ) > bεN2c}]

≤ 1− 1
2
(2π)−d/2(2k2κε)−1/2λ exp

{
− 1

4k2κε

}
+ 4d exp

{
− h2

2dk2ε

}
≤ 1− δ,

for some δ > 0, not depending on N , if we choose h ≥ h0 := (d/κ)1/2 ≥ 2−1/2

and ε > 0 small enough. The statement of the lemma follows. 2

Let Z0 := 0 and for t ∈ N let

Zt := Z0 +
t∑

s=1

ζs. (4.17)

Thus (Zt)t∈Z+ is the residual part of the process (ξ∗t )t∈Z+ after the symmetric
process (Yt)t∈Z+ has been extracted. Indeed, with Yt, Zt as defined at (4.13),
(4.17) we have from (4.10) that for t ∈ N

ξ∗t − ξ0 = Yt + Zt. (4.18)

We next show that with good probability the residual process (Zt)t∈Z+ does
not exit from a suitable ball around 0 by time bεN2c. By construction the
process (Zt)t∈Z+ depends upon (Vt)t∈N because the distribution of ζt+1 depends
upon the value of ξ∗t . For t ∈ N, let ΩV (t) := {0,±kei, . . . ,±ked}t and let
ωV ∈ ΩV (t) denote a generic realization of the sequence (V1, . . . , Vt). For r > 0
define

ΩV,r(t) = {ωV ∈ ΩV (t) : t < ρ(r)(ωV )},
i.e., the set of those paths ωV for which ‖Ys‖ < r for all s ≤ t. Our next result,
Lemma 4.5, gives control over the deviations of Zt. The choice of 3/4 as the
lower bound in Lemma 4.5 is fairly arbitrary: any lower bound in (0, 1) can be
obtained for ε small enough, but 3/4 is good enough for us.

Lemma 4.5. Let h ∈ (0,∞). Suppose (A1) and (A2) hold and that for some
K0 ∈ (0,∞)

max
x∈S∩B(1+h)N (ξ0)

∥∥E[
ξ∗t+1 − ξ∗t | ξ∗t = x

]∥∥ ≤ K0N
−1, (4.19)

for all N ≥ 1. Let c ∈ (0, 1/2]. There exists ε2 > 0 not depending on N
(but depending on c and K0) such that for all ε ∈ (0, ε2), all N ≥ 1, and all
ωV ∈ ΩV,hN (bεN2c)

P
[

max
0≤t≤bεN2c

‖Zt‖ ≤ cN | (V1, . . . , VbεN2c) = ωV , Z0 = 0
] ≥ 3

4
.
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Proof. Let c ∈ (0, 1/2]. For the duration of this proof, define the stopping time

τ0 := min{t ∈ Z+ : ‖Zt‖ > cN}.

For the duration of this proof, let Gt = σ(ξ∗0 , ξ∗1 , . . . , ξ∗t , V1, . . . , Vt). Then
ζ1, . . . , ζt and Z0, Z1, . . . , Zt are Gt-measurable, and τ0 is a (Gt)t∈Z+ stopping
time. Consider the stopped square-deviation process defined for t ∈ Z+ by
Wt := ‖Zt∧τ0‖2; Wt is then Gt-adapted. Suppose that t ≤ bεN2c. On the event
{τ0 > t} we have that

Wt+1 −Wt = ‖Zt+1‖2 − ‖Zt‖2
= ‖Zt+1 − Zt‖2 + 2(Zt+1 − Zt) · Zt = ‖ζt+1‖2 + 2ζt+1 · Zt,

while on {τ0 ≤ t}, Wt+1 −Wt = 0. So conditioning on Gt and taking expecta-
tions, we obtain

E
[
Wt+1 −Wt | Gt

]
=

(
E

[‖ζt+1‖2 | Gt

]
+ 2E

[
ζt+1 · Zt | Gt

])
1{t < τ0}. (4.20)

The first term on the right-hand side of (4.20) is at most

E
[∥∥ζt+1‖2 | Gt

]
= E

[∥∥ζt+1‖2 | ξ∗t , Vt+1

]
= O(1),

by (4.11). For the second term on the right-hand side of (4.20), since Zt is a
measurable function of Gt,

∣∣E[
ζt+1 · Zt | Gt

]∣∣1{t < τ0} ≤ ‖Zt‖
∥∥E[

ζt+1 | Gt

]∥∥1{t < τ0}
≤ cN

∥∥E[
ζt+1 | Gt

]∥∥1{t < τ0}, (4.21)

by the definition of τ0. Now we have
∥∥E[

ζt+1 | Gt

]
1{t < τ0}

∥∥ ≤ ess sup
A∈Gt: t<τ0(A)

∥∥E[
ζt+1 | ξ∗t = ξ∗t (A), Vt+1 = Vt+1(A)

]∥∥

≤ ess sup
A∈Gt: t<τ0(A)

∥∥E[
ζt+1 | ξ∗t = ξ∗t (A), Vt+1 = 0

]∥∥,

since, by (4.7), ζt+1 = ζt+11{Vt+1 = 0}. By the same fact,

E
[
ζt+1 | Vt+1 = 0, ξ∗t

]
=

(
P
[
Vt+1 = 0

])−1E
[
ζt+1 | ξ∗t

]

= (1− 2dκ)−1
∥∥E[

ζt+1 | ξ∗t
]∥∥,

by Lemma 4.2(i). Combining the last two displayed equations, we have that
there exists C = C(d, κ) < ∞ such that

∥∥E[
ζt+1 | Gt

]∥∥1{t < τ0} ≤ C ess sup
A∈Gt: t<τ0(A)

∥∥E[
ζt+1 | ξ∗t = ξ∗t (A)

]∥∥.
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Now suppose ωV ∈ ΩV,hN (bεN2c). Then from (4.18)

max
0≤s≤t

‖ξ∗s − ξ0‖ ≤ max
0≤s≤t

‖Zs‖+ max
0≤s≤t

‖Ys‖ ≤ cN + hN ≤ (1 + h)N

on {(V1, . . . , VbεN2c) = ωV , t < τ0}. In particular, using (4.12), this implies that

ess sup
A∈Gt: t<τ0(A), ωV (A)=ωV

∥∥E[
ζt+1 | ξ∗t = ξ∗t (A)

]∥∥

≤ sup
x∈B(1+h)N (ξ0)

∥∥E[
ξ∗t+1 − ξ∗t | ξ∗t = x

]∥∥.

