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1. Introduction

Faraday considered lines of force to be a physical substance, the basic dynamical

object of electromagnetism, and indeed other physical theories. In his view1 the

particles acted on by forces were not separate entities but actually configurations of

forces, and the lines themselves could be physically shaken, disturbances propagating

along them with finite speed thus accounting for radiation without the need of an

ether.

As the quantitative description of electromagnetism was developed this point of

view lost ground to Maxwell’s which took the electric and magnetic fields, as well

as moving charges, as the dynamical degrees of freedom [2]. Gauss’ law2 in integral

form
∮

Σ
E · dS =

∫

ρ dV/ǫ0 seems to support Faraday’s interpretation. It measures

the number of lines of electric force cutting a closed surface, Σ, as though these were

physical objects capable of being counted and sets it equal to the enclosed charge. In

differential form, ∇·E = ρ/ǫ0, this becomes just a differential equation that relates E

and ρ, on the same footing as the other Maxwell equations that together determine

the dynamics of the theory. From Maxwell’s point of view the lines of force are no

more than a geometric representation of the field, and the integral version of Gauss’

law simply a statement about the ends of the curves used in that representation.

1“You are aware of the speculation which I sometime since uttered respecting the view of the

nature of matter which considers its ultimate atoms as centres of force, and not as so many little

bodies surrounded by forces....The view which I am so bold as to put forth considers, therefore,

radiation as a high species of vibration in the lines of force....It endeavours to dismiss the ether,

but not the vibrations.” [1]
2We will use S.I. units to express Maxwell’s equations [3]
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The canonical quantisation of electrodynamics moves even further from Fara-

day’s picture. Based as it is on a Hamiltonian formulation, the dynamical degrees

of freedom are the gauge potentials A0, A, modulo gauge tranformations, rather

than E and B. Their existence follows from the Maxwell equations ∇ · B = 0 and

∇×E = −Ḃ, which are therefore implemented as identities in the quantum theory.

The remaining Maxwell equations, i.e. Gauss’ law and

∇×B = µ0J+ µ0ǫ0Ė (1.1)

are the Euler-Lagrange equations for the theory. To quantise one has to pick a gauge.

With the choice A0 = 0, which is most convenient for the Hamiltonian formalism,

(1.1) is Hamilton’s equation of motion. However the choice of gauge removes A0 as

a dynamical variable so that Gauss’ law is not recovered in this way, and has to be

imposed as a constraint. In the quantum theory this becomes a restriction on the

physical states of the theory. The interpretation of ∇ · E as the generator of the

remaining gauge transformations that preserve the gauge condition implies that the

physical states are selected to be those that are invariant under time-independent

gauge transformations. So Gauss’ law, which from Faraday’s point of view counts

the dynamical objects in the theory, is not even valid for all the states needed to

construct the quantum theory, but only for the physical subspace.

There is also a conceptual difficulty with treating lines of force as dynamical

objects. The lines, being tangent to the field, encode its direction. Its magnitude is

represented by their density. As fields vary continuously with position they cannot

be modeled by a whole number of lines, making obscure the concept of individual

lines as dynamical objects.

The purpose of this paper is to attempt to resurrect, albeit in modified form,

the notion that lines of force can indeed be treated as dynamical objects in their

own right. In classical electromagnetism the lines of force are fixed by the charge

distribution, but we will consider the consequences of allowing their positions to

fluctuate. We will overcome the conceptual difficulty by assuming that the large

number of lines of force stretching between macroscopic charges should be treated

using statistical mechanics, so that the classical electromagnetic field emerges as an

average using an appropriate Boltzmann weight, and thus can vary continuously with

position. String theory provides us with a natural identification of this weight and

the technology to compute the average.

In 1955 Dirac proposed a similar solution to this conceptual difficulty [4]. He was

interested in constructing a version of QED in which the electrons were created by

gauge invariant operators which create a part of the electromagnetic field along with

the charge. By taking this to consist of a single Faraday line of force associated with

a quantum of flux he provided another explanation of electric charge quantisation

(in addition to his celebrated argument based on the motion of an electric charge in

the presence of a magnetic monopole.) In this theory closed lines of force describe
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photons, open lines describe electron positron pairs and pair creation is described

by the breaking of lines of force. Although the flux is supported on the line of force

quantum superposition allows for states with continuous fields, such as the spherically

symmetric field of a single charge. In our approach we will construct the classical

electromagnetic field as a thermal average over a macroscopic number of lines of

force connecting electric charges that are large in comparison with the charge of the

electron. Dirac’s theory could be taken as the microscopic description underlying

this.

We will begin by studying two simplified cases namely electrosatics and magne-

tostatics. The first is easy to formulate mathematically, whilst the second already

requires the formalism of string theory and is a useful stepping stone to constructing

the full time-dependent electromagnetic field. By magnetostatics we mean the time

independent magnetic field generated by constant currents flowing around closed cir-

cuits. The lines of force associated with B form closed curves because ∇ · B = 0,

and Farady thought of these as dynamical objects too. However, for this particular

example we will not focus on these lines of force. Instead we will take the dynamical

objects that describe magnetism to be surfaces spanning the circuits the currents

flow round. Again there is a natural weight to average over these surfaces, but we

might expect to be impeded by the well-known difficulties encountered in trying to

formulate sums over random surfaces that make it difficult to construct string theory

away from its critical dimension [5]. Remarkably these difficulties are absent from

our problem even though it amounts to an off-shell calculation in non-critical string

theory and we are able to evaluate the sum and show that it yields the Biot-Savart

law.

