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Abstract 

Recent evidence suggests that a network of brain areas may be involved in visually guided 

walking. Here we study patients with Parkinson’s disease (PD) who experience ‘freezing’ 

behaviour to investigate the visual control of locomotion and the role of the basal ganglia in 

this system. We use a variable-width doorway to measure the scaling of motor output to 

visual input specifying door width. By measuring walking behaviour as participants passed 

through the doorway, we show that both PD and healthy control participants scaled their 

locomotor outputs to door width. Both groups reacted to narrower doors by walking more 

slowly with shorter strides. However, the changes were greater in the PD group, where 

walking speed dramatically decreased while approaching the doorway. Such a pattern could 

help explain why doorways cause freezing episodes in PD. Neither explicit perceptual 

judgements of door width, nor performance on motor tasks, predicted the door behaviour. 

On the basis of these findings, we propose that PD is associated with a visuomotor 

disturbance, such that responses to action-relevant visual information are exaggerated. In 

the PD group, dopaminergic medications improved many baseline gait variables but did not 

affect their sensitivity to door width, suggesting that this visuomotor effect is not mediated 

by the basal ganglia. This hypothesis provides a novel framework for interpreting a variety of 

results with PD patients. 

 

 

Keywords: Parkinson’s disease; Visuomotor control; Basal ganglia; Locomotion; 

Dopaminergic medication; Freezing 
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Introduction 

Though vision is crucial for safe walking through everyday environments, we know relatively 

little about the neural circuits underlying visually guided walking. Nevertheless, evidence 

suggests that the visual control of walking involves multiple, interacting brain mechanisms. 

Basic locomotor patterns may be produced by central pattern generators in the brainstem 

and spinal cord (Orlovsky, Deliagina & Grillner 1999; Dietz, 2003), as well as by circuits 

connecting the basal ganglia (BG) with the supplementary motor area (SMA) (Malouin et al, 

2003; Jahn et al, 2004; Wang et al, 2008a). There is evidence to suggest that visual 

information is integrated with these locomotor control processes either by these same BG-

SMA loops or by parietal and premotor cortices (PMC). In cats, lesions to posterior parietal 

cortex (PPC) cause an inability to modify walking patterns on the basis of visual input; and 

the firing rate of PPC cells increases as the animal prepares to modify its steps on the basis 

of visual information (Drew et al, 2008). Neuroimaging studies of imagined locomotion in 

humans suggest that both PMC and SMA (Wang et al, 2008b; Wang et al, 2009; Jahn et al, 

2004) are involved in the visual control of locomotion. As described above, the SMA is 

intricately linked to the basal ganglia so the implication of this last result is that circuits 

involving the basal ganglia may mediate visually controlled walking. The serious technical 

limitations on measuring brain activity during walking in humans means that evidence from 

converging methods will be crucial in developing a full model of these neural control 

networks. 

Studying Parkinson’s disease (PD), in which the basal ganglia is damaged and a wide 

variety of walking problems are present, may provide insight into the neural control of 

walking as well as being an important application area. PD impairs the amplitude (Blin, 1991) 

and timing (Hausdorff et al, 2003) of walking, but also alters responses to visual inputs 

(Davidsdottir et al, 2008). For some patients, visual stimuli such as doorways or roads can 

trigger ‘freezing’ episodes during which the person feels as if his feet are glued to the floor 
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(Rahman et al, 2008; Schaafsma et al, 2003). In contrast, transverse lines on the ground can 

increase stride length or release a freeze (‘paradoxical kinesia’; Martin, 1967; Dunne, Hankey 

& Edis, 1987; Azulay et al, 1999). A parsimonious explanation for these disparate 

phenomena is that they result from involuntarily exaggerated responses to action-relevant 

visual information during walking in PD. As a result, visual information may promote or 

constrain walking depending on what possibilities it suggests for action: lines on the ground 

become readily stepped over but road-crossings produce an exaggerated slowing down 

which may in turn cause freezing episodes (Chee et al, 2009). 