Hence, assuming (4.19), we obtain, for any ωV ∈ ΩV,hN (bεN2c),
∥∥E[

ζt+1 | ωV ,Gt

]∥∥1{t < τ0} ≤ CK0N
−1. (4.22)

Thus combining (4.21) and (4.22) we have
∣∣E[

ζt+1 · Zt | ωV ,Gt

]∣∣1{t < τ0} ≤ d1/2cNCK0N
−1 = Cd1/2cK0. (4.23)

Hence from (4.20) with (4.23) and (4.11) we have, a.s.,

sup
ωV ∈ΩV,hN (bεN2c)

E
[
Wt+1 −Wt | ωV ,Gt

] ≤ Cd1/2cK0 + n2
0B0 =: B1,

where B1 ∈ (0,∞) does not depend on ε or N . Then applying Lemma 3.2 we
have

P
[

max
0≤t≤bεN2c

Wt ≥ c2N2 | ωV

] ≤ B1εN
2

c2N2
= c−2εB1.

So taking ε2 = c2/(4B1) and ε ∈ (0, ε2), we have

P
[

max
0≤t≤bεN2c

‖Zt∧τ0‖ ≤ cN | ωV

]
= P

[
max

0≤t≤bεN2c
Wt ≤ c2N2 | ωV

] ≥ 3
4
. (4.24)

But since, by definition of τ0, ‖Zτ0‖ > cN , we have that the left-hand event
in (4.24) implies that τ0 > bεN2c, and so we obtain the required result. 2

Lemmas 4.4 and 4.5 give us control over the two parts of the decomposition
of Ξ∗. Our final ingredient before we can prove the main result of this section
(Lemma 4.7) is the next lemma, which gives control over the deviations of Ξ
from the embedded process Ξ∗.

Lemma 4.6. Suppose that (A2) holds. There exist ε3 > 0 and N2 ≥ 1 such
that for all ε ∈ (0, ε3), all N ≥ N2, and all ωV ∈ ΩV (bεN2c)

P
[

max
0≤s≤n0bεN2c

‖ξs − ξbs/n0c‖ ≤
N

8

∣∣∣ (V1, . . . , VbεN2c) = ωV

]
≥ 3

4
.
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Proof. We have

max
0≤s≤n0bεN2c

‖ξs − ξbs/n0c‖ ≤ max
0≤r≤bεN2c

max
1≤s≤n0−1

‖ξn0r+s − ξn0r‖,

where, by the triangle inequality,

max
1≤s≤n0−1

‖ξn0r+s − ξn0r‖ = max
1≤s≤n0−1

∥∥∥∥
s−1∑

j=0

ξn0r+j+1 − ξn0r+j

∥∥∥∥

≤
n0−2∑

j=0

‖ξn0r+j+1 − ξn0r+j‖.

Thus to complete the proof of the lemma, we need to show that

P
[

max
0≤r≤bεN2c

n0−2∑

j=0

‖ξn0r+j+1 − ξn0+r+j‖ >
N

8

∣∣∣ ωV

]
<

1
4
, (4.25)

for suitable ε, N and all ωV . For each r we have, by Cauchy – Schwarz,

E
[( n0−2∑

j=0

‖ξn0r+j+1 − ξn0+r+j‖
)2 ∣∣∣ ωV

]

≤
( n0−2∑

j=0

(
E

[‖ξn0r+j+1 − ξn0r+j‖2 | ωV

])1/2
)2

,

and the expectation here satisfies

E
[‖ξn0r+j+1 − ξn0r+j‖2 | ωV

]

=
∑

x∈S
E

[‖ξn0r+j+1 − ξn0r+j‖2 | ξn0r+j = x
]
P
[
ξn0r+j = x | ωV

] ≤ B0,

by (A2). Hence, by Boole’s inequality followed by Markov’s inequality, the
probability on the left-hand side of (4.25) is bounded above by

∑

0≤r≤bεN2c
P
[ n0−2∑

j=0

‖ξn0r+j+1 − ξn0+r+j‖ >
N

8

∣∣∣ ωV

]
≤ 64N−2(1 + bεN2c)n2

0B0.

This is less than 1/4 for ε < 2−9n−2
0 B−1

0 and N ≥ 25n0B0; thus we verify (4.25)
and the lemma follows. 2

Combining the preceding three lemmas, we can prove the key result of this
section, Lemma 4.7, which says that with positive probability Ξ hits a sizable
d-ball in BN (ξ0) before it leaves the ball B2h0N (ξ0); this is the next result.
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Lemma 4.7. Let d ≥ 2, N ≥ 1, and ξ0 ∈ S. Suppose that (A1) and (A2)
hold and that for some K0 ∈ (0,∞) (4.19) holds with h = 2h0, where h0 is the
constant in Lemma 4.4. Let c ∈ (0, 1) and ΛN = BcN/4(ξ0 + y) ⊆ BN (ξ0), for
some y ∈ B3N/4. Then there exists δ > 0 and N0 ≥ 1 (neither depending on N)
such that for all N ≥ N0

P
[
Ξ hits ΛN before exit from B2h0N (ξ0)

] ≥ δ.