The magnetostatic problem generalises to higher dimensions in which context

the fluctuating surfaces can be re-interpreted as the world-sheets of lines of force.

By choosing the target-space appropriately we will show that the retarded solution

to Maxwell’s equations arises naturally as a thermal average over these lines, so

that by invoking statistical mechanics this approach violates the usual time-reversal

invariance of classical electromagnetism.

2. Electrostatics

We begin with the special case of a static electric field. Consider the field, E(x), due

to two equal and opposite charges, ±q, placed at a and b respectively.

E(x) =
q

4πǫ0

x− a

||x− a||3 − q

4πǫ0

x− b

||x− b||3 . (2.1)

This is the unique solution to ∇×E = 0 and the differential form of Gauss’ law

∇ · E(x) = q

ǫ0
δ3(x− a)− q

ǫ0
δ3(x− b) , (2.2)
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that decays at infinity. Briefly setting aside the former of these two differential

equations, it is easy to see that (2.2) is solved by taking the electric field to be given

by

E′(x) =
q

ǫ0

∫

C

δ3(x− y) dy (2.3)

for any curve C from a to b, since for any differentiable test-function u(x) that

vanishes at infinity:
∫

∇·E′(x) u(x) dV = −
∫

E′(x)·∇u(x) dV = −
∫

q

ǫ0

(
∫

C

δ3(x− y) dy

)

· ∇u(x) dV

= − q

ǫ0

∫

C

∇u(y) · dy =
q

ǫ0
u(a)− q

ǫ0
u(b) =

∫

q

ǫ0

(

δ3(x− a)− δ3(x− b)
)

u(x) dV .

(2.4)

(2.3) has the same mathematical form as the Dirac string used to represent the mag-

netic field of a monopole. In that context the position, C, of the string has no physical

significance, and can be changed by a particular kind of gauge transformation. In

our work, as in [4], however, we will attach physical meaning to C, treating it as the

position of a physical object. Now the electric field of (2.3) is supported on C and so

is completely different in character to that of (2.1) which is supported everywhere.

We could describe the physical object that has position C as a string of electric flux.

To obtain (2.1) we will make the assumption that the theory is stochastic in the

sense that the positions of the flux strings are to be averaged over with a Boltzmann

weight, e−βH, so that E(x) = 〈E′(x)〉C . The average of any functional of C, Ω is

given by the functional integral

〈Ω〉C =
1

Z

∫

DyΩ e−βH[y] ,

(with Z a normalisation constant, so that 〈1〉C = 1). The physical interpretation

is that the macroscopic charge q generating the classical electric field is composed

of many microscopic or elementary charges, of magnitude q0, each of which is the

terminus of a line of force as in Dirac’s theory. These lines are physical objects in

thermodynamic equilibrium at temperature 1/β and there are q/q0 of them. Each

has an electric field given by (2.3) with q replaced by q0, and these contributions add

up to give the total electric field.

We keep the end-points of all the curves to be averaged over fixed at a and b so

the calculation (2.4) goes through as before for the averaged field and Gauss’ law is

satisfied. We now have to find βH so that ∇× E = 0, or equivalently, so that

x− a

||x− a||3 − x− b

||x− b||3 =
1

Z

∫

Dy

∫

C

δ3(x− y) dy e−βH[y] . (2.5)

There is a natural choice for βH that occurs in the path-integral representation of

quantum mechanics [6] and the heat-kernel connected with diffusion and Brownian

– 4 –



motion. If y(t), 0 ≤ t ≤ T is a parametrisation of a path from a to b then

〈b|e−TĤ0 |a〉 =
∫

Dy e−
∫ T
0 dt ẏ2/2 =

e−||a−b||2/(2T )

(2πT )3/2
(2.6)

where Ĥ0 = p̂2/2 so 2〈b|Ĥ0 = ∇2〈b| and the eigenstates of position are normalised

to 〈b|a〉 = δ3(a − b). If we take β = 1/T and H =
∫ 1

0
du (dy/du)2/2 then by a

change of variable, t = Tu, we get βH =
∫ T

0
dt ẏ2/2. We have to set a value to T .