The strongest test of this hypothesis would be provided by a visuomotor task where 

the size of a visual feature is varied parametrically and the manner in which PD participants 

scale their motor responses to the feature is measured. This type of paradigm has been used 

to show that participants scale many aspects of movement to visual features such as 

obstacles (Patla & Goodale, 1996) and doorways (Higuchi et al, 2006). A recent study 

employed such a method to study responses to doorways in participants with PD (Almeida & 

Lebold, 2009). Participants with and without freezing of gait, as well as healthy participants, 

were instructed to walk through a door which was fixed at one of three widths. In this 

situation, visual information about the width of the doorway must be used to control the 

walking pattern if the participant is to avoid colliding with the door frame (Warren & Whang, 

1987). Specifically, the participant must walk with an increasing degree of accuracy along a 

central path as the doorway is narrowed. Even in healthy participants, this constraint might 

affect behaviour in several ways. For example, it could slow the walking speed (Higuchi et al, 

2006) similar to the speed-accuracy trade-off captured by Fitts’ law (Fitts, 1954). If PD 

participants have exaggerated responses to action-relevant visual information, then the 

response to door width should be unnaturally amplified in the PD group, so that a change in 

door width should have very marked effects on PD participants. Indeed in Almeida & Lebold 

(2009) PD freezers showed sharper responses to decreasing door width than PD non-
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freezers or healthy controls. As the doors narrowed, step length became shorter, and step 

length and duration became significantly more variable in PD freezers than in other groups.  

The present study uses a similar parametric paradigm to that employed by Almeida 

& Lebold (2009), using kinematics to measure how visually-specified door width affects the 

magnitude of locomotor responses in PD freezers. We studied this subgroup since they were 

most prone to exaggerated responses in the Almeida & Lebold study. Our study considers 

the results in the light of the hypothesis that PD causes exaggerated responses to action-

relevant visual information during walking, and examines two key issues: whether gait 

disturbances at doorways have a perceptual source, and whether they have a dopaminergic 

basis. 

Damage to fronto-parietal circuits (Cronin-Golomb & Braun, 1997) may in some 

cases of PD cause compression of perceptual space (Lee et al, 2001) or neglect-like 

symptoms . This could mean doorways are perceived to be narrower than they actually are 

which could cause the walking problems found at doorways (Almeida & Lebold, 2009). To 

test whether participants with PD misperceive door widths, we asked participants to make 

an explicit judgement of the minimum door width through which they could fit, and 

measured veering behaviour as they passed through the doorway. To test whether 

disturbances around doorways in PD have a dopaminergic basis, we studied PD participants 

both on and off their dopaminergic medications. As discussed above, the dopaminergic BG 

control uninterrupted walking, and accordingly levodopa improves basic gait parameters in 

PD (Blin et al, 1991). Evidence for their role in integrating visual inputs into the motor plan is 

equivocal. Thus, levodopa can improve the freezing behaviour so commonly found in 

situations where visual input must be integrated into the locomotor plan (Giladi, 2008), but 

does not do so consistently (Bloem et al, 2004). If the visual control of walking through doors 

involves the BG, we would expect dopaminergic medications to modify not just the levels of 

basic gait parameters, but the magnitude of visually-driven gait adjustments in PD 
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participants. Here we use the pattern of response to door width in medicated and non-

medicated PD patients to test that hypothesis. 

Methods 

Participants 

Ten patients with idiopathic Parkinson’s disease (PD: ten males, mean age 68.3yrs, s.d. 

7.3yrs, range 58 – 78 yrs), and ten healthy controls (HC: ten males, mean age 68.4yrs, s.d. 

6.2yrs, range 65 – 76 yrs) took part. Patients were recruited from the National Hospital for 

Neurology and Neurosurgery (NHNN) and classified by a neurologist as presenting with 

walking difficulties and freezing of gait. Healthy age-matched controls had no history of falls 

or balance problems. All participants had normal or corrected-to-normal vision and no 

serious cognitive impairments as assessed in their regular neurology follow-up. Participants 

with PD were first tested in the ‘off’ state, after at least 12 hours withholding their anti-

parkinsonian medication. One hour after taking their normal dose of medication, tests were 

repeated in the ‘on’ state. One patient did not complete tests in the ‘off’ state. Research was 

approved by the joint ethics committee of the NHNN and UCL Institute of Neurology, 

London, UK. Written informed consent was obtained before testing. 

Apparatus 

A doorway was formed by two planks of wood, each 15cm wide, running from ceiling to 

ground, and a connecting pelmet 73.5cm wide positioned 210cm above the ground, which 

corresponded to ~125% average height. The distance between the sides of the doorway 

could be adjusted using a motor. Kinematics were measured using a CODA motion-capture 

system (Charnwood Dynamics, Rothley, UK) comprising six CX1 units. This recorded the 

positions of markers placed on the doors and on participants’ bodies. Two markers were 

placed on each door. On each leg a marker was placed on the ankle (lateral malleolus), 2nd 
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toe (2nd metatarsal head), heel (posterior aspect of calcaneus at height of toe marker), thigh 

(greater trochanter), knee (lateral femoral condyle), and pelvis (anterior superior iliac spine 

(ASIS)). On each arm a marker was placed on the shoulder (acromion), elbow (lateral 

epicondyle of humerus), and wrist (radial styloid process). Additionally markers were placed 

on the lower back (sacrum), upper back (C7) and head (4 markers on a small plate attached 

to a lightweight headband). Force data was collected from two Kistler forceplates (9281 and 

9287; Winterthur, Germany) and sychronised to the kinematic data. 

