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A Clifford algebraic framework for Coxeter
group theoretic computations

Pierre-Philippe Dechant

Abstract Real physical systems with reflective and rotational symmetries such as
viruses, fullerenes and quasicrystals have recently been modeled successfully in
terms of three-dimensional (affine) Coxeter groups. Motivated by this progress, we
explore here the benefits of performing the relevant computations in a Geometric
Algebra framework, which is particularly suited to describing reflections. Starting
from the Coxeter generators of the reflections, we describe how the relevant chi-
ral (rotational), full (Coxeter) and binary polyhedral groups can be easily generated
and treated in a unified way in a versor formalism. In particular, this yields a sim-
ple construction of the binary polyhedral groups as discrete spinor groups. These
in turn are known to generate Lie and Coxeter groups in dimension four, notably
the exceptional groupsD4, F4 andH4. A Clifford algebra approach thus reveals an
unexpected connection between Coxeter groups of ranks 3 and4. We discuss how to
extend these considerations and computations to the Conformal Geometric Algebra
setup, in particular for the non-crystallographic groups,and construct root systems
and quasicrystalline point arrays. We finally show how a Clifford versor framework
sheds light on the geometry of the Coxeter element and the Coxeter plane for the
examples of the two-dimensional non-crystallographic Coxeter groupsI2(n) and the
three-dimensional groupsA3, B3, as well as the icosahedral groupH3.
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1 Introduction

Physical systems have to obey the mathematical laws of geometry; in particular, if
they possess symmetry – such as invariance under reflectionsand rotations – this
symmetry is heavily constrained by purely geometric considerations. For instance,
many physical systems in biology (viruses), chemistry (fullerenes) and physics
(crystals and quasicrystals) have polyhedral symmetries.These polyhedral symme-
try groups are generated by reflections; via the Cartan-Dieudonné theorem an even
number of reflections amounts to a rotation (see e.g. [17] foran exposition in a
Clifford algebra context), and physical systems may be invariant only under this
rotational (chiral) part, or the full reflection group.

Coxeter group theory [5, 24] axiomatises reflections from anabstract mathemat-
ical point of view. Coxeter groups thus encompass the finite Euclidean reflection
groups, which include the symmetry groups of the Platonic solids –A3 for the tetra-
hedron,B3 for the dual pair octahedron and cube, andH3 for the dual pair icosahe-
dron and dodecahedron – as well as the Weyl groups of the simple Lie algebras. A
subset of these groups are non-crystallographic, i.e. theydescribe symmetries that
are not compatible with lattices in dimensions equal to their rank. They include the
two-dimensional family of symmetry groupsI2(n) of the regular polygons, as well
asH2 (the symmetry group of the decagon),H3 (the symmetry group of the icosahe-
dron) and the largest non-crystallographic groupH4 (the symmetry group of the hy-
pericosahedron or 600-cell in four dimensions), which are the only Coxeter groups
generating rotational symmetries of order 5. The full icosahedral groupH3 and its
(chiral) rotational subgroupI are of particular practical importance, asH3 is the
largest discrete symmetry group of physical space. Thus, many 3-dimensional sys-
tems with ‘maximal symmetry’, like viruses in biology [49, 4, 51, 26, 52], fullerenes
in chemistry [37, 36, 50, 38], quasicrystals in physics [27,46, 43, 41, 48] as well as
polytopes in mathematics [34, 35, 31], can be modeled using Coxeter groups.

Clifford’s Geometric Algebra [18, 15] is a complementary framework that fo-
cuses on the geometry of the physical space(-time) that we live in and its given Eu-
clidean/Lorentzian metric. This exposes more clearly the geometric nature of many
problems in mathematics and physics. In particular, Clifford’s Geometric Algebra
has a uniquely simple formula for performing reflections. Previous research appears
to have made exclusive use of one framework at the expense of the other. Here, we
combine both paradigms, which results in geometric insights from Geometric Alge-
bra that apparently have been overlooked in Coxeter theory thus far. This approach
also has computational and conceptual advantages over standard techniques, in par-
ticular through a spinorial or conformal point of view. Hestenes [20] has given a
thorough treatment of point and space groups in Geometric Algebra, and Hestenes
and Holt [21] have discussed the crystallographic point andspace groups from a
conformal point of view. Here, we are interested in applyingGeometric Algebra in
the Coxeter framework, in particular in the context of root systems, the Coxeter ele-
ment, non-crystallographic groups and quasicrystals, which to our knowledge have
not yet been treated at all.
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This paper is organised as follows. Section 2 introduces howsystems are cur-
rently modeled in terms of Coxeter groups, and what kind of computations arise
in this context. In Section 3, we present a versor formalism in which the full, chi-
ral and binary polyhedral groups can all be easily generatedand treated within the
same framework. In particular, this yields a construction of the binary polyhedral
groups (discrete subgroups ofSU(2) that are the double covers of the chiral (rota-
tion) groups), which we will discuss further in Section 4. InSection 5, we briefly
outline how to extend this treatment to the conformal setup,in particular for the
non-crystallographic groups, and we demonstrate how to construct root systems
and quasicrystalline point sets in this framework. In Section 6, we discuss the two-
dimensional non-crystallographic Coxeter groupsI2(n) as well as the icosahedral
groupH3 and the other two three-dimensional groupsA3 (tetrahedral) andB3 (octa-
hedral) in a versor formalism, which elucidates the relation with the Coxeter element
and the Coxeter plane. We conclude with a summary and possible further work in
Section 7.