Proof. Let ε0 = ε1 ∧ ε2 ∧ ε3 and N0 = max{N1, N2}. Take ε ∈ (0, ε0) and
N ≥ N0. Let c ∈ (0, 1). Let h0 ≥ 2−1/2 be as in Lemma 4.4. Fix y ∈ B3N/4 so
that ΛN = BcN/4(ξ0 + y) ⊆ BN (ξ0). Also let Λ′N = BcN/8(ξ0 + y) ⊆ BN (ξ0).
Define the events

G :=
{

max
0≤t≤bεN2c

‖Zt‖ ≤ c
N

8

}
, H :=

{
σ(Λ′N ) ≤ bεN2c ∧ ρ(h0N)

}
,

I :=
{

max
0≤s≤n0bεN2c

‖ξs − ξbs/n0c‖ ≤
N

8

}
.

Write σ = σ(Λ′N ). Then on H, σ ≤ bεN2c and ‖Yσ − y‖1H ≤ cN/8 so that on
G ∩H

‖ξ∗σ − ξ0 − y‖ ≤ ‖Yσ − y‖+ ‖Zσ‖ ≤ cN/8 + cN/8 = cN/4.

Thus ξ∗σ = ξn0σ ∈ ΛN on G ∩ H. Next we need to control ‖ξs − ξ0‖ for s up
to n0bεN2c. For any t we have

max
0≤s≤n0t

‖ξs − ξ0‖ ≤ max
0≤s≤n0t

‖ξs − ξbs/n0c‖+ max
0≤s≤n0t

‖ξbs/n0c − ξ0‖. (4.26)

For t = bεN2c, the first term on the right-hand side of (4.26) is bounded by N/8
on I. For the second term on the right-hand side of (4.26), it follows from (4.18)
and the triangle inequality that

max
0≤s≤n0bεN2c

‖ξbs/n0c − ξ0‖1{G ∩H} ≤ max
0≤t≤bεN2c

‖ξ∗t − ξ0‖1{G ∩H}

≤ h0N + cN/8.

Thus, from (4.26),

max
0≤s≤n0t

‖ξs − ξ0‖1{G ∩H ∩ I} ≤ N/8 + h0N + cN/8 ≤ 2h0N,

since h0 ≥ 2−1/2. Hence (with ξ0 as given)

E :=
{
Ξ hits ΛN before exit from B2h0N (ξ0)

} ⊇ G ∩H ∩ I.
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H is determined by the realization ωV ∈ ΩV (bεN2c), and so (with ξ0 as given)

P
[
E

] ≥ P[
G ∩H ∩ I

]
=

∑

ωV ∈ΩV (bεN2c):H occurs

P
[
G ∩ I | ωV

]
P
[
ωV

]

=
∑

ωV ∈ΩV,h0N (bεN2c):H occurs

P
[
G ∩ I | ωV

]
P
[
ωV

]
,

by definition of H and ΩV,h0N (bεN2c). But from Lemma 4.5 with c = 1/8 and
Lemma 4.6 we have that P [G∩ I | ωV ] ≥ 1/2 for all ωV ∈ ΩV,h0N (bεN2c), since
ε < ε2 ∧ ε3 and N ≥ N2. Hence we obtain

P
[
E

] ≥ 1
2

∑

ωV ∈ΩV,h0N (bεN2c):H occurs

P
[
ωV

]
=

1
2
P
[
H

] ≥ δ/2 > 0,

applying Lemma 4.4, since ε < ε1 and N ≥ N1. 2

Remark. At first glance, one might hope to prove Lemma 4.7 by choosing ε
small enough in Lemmas 4.5 and 4.6 so that we can replace the lower bounds
of 3/4 there by something very close to 1, and then combine this with Lemma 4.4
to show that G∩H ∩ I (as in the proof above) occurs with positive probability
using a simple union bound. This does not work, however, since as ε gets small,
the δ in Lemma 4.4 gets smaller too. That is why we needed to use the more
sophisticated argument, conditioning on the path of Yt.

4.4. Exit from cones

The next result is essentially a restatement of Lemma 4.7 in the context in
which we will apply it to complete the proof of Theorem 2.1.

Lemma 4.8. Let d ≥ 2. Suppose that (A1) and (A2) hold. Suppose (2.1)
holds. Then for any c ∈ (0, 1), there exist A1 ∈ (0,∞) and δ > 0 such that

min
x∈S:‖x‖≥A1

min
y∈S:‖y−x‖≤(a0/2)‖x‖

P
[
Ξ hits B(ca0/6)‖x‖(y) | ξ0 = x

] ≥ δ,

where a0 ∈ (0, 1) is a constant that does not depend on c.