Design & Procedure 

Walking task: Participants walked along a 6.32m walkway, passing through the doorway 

when it was present. Door width was scaled to each participant’s shoulder width (sw), 

measured from left to right acromion before the experiment started. The first trial in a set 

was a walk in one direction (‘outwards’); the second trial was in the opposite direction 

(‘back’). A set contained four trials (two outwards, two back), or occasionally two  if the 

patient was not able. Each block started with a set of no-door trials. These were followed by 

three sets of door trials (150% sw, 125% sw, and 100% sw), for which the order of door-

width size was randomised across participants. For a given participant, this order was 

maintained across different blocks. Participants completed one block off their usual 

medications and one block on medications. 

If necessary, an experimenter demonstrated the procedure for the trial before its 

start. Instructions were: “Start with your toes on the start line. On the auditory beep, walk 

through the doorway (when present) to the line at the other end of the room and stop with 

toes on the line, facing forwards until given instructions to turn around. Walk through the 

doorway as if it were in your house or in a public place; if necessary you may contact its sides 

or turn your body. Walk at your normal pace and move your eyes and head as you wish”. 
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Perceptual task: After the walking task, participants completed a judgement task to assess 

their perception of the gap through which they could fit. With participants seated at 5m 

from the closed doors, in line with their middle, the experimenter pressed a button to start 

the doors opening. On these ‘opening’ trials participants were asked to say ‘stop’ when the 

doors reached a width they could just pass through without turning their shoulders. That 

width was recorded. On ‘closing’ trials the doors moved inwards and participants said ‘stop’ 

when the doors reached a width they could just no longer pass through without turning their 

shoulders. In each medication state, each participant with PD performed three opening and 

three closing trials in alternating order. Each HC performed, in alternating order, six opening 

and six closing trials. 

Turn task: The ability to make a tight turn might be relevant to navigating through a 

doorway. To assess this ability, participants completed a turning task. Standing in the centre 

of the room on the forceplate, participants made one clockwise and one anticlockwise axial 

360° turn per block. Instructions were to start turning on an auditory beep and make a full 

turn in the direction instructed, keeping within the area indicated (forceplate extent).  

Analysis 

Preliminary analysis 

Position and velocity data were exported from the Codamotion Analysis Software and low-

pass filtered in both directions with a 2nd order Butterworth filter operating at 10 Hz. When 

available, force data was used to define toe-off as the time at which vertical ground reaction 

force fell below a threshold of 5N, and heel-strike when it rose above 10N (O’Connor et al, 

2007). Otherwise a custom Matlab (Ver. 6.5, Mathworks, Inc.; Natick, MA, USA)  routine 

selected toe-off when vertical toe velocity reached 50mm/sec and heel-strike when vertical 

heel velocity reached -50mm/sec (Ghoussayni et al, 2004). These threshold values account 

for the fact that the heel marker continues to travel downwards after landing as the 
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underside of the heel compresses. A single trained observer then visually inspected data in 

the sagittal plane to confirm that toe-off was defined as the first frame after which the toe 

marker moved continuously in the vertical and progression directions, and heel-strike as the 

frame at which similar movement of the heel marker ended. Atypical (e.g. shuffling) steps 

from the patient group were visually inspected in the same manner to define foot-off or 

foot-strike as appropriate. 

Space-velocity profile  

We first conducted a spatial velocity profile analysis to determine how forward velocity 

changed across the walked path in different door conditions. Because the door was 

positioned slightly asymmetrically in the progression axis of the room, to maximise accuracy 

we considered only trials in the ‘outwards’ direction. Body position was taken as the pelvic 

midpoint (average of sacrum and ASIS positions). We analysed trials in the single-task 

condition (in the ‘off’ state for PD participants). Data from each trial were sampled every 

5cm along the path. These data were averaged across trials in each door width condition to 

obtain, for each participant, mean curves of pelvic midpoint velocity as a function of 

location. The mean velocity for each door condition was divided by the mean velocity for the 

no-door condition. This yielded a normalised velocity profile for each participant in each 

door condition, showing how velocity changed over the walking path during door trials 

compared to a no-door baseline. These curves were averaged across participants to obtain 

grand mean spatial velocity profiles per group per door width. 