2 Coxeter formulation

Coxeter groups are abstract groups describable in terms of mirror symmetries [5].
The elements of finite Coxeter groups can be visualised as reflections at planes
through the origin in a Euclidean vector spaceV. In particular, forv, α ∈V, then

v→ rαv= v′ = v− 2α ·v
α ·α α (1)

corresponds to a Euclidean reflectionrα of the vectorv at a hyperplane perpendicu-
lar to the so-called root vectorα. The structure of the Coxeter group is thus encoded
in the collection of all such roots, which form a root system.A subset of the root
system, called the simple roots, is sufficient to express every root via aZ-linear com-
bination with coefficients of the same sign. The root system is therefore completely
characterised by this basis of simple roots, which in turn completely characterises
the Coxeter group. The number of simple roots is called the rank of the root sys-
tem, which essentially gives the dimension and therefore indexes the corresponding
Coxeter group and root system (e.g.H3 for the largest discrete symmetry group in
three dimensions).

Finite Coxeter groups describe the properties of physical structures, e.g. of a vi-
ral protein container or a carbon onion, at a given radial level, as the symmetry only
relates features at the same radial distance from the origin. In order to obtain infor-
mation on how structural properties at different radial levels could collectively be
constrained by symmetry, affine extensions of these groups need to be considered.
Affine extensions are constructed in the Coxeter framework by adding affine reflec-
tion planes not containing the origin [42]. A detailed account of this construction
is presented elsewhere [44, 10, 11], but essentially the affine extension amounts to
making the reflection groupG topologically non-compact by adding a translation
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operatorT. The structures of viruses follow several different extensions of the (chi-
ral) icosahedral groupI by translation operators [28, 12, 29]. Thus, a wide range
of empirical observations in virology can be explained by affine Coxeter groups.
We now discuss 2D counterparts to the 3D point arrays that predict the architecture
of viruses and fullerenes, and explain in what sense the translation operators are
distinguished.

G

T

G

Fig. 1 The action of an affine Coxeter group on a pentagon. The translation operatorT gener-
ates extended point arrays, whilst the compact partG makes the resulting point set rotationally
symmetric. Blueprints with degeneracies due to coincidingpoints correspond to non-trivial group
structures and can be used in the modeling of viruses.

For illustration purposes, let us consider a similar construction for a pentagon of
unit size, as shown in Fig. 1. The non-compact translation operatorT, here chosen
to also be of unit length, creates a displaced version of the pentagon. The action of
the symmetry groupG of the pentagon then generates further copies in such a way
that the final point array displays the same rotational symmetries.

The translation operator we have chosen for this example is distinguished be-
cause several of the generated points lie on more than one pentagon, for instance
the innermost points, or the midpoints of the edges of the large outer pentagon. Cer-
tain distinguished translations lead to such point sets with degenerate points, which
therefore have lower cardinality than those obtained by a random translation (here
15 points as opposed to 25). This degeneracy yields a non-trivial mathematical struc-
ture at the group level, and the corresponding blueprints inthree dimensions can be
used to model icosahedral viruses.

Fig. 2 shows a similar example for a translation of length of the golden ratio
τ = 1

2(1+
√

5)≈ 1.618. The resulting point set also has degenerate cardinality (now
20 points), and consists of an inner decagon and an outer pentagon. Affine symmetry
here means that the relative sizes of the decagon and pentagon are fixed by the group
structure. This is a powerful geometric tool for constraining real systems.

The computations necessary in this context are therefore translations, reflections
and rotations; one also needs to be able to check degeneracy of points. In the usual
vector space approach, these operations are implemented via matrices. We instead
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T

G

Fig. 2 Translation by the golden ratio results in a point set whose constituent polygons are simul-
taneously constrained by the affine symmetry.

develop here a versor implementation. This has some computational advantages, as
well as offering surprising geometric insights, as we shallsee later. Whilst the com-
putational complexity for 3-dimensional applications is limited, equivalent compu-
tations in four dimensions, whereH4 – the four-dimensional analogue of the icosa-
hedral group and symmetry group of the hypericosahedron (600-cell) – has order
14,400 andH4-symmetric polytopes have upwards of 120 and 600 vertices, are
rather more complex.

