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A Clifford algebraic framework for Coxeter
group theoretic computations

Pierre-Philippe Dechant

Abstract Real physical systems with reflective and rotational symiegesuch as
viruses, fullerenes and quasicrystals have recently bemrelad successfully in
terms of three-dimensional (affine) Coxeter groups. Mdgigldy this progress, we
explore here the benefits of performing the relevant contipumsin a Geometric
Algebra framework, which is particularly suited to desarireflections. Starting
from the Coxeter generators of the reflections, we descrive the relevant chi-
ral (rotational), full (Coxeter) and binary polyhedral gps can be easily generated
and treated in a unified way in a versor formalism. In paréiguhis yields a sim-
ple construction of the binary polyhedral groups as discepinor groups. These
in turn are known to generate Lie and Coxeter groups in dimarfeur, notably
the exceptional groupd,, F4 andH,. A Clifford algebra approach thus reveals an
unexpected connection between Coxeter groups of ranks 8.ake discuss how to
extend these considerations and computations to the Goaf@eometric Algebra
setup, in particular for the non-crystallographic growgrs] construct root systems
and quasicrystalline point arrays. We finally show how af@ii versor framework
sheds light on the geometry of the Coxeter element and thet€oglane for the
examples of the two-dimensional non-crystallographicetexgroups,(n) and the
three-dimensional groupss, B3, as well as the icosahedral grodp.
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1 Introduction

Physical systems have to obey the mathematical laws of gegnreparticular, if
they possess symmetry — such as invariance under refleei@hsotations — this
symmetry is heavily constrained by purely geometric cosrsitions. For instance,
many physical systems in biology (viruses), chemistryl¢f@nes) and physics
(crystals and quasicrystals) have polyhedral symmefFiesse polyhedral symme-
try groups are generated by reflections; via the Cartandaiené theorem an even
number of reflections amounts to a rotation (see €.d. [17nfoexposition in a
Clifford algebra context), and physical systems may beriawh only under this
rotational (chiral) part, or the full reflection group.

Coxeter group theory [5, 24] axiomatises reflections fronalastract mathemat-
ical point of view. Coxeter groups thus encompass the finitelifean reflection
groups, which include the symmetry groups of the Platonlidse- A3 for the tetra-
hedron B; for the dual pair octahedron and cube, &fyffor the dual pair icosahe-
dron and dodecahedron — as well as the Weyl groups of the sibiplalgebras. A
subset of these groups are non-crystallographic, i.e. desgribe symmetries that
are not compatible with lattices in dimensions equal torttaik. They include the
two-dimensional family of symmetry groupg(n) of the regular polygons, as well
asH, (the symmetry group of the decagoH}, (the symmetry group of the icosahe-
dron) and the largest non-crystallographic grélygthe symmetry group of the hy-
pericosahedron or 600-cell in four dimensions), which heednly Coxeter groups
generating rotational symmetries of order 5. The full i¢es#ral grougHs and its
(chiral) rotational subgroup are of particular practical importance, Hs is the
largest discrete symmetry group of physical space. ThusyrBalimensional sys-
tems with ‘maximal symmetry’, like viruses in biology [49/31,26| 52], fullerenes
in chemistry[[37,_36, 50, 38], quasicrystals in physics 4,43/ 41| 48] as well as
polytopes in mathematics [34,135,131], can be modeled usm@ter groups.

Clifford’s Geometric Algebral[18, 15] is a complementargrfrework that fo-
cuses on the geometry of the physical space(-time) thatweérliand its given Eu-
clidean/Lorentzian metric. This exposes more clearly #nengetric nature of many
problems in mathematics and physics. In particular, Giiffo Geometric Algebra
has a uniquely simple formula for performing reflectiongWous research appears
to have made exclusive use of one framework at the expenke afther. Here, we
combine both paradigms, which results in geometric insiffioim Geometric Alge-
bra that apparently have been overlooked in Coxeter théoryfar. This approach
also has computational and conceptual advantages ovelastbiechniques, in par-
ticular through a spinorial or conformal point of view. Hesés [[20] has given a
thorough treatment of point and space groups in Geometgelfh, and Hestenes
and Holt [21] have discussed the crystallographic point sgmace groups from a
conformal point of view. Here, we are interested in apply@gpmetric Algebra in
the Coxeter framework, in particular in the context of roattems, the Coxeter ele-
ment, non-crystallographic groups and quasicrystalsghvto our knowledge have
not yet been treated at all.
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This paper is organised as follows. Sectidn 2 introduces $ystems are cur-
rently modeled in terms of Coxeter groups, and what kind ahjgotations arise
in this context. In Section]3, we present a versor formaliswlhich the full, chi-
ral and binary polyhedral groups can all be easily generabeltreated within the
same framework. In particular, this yields a constructiéthe binary polyhedral
groups (discrete subgroups 88(2) that are the double covers of the chiral (rota-
tion) groups), which we will discuss further in Sectign 4.Sectior b, we briefly
outline how to extend this treatment to the conformal setuarticular for the
non-crystallographic groups, and we demonstrate how tetoact root systems
and quasicrystalline point sets in this framework. In Setd8, we discuss the two-
dimensional non-crystallographic Coxeter grolg®) as well as the icosahedral
groupHs and the other two three-dimensional grodpgtetrahedral) an@; (octa-
hedral) in a versor formalism, which elucidates the refatiith the Coxeter element
and the Coxeter plane. We conclude with a summary and pedsitiher work in
Sectior Y.