Gait variables 

Based on the spatial velocity profile, gait variables were measured from 2.1m before the 

door until 0.7m after it. For all variables except PCI (see below) we calculated the mean 

value across this section, averaging across left and right feet for stride length, toe lift and 

cadence. For all variables we then averaged across trials of the same type to give a mean 
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value. Variables were calculated as follows. Velocity: speed of pelvic midpoint in the 

direction of travel. Stride length: distance in transverse plane between heel marker positions 

one frame after foot-strike, on successive foot strikes with the same foot. Toe lift: maximum 

vertical displacement of toe marker during a step. This was the maximum height of the toe 

marker above the ground between foot-off and foot-strike, minus the toe’s height on the 

ground before the step. For the left foot this ‘ground height’ was the average left toe height 

during the previous right step, and vice versa for the right foot. Cadence: steps per second. 

Each step was defined from the foot-strike of one foot to the subsequent foot-strike of the 

other foot. For the next two measures we defined the reference foot for each participant as 

that with the longest average swing time across trials. Normalised double support time 

(nDS): total proportion of the reference foot stride time spent in double support. Stride time 

was the time between subsequent foot-strikes of the same foot. Within this epoch, two 

periods of double support were defined as the time from foot-strike of one foot to 

subsequent foot-off of the other. nDS was the sum of these periods divided by the stride 

time. Phase coordination index (PCI): a measure of temporal symmetry in the stepping 

pattern, calculated as in Plotnik, Giladi and Hausdorff (2007). For each stride, phase is the 

proportion of reference foot stride time taken by the opposite foot’s step time. An exactly 

symmetrical stride has a phase of 180°; an asymmetrical stride (where e.g. the left step is 

quick compared to the right) has phase < 180°. PCI is a composite measure of the average 

phase deviation from the symmetrical 180°, and the variation of phase within a walking 

period.  

Statistical analysis 

For each gait variable we conducted two repeated measures ANOVAs. The first measured 

the effects of door width (no-door, 150% sw, 125% sw, 100% sw) in the HC group. The 

second measured the effects of door width and medication (off, on) in the nine PD 

participants who completed the walking task off and on medications (the ‘PDA‘ group). For 
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each parameter we also conducted a mixed-measures ANOVA comparing the HC group with 

the ‘PDA’ group in the off state, with factors door width and group; and a similar ANOVA 

comparing the HC group with the ‘PDA’ group in the on state. 

The perceptual judgement task was completed by seven participants in both 

medication states, one participant only in the ‘off’ state and two only in the ‘on’ state. After 

scaling each participant’s response to their shoulder width we used a paired samples t-test 

to compare the responses of seven PD participants in the off and on states. We next 

compared the first six trials completed by HC participants with the eight PD participants who 

completed tests in the ‘off’ state and nine PD participants who completed tests in the ‘on’ 

state. Finally we made these statistical comparisons on the standard deviation of each 

participant’s set of responses. To further test for neglect-like symptoms we measured 

veering as the deviation from the doorway midline at the point where the pelvic midpoint 

crossed the doorway. Deviations to the left of the midline were scored as positive and 

deviations to the right as negative. We then compared HC and PD off performance at each of 

the three door widths. 

For each participant we computed ‘door difficulty’ as the difference in mean velocity 

between no-door and narrow door conditions in the single-task condition, over the 

measurement region previously specified. To assess whether the effect of doors depended 

on motor abilities, we correlated door difficulty with the time to turn 360° averaged across 

turn directions; and with motor ability indexed by the Unified Parkinson’s Disease Rating 

Scale part III motor score (UPDRS, Fahn et al, 1987). This scale assesses the cardinal motor 

features of PD with a maximum score of 108 indicating the most severe PD. 
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Results 

Clinical measures 

The mean duration of Parkinson’s disease was 14.5 years (sd 5yrs, range 8 – 25 yrs). In the 

‘off’ state, the mean UPDRS part III motor score was 26.3 (sd 8.7); in the ‘on’ state it was 

14.8 (sd 3.4). Participants with PD completed the FOG Questionnaire (Giladi et al, 2000), 

which assesses the extent of freezing difficulties in everyday life using six questions with a 

five-point rating scale (so that a score of 30 indicates the most severe freezing possible). Our 

group had a mean score on of 13.6 (sd 3.1), indicating moderately severe freezing of gait. 

[Fig 1 here] 

Space-velocity profile 

Fig 1 shows the mean space-velocity profiles on door trials with respect to the baseline no-

door condition. For the PD group, decreasing door width caused progression velocity to drop 

dramatically in the region preceding the doorway and immediately after it. As door width 

decreased these effects became more pronounced, with velocity dropping to lower values. 