In the Coxeter setting, therefore, the reflections are fundamental; Geometric Al-
gebra is very efficient at encoding reflections algebraically, and at performing com-
putations with clear geometric content. However, the two frameworks do not appear
to have been combined previously. We therefore explore which benefits a Clifford
algebraic description might offer for Coxeter group theoretic considerations.

3 Versor framework

The geometric productxy= x·y+x∧yof two vectorsx andy (with x·y denoting the
scalar product andx∧y the exterior product) of Geometric Algebra [18, 22, 19, 15]
provides a very compact and efficient way of handling reflections in any number
of dimensions, and thus by the Cartan-Dieudonné theorem also rotations [17]. For
a unit vectorα, the two terms in the formula for a reflection of a vectorv in the
hyperplane orthogonal toα from Eq. (1) simplify to the double-sided action ofα
via the geometric product

v→ rαv= v′ =−αvα. (2)
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This prescription for reflecting vectors in hyperplanes is remarkably compact, and
applies more generally to all multivectors. Even more importantly, from the Cartan-
Dieudonné theorem, rotations are the product of an even number of successive re-
flections. For instance, compounding the reflections in the hyperplanes defined by
the unit vectorsαi andα j results in a rotation in the plane defined byαi ∧α j

v′′ = α jαivαiα j =: R̃vR, (3)

where we have defined the rotorR= αiα j and the tilde denotes the reversal of
the order of the constituent vectors of a versor, e.g. hereR̃= α jαi . Rotors satisfy
R̃R= RR̃= 1 and themselves transform single-sidedly under further rotations. They
thus form a multiplicative group under the geometric product, called the rotor group,
which is essentially the Spin group, and thus a double-coverof the special orthogo-
nal group [18, 15, 45]. Objects in Geometric Algebra that transform single-sidedly
are called spinors, so that rotors are normalised spinors.

In fact, the above two cases are examples of a more general theorem on the
Geometric Algebra representation of orthogonal transformations. In analogy to the
vectors and rotors above, a versor is a multivectorA= a1a2 . . .ak which is the prod-
uct ofk non-null vectorsai (a2

i 6= 0). These versors also form a multiplicative group
under the geometric product, called the versor group. The Versor Theorem [19] then
states that every orthogonal transformation Aof a vectorv can be expressed via unit
versors in the canonical form

A : v→ v′ = A(v) =±ÃvA, (4)

where the±-sign defines the parity of the versor. Since both the versorsA and−A
encode the same orthogonal transformation A, unit versors are double-valued repre-
sentations of the respective orthogonal transformation, giving a construction of the
Pin group Pin(p,q) [45], the double cover of the orthogonal groupO(p,q). Even
versors form a double covering of the special orthogonal group SO(p,q), called
the Spin group Spin(p,q). The versor realisation of the orthogonal group is much
simpler than conventional matrix approaches. This is particularly useful in the Con-
formal Geometric Algebra setup, where one uses the fact thatthe conformal group
C(p,q) is homomorphic toO(p+1,q+1) to treat translations as well as rotations
in a unified versor framework (see Section 5), making it possible to use all of GA’s
versor machinery for the analysis of the conformal group.

We now consider which benefits such a versor approach can offer for Coxeter
computations, in particular in the context of applicationsto physical phenomena
in three dimensions. The isometry group of three-dimensional space is the orthog-
onal groupO(3), of which the full polyhedral (Coxeter) groups are discretesub-
groups. However,O(3) is globallySO(3)×Z2, where the special orthogonal group
SO(3) is the subgroup of pure rotations (or the chiral part).SO(3) is still not simply-
connected, but is doubly covered by the Spin group Spin(3) ≃ SU(2) (in fact, it is
SO(3)×Z2 locally, i.e. a fibre bundle). Thus, the chiral polyhedral groups are dis-
crete subgroups ofSO(3), the full polyhedral groups (Coxeter) are their preimage
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in O(3), and the binary polyhedral groups are their preimage under the universal
covering in Spin(3).

Table 1 Versor framework for a unified treatment of the chiral, full and binary polyhedral groups.

Group Discrete subgroup Action Mechanism

SO(3) rotational (chiral) x→ R̃xR
O(3) reflection (full) x→±ÃxA
Spin(3) binary spinorsR under spinor multiplication(R1,R2)→ R1R2

We begin with the simple roots (vertex vectors) which completely charac-
terise a given Coxeter group, and consider their closure under mutual reflections
(the root system). We then compute the rotors derivable fromall these root vec-
tors/reflections, which encode the rotational part of the respective polyhedral group
via the double-sided action in Eq. (3). The rotor group defined by single-sided ac-
tion can in fact be shown to realise the respective binary polyhedral group, which
is the double cover of the chiral polyhedral group under the universal covering ho-
momorphism betweenSO(3) and Spin(3). Finally, including the versors of the form
αiα jαk via double-sided action gives a realisation of the full polyhedral group (the
Coxeter group). The proofs are straightforward calculations in the Geometric Alge-
bra of three dimensions and more details are contained in [8,9].