2 Coxeter formulation

Coxeter groups are abstract groups describable in termsrodrnsymmetries|[5].
The elements of finite Coxeter groups can be visualised asctigfhs at planes
through the origin in a Euclidean vector spatdn particular, forv, a € V, then

20 -v
v—>rav_\/_v—a 70 (1)

corresponds to a Euclidean reflectignof the vectow at a hyperplane perpendicu-
lar to the so-called root vectar. The structure of the Coxeter group is thus encoded
in the collection of all such roots, which form a root systefsubset of the root
system, called the simple roots, is sufficient to expressg/aeet via aZ-linear com-
bination with coefficients of the same sign. The root systethérefore completely
characterised by this basis of simple roots, which in tunmgletely characterises
the Coxeter group. The number of simple roots is called th& od the root sys-
tem, which essentially gives the dimension and therefatexas the corresponding
Coxeter group and root system (et for the largest discrete symmetry group in
three dimensions).

Finite Coxeter groups describe the properties of physicattires, e.g. of a vi-
ral protein container or a carbon onion, at a given radialleas the symmetry only
relates features at the same radial distance from the otigorder to obtain infor-
mation on how structural properties at different radiaklevcould collectively be
constrained by symmetry, affine extensions of these groepd o be considered.
Affine extensions are constructed in the Coxeter framewgrkdaling affine reflec-
tion planes not containing the origin [42]. A detailed acgbaf this construction
is presented elsewhelie [44, 10] 11], but essentially theea#fktension amounts to
making the reflection grouf topologically non-compact by adding a translation
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operatorT. The structures of viruses follow several different exiens of the (chi-

ral) icosahedral group by translation operators [2B, [12,]29]. Thus, a wide range
of empirical observations in virology can be explained bfjnaf Coxeter groups.
We now discuss 2D counterparts to the 3D point arrays thaligirthe architecture

of viruses and fullerenes, and explain in what sense theslaon operators are
distinguished.

Fig. 1 The action of an affine Coxeter group on a pentagon. The &iosloperatofT gener-
ates extended point arrays, whilst the compact @amhakes the resulting point set rotationally
symmetric. Blueprints with degeneracies due to coincigiamts correspond to non-trivial group
structures and can be used in the modeling of viruses.

For illustration purposes, let us consider a similar cargtton for a pentagon of
unit size, as shown in Figl 1. The non-compact translatieratprT, here chosen
to also be of unit length, creates a displaced version of émtggon. The action of
the symmetry groufs of the pentagon then generates further copies in such a way
that the final point array displays the same rotational sytriese

The translation operator we have chosen for this examplésigduished be-
cause several of the generated points lie on more than ortagmem for instance
the innermost points, or the midpoints of the edges of thgelauter pentagon. Cer-
tain distinguished translations lead to such point setls défgenerate points, which
therefore have lower cardinality than those obtained byndaen translation (here
15 points as opposed to 25). This degeneracy yields a naatriathematical struc-
ture at the group level, and the corresponding blueprintisriee dimensions can be
used to model icosahedral viruses.

Fig.[d shows a similar example for a translation of lengthhef golden ratio
T= %(1+ v/5) ~ 1.618. The resulting point set also has degenerate cargifiaitv
20 points), and consists of an inner decagon and an outeagamtAffine symmetry
here means that the relative sizes of the decagon and pergegfixed by the group
structure. This is a powerful geometric tool for constragnieal systems.

The computations necessary in this context are therefanslations, reflections
and rotations; one also needs to be able to check degendmagints. In the usual
vector space approach, these operations are implemeratedatiices. We instead
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Fig. 2 Translation by the golden ratio results in a point set whasestituent polygons are simul-
taneously constrained by the affine symmetry.

develop here a versor implementation. This has some cotqnahadvantages, as
well as offering surprising geometric insights, as we sbed later. Whilst the com-
putational complexity for 3-dimensional applicationsimited, equivalent compu-
tations in four dimensions, whekg, — the four-dimensional analogue of the icosa-
hedral group and symmetry group of the hypericosahedrod-¢gll) — has order
14,400 andHg-symmetric polytopes have upwards of 120 and 600 vertiaes, a
rather more complex.