Proof. Suppose ξ0 = x ∈ S. Take h = 2h0, where h0 is the constant in
Lemma 4.4. Set N = (1/2(1 + h))‖x‖ and take ‖x‖ large enough so that
N ≥ 1. Now assuming (2.1), we have from (4.3) that for some C ∈ (0,∞)

∥∥E[
ξ∗t+1 − ξ∗t | ξ∗t = y

]∥∥ ≤ C‖y‖−1,

for all y ∈ S, so that, since (1 + h)N = ‖x‖/2,

sup
y∈S∩B(1+h)N (x)

∥∥E[
ξ∗t+1 − ξ∗t | ξ∗t = y

]∥∥ ≤ 2C‖x‖−1,
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uniformly in x. In other words, (4.19) holds for some K0 and all N ≥ 1. Take
a0 = 3/4(1 + h) < 1. Then ‖y − x‖ ≤ a0‖x‖/2 implies that ‖y − x‖ ≤ 3N/4.
Hence setting ΛN = B(ca0/6)‖x‖(y), where y ∈ B3N/4(x) and (ca0/6)‖x‖ = N/4,
Lemma 4.7 is applicable; therefore the result follows for all N ≥ N0, that is, for
‖x‖ ≥ 2(1 + 2h0)N0 = A1, say. 2

Now we can complete the proof of Theorem 2.1.

Proof of Theorem 2.1. We show that for arbitrary u ∈ Sd and arbitrary ε > 0,
Ξ eventually hits Wd(u; ε) in finite time with probability 1. Without loss of
generality, fix ε > 0 (small) and consider the cone Wd(e1; ε): we want to show
that eventually Ξ enters this cone. Given ε, with a0 the constant in Lemma 4.8,
take c = (4/a0) tan ε ∈ (0, 1), for ε small enough. Then let A1 be the constant
given by Lemma 4.8 with this choice of c. For any d and any ε, we can find a
finite set {u1 = e1,u2, . . . ,uk} ⊂ Sd and ε′ ∈ (0, ε) such that

BA1 ∪
( k⋃

j=1

Wd(uj ; ε)
)

= Rd,

but where
Wd(ui; ε′) ∩Wd(uj ; ε′) ∩ {x : ‖x‖ > A1} = ∅

for all i 6= j. Denote C0 := BA1 and for i ∈ {1, . . . , k}, Ci := Wd(ui; ε) \ C0,
C ′i := Wd(ui; ε′)\C0. If Ci∩Cj 6= ∅ for i 6= j, we say that i and j are neighbours.
For neighbours i and j, we have (for small enough ε) that in the notation of
Lemma 4.8, with c small enough, for any x ∈ Ci we can always find y with
‖y − x‖ ≤ (a0/2)‖x‖ such that B(ca0/6)‖x‖(y) ⊂ C ′j . Hence an application of
Lemma 4.8 yields that for neighbours i and j

P
[
Ξ hits Cj | ξt ∈ Ci

] ≥ δ > 0, (4.27)

where δ does not depend on i, j, or ξt.
Define a {0, 1, . . . , k}-valued stochastic process (Jt)t∈Z+ by

Jt := min{j : ξt ∈ Cj}.

Condition (A1) ensures that if Jt = 0 then with positive probability Jr > 0 for
some r > t. Moreover, (4.27) implies that uniformly in the location of ξt, there
is positive probability that after time t Ξ hits a neighbouring cone of CJt . The
state-space of Jt is finite, and by the above argument state 0 is not absorbing
while all the non-zero states communicate. It follows by standard ‘irreducibility’
arguments that Jt hits any non-zero state in finite time with probability 1, and
in particular JT = 1 for some T < ∞. This completes the proof. 2
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5. Limiting direction: proof of Theorem 2.2

5.1. Overview and notation

The aim of this section is to prove Theorem 2.2, and demonstrate the exis-
tence of a limiting direction. We will deduce Theorem 2.2 from the following
result on exit from cones for the walk Ξ, which says that under the conditions of
Theorem 2.2, provided Ξ starts ‘far enough inside’ a cone, there is probability
close to 1 that it remains in the cone for all time.

Theorem 5.1. Let d ∈ {2, 3, . . .} and u ∈ Sd. Suppose that (A2) holds and
that for some β ∈ (0, 1), c > 0, δ > 0, and A0 > 0, (2.2) and (2.3) hold. Let
α ∈ (0, π) and ε > 0. Then there exists α′ ∈ (0, α) (not depending on ε) and
A1 < ∞ such that for any x ∈ S ∩Wd(u; α′) with ‖x‖ > A1

P
[
τα = ∞ | ξ0 = x

] ≥ 1− ε.

The scheme for the proof of Theorem 5.1 is as follows. First, we prove a
two-dimensional version of Theorem 5.1, that says for any two-dimensional cone
(‘wedge’), under suitable conditions, P [τα = ∞] ≥ 1− ε. To prove Theorem 5.1
on exit from cones in general d ≥ 2, we use an argument based on projec-
tions down onto two-dimensional subspaces. In order to apply the projection
argument, we need to extend the two-dimensional walks that we consider from
Markov processes to processes that are adapted to some larger filtration. Thus
now we establish the relevant formalism, and then state our two-dimensional
result, Theorem 5.2.

For x = (x1, x2) ∈ R2 we use the notation x⊥ = (−x2, x1). Let (Ft)t∈Z+ be
a filtration. Suppose that Z = (Zt)t∈Z+ is an (Ft)t∈Z+ -adapted process on R2.
For what follows, we will typically take Ft to be σ(ξ1, . . . , ξt) for the random
walk Ξ on Zd and take Zt to be an appropriate projection onto R2 of ξt. For our
results on Z, we assume the following regularity condition analogous to (A2).

(A3) There exists B0 ∈ (0,∞) such that

max
t∈Z+

ess supE
[‖Zt+1 − Zt‖2 | Ft

] ≤ B0,

where the essential supremum is over all A ∈ Ft with P(A) > 0.

We are now ready to state the two-dimensional result that will allow us to
deduce Theorem 5.1 and hence Theorem 2.2.

