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Abstract The conceptual design of an aircraft is a

challenging, highly multidisciplinary problem in which

optimisation is of great importance in order to rapidly

generate near-optimal solutions. Optimisation of the

aircraft structure is critical to the solution in order to

design an airframe of minimal mass whilst maintain-

ing strength under load. Hyper-heuristic optimisation

is a newly evolving field of research wherein the process

applied to an optimisation problem is itself optimised,

such that solution quality and process efficiency may be

improved. The infancy of hyper-heuristic optimisation

has resulted in limited application within the field of

aerospace design. This paper describes a framework for

the optimisation of the structural layout of an aircraft

concept thorough a hyper-heuristic approach, includ-

ing a case study to illustrate the influence of hyper-
heuristics on the problem. Results of the study indicate

an improvement in solution quality through the use of

hyper-heuristics and increased efficiency of execution

(CHECK RESULTS).

Keywords Aircraft conceptual design · Structural

optimisation · Hyper-heuristic optimisation

1 Introduction

The structural optimisation of an aircraft concept is

a process critical to the quality of the final design to

ensure satisfactory performance of the airframe under

load. This problem must be solved efficiently through
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the use of effective tools such that a near-optimal solu-

tion may be obtained rapidly without the requirement

for excessive computation.

Methodologies within the field of aerospace design

for multidisciplinary optimisation (MDO) were the sub-

ject of a review in Sobieszczanski-Sobieski and Haftka

(1997), where a growing tendency towards interdisci-

plinary optimisation was described. These findings were

supported by a similar later review in Allen et al. (2010),

with a focus on structural design. Aerospace MDO is

commonly concentrated on the aerodynamic and struc-

tural optimisation of the aircraft, where minimal drag

and weight typically form the respective objective func-

tions (Allen et al. 2010, Sobieszczanski-Sobieski and

Haftka 1997). An additional consideration of manufac-

turing and operating costs as a design objective is often

considered, albeit typically through a single objective

function with costs estimated using empirical formulae

(Gantois and Morris 2004, Kaufmann et al. 2010).

Challenges of MDO include increased computational

demands and complexities resulting from inherent in-

terdisciplinary tasks, commonly leading to the decom-

position or approximation of the problem, or a tendency

to focus on a single discipline of optimisation (Allen

et al. 2010, Sobieszczanski-Sobieski and Haftka 1997).

Such simplifications have often led to the consideration

of single aircraft section, e.g. wing, resulting in a failure

to obtain a complete aircraft configuration (Allen et al.

2010). An alternative approach to reduce high compu-

tational requirements uses a multi-tier framework for

optimisation, where an population-based optimisation

technique is initially employed to obtain an approxi-

mation of a near-optimal solution prior to the applica-

tion of a gradient-based technique for greater analysis

of the solution (Allen et al. 2010, Hansen and Horst

2008). Mathematical modelling of the problem is an-
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other method of reducing computational requirements,

wherein an approximate solution is obtained through

sampling the solution space (Neufeld et al. 2010).

A standard process of optimisation is commonly fol-

lowed within the field of aerospace design, wherein pe-

riods of initialisation, mission definition, and empir-

ical mass estimation are followed by optimisation of

the design within the selected disciplines (Allen et al.

2010). Such optimisation is either performed simultane-

ously or in series, such as through initial optimisation

of the aerodynamic profile prior to structural optimi-

sation within; commonly for a single, isolated loading

condition. Meta-heuristics such as genetic algorithms

(GA) are typically employed due to the typically unpre-

dictable, multi-modal solution space (Allen et al. 2010).

Optimisation of a problem, such as aerospace de-

sign, is highly dependent on the process followed, where

the development and tuning of high quality, problem-

specific optimisation techniques can be of great diffi-

cult in unpredictable domains without known solutions.

Such development commonly requires extensive inves-

tigation for the design and validation of the technique.

An emerging area of optimisation research is that of

hyper-heuristic optimisation, wherein the application of

techniques to a problem is evaluated, such that intelli-

gent application of optimisation techniques to a prob-

lem may be performed (Burke et al. 2010). Due to its

infancy, hyper-heuristic optimisation has seen limited

application to aerospace design, a domain where a stan-

dard optimisation procedure is commonly followed.