In the Coxeter setting, therefore, the reflections are foretdal; Geometric Al-
gebra is very efficient at encoding reflections algebrajcatid at performing com-
putations with clear geometric content. However, the taofeworks do not appear
to have been combined previously. We therefore explore wbanefits a Clifford
algebraic description might offer for Coxeter group théigreonsiderations.

3 Versor framework

The geometric produaty= x-y+ x Ay of two vectorsx andy (with x-y denoting the
scalar product anglAy the exterior product) of Geometric Algebfa [18] 22| (19, 15]
provides a very compact and efficient way of handling reftexgiin any number
of dimensions, and thus by the Cartan-Dieudonné theorsmratations|[17]. For

a unit vectora, the two terms in the formula for a reflection of a vectan the
hyperplane orthogonal ta from Eqg. [1) simplify to the double-sided action of
via the geometric product

Vo rgv=V = —ava. (2)
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This prescription for reflecting vectors in hyperplanesimarkably compact, and
applies more generally to all multivectors. Even more intgatty, from the Cartan-
Dieudonné theorem, rotations are the product of an everbeuwf successive re-
flections. For instance, compounding the reflections in fetplanes defined by
the unit vectorsy; andaj results in a rotation in the plane defined @y o;

V' = ajaivaiaj =: RVR €))

where we have defined the rotBr= ajaj and the tilde denotes the reversal of
the order of the constituent vectors of a versor, e.g. ﬁefeaj o;. Rotors satisfy
RR= RR= 1 and themselves transform single-sidedly under furth@atians. They
thus form a multiplicative group under the geometric pragdcalled the rotor group,
which is essentially the Spin group, and thus a double-cof/éére special orthogo-
nal group[18] 15, 45]. Objects in Geometric Algebra thatsfarm single-sidedly
are called spinors, so that rotors are normalised spinors.

In fact, the above two cases are examples of a more generktheon the
Geometric Algebra representation of orthogonal transédions. In analogy to the
vectors and rotors above, a versor is a multiveétera;a, . . . ax which is the prod-
uct ofk non-null vectorsy; (a2 # 0). These versors also form a multiplicative group
under the geometric product, called the versor group. Theovd@ heorem [19] then
states that every orthogonal transformationff vector can be expressed via unit
versors in the canonical form

A:v—V =A(V) = +AVA (4)

where thet-sign defines the parity of the versor. Since both the verdasd —A
encode the same orthogonal transformationiit versors are double-valued repre-
sentations of the respective orthogonal transformatimmnga construction of the
Pin group Pirip,q) [45], the double cover of the orthogonal groGpp,q). Even
versors form a double covering of the special orthogonalig®Q(p,q), called
the Spin group Spifp,q). The versor realisation of the orthogonal group is much
simpler than conventional matrix approaches. This is galdrly useful in the Con-
formal Geometric Algebra setup, where one uses the facthibatonformal group
C(p,q) is homomorphic td(p+ 1,q+ 1) to treat translations as well as rotations
in a unified versor framework (see Sectidn 5), making it gaedb use all of GA's
versor machinery for the analysis of the conformal group.

We now consider which benefits such a versor approach canfoff€oxeter
computations, in particular in the context of applicatisaagphysical phenomena
in three dimensions. The isometry group of three-dimeradispace is the orthog-
onal groupO(3), of which the full polyhedral (Coxeter) groups are discretd-
groups. HoweverQ(3) is globally SQ(3) x Z,, where the special orthogonal group
SQ(3) is the subgroup of pure rotations (or the chiral p&8t)3) is still not simply-
connected, but is doubly covered by the Spin group &irx SU(2) (in fact, it is
SQ(3) x Z locally, i.e. a fibre bundle). Thus, the chiral polyhedralgps are dis-
crete subgroups dQ(3), the full polyhedral groups (Coxeter) are their preimage
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in O(3), and the binary polyhedral groups are their preimage urfdeuiversal
covering in Spir3).

Table 1 Versor framework for a unified treatment of the chiral, fuldebinary polyhedral groups.