Velocity reached a trough 0.9 - 0.5m before the doorway and then started to recover. The 

HC group showed a similar but much smaller effect for the narrow doors only. For both 

groups, progression velocity at the start of the walk was higher in the door conditions than 

in the no-door condition. This may have been because the no-door condition was always 

presented first within a block, when the task was less familiar. 

Gait variables 

We assessed the mean values of six different gait variables (Fig 2; Table 1) obtained during 

the segment of the walk between the dashed lines in Fig 1 (2.1m before to 0.7m after the 

door). 

[Fig 2 and Table 1 here] 
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HC participants: Door width significantly affected all variables (Table 1, ANOVA 1), though 

the size of these effects was quite small. 

PD participants: We assessed the effect of medication (off, on) and door width for group PDA 

(Table 1, ANOVA 2). Medication had significant effects on all variables except cadence. It 

improved gait by increasing velocity, stride length and toe lift, and by decreasing nDS and 

PCI. Door width significantly affected all variables except cadence and nDS. In contrast with 

the HC group, the magnitude of door width effects was large in the PD group. As door width 

was progressively narrowed, velocity, stride length and toe lift decreased, and PCI increased. 

However, there was no interaction between medication and door width for any gait variable. 

When trial number was added as a factor, there was no effect of trial number and the 

effects of door width were unchanged. This indicates that any proprioceptive information 

about door width gathered over multiple consecutive trials did not affect the visually-driven 

response to door width. 

Between-group comparisons:  The HC group was compared with the PDA group in the off 

state (ANOVA 3). There was a significant main effect of group for all variables except 

cadence, and a significant main effect of door width for all variables except cadence and 

nDS. However, the effect of door width was not the same in the two groups. There were 

significant interactions between door width and group for velocity, stride length, nDS and 

PCI. These interactions arise partly because the directions of the door-width effects were not 

always the same for the two groups between no door and wide door conditions. However, 

they also reflect the fact that in general the effects of door width were greatly amplified in 

the PD group. ANOVA 4 compared the HC group with the PDA group in the on state. Again 

there were significant main effects of group and door width for most variables and 

interactions for cadence and nds.  
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Perceptual and motor performance 

[Figs 3 & 4 here] 
 

Mean judgements of just-passable door width (Fig 3A) did not differ between PD off and 

either healthy controls (t(16)=-.752, p=.463) or PD on (t(6)=.033, p=.975). Additionally, 

judgements did not differ between the PD on and HC groups (t(17)=-.434, p=.670). Judged 

passable width was around 100% shoulder width, though actual passable width was around 

125% shoulder width. Within-participant variability (Fig 3B) was not significantly different 

between the PD off group and HC (t(16)=.461, p=.651) or PD on (t(6)=-.669,p=.528); or 

between the PD on and HC groups (t(17)=1.22, p=.239). Outcomes remained non-significant 

when data were analysed separately for doors opening or doors closing conditions. The 

extent of veering as participants crossed the door midline (Fig 3C) was not significantly 

different between the PD off group and control participants on wide(t(17)=1.03, p=.315), 

medium (t(17)=1.04, p=.313) or narrow (t(17)=-.857, p=.404)doors. 

Linear regression showed that neither total UPDRS score (R2=.426, p=.057) nor 

average turn time (R2=.271, p = .186) predicted door difficulty (Fig 4). 

Discussion 

We identified a variety of abnormal walking responses to doorways in PD patients who 

regularly experience freezing of gait. Walking through doors was associated with a 

constellation of gait changes consisting of reduced walking speed, shortened stride length, 

reduced toe lift, and increased PCI. All these disturbances became more pronounced as the 

doorway was narrowed. While improving baseline gait parameters, dopaminergic 

medications did not remove the effects of door width on walking, which suggests the 

visually-driven door effects are not mediated by the BG. 

 
Motor and perception considerations 
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Neither UPDRS score nor turning ability significantly predicted the impact of doorways on 

walking velocity, suggesting the effects were not primarily due to traditionally measured 

motor problems. Because we constructed the doorway from thin strips of wood, there was 

minimal blocking of the peripheral visual field. Likewise different doorwidth conditions 

contained the same visual features, though in a different configuration. It is therefore 

unlikely that low-level differences in the visual environment cause disturbances at doorways 

as has previously been suggested (Azulay, 2006). 

