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Abstract

We study the asymptotic behaviour of a d-dimensional self-interacting random
walk (Xn)n∈N (N := {1, 2, 3, . . .}) which is repelled or attracted by the centre of mass
Gn = n−1

∑n
i=1Xi of its previous trajectory. The walk’s trajectory (X1, . . . , Xn)

models a random polymer chain in either poor or good solvent. In addition to some
natural regularity conditions, we assume that the walk has one-step mean drift

E[Xn+1 −Xn | Xn −Gn = x] ≈ ρ∥x∥−βx̂

for ρ ∈ R and β ≥ 0. When β < 1 and ρ > 0, we show that Xn is transient with
a limiting (random) direction and satisfies a super-diffusive law of large numbers:
n−1/(1+β)Xn converges almost surely to some random vector. When β ∈ (0, 1) there
is sub-ballistic rate of escape. When β ≥ 0 and ρ ∈ R we give almost-sure bounds
on the norms ∥Xn∥, which in the context of the polymer model reveal extended
and collapsed phases.

Analysis of the random walk, and in particular of Xn −Gn, leads to the study
of real-valued time-inhomogeneous non-Markov processes (Zn)n∈N on [0,∞) with
mean drifts of the form

E[Zn+1 − Zn | Zn = x] ≈ ρx−β − x

n
, (0.1)

where β ≥ 0 and ρ ∈ R. The study of such processes is a time-dependent variation
on a classical problem of Lamperti; moreover, they arise naturally in the context of
the distance of simple random walk on Zd from its centre of mass, for which we also
give an apparently new result. We give a recurrence classification and asymptotic
theory for processes Zn satisfying (0.1), which enables us to deduce the complete
recurrence classification (for any β ≥ 0) of Xn −Gn for our self-interacting walk.
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∗Université Paris 7 (Diderot), Case courrier 7012, 2 Place Jussieu, 75251 Paris Cedex 05, France.
E-mail: comets@math.jussieu.fr.

†Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
E-mail: mikhail.menshikov@durham.ac.uk.

‡Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK. E-mail:
s.volkov@bristol.ac.uk.

§Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow
G1 1XH, UK. E-mail: andrew.wade@strath.ac.uk.

¶Corresponding author. Tel: +44 (0)141 548 3663. Fax: +44 (0)141 548 3345.

1



1 Introduction

We study a self-interacting random walk. Self-interacting random processes, in which the
stochastic behaviour depends on the entire previous history of the process, present many
challenges for mathematical analysis (see e.g. [4,34] and references therein) and are often
motivated by real applications.

Although not a random process in the same sense, the self-avoiding walk is a prototyp-
ical example of a self-interacting random walk that gives rise to important and difficult
problems. Random self-avoiding walks were introduced to model the configuration of
polymer molecules in solution. The sites visited by the walk represent the locations of
the polymer’s constituent monomers; successive monomers are viewed as connected by
chemical bonds. The classical self-avoiding walk (SAW) model takes uniform measure on
n-step self-avoiding paths in Zd. In the important cases of d ∈ {2, 3}, there are still major
open problems for such walks: see for example [26,28] and [17, Chapter 7], or [37, Chapter
7] for a mathematical physics perspective.

The loop-erased random walk (LERW), obtained by erasing chronologically the loops of
a random walk, was introduced in [24] to study SAW, but it was soon realized that the two
processes belong to different universality classes. For its independent interest, including
applications to combinatorics and quantum field physics, LERW has received considerable
attention and now there is a more precise picture of its behaviour, which shows fine
dependence on the spatial dimension. In the planar case, the mean number of steps for
LERW stopped at distance n is of order n5/4 [20], and the scaling limit is conformally
invariant, described by the radial Schramm–Loewner evolution with parameter 2 [25].

A different perspective on polymer models concerns directed polymers, where the
self-interaction is reduced to a trivial form but interesting phenomena arise from the
interaction with the medium: see [14, 16] for recent surveys for localization on inter-
faces (pinning, wetting) possibly with time-inhomogeneities (e.g. copolymers), and [9] for
interactions with a time-space inhomogeneous medium leading to localization in the bulk.