Group Discrete subgroup Action Mechanism

sQ@3) rotational (chiral) x — RxR

0O(3) reflection (full) X — £AXA

Spin(3) binary spinorsR under spinor multiplicatioriRy, R) — RiR>

We begin with the simple roots (vertex vectors) which cortglle charac-
terise a given Coxeter group, and consider their closuremumtual reflections
(the root system). We then compute the rotors derivable fatirthese root vec-
tors/reflections, which encode the rotational part of trepeetive polyhedral group
via the double-sided action in Ed] (3). The rotor group defibg single-sided ac-
tion can in fact be shown to realise the respective binaryhmalral group, which
is the double cover of the chiral polyhedral group under thigarsal covering ho-
momorphism betwee8BQ(3) and Spiri3). Finally, including the versors of the form
aiajoy via double-sided action gives a realisation of the full pelgiral group (the
Coxeter group). The proofs are straightforward calculetio the Geometric Alge-
bra of three dimensions and more details are contained [Bj [8,

Theorem 3.1 (Reflections/Coxeter groups and polyhedra/ra@ystems) Take the
three simple roots for the Coxeter groups»AA; x A; (respectively A/Bsz/H3). Ge-
ometric Algebra reflections in the hyperplanes orthogoonahiese vectors via Eq.
(@) generate further vectors pointing to the 6 (resp. 12308kertices of an octahe-
dron (resp. cuboctahedron/cuboctahedron with an octahefitosidodecahedron),
giving the full root system of the group.

For instance, the simple roots f85 x A; x A; area; = €1, 0 = & andaz = €3
for orthonormal basis vectoes. Reflections amongst those then also genera&te
—ep and—e3, which all together point to the vertices of an octahedron.

By the Cartan-Dieudonné theorem, combining two reflestipields a rotation,
and Eq.[(B) gives a rotor realisation of these rotations inr@atric Algebra.

Theorem 3.2 (Spinors from reflections) The 6 (resp. 12/18/30) reflections in the
Coxeter group Ax Ay x A; (resp. A/Ba/H3) generate 8 (resp. 24/48/120) rotors.

For theA; x A; x A1 example above, the spinors thus generatectatete e,
+epes andtese;. In fact, these groups of discrete spinors yield a novelicangon
of the binary polyhedral groups.

Theorem 3.3 (Spinor groups and binary polyhedral groups) The discrete spinor
group in Theoreri 312 is isomorphic to the quaternion groupe3g. binary tetra-
hedral group2T /binary octahedral grouO/binary icosahedral grougl).
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Through the versor theorem, we can therefore describeraktiypes of groups
in the same framework. Vectors are grade 1 versors, andsratergrade 2 versors.
For instance, the 60 rotations of the chiral icosahedralgtare given by 120 ro-
tors acting asijajva;ja;. 60 operations of odd parity are defined by 120 grade 1 and
grade 3 versors (with vector and trivector parts) acting-asa; ayvayaja;. How-
ever, 30 of them are just the 15 true reflections given by peceors, leaving another
45 rotoinversions. Thus, the Coxeter group (the full icesihl groupHs € O(3))
is expressed in accordance with the versor theorem. Aligata one can think of
60 rotations and 60 rotoinversions, makiig—= I, = | x Z, manifest. However, the
rotations operate double-sidedly on a vector, such thatdhsor formalism actually
provides a 2-valued representation of the rotation gr8@(8), since the rotorf
and—R encode the same rotation. Since $ins the universal 2-cover $Q(3),
the rotors form a realisation of the preimage of the chirasahedral group, i.e.
the binary icosahedral group.2r'hus, in the versor approach, we can treat all these
different groups in a unified framework, whilst maintainieglear conceptual sepa-
ration. In TabléIl, we summarise how the three differentsygfepolyhedral groups
are realised in the versor framework.

4 Construction of the binary polyhedral groups

In this section, we consider further the implications of construction of the binary
polyhedral groups. Since Clifford algebra is well known toyide a simple con-
struction of the Spin groups, it is perhaps not surprisingomfa Clifford algebra
point of view — to find that the discrete rotor groups reallse binary polyhedral
groups. However, this construction does not seem to be knamchfrom a Coxeter
group point of view, it leads to rather surprising conseaesn

[rank-3 group diagram|[binary]] rank-4 group | diagram |
At xA1xA1lo0 o o Q Al xArxALxAlo 0 O O

As  |o—o—o|| 2T Da O—O<Z

4 4

B3 o—o—-of 20 Fa o0—0—0—o0
Hs o—oio 2l Ha o—o—oio

Table 2 Correspondence between the rank-3 and rank-4 Coxetergrdtap spinors generated
from the reflections contained in the respective rank-3 @oxgroup via the geometric product
are realisations of the binary polyhedral gro@@<2T, 20 and 2, which in turn generate (mostly
exceptional) rank-4 groups.