Perceiving the door width as narrower than veridical could cause the slowing we 

observed. For example, if a door of 125% shoulder width were perceived as 100% shoulder 

width one might slow down to speeds appropriate for that width. This might occur in several 

ways. Doors could be perceived as narrower than veridical because of a perceptual 

distortion of space. To test this we had participants judge the width of the door that they 

could just pass through. Our participants’ judgements were closer to shoulder width than 

judgements measured using different methods in previous research (Lee et al, 2001; Warren 

& Whang, 1987). However, the PD group made explicit judgements of door width as 

accurately as healthy controls, and  judgements were unaffected by medication. Increased 

lateral sway in the PD group could effectively make body width greater in comparison with 

door width, but one would expect this to be reflected in the explicit judgements, which are 

unlikely to change as participants approach the door (Lee et al, 2001; Berti, Rabuffetti, 

Ferrarin et al, 2002). We also measured the extent to which participants veered as they 

passed through the door. On crossing the doorway, PD participants were on average within 

1cm of the door centre. This is in contrast to the large veering amplitudes measured in 

neglect patients passing through a doorway (Robertson, Hogg, & McMillan, 1998; Berti, 

Rabuffetti, Ferrarin et al, 2002) and was not significantly different to control performance. 

We conclude that misperception of door width was not responsible for group differences on 

the walking task. This contrasts with Lee et al (2001), who found neglect-like perceptual 
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problems in left-sided PD patients. Our group in fact included a majority of these patients 

yet we found no such problem. More work on a larger sample of PD patients would be useful 

in resolving this conflict.  

 

 
Attention considerations 

It is possible that doorways divert attention from walking, and this diversion causes PD 

participants’ slowing responses. On one hand, simply as a visual stimulus the door may incur 

an attentional cost, which might cause disproportionate effects in PD. However as 

mentioned above, there were few purely featural visual differences between door width 

conditions, so this effect is unlikely to explain the observed dramatic effects of door width. 

On the other hand, as an accuracy constraint the door may focus attention on walking, 

which can greatly benefit PD participants (Azulay et al, 2006). It is therefore unlikely that the 

former outweighs the latter enough to produce the slowing effects of doors which we 

observed. 

 
Visual control of walking in PD 

As we suggested in the introduction, visual information about door width was used to 

control the walking pattern even in a healthy population. Changes to gait variables in the HC 

group may have arisen partly from an order effect in that the no-door condition was always 

presented first. However, just considering those trials in which the doors were present and 

door width was randomised, velocity and stride length were related to the width of the 

doorway: the narrower the doorway, the more cautious was the gait. 

This visual control seen in the HC group sheds light on the problems apparent in the 

PD group. While gait variables were affected by the doorway in both HC and PD groups, the 

groups’ behaviour differed in two major ways. First, the baseline level of most variables was 

weaker in the PD group (hypokinetic, rigid gait produced by decreased stride length and toe 
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lift; higher PCI, reflecting asymmetric walking). Second, narrowing the doorway caused more 

consistent and proportionally much larger changes to walking in the PD group than in the HC 

group. For example, the drop in velocity from wide to narrow doors was ~6% for healthy 

controls but ~18% for the PD Off group.  This different magnitude of motor response to 

visual input suggests a visuomotor processing difference between PD and HC groups. For 

narrow doors accurate passage could only be achieved if walking was slowed prior to the 

doorway. Our data show that the response to this constraint was amplified in PD patients, 

whose slowing and stride shortening before the doorway was exaggerated in comparison 

with the HC group. The data therefore support our hypothesis that PD causes exaggerated 

responses to the visual information relevant to locomotor control – in this case, information 

about door width. 

Our results are in agreement with those of Almeida & Lebold (2009). Both studies 

found a similar pattern of response for stride length. We found additional effects for 

velocity, perhaps because our range of door widths was narrower and scaled to each 

participant’s shoulder width. Both studies found that average cadence was not different 

between groups. Finally both studies found that timing variability was more affected by 

doors in PD - though Almeida & Lebold measured step time variability while we measured 

PCI. 

The strong responses to action-relevant visual information in our task are strikingly 

similar to those found in other walking (Schubert et al, 2005), balance (Bronstein, 1990) and 

manual (Praamstra et al, 1998) tasks. The amplified motor responses to visual inputs in most 

of these studies parallel those in our task. It has been suggested that over-weighting of 

visual information might be a learned response to poor kinaesthetic feedback (Azulay, 2006, 

Demirci et al, 1997). Poliakoff et al (2007) found a speeding effect for action-relevant visual 

information in HC but not PD participants. Though this is apparently discrepant with our 
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results, it also highlights the fact that strong responses to visual information may only affect 

a subgroup of PD participants, for example those who are prone to freezing.  