This is a dimensionful quantity, and no such parameter appears in (2.5) so we will

take the limit in which T is large (in comparison to the squares of the other lengths

in our problem.) The expectation value of the delta-function can be generated by

functionally differentiating with respect to a source term added to βH:
∫

Dy

∫

C

δ3(x− y) dy e−
∫ T
0 dt ẏ2/2 =

{

δ

δA(x)

∫

Dy e−
∫ T
0 dt ẏ2/2+

∫
b

a
A(y)·dy

}

∣

∣

∣

A=0

(2.7)

The functional integral inside the braces is the generalisation of (2.6) to a particle

moving in an electro-magnetic field with vector potential iA, so the Hamiltonian Ĥ0

is modified to Ĥ = (p̂+ iA)2/2. Thus (2.7) can be written as

δ

δA(x)
〈b|e−TĤ |a〉

∣

∣

∣

A=0
= −

∫ T

0

dt 〈b|e(t−T )Ĥ0
δĤ

δA(x)

∣

∣

∣

A=0
e−tĤ0 |a〉

Now when A = 0, 2 δĤ/δA(x) = ip̂ δ3(q̂− x) + δ3(q̂− x) ip̂, so using the resolution

of the identity
∫

|c〉 d3c 〈c| = 1I, gives

2
δĤ

δA(x)

∣

∣

∣

A=0
= −

∫

(∇c |c〉) d3c 〈c| δ3(c−x)+

∫

δ3(c−x) |c〉 d3c∇c〈c| = |x〉
↔

∇ 〈x|

so that (2.7) becomes (after setting A = 0)

−1

2

∫ T

0

dt 〈b|e(t−T )Ĥ0 |x〉
↔

∇ 〈x|e−tĤ0 |a〉 . (2.8)

The normalisation constant, Z is just the right-hand-side of (2.6) so now we have

1

Z

∫

Dy

∫

C

δ3(x− y) dy e−βH(y) = − (2πT )3/2

2e
−||a−b||2

2T

∫ T

0

dt
e

−||x−b||2

2(T−t)

(2π(T − t))3/2
↔

∇
e

−||a−x||2

2t

(2πt)3/2
.

For large T the integrand is negligible except when t ≈ 0 and t ≈ T , so that in the

limit of infinite T the integral separates into two contributions:

−
∫ ∞

0

dt∇e−||a−x||2/(2t)

2(2πt)3/2
+

∫ ∞

0

dt∇e−||x−b||2/(2t)

2(2πt)3/2
= ∇

(

− 1

4π||x− a|| +
1

4π||x− b||

)

which yields the right-hand-side of (2.5).

When we add up the contributions to the electric field of the individual lines of

force we obtain

〈 q
ǫ0

∫

C

δ3(x− y) dy 〉C =
q

4πǫ0

x− a

||x− a||3 − q

4πǫ0

x− b

||x− b||3 = E(x) . (2.9)
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3. Magnetostatics

We now consider another simplified case, namely the magnetic field generated by a

current that is constant in time. Although this is a different physical problem to

that of the preceding section the mathematical description will provide a stepping-

stone to introducing time-evolution into the description of the electromagnetic field

generated by point charges. A constant current, I, flowing around a circuit C has

density

J(x) = I

∮

C

δ3(x− y) dy . (3.1)

∇ · J = 0 follows from a similar argument to (2.4). The constant magnetic field it

generates is given by the Biot-Savart law

B(x) =
µ0I

4π

∮

C

dy × (x− y)

||x− y||3 , (3.2)

which is the unique solution to the Maxwell equations ∇ ·B = 0 and ∇×B = µ0J

that vanishes at infinity. The first of these implies that the lines of magnetic force are

closed, however we will not focus on the flux-lines, but consider the representation of

B in terms of surfaces normal to it with density proportional to its magnitude, i.e. the

equipotential surfaces for the (multi-valued) magnetic scalar potential proportional

to the solid angle subtended by C at the point x. In integral form the second of this

pair of Maxwell equations is Ampère’s law

∮

C′

B · dx =

∫

Σ′

µ0J · dS . (3.3)

If C ′ is chosen to loop around C then the right-hand-side of this is µI and the left-

hand-side counts the number of surfaces representing B that are cut by C ′. These

open surfaces all have boundary C. This is a generalisation of Gauss’ law, and we

will interpret it similarly as an indication that the theory can be rewritten in terms

of dynamical objects which are the surfaces spanning C. In classical electromag-

netism these surfaces are of course fixed once C is specified, but we will investigate

the consequences of allowing the surfaces to fluctuate so that the magnetic field is

obtained by averaging over them with an appropriate weight.

∇×B = µ0J is solved by taking the magnetic field to be

B′(x) = µ0I

∫

Σ

δ3(x− y) dS(y) , (3.4)

where Σ is any surface spanning the current circuit C. This is readily shown by

integrating B′ against the curl of a vector test-function. Furthermore this remains

true on averaging over all such surfaces spanning C with any weight. We will now

endeavour to find a weight so that the averaged field also satisfies ∇ ·B = 0. As in

– 6 –



the previous example of electrostatics there is a natural choice, but before we invoke

it we return to that used for averaging over the lines of electric force and write it in

a form that will motivate the generalisation to surfaces. In the previous section we

used

〈Ω〉C = lim
T→∞

1

Z

∫

DyΩ e−
∫ T
0 dt ẏ2/2 . (3.5)

Consider replacing the exponent
∫ T

0
dt ẏ2/2 by [7]

1

2T

∫ 1

0

g−1(ξ)
dy(ξ)

dξ

2
√

g(ξ) dξ (3.6)

where y(ξ), 0 ≤ ξ ≤ 1 is a different parametrisation of the path and g(ξ) > 0 is

a new variable. (3.6) is invariant under diffeomorphisms ξ → ξ̃ that preserve the

parameter interval provided that g(ξ) transforms as an intrinsic metric g(ξ) dξ2 →
g̃(ξ̃) dξ̃2 = g(ξ) dξ2 and y(ξ) → ỹ(ξ̃) = y(ξ). To construct this new weight we have

to choose some value for g(ξ), but which value we choose will not affect the result

for the electric field, as we will see. If we change parameter from ξ to t given by

t = T
∫ ξ

0

√

g(ξ′) dξ′ then (3.6) becomes
∫ T ′

0
dt ẏ2/2 with T ′ = T

∫ 1

0

√
g dξ. Using this

in (3.5) gives the same results as T and T ′ tend to infinity.