The Geometric Algebra construction of the binary polyhédraups is via ro-
tors with (single-sided) rotor multiplication. It is thetraghtforward to check the
group axioms, multiplication table, conjugacy classestapdepresentation theory.
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However, it is also known that the binary polyhedral groupsayate some Coxeter
groups of rank 4, for instance via quaternionic root systf@hdn particularQ, 2T,
20 and 2 generatéd; x A x Ay x Ag, Dy, F4 andHgy, respectively, as summarised
in Table[2. From a Coxeter perspective, this is surprisingweber, in Geometric
Algebra, spinorsp have a natural 4-dimensional Euclidean structure givegy iy
and can thus also be interpreted as vectors in a 4D Eucligrezene sin fact, one can
show that these vertex vectors are again root systems([4] 9wRich generate the
respective rank-4 Coxeter groups. This demonstrates héactrthe rank-4 groups
can be derived from the rank-3 groups via the geometric proafClifford’s Geo-
metric Algebra. This connection has so far been overlookétbixeter theory. This
‘induction’ of higher-dimensional root systems via spis@f lower-dimensional
root systems is complementary to the well-known top-dowpregches of projec-
tion (for instance fronkEg to Hy [47,143,[33/ 32, 11]), or of taking subgroups by
deleting nodes in Coxeter-Dynkin diagrams. It is partidylinteresting that this
inductive construction relates the exceptional low-disienal Coxeter grouplds,
D4, F4 andH4 to each other as well as to the serfgs B,, andD,, in novel ways.
In particular, it is remarkable that the exceptional dimendour phenomen®,
(triality), F4 (the largest crystallographic Coxeter group in 4D) &hd(the largest
non-crystallographic Coxeter group) are seen to arise froge-dimensional geo-
metric considerations alone, and it is possible that theéatence is due to the ‘acci-
dentalness’ of the spinor construction. This spinorialwé®uld thus open up novel
applications in Coxeter and Lie group theory, as well as igtppes (e.gA4), string
theory and triality D,), lattice theory F4) and quasicrystaldy). In particular, this
spinorial construction explains the symmetries of thesg sgstems, which other-
wise appear rather mysteriolis [9]. Thén) are self-dual under the corresponding
two-dimensional spinor constructian [7].

5 Conformal Geometric Algebra and Coxeter groups

The versor formalism is particularly powerful in the Confal Geometric Alge-
bra approach [22, 15] 6]. The conformal gro@fp,q) is 1— 2-homomorphic to
O(p+1,9+1) [L,[2], for which one can easily construct the Clifford algeland
find rotor implementations of the conformal group actiortuding rotations and
translations. Thus, translations can also be handled plioétively as rotors, for
flat, spherical and hyperbolic space-times, making avialti® ‘sandwiching ma-
chinery’ of GA and simplifying considerably more traditmrapproaches and al-
lowing novel geometric insight. Hestenés [[20] 21] has a&gbthis framework to
point and space groups, which is fruitful for the crystatighic groups, as lattice
translations can be treated on the same footing as theawsadind reflections, and
this approach has helped visualise these space groups [23].

However, the non-crystallographic groups and the rootesygA&Toxeter frame-
work have thus far been neglected in the conformal setup. &ve hArgued ear-
lier and in the papers [44, 10,111,128, 12] 29] that in the affirension frame-
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work translations are interesting even for the non-cricggaaphic groups, leading
to quasicrystal-like point arrays that give blueprints finuses and other three-
dimensional physical phenomena. An extension of the combframework to
translations in the case of non-crystallographic Coxeteuags could therefore have
interesting consequences, including for quasilatticemhd27,(46], in particular
when quasicrystals are induced via projection from highmedsions (e.g. via the
cut-and-project method) [43, 11,125]. We therefore briefliline the basics of such
a construction.

Let us consider the conformal space of signati#e+,+,+,—) achieved by
adjoining two additional orthogonal unit vectoesand e to the algebra of space
[22]. It is therefore spanned by the unit vectors

e11e21e37e7e_7Withq2:17e2::l-a?:_1' (5)
From these two unit vectors we can define the two null vectors
n=e+e n=e—e (6)

One can then map a 3D vectointo the space of null vectors in the conformal space
by defining
X =F(x):=xn+2Ax— A%, (7)

X being null allows for a homogeneous (projective) represtion of points, i.e.
they are represented by a ray in the conformal space, whitlst® be more nu-
merically robust in applications, as for instance the arigirepresented hyrather
than the number 0, which is sensitive to the accumulatioruaferical errors. Here,
A is a fundamental length scale that is needed in order to ni&expression di-
mensionally homogeneous, as we think of the position vectts a dimensionful
quantity [39]. The equivalent notation in terms of the Anndgen protocol would be
e=e,,€=e_,Nn=n, andn=ng. This notation is also consistent with the notion
that the above mapping is essentially an embedding intorthjegdive null cone of
the embedding space. Originally due to Diracl[14], the idethat the projective
null cone inherits the&sQ(4, 1) invariance of the ambient space in whigi(4,1)
acts linearly, thereby endowing the projective null conthai non-linearly realised
conformal structure.