Hyper-heuristic optimisation is performed across two

independent domains: the problem and hyper-heuristic

domains, as illustrated by Fig. 1. Within the problem

domain, heuristics (wherein the term considers heuris-

tics and meta-heuristics) search for a near-optimal so-

lution to a given problem, and are labelled low-level

heuristics. Conversely, hyper-heuristics are applied in

the higher-level domain to improve the performance of

the optimisation process within the problem domain

and promote further solution improvement. Data flow

between the domains is restricted by a barrier to problem-

independent information to inform the hyper-heuristic

optimisation (Chakhlevitch and Cowling 2008). As such,

a hyper-heuristic was introduced as “an approach that

operates at a higher level of abstraction than current

meta-heuristic approaches” (Cowling et al. 2000).

The actions of hyper-heuristic optimisation are de-

pendent on the hyper-heuristic approach employed, in-

formed through a learning mechanism fed by data passed

across the domain barrier. Online reinforcement learn-

ing is commonly applied through rewarding improve-

ments in a specified hyper-heuristic objective function;

alternatively an offline trial period prior to the main

process may be performed in order to establish a set of

positive moves to be applied during the main process

(Burke et al. 2010). This objective function is formed

using measures of process performance within the prob-

lem domain, such as through that of a choice function

to measure improvements in solution and computation

effort required (Cowling et al. 2000).

Heuristic selection is a popular hyper-heuristic ap-

proach to choose the most appropriate low-level heuris-

tic for application within the problem domain from a

set of heuristics, leading to the alternative definition

of hyper-heuristics as “heuristics to choose heuristics”

(Burke et al. 2010). Such hyper-heuristics may be con-

structive or perturbative heuristics, where the former

creates a low-level heuristic through the intelligent ap-

plication of the heuristic set whereas the latter repeti-

tively applies the set in a local search approach to deter-

mine the best order of application (Burke et al. 2010).

Perturbative heuristics employ move acceptance to

define rules for the approval of selection, where com-

mon methods include all moves (AM), improving or

equal (IE), only improving (OI), and Monte Carlo (MC)

methods. AM permits selection regardless of perfor-

Low-level heuristic set

e.g. Monte Carlo, genetic algorithm

Optimisation problem

including fitness function, constraint violations

Domain barrier
Problem domain

Hyper-heuristic domain

Hyper-heuristic set

e.g. simple random, simulated annealing

Hyper-heuristic approach

including heuristic selection, parameter control

Fig. 1: Domains of hyper-heuristic optimisation



A hyper-heuristic approach to aircraft structural design optimisation 3

mance, OI only permits selection with an improvement

in solution quality, whilst IE permits low-level heuris-

tic selection for solutions of better or equal quality.

MC methods allow beneficial moves and randomly per-

mit negative moves with linearly (LMC) or exponen-

tially (EMC) decreasing probability. This method has

been combined with a counter of iterations since im-

provement (EMCQ) with promising results (Ayob and

Kendall 2003, Özcan et al. 2008).

An alternative hyper-heuristic approach is popula-

tion distribution, wherein solutions within the a prob-

lem domain population are distributed between mul-

tiple low-level heuristics for each generation. The dis-

tribution may be performance-based, random, or even,

such that each low-level heuristic optimises solely the

individuals within its assigned sub-population. In the

event that single-solution low-level heuristics are em-

ployed, each sub-population individual is optimised in-

dependently. This approach aims to overcome limita-

tions of individual heuristics through the availability of

alternatives (Rafique et al. 2011). However, care must

be taken to ensure adequately-sized sub-populations to

allow the opportunity for improvement by each low-

level heuristic. This concern can be addressed through

dynamic populations, such as in Arabas et al. (1994),

where the fitness-driven lifetime of individuals enabled

variation in population size.

Parameter control provides the ability to intelligently

adapt low-level heuristics during process execution, us-

ing the history of the problem to inform decisions (Eiben

et al. 2007). Such changes may be made either through

perturbation of existing values or selection of the better

performing settings, where the latter is referred to as

operator selection and is similar in nature to heuristic

selection (Burke et al. 2010, Maturana 2010).