Theorem 3.1 (Reflections/Coxeter groups and polyhedra/root systems) Take the
three simple roots for the Coxeter groups A1×A1×A1 (respectively A3/B3/H3). Ge-
ometric Algebra reflections in the hyperplanes orthogonal to these vectors via Eq.
(2) generate further vectors pointing to the 6 (resp. 12/18/30) vertices of an octahe-
dron (resp. cuboctahedron/cuboctahedron with an octahedron/icosidodecahedron),
giving the full root system of the group.

For instance, the simple roots forA1 ×A1×A1 areα1 = e1, α2 = e2 andα3 = e3

for orthonormal basis vectorsei . Reflections amongst those then also generate−e1,
−e2 and−e3, which all together point to the vertices of an octahedron.

By the Cartan-Dieudonné theorem, combining two reflections yields a rotation,
and Eq. (3) gives a rotor realisation of these rotations in Geometric Algebra.

Theorem 3.2 (Spinors from reflections)The 6 (resp. 12/18/30) reflections in the
Coxeter group A1×A1×A1 (resp. A3/B3/H3) generate 8 (resp. 24/48/120) rotors.

For theA1 ×A1 ×A1 example above, the spinors thus generated are±1, ±e1e2,
±e2e3 and±e3e1. In fact, these groups of discrete spinors yield a novel construction
of the binary polyhedral groups.

Theorem 3.3 (Spinor groups and binary polyhedral groups)The discrete spinor
group in Theorem 3.2 is isomorphic to the quaternion group Q (resp. binary tetra-
hedral group2T/binary octahedral group2O/binary icosahedral group2I).
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Through the versor theorem, we can therefore describe all three types of groups
in the same framework. Vectors are grade 1 versors, and rotors are grade 2 versors.
For instance, the 60 rotations of the chiral icosahedral group I are given by 120 ro-
tors acting asαiα jvα jαi . 60 operations of odd parity are defined by 120 grade 1 and
grade 3 versors (with vector and trivector parts) acting as−αiα j αkvαkα jαi . How-
ever, 30 of them are just the 15 true reflections given by pure vectors, leaving another
45 rotoinversions. Thus, the Coxeter group (the full icosahedral groupH3 ⊂ O(3))
is expressed in accordance with the versor theorem. Alternatively, one can think of
60 rotations and 60 rotoinversions, makingH3 = Ih = I ×Z2 manifest. However, the
rotations operate double-sidedly on a vector, such that theversor formalism actually
provides a 2-valued representation of the rotation groupSO(3), since the rotorsR
and−R encode the same rotation. Since Spin(3) is the universal 2-cover ofSO(3),
the rotors form a realisation of the preimage of the chiral icosahedral groupI , i.e.
the binary icosahedral group 2I . Thus, in the versor approach, we can treat all these
different groups in a unified framework, whilst maintaininga clear conceptual sepa-
ration. In Table 1, we summarise how the three different types of polyhedral groups
are realised in the versor framework.

4 Construction of the binary polyhedral groups

In this section, we consider further the implications of ourconstruction of the binary
polyhedral groups. Since Clifford algebra is well known to provide a simple con-
struction of the Spin groups, it is perhaps not surprising – from a Clifford algebra
point of view – to find that the discrete rotor groups realise the binary polyhedral
groups. However, this construction does not seem to be known, and from a Coxeter
group point of view, it leads to rather surprising consequences.

rank-3 group diagram binary rank-4 group diagram

A1×A1×A1 Q A1×A1×A1×A1

A3 2T D4

B3
4

2O F4
4

H3
5

2I H4
5

Table 2 Correspondence between the rank-3 and rank-4 Coxeter groups. The spinors generated
from the reflections contained in the respective rank-3 Coxeter group via the geometric product
are realisations of the binary polyhedral groupsQ, 2T , 2O and 2I , which in turn generate (mostly
exceptional) rank-4 groups.