Freeze behaviour in doorways 

Previous work on freezing of gait has suggested that specific walking patterns are associated 

with freezing episodes. For example, freezing behaviour is associated with a progressive 

reduction in step size (the sequence effect) set on top of a low baseline step length 

(hypokinesia) (Nieuwboer et al, 2001; Iansek et al, 2006; Chee et al, 2009). We have shown 

that doorways provoke decreases in velocity and stride length. This in turn may cause 

doorway freezing commonly reported in PD patients. Freezing has also been linked to 

irregular stride timing or arhythmicity (Hausdorff et al, 2003; Plotnik et al, 2007; Nieuwboer 

et al, 2007). Walking through a narrow door is an inherently asymmetric task and we found 

most timing asymmetry in the narrow door condition. Our results are therefore also 

consistent with the hypothesis that timing irregularities may contribute to freezing in 

everyday situations such as passing through a door. Freezing is extremely difficult to elicit in 

laboratory situations (Giladi & Nieuwboer, 2008) and future work should directly examine 

the relation of freezing to gait difficulties with doorways. 

 
Implications for models of visually controlled walking 

In conjunction with current literature, the present results suggest there are at least two 

neural circuits involved in everyday locomotion with obstacles (in this case, a doorway). 

First, the BG or their circuits with SMA regulate a basic locomotor pattern. Second, a 

separate non-dopaminergic system mediates visual inputs to walking. These modify 

locomotor plans according to visually specified constraints. 

A primary cause of PD is a lack of striatal dopamine, which directly impairs BG 

function. The clear improvement of walking parameters with dopaminergic medications 

confirms BG involvement in basic walking patterns. The BG seem to play a role in controlling 
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both step amplitude and rhythm since both were improved by medications in the present 

study. This is in agreement with previous studies which suggest that the BG both maintain 

cortically-selected step sizes and send appropriately timed internal cues for each step to 

cortex (Iansek, 2006). Nevertheless, since patients were able to maintain a compensatory 

high average cadence irrespective of medications, the results are consistent with the 

additional involvement of other structures such as the cerebellum (Wang et al, 2008a) in the 

timing of locomotor sequences. 

Visual inputs may be used to adjust the basic locomotor pattern considered above. 

Our results suggest that when this occurs, a second neural system becomes involved. Since 

the effects of door width are not responsive to dopaminergic medications (there are no door 

width by medication interactions), our results suggest that this system is located outside the 

dopaminergic BG. In the PD freezing group studied, there is damage to both the BG and this 

second visuomotor system. Studying PD participants who freeze therefore provides insight 

into the nature of locomotor control areas outside the basal ganglia. 

The most likely candidates for involvement in such a visuomotor control system are 

PPC and PMC. The introduction to this paper reviews some of the evidence for their roles in 

the visually guided walking of healthy participants. For several reasons, the role of PMC may 

be particularly helpful in explaining the present results. First, lateral PMC is highly activated 

when PD patients control actions using external rather than internal cues (e.g. visual inputs; 

see Berardelli et al, 2001). Second, it is a key part of the human affordance processing 

system (Chao & Martin, 2000; Creem-Regehr & Lee, 2005). The affordance of an object is its 

visually-specified relevance for action (Gibson, 1979). For instance, visual information tells us 

that a chair affords sitting or a step affords climbing. This information is automatically 

obtained on viewing an object (Tucker & Ellis, 1998), and may be thought of as a key output 

of the visual system to the motor system. The affordance of the door specifies that it can 

only be safely passed through at a certain speed which depends on door width. It is the 
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response to this information which seems to be exaggerated in PD participants. A PET study 

confirms that PMC mediates locmotor affordance processing, since PMC was more active 

when participants stepped over transverse lines than lines parallel with the direction of 

walking (Hanakawa et al, 1999). Importantly, this difference was more pronounced in PD 

participants than in control participants performing the same step. This overactivity may 

therefore reflect exaggerated responses to visual information for walking in PD. These may 

be helpful when stepping over transverse lines but unhelpful when walking through a 

doorway. 
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Figure legends 

Fig 1: Mean velocity of pelvic midpoint in direction of progression, plotted against body 

position in space. Doors at zero. Shown separately for PD and HC groups and three door 

widths. At each spatial point values for each participant have been normalised to the value 

in the no door condition. Thick lines show group mean; shaded areas show group standard 

error. Dashed lines show measurement region (see text). 

Fig 2: Parameter means and standard errors for datasets PDA (participants who completed 

walking task in both medication states) and healthy controls (HC). Conditions as appropriate 

for each group: Off or On (off meds, on meds). In each condition four points from left to 

right represent no door, wide door, medium door, narrow door conditions respectively. nDS: 

normalised double support time. PCI: Phase Coordination Index. Full parameter definitions in 

text. 