The final hyper-heuristic approach discussed is per-

turbation analysis, wherein learning of the local solu-

tion space around a population individual is enabled

through the use of a memetic algorithm (Özcan et al.

2008). The frequency and duration of analysis, as well

as which solutions to perturb, are key to the success

of the approach. Common strategies perturb the entire

population, only improved solutions, or a proportion of

the population, continuing for a set duration or until

no further improvement is made (Ong et al. 2006).

The remainder of this paper is organised as follows:

Section 2 describes the hyper-heuristic approach devel-

oped to assist aircraft structural optimisation, with a

resulting optimisation framework presented in Section

3. A case study demonstration of the framework follows

in Section 4 prior to concluding remarks in Section 5.

2 Hyper-Heuristic Approach

A hyper-heuristic approach for application to the prob-

lem of aircraft structural optimisation has been devel-

oped such that solution quality and process efficiency

may be improved. This aims to reduce computational

requirements in order to obtain a solution of better

quality than that obtainable without the use of hyper-

heuristics. The hyper-heuristic approach reduces the

limitations of individual low-level heuristics whilst pre-

venting low-level heuristic dominance through heuristic

selection and population distribution. Parameter con-

trol enables dynamic adaption of the process, whilst

perturbation analysis provides the opportunity for learn-

ing of local solution space. Perturbative hyper-heuristics

are applied, in order to minimise the computational re-

sources required by the hyper-heuristic approach. As

such, these functions of the hyper-heuristic approach

can be grouped into the following aspects:

1. Selection of appropriate low-level heuristics for use

in the problem domain based on past performance;

2. Biased distribution of the population towards better

performing low-level heuristics;

3. Control of process parameters for promotion of more

efficient optimisation and increased solution quality;

4. Perturbation analysis of newly-discovered optima

for learning of local problem domain solution space;

5. Reinforcement learning performed online to enable

intelligent application of the above aspects.

The hyper-heuristic approach encourages solution

space exploration during early generations prior to later

promotion of convergence about the best solution found.

This reduces the likelihood of premature convergence

on local or infeasible optima, or a failure to adequately

sample the design space, whilst permitting analysis of

the solution space neighbouring good solutions.

2.1 Heuristic Selection

Heuristic selection ensures application of appropriate

low-level heuristics to the problem at a given point

during the process. Such appropriate selection enables

the encouragement of diversity during early generations

and convergence at later stages, achieved through the

ranking of low-level heuristics by the objective value of

best solution found and weighting based on typical be-

haviour of the heuristic, i.e. whether the encouragement

of exploration or convergence would be expected.

Low-level heuristics within the heuristic set are listed

by category in Table 1, chosen from those commonly

applied within the domain of aerospace design. Both

single-solution and population-based heuristics may be
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employed as low-level heuristics, where each individual

assigned to a single-solution heuristic is optimised inde-

pendently to maintain the principles of the technique.

Table 1: Low-level heuristics in problem domain

Category Low-level heuristic

Random Monte Carlo (MC)
Random immigration (RI)

Single-solution Hill climbing (HC)
Simulated annealing (SA)
Tabu search (TS)

Genetic algorithm Roulette wheel (RW)
Tournament selection (TO)
Breeder pool (BP)

Evolutionary algorithm Killer queen (KQ)
Differential evolution (DE)

Swarm intelligence Particle swarm (PSO)

A similar list of hyper-heuristics applied within the

hyper-heuristic domain is presented in Table 2. The

choice of hyper-heuristic for heuristic selection is made

by the engineer prior to execution of the process.

Table 2: Hyper-heuristics in hyper-heuristic domain

Heuristic Parameter Perturbation
Hyper-heuristic selection control analysis

Simple random (SR) x x
Peckish (PE) x x
Greedy (GR) x x
Hill climbing x x x
Simulated annealing x x x
Tabu search x x x
Roulette wheel x
Tournament selection x

Move acceptance controls heuristic selection, with

the AM, IE, and EMCQ methods available, as well as a

SA approach. The latter two are the preferred methods

as these permit negative moves with decreasing prob-

ability as the process progresses. As such, dominance

by a selection of low-level heuristics may be avoided

through the probabilistic selection of poorer performing

low-level heuristics. This is necessary as convergence-

encouraging low-level heuristics would be expected to

converge prematurely during early generations, thus per-

form poorly at this stage, whereas are desired to encour-

age convergence towards the end of the process.