The vectore ande and therefore alsp andn are orthogonal ta and hence anti-
commute with it, i.e—x tnx= nand—x 1nx= n. Thus, the CGA implementation
of a reflectiony’ = —xlyxis given by

—x 'F(y)x=F(y) =F(-x"'yx. ®

Given the simple roots, one can again generate the wholsystegm via successive
reflections as shown in Figl 3 (left). We firstly notice that tonformal representa-
tion of a root vectoF (a) is now different from the implementation of the reflection
encoded by it via the versar. These two roles were treated on an equal footing in
3D, as therex represents both the root vector and the versor encodingeatiefi in
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the hyperplane perpendicular to the root, and it is debatabkther the conceptual
advantages of CGA outweigh this disadvantage.

Secondly, it is often argued that the implementation oftiotes in CGA is given
by F(X') = RF(X)R, sinceR only contains even blades and thus commutes with the
vectorsn andnsuch thaRrR= n andRAR = n. However, via the Cartan-Dieudonné
theorem, every rotation is given by an even number of suaeessflections. Thus,
it can be seen that the rotor transformation law actuallp¥ed from the more fun-
damental reflection law in Eq](8). From the previous sestiave know that the
spinors generated by the root vectors are important for ¢éimsteuction of the bi-
nary polyhedral groups and 4D polytopes. However, the 3Drgc product does
not straightforwardly extend to CGA, such that the spinard ather multivectors
are not treated in the same way as vectors. The operatordiagahe conformal
rotations, however, are still given by the 3D rotors, so tittéé seems to be gained
by going to the conformal setup from the spinorial point awi

a1+T1a2  T(01+02) Q
o Q
ay Ta;+Qaz o o o
@ O Q
/ \ o ©
Q @ O
ay Q o
\ / @ o o
Q @ O
° 09
Q

Fig. 3 In the conformal setup, reflections generated by the singaésr(here e.ga; anday for

a simple two-dimensional exampley) according to Eq[{8) again generate, for instance Hhe
non-crystallographic root system, the decagon (left). G&tar translations via Eq{9) act multi-
plicatively, but yield quasicrystalline point sets comsig with the 3D approach; for instance, on
the right we show the effect of a translation with length theerse of the golden ratio acting on a
pentagon, in analogy to Fig$ 1 dnd 2.

A very salient feature of Conformal Geometric Algebra istth&ranslatiork —
X+ a by a vectora is given by a rotor

Ta:exp(g) =1+ g‘. 9)

It is easily checked that this has the desired effecT#%(x)T, = F(x+ a), and
therefore does indeed represent a 3D translation as a no@onformal Geometric
Algebra. One can thus treat reflections, rotations and laiass multiplicatively
in a unified framework. This allows for a unified constructmirthe type of point
arrays considered earlier, and indeed the constructiontieely equivalent to the
lower-dimensional construction (as it must), and can begittforwardly verified,
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for instance, for the non-crystallographic groupé&), Hz andHg. In Fig.[3, we
show an example consisting of both one such root system amdwasicrystal-like
point array derived entirely in the conformal setup, as aopadf principle. The
root system shown is that ¢f,, and the point array is obtained via the action of a
translation of length the inverse of the golden ratio on aggon.

The CGA approach is naturally more computationally intemsnan the 3D ap-
proach; however, this could be compensated for by increasestrical stability, as
the origin is simply represented by scalar multiples,as opposed to the number 0,
where numerical errors can create artefacts near the ofiiggating both rotations
and translations on the same footing as multiplicativersot® also a nice concep-
tual shift. However, there are also drawbacks to the cordbapproach. Firstly, the
conformal representation of the root vectérax) is different from their action as
generators of reflectiores. The relationship between these two functions was more
transparent in the conventional approach in 3D, whenepresented both. Sec-
ondly, the rotors encoding rotations are also the 3D spjmatiser than a conformal
representation of those. Thus, CGA affords a nice repratientof GA vectors, but
not necessarily of the whole GA multivector structure.

Following [40], an interesting approach might be to work irwved space,
for which only one extra dimension is necessagyof €), which should simplify
the computations somewhat. One may then finally take the aanature limit in
order to recover the Euclidean space results. For instdacéJinkowski space-
time, the conformal grou(1,3) is 15-dimensional. It has certain well-known
ten-dimensional groups as stabiliser subgroups, i.e.pgrotitransformations that
leave a given point (rayy invariant. Ify is spacelike, one gets 802, 3) stabiliser
subgroup, i.e. the Anti de Sitter group, corresponding tohthmogeneous space-
time that is the solution of Einstein’s field equations withegative cosmological
constantA < 0. Likewise, for timelikey one obtains the de Sitten\(> 0) group
SQ(1,4) as the stabiliser (here in the CGA sete@nde are distinguished choices
for such spacelike and timelikg. Lastly, when one chooses a nul(e.g.n), one
gets anlSQ(1,3) subgroup, which is just the Poincaré grolp! [45, 3]. Thusdnt
the zero curvature limit essentially corresponds at theigievel to the Wigner-
Indnl contraction that yields the Poincaré group from tie Sitter and Anti de
Sitter groups (see e.d. [16]) and a flat space (which needsdatorse ande) limit
from a curved space (for which only one®br eis necessary).