The Geometric Algebra construction of the binary polyhedral groups is via ro-
tors with (single-sided) rotor multiplication. It is then straightforward to check the
group axioms, multiplication table, conjugacy classes andthe representation theory.
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However, it is also known that the binary polyhedral groups generate some Coxeter
groups of rank 4, for instance via quaternionic root systems[8]. In particularQ, 2T,
2O and 2I generateA1×A1×A1×A1, D4, F4 andH4, respectively, as summarised
in Table 2. From a Coxeter perspective, this is surprising. However, in Geometric
Algebra, spinorsψ have a natural 4-dimensional Euclidean structure given byψψ̃ ,
and can thus also be interpreted as vectors in a 4D Euclidean space. In fact, one can
show that these vertex vectors are again root systems [7, 9, 24], which generate the
respective rank-4 Coxeter groups. This demonstrates how infact the rank-4 groups
can be derived from the rank-3 groups via the geometric product of Clifford’s Geo-
metric Algebra. This connection has so far been overlooked in Coxeter theory. This
‘induction’ of higher-dimensional root systems via spinors of lower-dimensional
root systems is complementary to the well-known top-down approaches of projec-
tion (for instance fromE8 to H4 [47, 43, 33, 32, 11]), or of taking subgroups by
deleting nodes in Coxeter-Dynkin diagrams. It is particularly interesting that this
inductive construction relates the exceptional low-dimensional Coxeter groupsH3,
D4, F4 andH4 to each other as well as to the seriesAn, Bn andDn in novel ways.
In particular, it is remarkable that the exceptional dimension-four phenomenaD4

(triality), F4 (the largest crystallographic Coxeter group in 4D) andH4 (the largest
non-crystallographic Coxeter group) are seen to arise fromthree-dimensional geo-
metric considerations alone, and it is possible that their existence is due to the ‘acci-
dentalness’ of the spinor construction. This spinorial view could thus open up novel
applications in Coxeter and Lie group theory, as well as in polytopes (e.g.A4), string
theory and triality (D4), lattice theory (F4) and quasicrystals (H4). In particular, this
spinorial construction explains the symmetries of these root systems, which other-
wise appear rather mysterious [9]. TheI2(n) are self-dual under the corresponding
two-dimensional spinor construction [7].

5 Conformal Geometric Algebra and Coxeter groups

The versor formalism is particularly powerful in the Conformal Geometric Alge-
bra approach [22, 15, 6]. The conformal groupC(p,q) is 1− 2-homomorphic to
O(p+1,q+1) [1, 2], for which one can easily construct the Clifford algebra and
find rotor implementations of the conformal group action, including rotations and
translations. Thus, translations can also be handled multiplicatively as rotors, for
flat, spherical and hyperbolic space-times, making available the ‘sandwiching ma-
chinery’ of GA and simplifying considerably more traditional approaches and al-
lowing novel geometric insight. Hestenes [20, 21] has applied this framework to
point and space groups, which is fruitful for the crystallographic groups, as lattice
translations can be treated on the same footing as the rotations and reflections, and
this approach has helped visualise these space groups [23].

However, the non-crystallographic groups and the root system/Coxeter frame-
work have thus far been neglected in the conformal setup. We have argued ear-
lier and in the papers [44, 10, 11, 28, 12, 29] that in the affineextension frame-
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work translations are interesting even for the non-crystallographic groups, leading
to quasicrystal-like point arrays that give blueprints forviruses and other three-
dimensional physical phenomena. An extension of the conformal framework to
translations in the case of non-crystallographic Coxeter groups could therefore have
interesting consequences, including for quasilattice theory [27, 46], in particular
when quasicrystals are induced via projection from higher dimensions (e.g. via the
cut-and-project method) [43, 11, 25]. We therefore briefly outline the basics of such
a construction.

Let us consider the conformal space of signature(+,+,+,+,−) achieved by
adjoining two additional orthogonal unit vectorse and ē to the algebra of space
[22]. It is therefore spanned by the unit vectors

e1,e2,e3,e, ē, with e2
i = 1,e2 = 1, ē2 =−1. (5)

From these two unit vectors we can define the two null vectors

n≡ e+ ē, n̄≡ e− ē. (6)

One can then map a 3D vectorx into the space of null vectors in the conformal space
by defining

X ≡ F(x) := x2n+2λx−λ 2n̄. (7)

X being null allows for a homogeneous (projective) representation of points, i.e.
they are represented by a ray in the conformal space, which tends to be more nu-
merically robust in applications, as for instance the origin is represented by ¯n rather
than the number 0, which is sensitive to the accumulation of numerical errors. Here,
λ is a fundamental length scale that is needed in order to make this expression di-
mensionally homogeneous, as we think of the position vectorx as a dimensionful
quantity [39]. The equivalent notation in terms of the Amsterdam protocol would be
e= e+, ē= e−, n= n∞ andn̄= n0. This notation is also consistent with the notion
that the above mapping is essentially an embedding into the projective null cone of
the embedding space. Originally due to Dirac [14], the idea is that the projective
null cone inherits theSO(4,1) invariance of the ambient space in whichSO(4,1)
acts linearly, thereby endowing the projective null cone with a non-linearly realised
conformal structure.