2.2 Population Distribution

For generations with multiple low-level heuristics, heuris-

tic selection is performed for each individual within the

population, leading to individuals possessing a personal

low-level heuristic for their optimisation. This permits

a population to be distributed between a selection of

low-level heuristics, with greater probability of being

assigned to those with a better performance history.

The total population size is increased by a factor of

the number of permitted low-level heuristics to be se-

lected to ensure a sufficiently large sub-population per

low-level heuristic for improvement. This leads to in-

creased problem analysis with a subsequent penalty on

computation time, hence a limit is imposed on the max-

imum number of low-level heuristics per generation.

To prevent excessively large sub-population sizes, a

dynamic population size may be used to limit the size

of sub-populations and prevent low-level heuristic dom-

inance. For reductions in population size, randomly-

selected individuals are rejected from excessively large

sub-populations, whilst to increase the population size

in generations following such reductions, extra solutions

are generated randomly within the sub-population, thus

preserving population diversity.

2.3 Parameter Control

The application of the optimisation process is driven

through the control of a set of process parameters, listed

in Table 3. The prevention of premature convergence

on local optima through encouraged solution space ex-

ploration, improvement of convergence performance on

the obtained best solution, focus on key design variables

without requiring excessive computational expense, and

prevention convergence on an infeasible solution are the
aims of parameter control. As for heuristic selection, the

hyper-heuristic used for parameter control is selected

from Table 2 by the engineer prior to execution.

Table 3: Hyper-heuristically controlled parameters

Affected low- Range
Parameter level heuristic Min. Max.

Penalty coefficient - 0.25 2.00
Strand length - 4-bits 16-bits
Crossover probability RW, TO, BP 0.50 1.00
Crossover points RW, TO, BP 1 Random
Mutation probability RW, TO, BP 0.00 0.01
Breeder pool intake BP 0.10 0.30
Indigenous population RI 0.10 0.40
Differential weight DE 0.00 2.00
Crossover probability DE 0.00 1.00
Cognitive parameter PSO 1.40 2.10
Social parameter PSO 0.90 1.80
Inertia weight PSO 0.55 0.75
Cooling rate SA 0.00 0.95
Length of tabu list TS 0 100
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The ranges of parameters given in Table 3 are taken

from typical values (Clerc and Kennedy 2002, Coello

Coello 2000, Grefenstette 1986, Pedersen 2010), and

previous experiments to tune the optimisation process

to the given problem. The penalty coefficient controls

the severity of penalty applied to infeasible solutions to

promote convergence within the feasible solution space.

The binary chromosome strand length of converging

design variables are extended to allow optimisation of

greater accuracy, prior to the disabling of variables upon

convergence to permit focussed optimisation on those

failing to converge. The remaining parameters promote

diversity, exploration, or negative moves during early

generations of optimisation before discouraging such ac-

tions towards the end of the process.

2.4 Perturbation Analysis

Perturbation analysis is performed when better solution

are obtained through the use of a memetic algorithm

with Lamarckian evolution. This is achieved through

repeated perturbation of randomly-selected variables

and subsequent re-analysis of performance until no fur-

ther improvement in objective value is made. Compu-

tational requirements are minimised through the use of

single-solution low-level heuristics and the limitation of

analysis to only newly-discovered optima. The low-level

heuristic employed is chosen through heuristic selection

based on past performance for perturbation analysis.