This form of the weight has a natural generalisation to the sum over surfaces

used in Polyakov’s approach to the bosonic string, [8]. Let a surface Σ spanning C be

parametrised by Y(ξ1, ξ2) with the ‘world-sheet co-ordinates’ ξa lying in some fixed

domain D, then

〈Ω〉Σ =
1

Z

∫

DYΩ exp

(

− 1

4πα′

∫

D

gab
∂Y

∂ξa
· ∂Y
∂ξb

√
g d2ξ

)

, (3.7)

where gab plays the rôle of an intrinsic metric on Σ, gab is its inverse, g = det(gab),

and α′ is a dimensionful constant. We will refrain from integrating over gab, but

rather choose a value for it and find that, as before, the averaging does not depend

on the value we pick. We will now show that with this weight

B(x) = 〈µ0I

∫

Σ

δ3(x−Y) dS(Y) 〉Σ (3.8)

satisfies the Biot-Savart law (3.2). In doing so we will encounter the usual problem

of trying to formulate string theory away from its critical dimension.

We evaluate (3.8) in the standard way by first exponentiating the Y depen-

dence, using a Fourier decomposition of the delta-function and generating dS =
1
2
ǫab(∂Y/∂ξa)× (∂Y/∂ξb) by differentiation with respect to sources:

B(x) = 〈
∫

Σ

δ3(x−Y) dS(Y) 〉Σ =

∫

d3k

32π4α′
d2ξ ǫab

∂

∂ja
× ∂

∂jb
1

Z

∫

DY e−S
′
∣

∣

∣

j=0
,
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2πα′S ′ =

∫

D

(

gab
1

2

∂Y

∂ξ̃a
· ∂Y
∂ξ̃b

√
g +

{

ik · (x−Y) +Y · ja ∂

∂ξ̃a

}

δ3(ξ̃ − ξ)

)

d2ξ

The dependence on k and j is separated out by writing Y as the sum of a classical

solution to the Euler-Lagrange equations for S ′, Yc, and a quantum fluctuation, Ȳ:

Y = Yc + Ȳ , − ∂

∂ξ̃a

(√
ggab

∂Yc

∂ξ̃b

)

=

{

ik− ja
∂

∂ξ̃a

}

δ3(ξ̃ − ξ)

where on the boundary of D, Yc coincides with the current circuit C, i.e. y, and Ȳ

vanish. Yc can be found using the Dirichlet Green function for the Laplacian on D,

G,

Yc(ξ̃) =

∫

D

G(ξ̃, ξ′)

{

ik− ja
∂

∂ξ′a

}

δ3(ξ′ − ξ) d2ξ′ + yc(ξ̃) ,

yc(ξ̃) =

∮

∂D

∂

∂ξ′a
G(ξ̃, ξ′)y(ξ′)

√
ggabǫbc dξ

′c

Z cancels against the source-independent parts of the functional integral (including

the functional determinants) giving

B(x) =

∫

d3k

32π4α′
d2ξ ǫab

∂

∂ja
× ∂

∂jb
e−S

′′
∣

∣

∣

j=0
,

2πα′S ′′ = −1

2

{

ik + ja
∂

∂ξ̃a

}

·
{

ik + jb
∂

∂ξb

}

G(ξ, ξ̃)
∣

∣

∣

ξ̃=ξ

−
{

ik + jr
∂

∂ξr

}

· yc(ξ) + ik · x

This involves the Green function and its derivatives at co-incident points. To make

this well-defined we introduce a regulator, ǫ > 0, via a spectral decomposition. If

uλ(ξ) is an eigenfunction of the Laplacian belonging to eigenvalue λ, vanishing on

∂D then we can choose it to be real and using the fact that λ > 0 take the regulated

Green function to be [8]

G(ξ, ξ̃) =
∑

λ

uλ(ξ) uλ(ξ̃)
e−ǫλ

λ
.

Let ψ denote the value of this at coincident points. ψ is greater than or equal to

zero, vanishing only on the boundary ∂D. Furthermore, because G is symmetric we

have that
∂

∂ξ
G(ξ, ξ̃)

∣

∣

∣

ξ̃=ξ
=

1

2

∂

∂ξa
ψ(ξ)
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enabling us to write S ′′ as

2πα′S ′′ =
1

2
k2 ψ(ξ)− 1

2
ik · ja ∂

∂ξa
ψ(ξ)− 1

2
ja · jb ∂2

∂ξa1∂ξ
b
2

G(ξ, ξ̃)
∣

∣

∣

ξ̃=ξ

−
{

ik + jr
∂

∂ξr1

}

· yc + ik · x

It is now straightforward to integrate over k in B(x) and differentiate with respect

to j to get

B(x) =

∫

D

d2ξ

2(4π2α′ψ)3/2
ǫab
(

∂yc
∂ξa

× (yc − x)
1

ψ

∂ψ

∂ξb
+
∂yc
∂ξa

× ∂yc
∂ξb

)

e−(yc−x)2/(4πα′ψ) .