The vectorseandēand therefore alson andn̄ are orthogonal tox and hence anti-
commute with it, i.e.−x−1nx= n and−x−1n̄x= n̄. Thus, the CGA implementation
of a reflectiony′ =−x−1yx is given by

− x−1F(y)x= F(y′) = F(−x−1yx). (8)

Given the simple roots, one can again generate the whole rootsystem via successive
reflections as shown in Fig. 3 (left). We firstly notice that the conformal representa-
tion of a root vectorF(α) is now different from the implementation of the reflection
encoded by it via the versorα. These two roles were treated on an equal footing in
3D, as thereα represents both the root vector and the versor encoding a reflection in
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the hyperplane perpendicular to the root, and it is debatable whether the conceptual
advantages of CGA outweigh this disadvantage.

Secondly, it is often argued that the implementation of rotations in CGA is given
by F(x′) = RF(x)R̃, sinceR only contains even blades and thus commutes with the
vectorsn andn̄ such thatRnR̃= n andRn̄R̃= n̄. However, via the Cartan-Dieudonné
theorem, every rotation is given by an even number of successive reflections. Thus,
it can be seen that the rotor transformation law actually follows from the more fun-
damental reflection law in Eq. (8). From the previous sections, we know that the
spinors generated by the root vectors are important for the construction of the bi-
nary polyhedral groups and 4D polytopes. However, the 3D geometric product does
not straightforwardly extend to CGA, such that the spinors and other multivectors
are not treated in the same way as vectors. The operators encoding the conformal
rotations, however, are still given by the 3D rotors, so thatlittle seems to be gained
by going to the conformal setup from the spinorial point of view.

α1

τα1+α2

τ(α1+α2)α1+ τα2

α2

Fig. 3 In the conformal setup, reflections generated by the simple roots (here e.g.α1 andα2 for
a simple two-dimensional example,H2) according to Eq. (8) again generate, for instance, theH2
non-crystallographic root system, the decagon (left). CGArotor translations via Eq. (9) act multi-
plicatively, but yield quasicrystalline point sets consistent with the 3D approach; for instance, on
the right we show the effect of a translation with length the inverse of the golden ratio acting on a
pentagon, in analogy to Figs 1 and 2.

A very salient feature of Conformal Geometric Algebra is that a translationx→
x+a by a vectora is given by a rotor

Ta = exp
( na

2λ

)

= 1+
na
2λ

. (9)

It is easily checked that this has the desired effect ofTaF(x)T̃a = F(x+ a), and
therefore does indeed represent a 3D translation as a rotor in Conformal Geometric
Algebra. One can thus treat reflections, rotations and translations multiplicatively
in a unified framework. This allows for a unified constructionof the type of point
arrays considered earlier, and indeed the construction is entirely equivalent to the
lower-dimensional construction (as it must), and can be straightforwardly verified,
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for instance, for the non-crystallographic groupsI2(n), H3 andH4. In Fig. 3, we
show an example consisting of both one such root system and one quasicrystal-like
point array derived entirely in the conformal setup, as a proof of principle. The
root system shown is that ofH2, and the point array is obtained via the action of a
translation of length the inverse of the golden ratio on a pentagon.

The CGA approach is naturally more computationally intensive than the 3D ap-
proach; however, this could be compensated for by increasednumerical stability, as
the origin is simply represented by scalar multiples of ¯n, as opposed to the number 0,
where numerical errors can create artefacts near the origin. Treating both rotations
and translations on the same footing as multiplicative rotors is also a nice concep-
tual shift. However, there are also drawbacks to the conformal approach. Firstly, the
conformal representation of the root vectorsF(α) is different from their action as
generators of reflectionsα. The relationship between these two functions was more
transparent in the conventional approach in 3D, whereα represented both. Sec-
ondly, the rotors encoding rotations are also the 3D spinors, rather than a conformal
representation of those. Thus, CGA affords a nice representation of GA vectors, but
not necessarily of the whole GA multivector structure.

Following [40], an interesting approach might be to work in acurved space,
for which only one extra dimension is necessary (e or ē), which should simplify
the computations somewhat. One may then finally take the zerocurvature limit in
order to recover the Euclidean space results. For instance,for Minkowski space-
time, the conformal groupC(1,3) is 15-dimensional. It has certain well-known
ten-dimensional groups as stabiliser subgroups, i.e. groups of transformations that
leave a given point (ray)y invariant. Ify is spacelike, one gets anSO(2,3) stabiliser
subgroup, i.e. the Anti de Sitter group, corresponding to the homogeneous space-
time that is the solution of Einstein’s field equations with anegative cosmological
constant,Λ < 0. Likewise, for timelikey one obtains the de Sitter (Λ > 0) group
SO(1,4) as the stabiliser (here in the CGA setup,e andē are distinguished choices
for such spacelike and timelikey). Lastly, when one chooses a nully (e.g.n), one
gets anISO(1,3) subgroup, which is just the Poincaré group [45, 3]. Thus, taking
the zero curvature limit essentially corresponds at the group level to the Wigner-
Inönü contraction that yields the Poincaré group from the de Sitter and Anti de
Sitter groups (see e.g. [16]) and a flat space (which needs twovectorseandē) limit
from a curved space (for which only one ofe or ē is necessary).