2.5 Learning Mechanism

Continuous evaluation of process performance within

the problem domain is performed such that the above

aspects of the hyper-heuristic approach may be applied

intelligently. The objective function within the problem

domain is also used within the hyper-heuristic domain

for heuristic selection, population distribution and per-

turbation analysis. During parameter control, process

performance over a period of generations is compared

against that during previous periods, measured using

the following criteria:

1. Objective value of best solution;

2. Mean objective value;

3. Diversity of population;

4. Convergence rate.

These criteria form a choice function similar to that

of Cowling et al., albeit focussed on the encouragement

of population diversity or convergence rather than com-

putation time, employed as the hyper-heuristic objec-

tive function for parameter control. The function is de-

fined by Eq. 1 at generation t of n over a period of ∆t

generations, where Φ(X) represents the objective value,

σ(X) population variance, and δ(X) convergence rate

for X ∈ µ,∆t with a population of size µ

minΦ(X) + Φ(X) +

(
1− t

n

)
σ(X) + tδ(X) (1)

The mean variance of design variables is used in

order to measure population variance (Morrison and De

Jong 2002), whilst convergence is measured as the mean

change in objective value. The coefficients forming the

choice function are normalised for equal weighting.

3 Framework for Aircraft Structural Design

Optimisation with a Hyper-Heuristic Approach

The hyper-heuristic approach described above has been

inserted into a previously-developed framework for air-

craft conceptual design optimisation (Allen et al. 2010).

Due to the natural increase in computational require-

ments resulting from the addition of a hyper-heuristic

approach, a single discipline of optimisation, that of the

structural design of the airframe, is addressed. The key

stages within this framework are presented in Fig. 2.

Due to the typically static approach to optimisation

employed within the field of aircraft conceptual design,

the hyper-heuristic framework provides the opportunity

for intelligent dynamic adaption of the optimisation

process to better solve the problem presented. Within

the framework, the design process is set up through a

period of initialisation to define the requirements of the

aircraft (indicated by stages 0.1 and 0.2 in Fig. 2), opti-

misation process (0.3), and FEA (0.4). This enables the

engineer to set up the optimisation problem for fully-

automated execution of the following modules.

3.1 Mission Definition

Given the requirements input during initialisation, a

mission profile is generated (1.1) to permit definition of

realistic loading conditions, with those selected in ini-

tialisation calculated using the airworthiness require-

ments (1.2). The aircraft payload is also defined based

on the requirements input during initialisation (1.3).

3.2 Mass Estimation

Empirical methods are employed (2.1) for the calcula-

tion of payload mass (2.2), and estimation of aircraft

mass at various points during the previously-defined

mission (2.3) and fuel required for the mission (2.4).
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Fig. 2: Framework for optimisation of aircraft structural design with embedded hyper-heuristic approach (HHA)

3.3 Design Optimisation

The outputs of the previous modules drive the con-

straints within which the optimisation of the aircraft

design is conducted, such that empirical formulae are

used to generate an external profile of the aircraft such

that it meets the requirements for flight dictated by

mission definition and mass estimation (3.1). Structural

optimisation is then performed within the profile for the

problem given by Eq. 2 for minimum structural mass

min
X∈µ,n

Φ(X) (2)

subject to constraints for factor of safety and wingtip

deflection defined by airworthiness requirements and

typical industrial practise. Requirements of the struc-

tural design to satisfy geometric constraints imposed

by the external profile, such as limits on member po-

sitions, are calculated (3.2) prior to evaluation of the

ranges of design variables to ensure they comply with

such constraints (3.3). Individuals may then be seeded

or generated randomly to create an initial population

within the solution space (3.4).

Optimisation is performed over a series of genera-

tions, where for each generation the population is firstly

analysed to determine performance. For each individ-

ual, the values of the design variables are obtained such

that they may be used to determine the aircraft repre-

sented by the individual (3.5). These values dictate the

generation of an airframe design (3.6) which is modelled

in preparation for analysis (3.7). The finite element

(FE) model generated is constructed of one-dimensional

beam elements, with multiple structural members com-

bined within elements, and nodes located at key loading

positions. This approach reduces the sizes of the matri-

ces within the FEA to provide increased computational

efficiency, of great importance when considering many

design variations. FEA is performed using the modelled

aircraft to establish the feasibility of the design against

the design constraints of Eq. 7 (3.8).