This splits into two integrals. In the first we change variables from (ξ1, ξ2) to (ξ1, η =

4πα′ψ), supposing that on the boundary, ∂D, ξ2 is constant. The form of ψ may be

found by relating it to the heat-kernel

G(ξ, ξ̃, τ) =
∑

λ

uλ(ξ) uλ(ξ̃) e
−τλ , ψ =

∫ ∞

ǫ

dτ G(ξ, ξ, τ) ,

and then using the modification of the Seeley-de Witt expansion proposed in [9]:

G =
1

4πτ

∑

r

exp

(

−σr(ξ, ξ̃)
2τ

)

Ωr(ξ, ξ̃, τ) ,

where the sum runs over all geodesic paths linking ξ and ξ̃, including reflections at

the boundary, and σ(ξ, ξ̃) is twice the square of the path-length. For ξ = ξ̃ and

small τ the path of zero length dominates for points away from the boundary, and

Ω ∼ 1 + O(τ). For points close to the boundary the shortest reflected path is also

important, and the boundary conditions require that for this Ω ∼ −1 +O(τ). So, if

σ/2 is the square of the closest distance to the boundary then

ψ ∼
∫ ∞

1

dt

4πt

(

1− e−σ/(2tǫ)
)

,

giving

ψ ∼ σ/(8πǫ), for σ << ǫ ,

whereas for σ >> ǫ

ψ ∼ log(σ/ǫ)/(4π) .

Consequently, as ξ moves away from the boundary η varies from 0 to a large positive

value over a distance of order
√
ǫ. In the interior of the domain this large value

suppresses the integrand, consequently we only need to consider contributions to the

integral from points close to the boundary. As the regulator is removed, i.e. ǫ → 0,

we can ignore the variation of yc with η, replacing it with its boundary value, y, and
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also take the η-integration limits to be 0 and ∞. So as the cut-off is removed this

integral becomes

∫ ∞

0

dη

η5/2

∫

dξ1

2π3/2

dy

dξ1
× (y− x) e−(y−x)2/η =

1

4π

∮

C

dy × (x− y)

||x− y||3 , (3.9)

which is the Biot-Savart law. We now argue that the second integral

∫

D

d2ξ

2(4π2α′ψ)3/2
ǫab

∂yc
∂ξa

× ∂yc
∂ξb

e−(yc−x)2/(4πα′ψ) , (3.10)

vanishes as the cut-off is removed. Again we ignore contributions to the integral from

the interior of the domain restricting our attention to a strip bordering the boundary

of D and change variables to (ξ1, η) so that (3.10) becomes

∫

dξ1 dη

η3/2
∂yc
∂ξ1

× ∂yc
∂σ

∂σ

∂η
e−(yc−x)2/η , (3.11)

Replacing yc by its boundary value as before gives

∫

dξ1
(

dy

dξ1
× ∂yc

∂σ

∫ h

0

dη

η3/2
∂σ

∂η
e−(y−x)2/η

)

, (3.12)

where η ranges from 0 to h over the width of the strip. Using ψ ∼ σ/(8πǫ) gives

∫ h

0

dη

η3/2
∂σ

∂η
e−(y−x)2/η ∼ 2ǫ

α′

∫ h

0

dη

η3/2
e−(y−x)2/η . (3.13)

This last integral is positive and less than

2ǫ

α′

∫ ∞

0

dη

η3/2
e−(y−x)2/η =

4ǫ
√
π

α′|y − x|

which vanishes as the cut-off is removed. Consequently only the first integral (3.9)

survives and we have established that (3.8) satisfies the Biot-Savart law.

〈
∫

Σ

δ3(x−Y) dS(Y) 〉Σ =
1

4π

∮

C

dy × (x− y)

||x− y||3 = ∇× 1

4π

∮

C

dy

||x− y|| (3.14)

The result is independent of gab so it is unchanged if we integrate over this metric

degree of freedom as in Polyakov’s approach to string theory [8]. This independence

is remarkable because although (3.4) itself does not contain gab the computation of

its expectation value required a regulator and the use of ψ which introduce such a

dependence. String theory calculations are replete with quantities acquiring such

‘anomalous’ dependence on the world-sheet metric, which make it difficult to aver-

age over surfaces without imposing extra conditions, for example on the dimension

of space or the mass spectrum of excitations. When the delta-function of (3.8) is
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represented as an integral over k we are effectively summing over all the spectrum,

and yet no mass-shell condition had to be imposed restricting this sum.