6 I2(n) and H3 – the Coxeter element and spinors

In this section, we further analyse the two-dimensional family of non-crystallographic
Coxeter groupsI2(n) (the symmetry groups of the regular polygons), as well as the
three-dimensional groupsA3, B3 and the icosahedral groupH3, describing the sym-
metries of the Platonic solids. A versor framework (not necessarily conformal) al-
lows a deeper understanding of the geometry, relating spinors to the Coxeter element
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and the Coxeter plane in a novel way, in particular highlighting what the complex
structure involved is.

A Coxeter elementw= s1 . . .sn is the product of the reflections encoded by all the
simple rootsαi of a finite Coxeter groupW. The Coxeter numberh is the order (i.e.
wh = 1) of such a Coxeter element. The sequence in which the simplereflections
are performed does matter, but all such elements are conjugate, and thus the Cox-
eter numberh is the same (for instance forI2(n) one hash= n). For a given Coxeter
elementw, there is a unique plane called the Coxeter plane on whichw acts as a ro-
tation by 2π/h. At this point in the standard theory, there is a convoluted argument
about the need to complexify the situation and taking real sections of the complexi-
fication in order to find the complex eigenvalues exp(2π i/h) and exp(2π i(h−1)/h)
[24]. It will come as no surprise that in Geometric Algebra the complex structure
arises naturally, giving a geometric interpretation for the ‘complex eigenvalues’.

Projection of a root system onto the Coxeter plane is a way of visualising any
finite Coxeter group, for instance the well-known representation of E8 is such a
projection of the 240 vertices of the eight-dimensional Gosset root polytope onto
the Coxeter plane. Fig. 4 (a) shows such a projection of the root polytope ofH3 (the
icosidodecahedron) onto the Coxeter plane.

(a) (b) (c)

Fig. 4 Illustration of the geometry ofH3. (a) shows the projection of the root polytope (the icosido-
decahedron with 30 vertices) onto the Coxeter plane. Panel (b) illustrates the action of the Coxeter
element on a vectorv= e1 denoted by the open circle in the Coxeter plane.w acts by 10-fold rota-
tion generating a decagon clockwise, whereas on a vectorn normal to the Coxeter plane it acts by
reversal−n. Panel (c) displays both sets of vectors, which in turn happen to form the root system
of A1×H2.

Without loss of generality, in Geometric Algebra the simpleroots forI2(n) can
be taken asα1 = e1 andα2 = −cosπ

n e1+ sinπ
n e2 (see theH2 root system in Fig. 3

for n= 5). The Cartan matrixAi j = 2αi ·α j/α2
i is then correctly given by

A(I2(n)) =

(

2 −2cosπ
n

−2cosπ
n 2

)

. (10)
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The Coxeter versorW describing the rotation encoded by theI2(n) Coxeter ele-
ment via the typical GA half-angle formula

v→ wv= W̃vW (11)

is therefore

W = α1α2 =−cos
π
n
+ sin

π
n

e1e2 =−cos
π
n
+ sin

π
n

I =−exp

(

−π I
n

)

(12)

for I = e1e2. In GA it is therefore immediately obvious that the action ofthe I2(n)
Coxeter element is described by a versor (here a rotor/spinor) that encodes rotations
in thee1e2-Coxeter-plane and yieldsh= n since trivially

Wn = (−1)n+1 ⇒ wn = 1. (13)

More generally, the versors belonging to conjugate Coxeterelements could beW =
±exp

(

± π I
n

)

and one immediately finds thatWn = ±1 as required forw to be of
orderh= n.

SinceI = e1e2 is the bivector defining the plane ofe1 ande2, it anticommutes
with bothe1 ande2. Thus, in the half-angle formula Eq. (11), one can takeW through
to the left to write the complex eigenvector equation

v→ wv= W̃vW= W̃2v= exp

(

±2π I
n

)

v, (14)

immediately yielding the standard result for the complex eigenvalues. However, in
GA it is now obvious that the complex structure is in fact given by the bivector de-
scribing the Coxeter plane (trivial forI2(n)), and that the standard complexification
is both unmotivated and unnecessary. The ‘complex eigenvalues’ are simply left and
right going spinors in the Coxeter rotation plane.