Theorem 5.2. Let d = 2. Suppose that (A3) holds. Let α ∈ (0, π) and u ∈ Sd.
Suppose that for some β ∈ (0, 1), c > 0, δ > 0, A0 > 0, and some (Ft)t∈Z+ -
stopping time σ,

min
x∈S∩W2(u;α):‖x‖>A0

min
t∈Z+

ess inf
{Zt=x}∩{t<σ}

(‖x‖βE
[
Zt+1 − Zt | Ft

] · x̂) ≥ c, (5.1)
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and

max
x∈S∩W2(u;α):‖x‖>A0

max
t∈Z+

ess sup
{Zt=x}∩{t<σ}

(‖x‖β+δ
∣∣E[

Zt+1 − Zt | Ft

] · x̂⊥
∣∣) < ∞.

(5.2)

Fix ε > 0. Then there exist α′ ∈ (0, α) and A1 < ∞ such that for any x ∈
S ∩W2(u; α′) with ‖x‖ > A1

P
[
min{t ∈ Z+ : Zt∧σ /∈ W2(u;α)} = ∞ | F0

] ≥ 1− ε

on {Z0 = x}.

Remark. We could state Theorem 5.1 (and indeed Theorem 2.2) at a similar
level of generality as Theorem 5.2, i.e., replacing Ξ with a more general adapted
process Zt on Zd. However, this extra generality is unnecessary for the main
line of this section, which is the proof of Theorem 2.2.

5.2. Proof of Theorem 5.2

In this section we prove Theorem 5.2. For the moment we restrict our atten-
tion to the problem of exit from the quadrant Q := W2(e1;π/4) = {(x1, x2) ∈
R2 : x1 > 0, |x2| < x1}, where the computations are more transparent. It will
be convenient to use polar coordinates for x = (x1, x2), so that x1 = r cos ϕ,
x2 = r sin ϕ where r = ‖x‖ and ϕ is the angle between x and e1, measured
anticlockwise. For ν > 0 and x ∈ R2 set

hν(x) = hν(r, ϕ) := r−2ν(cos(2ϕ))−1 =
(x2

1 + x2
2)

1−ν

x2
1 − x2

2

. (5.3)

Then hν is positive in the interior of the quadrant Q and blows up on the
boundary ∂Q.

For s > 0 define the unbounded open subset of R2

Γν(s) := {x ∈ R2 : 0 < hν(x) < s}.

Then for t ≥ s > 0, Γν(s) ⊆ Γν(t) ⊆ Q, and for any s > 0, x1 →∞ as ‖x‖ → ∞
along any path in Γν(s). Note that the contours

γν(c) := {x ∈ Q : hν(x) = c} = ∂Γν(c),

c > 0, eventually leave any wedge W2(e1;β), β ∈ (0, π/4), and so approach the
boundary of Q in this angular sense. However, they do so relatively slowly. In
particular, an elementary calculation shows that for fixed ν and fixed c1 >c2 >0,
for x ∈ γν(c1)

inf
y∈γν(c2)

‖x− y‖ ∼ (c−1
2 − c−1

1 )‖x‖1−2ν , (5.4)
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Figure 2. Plot of segments of the contours γ0.2(c) for 4c ∈ {1, 2, 3, 4}. The
c = 1/4 contour cuts the x1-axis at (1/4)−1/0.4 = 32.

as ‖x‖ → ∞, so that the contours diverge the farther out into the wedge they
go. Also observe that γν(c) cuts the x1-axis at (c−1/(2ν), 0). See Figure 2 for an
example.

Given x ∈ Γν(s), we have from (5.3) that

‖x‖−2ν ≤ hν(x) ≤ s. (5.5)

We work with a truncated version of hν , namely h̃ν : R2 → [0, 1], defined
for x ∈ R2 by

h̃ν(x) :=

{
min{hν(x), 1} for x ∈ Q;
1 for x ∈ R2 \Q.

Observe that for s > 0

inf
x/∈Γν(s)

h̃ν(x) = min{1, s}. (5.6)

We will derive some basic properties of the functions hν and h̃ν . To this end,
we will use multi-index notation for partial derivatives on R2. For σ = (σ1, σ2) ∈
Z+ × Z+, Dσ will denote Dσ1

1 Dσ2
2 where Dk

j for k ∈ N is k-fold differentiation
with respect to xj , and D0

j is the identity operator. We also use the notation
|σ| := σ1 + σ2 and xσ := xσ1

1 xσ2
2 .
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Lemma 5.1. Let ν ∈ (0, 1) and s ∈ (0, 1). Then for x ∈ Γν(s) and y = (y1, y2)

2∑

j=1

yjDjhν(x) = −2ν‖x‖−1hν(x)
(
(y · x̂)− 2ν−1x1x2‖x‖2ν−2hν(x)(y · x̂⊥)

)
.

(5.7)

Also there exists C ∈ (0,∞) such that for any x ∈ Γν(s) and y = (y1, y2)

∣∣∣∣
2∑

j=1

yjDjhν(x)
∣∣∣∣ ≤ C‖y‖‖x‖2ν−1hν(x). (5.8)

Moreover for any x ∈ Γν(s), as ‖x‖ → ∞

sup
σ:|σ|=2

|Dσhν(x)| = O
(‖x‖4ν−2hν(x)

)
. (5.9)

Proof. Let ν, s ∈ (0, 1). Directly from (5.3) we obtain

D1hν(x) =
2(1− ν)x1(x2

1 + x2
2)
−ν

x2
1 − x2

2

− 2x1(x2
1 + x2

2)
1−ν

(x2
1 − x2

2)2
,

D2hν(x) =
2(1− ν)x2(x2

1 + x2
2)
−ν

x2
1 − x2

2

+
2x2(x2

1 + x2
2)

1−ν

(x2
1 − x2

2)2
. (5.10)