6 12(n) and Hz — the Coxeter element and spinors

In this section, we further analyse the two-dimensionaliligaf non-crystallographic
Coxeter group$;(n) (the symmetry groups of the regular polygons), as well as the
three-dimensional groupgs, B3 and the icosahedral grod, describing the sym-
metries of the Platonic solids. A versor framework (not rssegily conformal) al-
lows a deeper understanding of the geometry, relating sptodhe Coxeter element
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and the Coxeter plane in a novel way, in particular highlizdntvhat the complex
structure involved is.

A Coxeterelemenv=s; ...s, is the product of the reflections encoded by all the
simple rootsy; of a finite Coxeter groulV. The Coxeter numbdris the order (i.e.
w" = 1) of such a Coxeter element. The sequence in which the sirafitions
are performed does matter, but all such elements are cdsjuayad thus the Cox-
eter numbeh is the same (for instance fty(n) one has = n). For a given Coxeter
elementw, there is a unique plane called the Coxeter plane on wiuiabts as a ro-
tation by 2t/h. At this point in the standard theory, there is a convolutegiment
about the need to complexify the situation and taking reztices of the complexi-
fication in order to find the complex eigenvalues € /h) and exg2mi(h— 1) /h)
[24]. 1t will come as no surprise that in Geometric Algebra ttomplex structure
arises naturally, giving a geometric interpretation fag ttomplex eigenvalues’.

Projection of a root system onto the Coxeter plane is a wayisefalising any
finite Coxeter group, for instance the well-known repreagon of Eg is such a
projection of the 240 vertices of the eight-dimensional €&bsoot polytope onto
the Coxeter plane. Fifj] 4 (a) shows such a projection of toegolytope ofHz (the
icosidodecahedron) onto the Coxeter plane.

@) (b) ©

Fig. 4 lllustration of the geometry dfi;. (a) shows the projection of the root polytope (the icosido-
decahedron with 30 vertices) onto the Coxeter plane. Phjpélystrates the action of the Coxeter
element on a vector= e; denoted by the open circle in the Coxeter plamects by 10-fold rota-
tion generating a decagon clockwise, whereas on a veaiormal to the Coxeter plane it acts by
reversal—n. Panel (c) displays both sets of vectors, which in turn hagpdorm the root system
of A1 X Ho.

Without loss of generality, in Geometric Algebra the simmets forl,(n) can
be taken asr; = e, anda, = — cosﬁel + sin’—nTez (see theH; root system in Fid.I3
for n=5). The Cartan matridjj = 2a; - orj/ori2 is then correctly given by

_ m
2 Zcosﬁ> . (10)

Ae() = (_p2en 25
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The Coxeter versoiV describing the rotation encoded by thén) Coxeter ele-
ment via the typical GA half-angle formula

v — wv=WWW (11)

is therefore
W=a1a; = cosn—l—sin T = cosn+sin T~ _ex i (12)
=010z = n ne:Lez = n N = p n

for | = e e. In GA it is therefore immediately obvious that the actiorthod I>(n)
Coxeter element is described by a versor (here a rotor/ggimet encodes rotations
in the e;e,-Coxeter-plane and yields= n since trivially

W= (—)™low =1 (13)

More generally, the versors belonging to conjugate Coxaments could b/ =
iexp(i%) and one immediately finds th&¢" = 41 as required fow to be of
orderh=n.

Sincel = e1&; is the bivector defining the plane ef andey, it anticommutes
with bothe; ande,. Thus, in the half-angle formula Eq.{11), one can takéhrough
to the left to write the complex eigenvector equation

~ - 2
v—>wv:WvW:W2v:exp(iT)v, (14)

immediately yielding the standard result for the complegeavalues. However, in
GA it is now obvious that the complex structure is in fact gilay the bivector de-
scribing the Coxeter plane (trivial fds(n)), and that the standard complexification
is both unmotivated and unnecessary. The ‘complex eigeassahre simply left and
right going spinors in the Coxeter rotation plane.