An exterior penalty function is applied to penalise

infeasible solutions, the severity of which is controlled

by the penalty coefficient in order to encourage feasible

convergence (3.9). The objective value is calculated in

Eq. 3, where ρ, A, and l denote the density, area, and



A hyper-heuristic approach to aircraft structural design optimisation 7

length of member a of A(X) for an individual of the

population, with the penalty function given by Eq. 4

f(X) =

A(X)∑
a=1

(ρAl)a (3)

Φ(X) = f(X)

1 + λ

m∑
j=1

g2j (X)

 (4)

where f(X) is the unpenalised objective function of

the population set, λ the penalty coefficient, and gj(X)

the measure of violation of constraint j of m calculated

by Eq. 5 using the FEA results

gj(X) = max(0, cj(X)) (5)

Fitness is then calculated by ranking the population

in order of objective value, an approach that encourages

population diversity over a function based solely on the

objective values of the population (3.10)

F (X) =
µ− r(Φ(X))∑
X∈µ

r(Φ(X))
(6)

Improved solutions within the population are then

identified through comparison of fitness (3.11). If a bet-

ter solution is discovered, perturbation analysis is per-

formed to the individual until no improvement is made

(3.12). Termination criteria are then checked, including

a generation limit, number of generations since last im-

provement in objective value, and population variance.

The learning mechanism is applied to evaluate the

performance of the optimisation process (3.14), leading

to guided parameter control (3.15), heuristic selection

(3.16), and population distribution (3.17). The popu-

lation is then optimised using the allocated low-level

heuristics (3.18). The optimisation process is repeated

until the termination criteria are satisfied, at which

point the optimal solution obtained is output (3.19).

As the empirical method of mass estimation can

incur inaccuracies in aircraft mass input, intermedi-

ate feedback of the obtained structural mass for re-

evaluation of aircraft mass is possible (3.20). This leads

to an additional termination criterion of convergence in

the error between input and output aircraft mass.

3.4 Data Output

Upon the completion of optimisation, the predicted air-

craft performance is output to enable analysis of the

design (4.1), along with the process performance (4.2).

Data provided by the latter include the selection of low-

level heuristics, control of parameters, distribution of

the population, population feasibility, and process con-

vergence. Finally, the optimum solution is output, in-

cluding a model of the aircraft and FEA reports (4.3).

4 Case Study

The operation of the framework is demonstrated in a

case study using a computational implementation of the

framework: AStrO (Aircraft Structural Optimiser). The

baseline aircraft design for structural optimisation is

the Airbus A340-300, the most popular A340 variant by

number of orders, with a selection of properties (Airbus

Industrie 2012) are listed in Table 4, alongside those of

the mission and load cases to be simulated. The mission

profile is for single-cruise between two aerodromes, with

simultaneous simulation of cabin pressurisation, engine

thrust, and gravitational loads within the load cases.

Table 4: Selected properties of aircraft and mission

Property Value

Wing span 60.30 m
sweep 30.0◦

Tail span 19.40 m
height 16.99 m

Fuselage length 63.69 m
width 5.64 m

Undercarriage track 10.69 m
wheelbase 25.37 m

Power plant 4x CFM International 56-5C4
Mass empty aircraft 130,200 kg

maximum takeoff 276,500 kg

Cruise altitude 35,000.0 ft
range 5,000.0 nm
speed 0.82 M

Number of flight crew 2
passengers 335

Aircraft class Civil transport
Load case in flight +2.5g pull-up manoeuvre

on ground 2-point landing

Design constraints imposed for minimum factor of

safety, c1(X), and maximum wingtip deflection, c2(X),

are given by Eq. 7 (European Aviation Safety Agency

2009), where the latter is determined through consid-

eration of allowable deflection without ground strike
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c1(X) ≥ 1.5

|c2(X)| ≤ 7.5 m
(7)

The properties in Table 5 provide similar limits on

the airframe, such that variables within the case study

may focus on the layout the structural members within

the airframe. These include the material, section profile,

and minimum thickness of the types of members.

Table 5: Constraints on structural members

Structural member Material Profile Thickness

Lifting surface rib Al 7075-T6 I 10.0 mm
spar Al 7178-T6 I 4.0 mm
stringer Al 2014-T6 Z 2.0 mm

Fuselage frame Al 7075-T6 T 10.0 mm
stringer Al 2014-T6 Z 5.0 mm
floor beam Al 7075-T6 I 20.0 mm

Skin Al 2014-T6 - 3.0 mm
Floor Al 7075-T6 - 20.0 mm

To minimise the computational requirements, the

FE model is designed at a level of detail of 10% fidelity,

wherein 1 in 10 structural members are modelled as an

element. Remaining members are grouped within the

closest element, resulting in smeared member proper-

ties. Critical members, such as those with attachments

and the lifting surfaces spars, are exceptions to this

rule and are modelled in isolation, with lifting surface

stringers grouped within the nearest spar element.