Since for x = (r, ϕ) in polar coordinates, for any y = (y1, y2),

y1 = (y · x̂) cos ϕ− (y · x̂⊥) sin ϕ, and y2 = (y · x̂) sin ϕ + (y · x̂⊥) cos ϕ,

it follows from (5.10) that

2∑

j=1

yjDjhν(x) = −2ν(x2
1 + x2

2)
(1/2)−ν

x2
1 − x2

2

(y · x̂) +
4x1x2(x2

1 + x2
2)

(1/2)−ν

(x2
1 − x2

2)2
(y · x̂⊥)

= −2ν(x2
1 + x2

2)
(1/2)−ν

x2
1 − x2

2

(
y · x̂− 2ν−1x1x2‖x‖2ν−2hν(x)y · x̂⊥

)
,

which yields (5.7). Now from (5.7) we have that

∣∣∣∣
2∑

j=1

yjDjhν(x)
∣∣∣∣ ≤ C‖y‖(‖x‖−1hν(x) + hν(x)2‖x‖2ν−1

)

≤ C‖y‖‖x‖−1hν(x)
(
1 + hν(x)‖x‖2ν

)
,

which with (5.5) yields (5.8). Similarly, differentiating in (5.10) and using (5.5)
we obtain (5.9). 2
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We next show that when (5.1) holds, (h̃ν(Zt))t∈Z+ is a supermartingale
on Γν(s) for suitably small ν, s > 0. This is the next result.

Lemma 5.2. Suppose that (A3) holds. Suppose that for some β ∈ (0, 1), c > 0,
δ > 0, A0 > 0, and (Ft)t∈Z+-stopping time σ, (5.1) and (5.2) hold. Then there
exist ν, s ∈ (0, 1/2) such that for any t ∈ Z+

E
[
h̃ν(Zt+1)− h̃ν(Zt) | Ft

] ≤ 0

on {Zt ∈ Γν(s)} ∩ {t < σ}.
Proof. We suppose throughout that t < σ. Let ν > 0 be such that ν <
min{δ/2, (1 − β)/8} < 1/8. Let s ∈ (0, 1/2), to be fixed later. Note that,
by (5.5), if x ∈ Γν(s) we have ‖x‖ > s−1/(2ε) and h̃ν(x) = hν(x). Also note
that since h̃ν(x) ∈ [0, 1] for all x, we have

∣∣(h̃ν (x + y)− h̃ν(x)
)− 1{‖y‖ < ‖x‖1−3ν}(h̃ν(x + y)− h̃ν(x)

)∣∣
≤ 1{‖y‖ ≥ ‖x‖1−3ν}, (5.11)

for any x,y ∈ R2. We have from (5.4) that there exists C1 = C1(s, ν) ∈ (0,∞)
such that for all x ∈ Γν(s) with ‖x‖ > C1, for any y with ‖y‖ < ‖x‖1−3ν ,
x + y ∈ Γν(2s) ⊂ Γν(1). Thus Taylor’s theorem with Lagrange form for the
remainder implies that for x ∈ Γν(s) with ‖x‖ > C1,

1 {‖y‖ < ‖x‖1−3ν}(h̃ν(x + y)− h̃ν(x)
)

(5.12)

= 1{‖y‖ < ‖x‖1−3ν}(hν(x + y)− hν(x)
)

= 1{‖y‖ < ‖x‖1−3ν}
2∑

j=1

yj(Djhν)(x)

+
1
2

1{‖y‖ < ‖x‖1−3ν}
∑

σ:|σ|=2

yσ(Dσhν)(x + ηy),

for some η = η(y) ∈ (0, 1). Taking x = Zt and y = Zt+1 − Zt and combin-
ing (5.11) and (5.12) we have that on {Zt ∈ Γν(s), ‖Zt‖ ≥ C1},

E
[
h̃ν(Zt+1)− h̃ν(Zt) | Ft

]
(5.13)

= E
[
1{‖y‖ < ‖x‖1−3ν}

2∑

j=1

yj(Djhν)(x)
∣∣∣Ft

]

+
1
2
E

[
1{‖y‖ < ‖x‖1−3ν}

∑

σ:|σ|=2

yσ(Dσhν)(x + ηy)
∣∣∣Ft

]

+ KP
[‖y‖ ≥ ‖x‖1−3ν | Ft

]
,
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where |K| ≤ 1.
We now deal with each of the terms on the right-hand side of (5.13) in

turn. For the final term on the right-hand side of (5.13), the conditional form
of Markov’s inequality and (A3) give, for x = Zt and y = Zt+1 − Zt,

P
[‖y‖ ≥ ‖x‖1−3ν | Ft

] ≤ ‖x‖6ν−2E
[‖Zt+1 − Zt‖2 | Ft

] ≤ B0‖x‖6ν−2. (5.14)

The first term on the right-hand side of (5.13) may be written as

E
[ 2∑

j=1

yj(Djhν)(x)
∣∣∣Ft

]
− E

[
1{‖y‖ ≥ ‖x‖1−3ν}

2∑

j=1

yj(Djhν)(x)
∣∣∣Ft

]
,

where by (5.8) we have

∣∣∣∣E
[
1{‖y‖ ≥ ‖x‖1−3ν}

2∑

j=1

yj(Djhν)(x)
∣∣∣Ft

]∣∣∣∣

≤ C‖x‖2ν−1hν(x)E
[
1{‖y‖ ≥ ‖x‖1−3ν}‖y‖ | Ft

]
.