The choice of weight (3.7) is a natural one to make in the context of string

theory. It is also natural from the point of view of magnetostatics3 since the energy

in the magnetic field (3.4), 1
(2µ0)

∫

d3xB2, is proportional to the area of Σ albeit with

a divergent coefficient and, as is well-known, the exponent in (3.7) reduces to the

surface area on eliminating gab through its Euler-Lagrange equation.

4. Time-dependence

We now turn to our main problem which is the representation of the electromagnetic

field of moving charges in terms of fluctuating lines of electric flux, so that the classical

field results from a thermal average over a distribution of these lines. (We will treat

the lines of force by assuming that they connect equal and opposite electrical charges

and so have finite extent. Using this approach we could treat semi-infinite lines of

force associated with single charges by taking the limiting case in which one charge

in each pair is sent to infinity.) If the charges of section 2 are now allowed to move

then the electromagnetic field generated by the current-density

Jµ(x) = q

∫ ∞

−∞

δ4(x− a) ȧµ dt− q

∫ ∞

−∞

δ4(x− b) ḃµ dt (4.1)

will vary in time. Maxwell’s formulation of electromagnetism is time-reversal invari-

ant. The classical problem of computing this field by solving Maxwell’s equations

leads to solutions in terms of advanced or retarded potentials (or indeed linear combi-

nations of the two) that have to be distinguished from each other by an application of

common sense rather than from fundamental theory. We want to show that if instead

the field is generated by an ensemble of lines of force in thermodynamic equilibrium

the retarded solution arises naturally.

Assembling E and B into the antisymmetric tensor Fµν in the usual way by

taking F0i = ǫ0Ei and µ0 Fij = −ǫijk Bk allows the two Maxwell equations containing

sources to be written as

∂µ Fµν = Jν , (4.2)

which can be solved by taking Fµν to be

−q
∫

Σ

δ4(x− Y ) dΣµν(Y ) . (4.3)

for any surface Σ that spans the world-lines of the two charges. This solution de-

scribes a field supported on the surface Σ which can therefore be interpreted as the

3I am grateful to Benjamin Doyon for pointing this out.

– 11 –



world-sheet of a line of electric flux. To obtain a field that satisfies the remaining

Maxwell equations

∂µ Fνρ + ∂ν Fρµ + ∂ρ Fµν = 0 . (4.4)

we look for a suitable Boltzmann weight with which to construct an average over Σ:

Fµν(x) = −〈q
∫

Σ

δ4(x− Y ) dΣµν(Y )〉Σ . (4.5)

As in section two we interpret this as an average over a distribution of many ele-

mentary strings, each associated with basic charge q0 and in thermal equilibrium. q

rather than q0 enters (4.5) because the individual contributions of the flux-lines must

be summed. We will ultimately construct this average but first we digress briefly by

considering the problem in four-dimensional Euclidean space as this provides a useful

step towards constructing the full Minkowski space theory. Because of the similarity

between (3.1) and (4.1) this problem is solved by a straightforward generalisation of

the computation of the previous section. This can be done in any dimension, but if

we specialise to four dimensions then by taking the generalisation of (3.7) to be

〈Ω〉Σ =
1

Z

∫

DYΩ exp

(

− 1

4πα′

∫

D

gabGµν
∂Y µ

∂ξa
· ∂Y

ν

∂ξb
√
g d2ξ

)

, (4.6)

with Gµν = δµν we obtain as the generalisation of (3.14)

4π2〈
∫

Σ

δ4(x− Y ) dΣµν(Y )〉Σ = ∂µ

(
∫

daν
||x− a||2 −

∫

dbν
||x− b||2

)

−∂ν
(
∫

daµ
||x− a||2 −

∫

dbµ
||x− b||2

)

(4.7)

in which 1/||x− a||2 is a Euclidean Green function for the Laplacian.

This result can be Wick rotated to Minkowski space by x4 → −ix0 and using an

ǫ prescription to encode the position of the poles. The effect is to replace the Green

function
1

||x− a||2 → 1

(x− a)2 − (x0 − a0)2 + iǫ
(4.8)

This does give a solution to Maxwell’s equations in Minkowski space, however because

it was obtained by Wick rotating the functional integral it has the physical inter-

pretation of being a quantum expectation value (and therefore relevant to Dirac’s

microscopic theory [4]) and not a thermal average. As a consequence the causal prop-

erties of this solution are not those we seek, but rather they are those inherited from

the Feynman propagator (4.8). To construct the average we want we consider the

general problem of constructing thermal Green functions in quantum theory. (It is

not sufficient to consider classical statistical mechanics because strings are extended

– 12 –



objects described by two-dimensional field theory on the world-sheet consequently

this computation would be afflicted by the ultra-violet catastrophe unless we in-

voke quantum mechanics). In the quantum theory of a dynamical variable ϕ̂ with

Hamiltonian operator Ĥ, associated eigenkets |E〉, and a set of time-dependent op-

erators Ω̂1(t1), .., Ω̂n(tn) the finite-temperature Green functions are thermal averages

of time-ordered products:

〈Ω̂n(tn)..Ω̂1(t1)〉T = N
∑

E

e−βE〈E|Ω̂n(tn)..Ω̂1(t1)|E〉 (4.9)

with N = 1/
∑

E e
−βE and tn > .. > t1. Making the time dependence of the operators

explicit

Ω̂j(tj) = ei(tj−t0)ĤΩ̂j(t0)e
−i(tj−t0)Ĥ (4.10)

and expressing the sum over energy eigenstates as a trace puts this into the form