The Pin group/eigenblade description in GA therefore yields a wealth of novel
geometric insight and the general case will be the subject ofa future publication.
However, for instance for the icosahedral groupH3, standard theory hash= 10 and
complex eigenvalues exp(2πmi/h) with the exponentsm= {1,5,9}. For simple
roots α1 = e2, −2α2 = (τ − 1)e1 + e2 + τe3 andα3 = e3, one finds the Coxeter
plane bivectorBC = e1e2+ τe3e1. Under the action of the Coxeter element versor
2W = −τe2−e3+(τ −1)I (hereI = e1e2e3) it gets reversed−W̃BCW = −BC as
is expected for an invariant plane under an odd operation. For an ‘eigenvector’ in
the Coxeter plane, the two-dimensional argument from Eq. (14) applies and one

again finds eigenvalues exp
(

± 2πBC
h

)

, which corresponds tom= 1 andm= 9. In

fact, this holds true for a general Coxeter group: 1 andh−1 are always exponents
and in Geometric Algebra they correspond to ‘eigenvectors’being rotated in the
Coxeter plane via left and right going spinors. However, in Geometric Algebra it is
also obvious that in general more complicated geometry is atwork, with different
complex structures corresponding to different eigenspaces. Going back to ourH3
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example, for the vectorbC = BCI =−τe2−e3 orthogonal to the Coxeter plane, one

has−W̃bCW = −bC = exp
(

± 5·2πBC
h

)

bC, as is expected for the normal vector for

a plane that gets reversed. Thus, in GA this case straightforwardly corresponds to
m= 5, accounting for the remaining case.

Fig. 4 illustrates thisH3 geometry. Panel (a) shows the projection of the root
system, the icosidodecahedron, onto the Coxeter plane. Thevectorv = e1 lies in
the Coxeter plane and the Coxeter elementw acts on it by 10-fold rotation via the
Coxeter versorW. This is depicted in Panel (b), wherev is denoted by the open
circle, and rotation viaW occurs in the clockwise direction creating a decagon. The
Coxeter versor acts on the vectorbC normal to the Coxeter plane simply by reversal,
as discussed above. Both sets of vectors (the decagon and± the normal) are depicted
in Panel (c). Curiously, these vectors form the root system of A1×H2 = A1× I2(5).

The geometry forA3 andB3 is very similar. They have Coxeter numbersh= 4
andh= 6, respectively, and exponentsm= {1,2,3} andm= {1,3,5}. The Coxeter
versor again inverts the Coxeter bivector, and the exponents 1 andh−1 correspond
to left and right going rotations in the Coxeter plane on which the Coxeter element
acts byh-fold rotation, whilst the normal to the Coxeter plane gets simply inverted
as expected, corresponding to the casesh/2 (m= 2 andm= 3 for A3 andB3, re-
spectively). Again, the combinations of the vectors in the plane and orthogonal to it
form the root systems ofA1×A1×A1 = A1× I2(2) andA1×A2 = A1× I2(3).

7 Conclusions

We have investigated what insight a Geometric Algebra description, which lends
itself to applications of reflections, can offer when applied to the Coxeter (reflec-
tion) group framework. The corresponding computations areconceptually reveal-
ing, both for applications to real systems and for purely mathematical consider-
ations. The implementation of orthogonal transformationsas versors rather than
matrices offers some computational and conceptual advantages, in both the con-
ventional and the conformal approaches. The main benefit in aversor description
of the applications, for instance in virology, lies in the simple construction and im-
plementation of the chiral and full polyhedral groups. The Clifford approach then
also yields a simple construction of the binary polyhedral groups, and in fact all
three groups can be straightforwardly treated in the same framework. This seem-
ingly unknown construction of the binary polyhedral groupsalso sheds light on the
fact why they generate Coxeter groups of rank 4. The natural 4D Euclidean structure
of the spinors allows for an alternative interpretation as vectors (in fact, a root sys-
tem) in a 4D space, which generate Coxeter groups in four dimensions. Thus, one
can construct many four-dimensional (exceptional) Lie andCoxeter groups from
three-dimensional considerations alone. We have constructed non-crystallographic
root systems and groups, as well as quasicrystalline point arrays in the conformal
framework. This could be interesting for the latter quasicrystals, as translations (e.g.
arising from affine extensions of the Coxeter groups) are treated multiplicatively by
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versors in the same way as rotations and reflections. We have discussed the ver-
sor framework for the groupsI2(n), A3, B3 andH3, in particular in relation to the
Coxeter element, the Coxeter plane and complex eigenvalues/exponents. The Ge-
ometric Algebra approach gives novel geometric insight, asthe complex structure
is seen to arise from the Coxeter plane bivector, and the Coxeter element acts as a
spinor generating rotations in this Coxeter plane.

We are currently applying the more formal considerations ofour recent work
to extending the existing paradigm for modeling virus and fullerene structure [12]
and to packing problems [30]. The chiral and binary polyhedral groups are attrac-
tive as discrete symmetry groups for flavour and neutrino model building in particle
physics, and we are currently working on an anomaly analysis(breaking of clas-
sical symmetries by quantum effects) for these groups [13].The two-dimensional
groupsI2(n) generate the symmetries of protein oligomers, which we are currently
investigating.
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