The Pin group/eigenblade description in GA therefore weldvealth of novel
geometric insight and the general case will be the subjeatfoture publication.
However, for instance for the icosahedral grdtip standard theory has= 10 and
complex eigenvalues ef@rmi/h) with the exponentsn = {1,5,9}. For simple
rootsa; = e, —2a, = (T — 1)e; + e + 1e3 and as = e3, one finds the Coxeter
plane bivectoBc = e;e; + Teze;. Under the action of the Coxeter element versor
2W = —1e; —e3+ (T — 1)l (herel = eep€3) it gets reversed-WBW = —B¢ as
is expected for an invariant plane under an odd operationaRoeigenvector’ in
the Coxeter plane, the two-dimensional argument from E4) épplies and one

again finds eigenvalues eép&@), which corresponds ttmm=1 andm= 9. In

fact, this holds true for a general Coxeter group: 1 brdl are always exponents
and in Geometric Algebra they correspond to ‘eigenvectoeing rotated in the
Coxeter plane via left and right going spinors. However, aofetric Algebra it is
also obvious that in general more complicated geometry goak, with different
complex structures corresponding to different eigenspaGeing back to ouH;
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example, for the vectdsc = Bcl = — 1€, — e3 orthogonal to the Coxeter plane, one
has—WhW = —bc = exp(i%)bc, as is expected for the normal vector for

a plane that gets reversed. Thus, in GA this case straigbdafoty corresponds to
m= 5, accounting for the remaining case.
Fig.[4 illustrates thiHz geometry. Panel (a) shows the projection of the root
system, the icosidodecahedron, onto the Coxeter planevdtierv = e; lies in
the Coxeter plane and the Coxeter elemeiatcts on it by 10-fold rotation via the
Coxeter versoW. This is depicted in Panel (b), wheveis denoted by the open
circle, and rotation vi&V occurs in the clockwise direction creating a decagon. The
Coxeter versor acts on the vectgynormal to the Coxeter plane simply by reversal,
as discussed above. Both sets of vectors (the decagaeh trehormal) are depicted
in Panel (c). Curiously, these vectors form the root systéay o< Hy = A; x 12(5).
The geometry foAz andBg; is very similar. They have Coxeter numbérs- 4
andh = 6, respectively, and exponemts= {1, 2,3} andm= {1,3,5}. The Coxeter
versor again inverts the Coxeter bivector, and the exparieahdh — 1 correspond
to left and right going rotations in the Coxeter plane on \lattlee Coxeter element
acts byh-fold rotation, whilst the normal to the Coxeter plane gétspdy inverted
as expected, corresponding to the cag&s(m= 2 andm = 3 for Az andBg, re-
spectively). Again, the combinations of the vectors in ttep and orthogonal to it
form the root systems @1 x A; x A; = A1 X 12(2) andAg x Ay = Ag X 12(3).

7 Conclusions

We have investigated what insight a Geometric Algebra datsmn, which lends
itself to applications of reflections, can offer when apglie the Coxeter (reflec-
tion) group framework. The corresponding computationscamceptually reveal-
ing, both for applications to real systems and for purelyhaatatical consider-
ations. The implementation of orthogonal transformatiaasversors rather than
matrices offers some computational and conceptual adyastan both the con-
ventional and the conformal approaches. The main benefitviersor description
of the applications, for instance in virology, lies in thenpile construction and im-
plementation of the chiral and full polyhedral groups. THé#f@d approach then
also yields a simple construction of the binary polyhedralugs, and in fact all
three groups can be straightforwardly treated in the saamadwork. This seem-
ingly unknown construction of the binary polyhedral groajso sheds light on the
fact why they generate Coxeter groups of rank 4. The natlr&udclidean structure
of the spinors allows for an alternative interpretation esters (in fact, a root sys-
tem) in a 4D space, which generate Coxeter groups in fourmbioas. Thus, one
can construct many four-dimensional (exceptional) Lie @uketer groups from
three-dimensional considerations alone. We have cornsttumn-crystallographic
root systems and groups, as well as quasicrystalline paiaysiin the conformal
framework. This could be interesting for the latter quagtals, as translations (e.qg.
arising from affine extensions of the Coxeter groups) aadmultiplicatively by
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versors in the same way as rotations and reflections. We hagasded the ver-

sor framework for the groupls(n), Az, Bz andHg, in particular in relation to the

Coxeter element, the Coxeter plane and complex eigenvakpmsments. The Ge-
ometric Algebra approach gives novel geometric insighthascomplex structure

is seen to arise from the Coxeter plane bivector, and the t€préement acts as a
spinor generating rotations in this Coxeter plane.

We are currently applying the more formal considerationswf recent work
to extending the existing paradigm for modeling virus antefene structure [12]
and to packing problems5 [30]. The chiral and binary polylaédroups are attrac-
tive as discrete symmetry groups for flavour and neutrinoehbdilding in particle
physics, and we are currently working on an anomaly analysisaking of clas-
sical symmetries by quantum effects) for these groups [L3¢ two-dimensional
groupsl(n) generate the symmetries of protein oligomers, which we aneently
investigating.
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