N Tr
(

e−βĤei(tn+1−t0)Ĥe−i(tn+1−tn)ĤΩ̂n(t0)e
−i(tn−tn−1)Ĥ ..Ω̂1(t0)e

−i(t1−t0)Ĥ
)

(4.11)

where we have introduced a smallest time t0 and a greatest time tn. The functional

integral representation can be constructed in the usual way to give

1

Z

∫

Dϕ ei
∫
C
Ldt Ωn(tn)..Ω1(t1) (4.12)

where L is the Lagrangian related to H . The contour C consists of three straight-

line segements. The first, C1 runs just below the real axis from t0 to tn+1 − iǫ′. The

second, C1 runs from tn+1 − iǫ′ to t0 − 2iǫ′ and the final segment, C3 runs vertically

down from t0−2iǫ′ to t0− iβ. ǫ′ is included to ensure convergence in the exponential

factors. Note that the Ω are inserted only on the first segment, C1. The trace is

computed by identifying the values of the integration variable ϕ at t0 and t0 − iβ.

(See [10] and references therein for a discussion of complex time contours and thermal

Green functions).

We will interpret this construction as specifying the target space for our finite

temperature theory. The world-sheets of the electric flux lines should wrap around

the contour C. We will take β to be small (on the scale of the typical distances

|x− a| and |x− b| involved) so that we can neglect the contribution to that part

of the world-sheet on C3. Ultimately we should send x0 → −∞ and xn+1 → ∞
resulting in two infinite segements, C1 and C2. The edges of the sheet are the world-

lines of the two charges, and these are duplicated on the two segments, however

the operator whose Green function we are computing is restricted to C1. There are

thus two contributions to the thermal average. The first comes from the part of the

world-sheet on C1 and gives the Minkowski space version of (4.7) based on the Green

function (4.8). The second comes from the part of the world-sheet on C2. Because

x0 ∈ C1 but a0 ∈ C2 the Green function is

1

(x− a)2 − (x0 − a0 + iǫ′′)2
(4.13)
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instead of (4.8). (ǫ′′ is positive, proportional to ǫ′ and has an irrelevant dependence

on x0 and a0). When the direction in which C2 is traversed is taken into account these

two contributions combine to give an expression like (4.7) but with the replacement

1

||x− a||2 →

1

(x− a)2 − (x0 − a0)2 + iǫ
− 1

(x− a)2 − (x0 − a0)2 − 2i(x0 − a0)ǫ′′
.

(4.14)

Now this is a representation of the retarded Green function

−2πiθ(x0 − a0) δ
(

(x0 − a0)2 − (x− a)2
)

= −πiδ (x
0 − a0 − |x− a|)
|x− a|

Taking into account the factor of i that δ4(x− Y ) acquires under Wick rotation we

find that the contribution to the Minkowski space thermal average

−〈
∫

Σ

δ4(x− Y ) dΣµν(Y )〉Σ (4.15)

coming from the edges of the world-sheet that are the world-lines of the charges is

∂µ

(
∫

daν
δ (x0 − a0 − |x− a|)

4π|x− a| −
∫

dbν
δ (x0 − b0 − |x− b|)

4π|x− b|

)

−∂ν
(
∫

daµ
δ (x0 − a0 − |x− a|)

4π|x− a| −
∫

dbµ
δ (x0 − b0 − |x− b|)

4π|x− b|

)

.

(4.16)

Since we are taking β small so as to be able to ignore C3 the trace is evaluated by

identifying the string configurations at the end of C1 and C2 at times t0 and t0− 2iǫ′

respectively, and then integrating over them. Before the integration is done the

configuration of the string constitutes two fixed edges of the world-sheet described

by two copies of the same curve displaced through 2iǫ′ in time. Taking the edge

attached to the end of C1 to be Y µ = cµ, say, there is a contribution to (4.15) of

∂µ

(
∫

dcν
δ (x0 − c0 − |x− c|)

4π|x− c|

)

− ∂ν

(
∫

dcµ
δ (x0 − c0 − |x− c|)

4π|x− c|

)

. (4.17)

Because this is supported on null-rays through Y µ = cµ it vanishes for fixed x when

we send t0 → −∞ (provided that the world-lines of the two charges, aµ and bµ

are not themselves null). Consequently only (4.16) survives in this limit. Summing

the contributions from all the elementary charges q0 by simply multiplying this by

q results in the retarded solution to the Minkowski space Maxwell equations, F ret
µν ,
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so we arrive at the conclusion that the retarded solution arises naturally from the

thermal average:

F ret
µν = −〈q

∫

Σ

δ4(x− Y ) dΣµν(Y )〉Σ (4.18)

in the limit of small β. Notice that as in section two we have taken the temperature

to be large.