Table 6 lists the design variables within the case

study, focussing on the structural layout of the aircraft.

Each lifting surface is constrained to possess two spars.

Variables V9 to V11 give the proportion of frames in

the fuselage positioned within the nose, tail, and wing-

box, whilst the position of the front wing spar, V12,

is calculated as a fraction of the wing chord. V16 and

V17 define the increase in height and width of the wing

spar at the root relative to the tip, with linear varia-

tion along the span. The spanwise distribution of ribs is

controlled by variables V13 to V15 as α in Eq. 8, allow-

ing an increasing concentration towards the root where

stress concentrations under bending loads are expected.

Hence, for a surface of span b with R ribs, the position

of the ith. rib from the root is given as

yi =
iα−1 (Cb− y0)

Rα
+ y0

where C =

{
0.5 for wing, horizontal tail

1.0 for vertical tail

(8)

Table 6: Constrained ranges of design variables

Range
ID Design variable Min. Max.

V1 Number of wing ribs 10 100
V2 wing stringers 20 120
V3 horizontal tail ribs 10 40
V4 horizontal tail stringers 10 80
V5 vertical tail ribs 10 40
V6 vertical tail stringers 10 80
V7 fuselage frames 20 160
V8 fuselage stringers 30 180
V9 frames in nose 5.0% 15.0%
V10 frames in tail 5.0% 15.0%
V11 frames in wingbox 5.0% 20.0%
V12 Position of wing front spar 0.2c 0.35c
V13 wing ribs 1.0 3.0
V14 horizontal tail ribs 1.0 3.0
V15 vertical tail ribs 1.0 3.0
V16 Height of wing spars at root 1.0 4.0
V17 Width of wing spars at root 1.0 4.0

The case study is performed through a series of

runs, with differing setups to illustrate the effects of the

hyper-heuristic approach. Table 7 describes the setup

of each run. Parameter control is defined as in Table

3, with initial values generated using the SR hyper-

heuristic. Hyper-heuristics for runs with multiple hyper-

heuristic aspects are applied as: i) heuristic selection, ii)

parameter control, and iii) perturbation analysis.

In order to maintain stable test conditions across the

runs, an identical initial population is seeded to all runs,

with a binary representation, uniform crossover, and

an EMCQ method of move acceptance. No more than

three low-level heuristics may be selected for each gen-

eration during population distribution to prevent the

requirement for an excessively large population, except

for the final run where a dynamic population size limits

sub-populations to 100 individuals. Termination crite-

ria include a generation limit of 1000, minimum popu-

lation variance of 2.0 %, and 250 successive generations

without improvement in objective function.

4.1 Results

Introduction to results of case study, with best

results for each run in Table 8

Discussion of results, effects of hyper-heuristic

approach, plot of key runs in Figs. 3 and 4

Plot of progressive changes to aircraft design

in Fig. 5 for run generating best results, using

stick model from MATLAB



A hyper-heuristic approach to aircraft structural design optimisation 9

Table 7: Setup of hyper-heuristic approach for runs performed for case study and required population size

Settings of parameters for selection of runs of case study
Process parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

Population size 100 100 100 100 100 300 300 Dynamic
Heuristic selection x x x x
Population distribution x x x
Parameter control x x x
Perturbation analysis x x x
Low-level heuristics MC RW RW RW All All All All
Hyper-heuristics SA SA GR RW i) RW i) RW

ii) SA ii) SA
iii) TS iii) TS

Table 8: Results obtained for iterations generating best design solutions

Values for best solution obtained by end of run
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

Φ, kg
c1
c2
τ , %
∆Φ, %

β, %
σ, %

n
T , hr
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Fig. 3: Objective value for selected case study runs

5 Conclusions

Conclusions of paper and case study, plus fur-

ther work
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Fig. 5: Maturity of best solution for Airbus A340-300 airframe design during run NUM
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