Fig 3: A Participants’ judgments of the door width that they could just pass through. Values 

for HC participants are based on their first six trials, and for all PD participants who 

completed the task in that state.  Mean and standard errors of judgments, expressed as a 

proportion of (i) shoulder width and (ii) measured passable width. B Group mean and 

standard errors of each participant’s variability of response. C Lateral deviation from the 

door midline as pelvic midpoint crosses doorway. Leftward deviations are positive; rightward 

deviations are negative. Group mean and standard errors shown. 

Fig 4: Door difficulty predicted by A UPDRS total score B time to turn 360°. On all scales 

higher scores indicate worse performance. All values are from the ‘off’ state. 
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Table 1. Repeated measures ANOVAs for each of six variables. 
 
 
ANOVA 1: Healthy participants: effects of door width. ANOVA 2: PD participants: effects of 
door width and medication. ANOVA 3: PD participants off meds vs healthy participants. 
ANOVA 4: PD participants on meds vs healthy participants. Each line shows relevant degrees 
of freedom (df), F and p values. P values less than .05 are shown in bold. 

 

 

  
Velocity Stride length Cadence Toe lift nds PCI 

d.f. F p F p F p F p F p F p 

ANOVA 1: HC 
door width 

 
3,27 

 
3.995 

 
.018 

 
7.273 

 
.001 

 
11.607 

 
.000 

 
3.231 

 
.038 

 
5.511 

 
.004 

 
3.364 

 
.033 

ANOVA 2: PD 
door width x medication 
door width 
medication 

 
3,24 
3,24 
1,8 

 
0.894 
11.10 
35.93 

 
.458 
.003 
.000 

 
1.616 
12.23 
21.26 

 
.212 
.000 
.002 

 
1.618 
1.176 
0.258 

 
.211 
.318 
.625 

 
1.525 
8.244 
15.77 

 
.234 
.001 
.004 

 
1.13 
2.509 
13.44 

 
.357 
.141 
.006             

 
2.325 
7.612 
11.737 

 
.100 
.016 
.009                

ANOVA 3: PD off vs. HC 
door width x group 
door width 
group 

 
3,51 
3,51 
1,17 

 
6.787 
11.02 
25.58 

 
.000             
.000 
.000 

 
6.127 
19.90 
34.70 

 
.001 
.000 
.000 

 
1.273 
1.803 
.096 

 
.293 
.193 
.761 

 
2.284 
12.71 
24.10 

 
.090 
.000 
.000 

 
5.572 
1.481 
6.99 

 
.002  
.244 
.017 

 
6.056 
14.215 
12.759 

 
.001 
.000 
.002 

ANOVA 4: PD on vs. HC 
door width x group 
door width 
group 

 
3,51 
3,51 
1,17 

 
2.619 
6.742 
7.104 

 
.061 
.001 
.016 

 
1.256 
10.421 
11.295 

 
.299 
.000 
.004 

 
8.076 
2.591 
.276 

 
.005 
.063 
.606 

 
1.210 
5.492 
5.894 

 
.316 
.002 
.027 

 
3.321 
.278 
1.141 

 
.027 
.841 
.300 

 
1.718 
6.320 
3.981 

 
.175 
.001 
.062 
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Figure legends 

Fig 1: Mean velocity of pelvic midpoint in direction of progression, plotted against body 

position in space. Doors at zero. Shown separately for PD and HC groups and three door 

widths. At each spatial point values for each participant have been normalised to the value 

in the no door condition. Thick lines show group mean; shaded areas show group standard 

error. Dashed lines show measurement region (see text). 

Fig 2: Parameter means and standard errors for datasets PDA (participants who completed 

walking task in both medication states) and healthy controls (HC). Conditions as appropriate 

for each group: Off or On (off meds, on meds). In each condition four points from left to 

right represent no door, wide door, medium door, narrow door conditions respectively. nDS: 

normalised double support time. PCI: Phase Coordination Index. Full parameter definitions in 

text. 

Fig 3: Participants’ judgments of the door width that they could just pass through. Values for 

HC participants are based on their first six trials, and for all PD participants who completed 

the task in that state.  A Mean and standard errors of judgments, expressed as a proportion 

of (i) shoulder width and (ii) measured passable width. B Group mean and standard errors of 

each participant’s variability of response. 

Fig 4: Door difficulty predicted by A UPDRS total score B turn time. On all scales higher 

scores indicate worse performance. All values are from the ‘off’ state. 

 

 