5. Conclusions

The search for a unified description of physical phenomena is an old one. Faraday’s

idea that the basic atoms of such a description are lines of force may appear as

no more than a quaint notion that was rapidly side-lined by Maxwell’s quantitative

description of electromagnetism in terms of fields. However, from a modern perspec-

tive informed by string theory, his notion seems remarkably prescient, as indeed do

Dirac’s related ideas of over half a century ago.

We have used some of the world-sheet technology of string theory to show that

classical electromagnetism can be interpreted as a consequence of the statistical me-

chanics of lines of force. This provides an underlying stochastic description of what

is usually taken to be a deterministic problem encoded in the partial differential

equations of Maxwell’s theory. The result of this is that the retarded solution arises

naturally, breaking the time-reversal invariance of the classical theory as a conse-

quence of invoking thermodynamics. The direction of time is picked out because

when we invoke the statistical mechanics of flux-lines we necessarily have to use

quantum theory to avoid the ultra-violet catastrophe associated with the statisti-

cal mechanics of fields, since the world-sheets of strings are effectively field theories

with one space and one time dimension. Quantum theory requires a Hamiltonian

operator with a spectrum that is bounded from below. This allowed us to introduce

ǫ insertions as convergence factors in our discussion of time dependence in section

four, and it is these that pick out the retarded, rather than the advanced, solution

to Maxwell’s equations.

Electromagnetism, and gauge theories generally, are intimately connected with

string theory and arise in a number of ways so we should consider how our compu-

tations are related to these standard approaches.

Conventionally photon vertex operators are open-string operators inserted on the

world-sheet boundary and correspond to coupling to an external Aµ field by adding

to the action
∮

Aµ dy
µ so that Aµ acts as a source for the operator. The scattering

amplitudes of photons of definite momenta kµ and polarisation Eµ are thus obtained

from the expectation values of vertex operators q
∮

eik·yE · dy on the world-sheet

boundary, and the mass-shell condition k2 = 0 results from the requirement of the

decoupling of the scale of the world-sheet metric. In our flux string picture the

electromagnetic field strength Fµν is represented by a closed-string vertex operator
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that is inserted on the interior of the world-sheet and corresponds to coupling to an

external Bµν field by adding
∫

qBµν dΣµν to the action. We can make a connection

between the conventional open string vertex operators and our closed string ones by

recalling the LSZ formalism in QED. This gives scattering amplitudes as time-ordered

expectation values of on-shell field operators
∫

d4x eik·xEµ∂2Aµ(x) = −
∫

d4x eik·xEµ∂νFµν(x) (5.1)

since in QED Fµν = ∂µAν − ∂νAµ is an identity (although it only holds on average

in our work), and k · E = 0. If we were to calculate this in terms of the flux string

picture using (4.5) we would calculate the expectation value of

q

∫

d4x eik·xEµ∂ν
∫

Σ

δ4(x− Y ) dΣµν(Y ) = q

∮

∂Σ

eik·yE · dy (5.2)

which is the usual open string insertion.

The averages over the flux string configurations that we have needed to construct

Fµν can be computed in any dimension because the world-sheet metric decouples from

the calculation, consequently there is no mass-shell condition and we are free to use

this off-shell δ-function insertion. So our calculation is essentially one in non-critical

string theory.

Gauge theories also arise from strings stretching between coincident D-branes.

Our flux-lines stretch between the world-lines of electric charges which may be con-

sidered as D0-branes, however they are not coincident so that the flux-lines would

not be associated with massless excitations.

There is a further way in which our flux strings differ from usual string theory,

and that is in their interactions. We have computed the classical electromagnetic field

from the statistical mechanics of large numbers of flux-lines, but we could instead use

this approach to pursue further Dirac’s idea of building Quantum Electrodynamics

from elementary flux lines. In the Euclidean functional integral approach to the

quantum theory of the electromagnetic field coupled to charged particles we need to

compute the expectation value of operators by integrating over the gauge field

〈 Ω̂1..Ω̂n 〉A =
1

ZA

∫

DAe− 1
4

∫
FµνFµν d4xΩ1(A)..Ωn(A) . (5.3)

It is sufficient to take the operators to be Wilson loops,[11], i.e.

Ωj = exp−iqj
∮

Cj

Aµ dx
µ ,

for arbitrary Cj . We will not address the dynamics of the charges, which requires

integrating over the Cj, but focus on eliminating Aµ. The integral over the gauge-

potential can be computed exactly as a functional of the curves Cj, because the
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exponent is quadratic in Aµ, and the result is

exp−1

2

∑

j

iqj

∫

Σi

F c
µν dΣ

µν
j ,

where F c
µν is the classical (Euclidean) electromagnetic field generated by the charge

density
∑

iqj
∮

Cj
δ4(x−y) dyµ , and Σj is any surface spanning Cj . We now represent

the classical electromagnetic field as an average over flux-strings to obtain

〈 Ω̂1..Ω̂n 〉A = exp
∑

i,j

qiqj
2

〈
∫

dΣ(X)iµν δ
4(X − Y ) dΣ(Y )µνj 〉Σi,Σj

(5.4)

where we have introduced an extra averaging over the Σi to obtain a more symmetri-

cal result. Although this is not a complete theory it is clear that the basic interaction

between the flux strings is a contact interaction rather than the splitting and joining

interaction of conventional open string theory.
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