By Cauchy – Schwarz, this last expression is bounded by

C ‖x‖2ν−1hν(x)
(
P
[‖y‖ ≥ ‖x‖1−3ν | Ft

])1/2(E[‖y‖2 | Ft

])1/2

= O
(‖x‖5ν−2hν(x)

)
,

by (5.14) and (A3). For the second term on the right-hand side of (5.13), we
have from (5.9) that

∣∣∣∣E
[
1{‖y‖ < ‖x‖1−3ν}

∑

σ:|σ|=2

yσ(Dσhν)(x + ηy)
∣∣∣Ft

]∣∣∣∣

≤ C‖x + ηy‖4ν−2hν(x + ηy)1{‖y‖ < ‖x‖1−3ν} = O
(‖x‖4ν−2hν(x)

)
,

for x ∈ Γν(s) with ‖x‖>C1. Combining these calculations we obtain from (5.13)
that

E
[
h̃ν(Zt+1)− h̃ν(Zt) | Ft

]
= E

[ 2∑

j=1

yj(Djhν)(x) | Ft

]
+ O(‖x‖6ν−2), (5.15)

on {Zt = x} for x ∈ Γν(s) with ‖x‖ > C1, and where y = Zt+1 − Zt.
Now from (5.1) and (5.2) we have that for ‖x‖ > A0,

E
[
y · x̂ | Ft

] ≥ c‖x‖−β ,
∣∣E[

y · x̂⊥ | Ft

]∣∣ = O(‖x‖−β−δ).
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Hence taking expectations in (5.7), on {Zt = x} for x ∈ Γν(s) with ‖x‖ large
enough,

E
[ 2∑

j=1

yj(Djhν)(x)
∣∣∣Ft

]
≤ −2ν‖x‖−1hν(x)

[
c‖x‖−β + O(‖x‖2ν‖x‖−β−δ)

]

≤ −2ν‖x‖−1hν(x)‖x‖−β(c + o(1)), (5.16)

since ν < δ/2. Noting that, by (5.5), for x ∈ Γν(s) we can replace the
O(‖x‖6ν−2) term in (5.15) by O(‖x‖8ν−2hν(x)), we obtain from (5.15)
and (5.16)

E
[
h̃ν(Zt+1)− h̃ν(Zt) | Ft

]≤−2ν‖x‖−1hν(x)‖x‖−β
(
c + o(1) + O(‖x‖β+8ν−1)

)
,

which is negative for all ‖x‖ large enough, since ν < (β − 1)/8. Also, for
x ∈ Γν(s) we have from (5.5) that ‖x‖ ≥ s−1/(2ν). So taking s small enough,
the result follows. 2

Proof of Theorem 5.2. It suffices to consider wedges with principal axis in di-
rection e1. First we prove the theorem for the quadrant case, α = π/4. In this
case, Lemma 5.2 shows that h̃ν(Zt∧σ) is a supermartingale in Γν(s) for ν, s small
enough. Choose ν, s ∈ (0, 1/2) as in Lemma 5.2, take some K > 1 (to be fixed
later) and write Γ := Γν(s), Γ′ := Γν(s/K) ⊂ Γ for this choice of parameters.
Then by (5.6) and the definition of Γ′,

inf
x∈Q\Γ

h̃ν(x) ≥ s, and sup
x∈Γ′

h̃ν(x) ≤ s/K.

Thus Lemma 3.1 applies with Xt = Zt∧σ and g = h̃ν . Thus for any x ∈ Γ′,
on {Z0 = x},

P
[
min{t ∈ Z+ : Zt∧σ /∈ Γ} = ∞ | F0

] ≥ 1− s/K

s
= 1− 1

K
.

This in turn implies that for any x ∈ Γ′, on {Z0 = x},

P
[
min{t ∈ Z+ : Zt∧σ /∈ Q} = ∞ | F0

] ≥ 1− 1
K

, (5.17)

which we can make as close to 1 as we like by choosing K large enough. Finally,
since the contours γν(c) eventually leave any wedge inside Q, we note that given
K, ν, s and θ ∈ (0, π/4) we can find A1 large enough such that {x ∈ W2(e1; θ) :
‖x‖ > A1} ⊆ Γ′. This proves Theorem 5.2 for α = π/4, and hence any α ≥ π/4
too.

Now we extend this argument to angles α ∈ (0, π/4). For such α, let Lα

denote the linear transformation of R2 defined by

Lα =
(

cosα 0
0 sin α

)
.
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Then LαW2(e1; π/4) = W2(e1; α).
So consider the random walk Zt in wedge W2(e1; α). Given that condi-

tion (5.1) holds inW2(e1;α), the same condition also holds for the walk L−1
α (Zt)

on W2(e1; π/4). Hence the argument for (5.17) implies that for small enough
ν, s and for any x ∈ LαΓν(s/K), on {Z0 = x},

P
[
min{t ∈ Z+ : Zt∧σ /∈ W2(e1; α)} = ∞ | F0

] ≥ 1− 1
K

,

and we argue as previously. This completes the proof of the theorem. 2

5.3. Proof of Theorem 5.1

Proof of Theorem 5.1. The case d = 2 of Theorem 5.1 is immediate from The-
orem 5.2 on taking Zt = ξt and σ = ∞. So suppose d ∈ {3, 4, . . .}. It suf-
fices to work with cones with principal axis in the e1 direction and with angle
α > 0 small (but fixed). Write C = Wd(e1; α), d > 2. We want to show
that Ξ remains in C with probability close to 1 if it starts far enough ‘inside’
the cone. Let π1, . . . , πd−1 be two-dimensional projections from Rd defined by
πj : (x1, . . . , xd) 7→ (x1, xj+1), where j ∈ {1, . . . , d− 1}.

For R ⊆ Rd write πj(R) ⊆ R2 for its projection and Πj(R) for the in-
verse image π−1

j (πj(R)) ⊆ Rd, i.e., Πj(R) := {(x1, . . . , xd) ∈ Rd : (x1, xj+1) ∈
πj(R)}. For cones such as C, πj(C) is a wedge (a copy of W2(e1; α)) in R2

and Πj(C) is a copy of πj(C) × Rd−2. In particular, x ∈ ∩d−1
j=1Πj(C) implies

that x = (x1, . . . , xd) satisfies x1 > 0 and d − 1 linear inequalities each involv-
ing x1 and one of x2, . . . , xd. Thus ∩d−1

j=1Πj(C) is a convex rectilinear cone that
contains the circular cone Wd(e1; α). By an elementary geometrical argument,
and convexity, the rectilinear cone ∩d−1

j=1Πj(C) is contained in a circular cone
Wd(e1;α0) for some α < α0 < c(d)α, where c(d) is a constant depending only
on the dimension d.

In particular, this argument shows that there exists α′ ∈ (0, α) such that the
d-dimensional circular cone C ′ = Wd(e1; α′) ⊂ C satisfies

C ⊇
d−1⋂

j=1

Πj(C ′).

Thus the event

E :=
d−1⋂

j=1

{
πj(ξt) ∈ πj(C ′) for all t

}

implies that ξt ∈ C for all t, that is, τα = ∞. Thus it suffices to show that for
any ε > 0 we have P[E] ≥ 1− ε provided ξ0 ∈ C ′′ = Wd(e1;α′′), with ‖ξ0‖ large
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enough, for some α′′ ∈ (0, α′). Here

P
[
E

] ≥ 1−
d−1∑

j=1

P
[
πj(ξt) exits from πj(C ′)

]
. (5.18)

Let Z
(j)
t = πj(ξt) for j ∈ {1, . . . , d− 1}. Define the corresponding exit times

Tj = min{t ∈ Z+ : Z
(j)
t /∈ πj(C ′)},

so that ∩d−1
j=1{Tj = ∞} implies {τα = ∞}. Given ξ0 ∈ C ′′ we have that Z

(j)
0 ∈

πj(C ′′), which is a wedge strictly contained in πj(C ′). Thus Theorem 5.2 applies
with σ = τα, an (Ft)t∈Z+-stopping time. Hence there exist the putative α′′ ∈
(0, α′) and A1 such that if ‖Z0‖ > A1, with probability at least 1 − (ε/d) the
process Zt∧τα

remains inside π(C ′). The same argument applies to each of
the d − 1 probabilities in (5.18), and so we have that with probability at least
1 − ε, Z

(j)
t∧τα

∈ πj(C ′) for all t and all j. This implies that either (i) τα < ∞
and Z

(j)
τα ∈ πj(C ′) for all j, or (ii) τα = ∞. However, case (i) is impossible

since by construction Z
(j)
τα ∈ πj(C ′) for all j implies that ξτα ∈ C, which is a

contradiction by the definition of τα. Thus we conclude that P [τα = ∞] ≥ 1−ε.
This completes the proof. 2

5.4. Proof of Theorem 2.2

To complete the proof of Theorem 2.2, we deduce from Theorem 5.2 the
existence of a limiting direction.

Proof of Theorem 2.2. Fix α > 0 (small). We show that for any v ∈ Sd, there
is positive probability that the walk eventually remains within angle α of v.
Thus fix v ∈ Sd. With this α, let A1 and α′ ∈ (0, α) be the constants in the
ε = 1/2 case of Theorem 5.1. Then for some K = K(d, α′) ∈ N there exists a
set {u1, . . . ,uK−1,uK} ⊂ Sd such that

Rd =
K⋃

i=1

Wd(ui; α′),

i.e., we can write Rd as the union of K cones (labelled 1, . . . ,K) of interior half-
angle ε/2. Each of the cones Wd(ui; α′) sits inside the larger cone Wd(ui; α).
Write B := BA1 for the ball of radius A1. We use the notation

W ′
d(u; ·) := Wd(u; ·) \B.

Consider the stochastic process

Θ(t) := max
{
1 ≤ j ≤ K : ξt ∈ W ′

d(uj ;α′)
}
,
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with the convention that max ∅ := 0. Thus Θ(t) = 0 if and only if ξt ∈ B; other-
wise Θ(t) takes the label of one of the truncated cones W ′

d(uj ; α′) containing ξt.
Condition (A1) implies that

min
x∈S∩B

min
j
P
[
Ξ hits W ′

d(uj ; α′) | ξ0 = x
] ≥ p > 0.

It follows that a.s. there exist infinitely many times t1, t2, . . . for which ξtj
/∈ B.

For each tj , we have Θ(tj) > 0. If Θ(tj) > 0, Theorem 5.1 implies that with
probability at least 1/2 (uniformly in j and ξtj ) the walk remains in the larger
cone Wd(uΘ(tj); α) for all time t ≥ tj . It follows that: (i) eventually Ξ remains
in some cone Wd(uΘ;α), where Θ = limt→∞Θ(t); and (ii) P[Θ = j] > 0 for all
j ∈ {1, . . . , K}. One consequence of (i) is that ‖ξt‖ → ∞ a.s., i.e., the walk is
transient.

In other words, (i) says that, for any α > 0, eventually the walk remains
within angle α of some uΘ, so ξt/‖ξt‖ has an almost sure limit. Moreover, (ii)
says that with positive probability ξt/‖ξt‖ remains arbitrarily close to any of
the uj , and in particular to the given vector v. Thus the limit in question has
distribution supported on all of Sd. 2
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