In the standard framework, SAW cannot be interpreted as a dynamic (or progressive)
stochastic process. There have been many attempts to formulate genuine stochastic
processes with similar behaviour to that of, or at least conjectured for, SAW. A recent
model is the random walk on R2 which at each step avoids the convex hull of its preceding
values [2,39]. Unlike the conjectured behaviour of SAW, this model is ballistic (see [2,39]),
i.e., it has a positive speed. The discrete version on Z2, the dynamic prudent walk, has
been studied in [5]: it is ballistic with speed 3/7 (in the L1 norm), but, in contrast to
the (conjecture for the) continuous model, it does not have a fixed direction (see [5]).
Ballisticity is known for other types of self-interacting random walks: see [7, 18].

In this paper we consider a self-interacting random walk model that is a tractable
alternative to SAW, and is distinguished from the models of [2,5,7,18,39] by exhibiting a
range of possible scaling behaviour, including sub-ballisticity (i.e., zero speed) and super-
diffusivity. Our model is tunable, with parameters that in principle can be estimated
from real data, and it can be used to represent polymers in the extended phase (for good
solvent) or collapsed phase (poor solvent). The self-interaction in the model at time n
is mediated through the barycentre or centre of mass of the past trajectory until time n.
Specifically, our random walk will at each step have a mean drift (typically asymptotically
zero in magnitude) pointing away from or towards the average of all previous positions.
We now informally describe the probabilistic model; we give a brief description of the
motivation and interpretation arising from polymer physics in Section 3.3.
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Let d ∈ N := {1, 2, 3, . . .}. Our random walk will be a discrete-time stochastic process
X = (Xn)n∈N on Rd. For n ∈ N, set

Gn :=
1

n

n∑
i=1

Xi, (1.1)

the centre of mass (average) of {X1, . . . , Xn}. In addition to some regularity conditions
on X that we describe later, our main assumption will be that the one-step mean drift
of the walk after n steps is of order ∥Xn − Gn∥−β in the direction ±(Xn − Gn), where
β ≥ 0 is a fixed parameter; here and subsequently ∥ · ∥ denotes the Euclidean norm on
Rd. Loosely speaking for the moment, we will suppose that for some ρ ∈ R and β ≥ 0,

E[Xn+1 −Xn | Xn −Gn = x] ≈ ρ∥x∥−βx̂, (1.2)

for any n ∈ N and x ∈ Rd\{0}, where x̂ := x/∥x∥ denotes a unit vector in the x-direction
and 0 is the origin in Rd. We attach no precise meaning to ‘≈’ in (1.2) (or elsewhere); it
indicates that we are ignoring some terms and also that we have not yet formally defined
all the terms present. We describe the model formally and in detail in Section 2 below.

The natural case of our model to compare to the walk that avoids its convex hull [2,39]
has β = 0 and ρ > 0, when our walk has positive drift away from its current centre of
mass. In our β = 0, ρ > 0 setting we show that the walk has an asymptotic speed and an
asymptotic direction, properties which are conjectured but not yet proved for the walk
avoiding its convex hull [2, 39]. Our results however cover much more than this special
case. For example, the case of our model that we might expect to be in some sense
comparable to SAW in d = 2 has β = 1/3, ρ > 0: see the discussion in Section 3.3 below.

To give a flavour of our more general results, described in more detail in Section
2.2 below, we now informally describe our results in the case where (1.2) holds with
ρ > 0 and β ∈ [0, 1). Under suitable regularity conditions, we show that X is transient,
i.e. ∥Xn∥ → ∞ a.s., and moreover we prove a strong law of large numbers that precisely
quantifies this transience: n−1/(1+β)∥Xn∥ is asymptotically constant, almost surely. In
addition, we show that Xn has a limiting direction, that is, Xn/∥Xn∥ converges a.s. to
some (random) unit vector. Thus we have, in this case, a rather complete picture of the
asymptotic behaviour of Xn. For other regions of the (ρ, β) parameter space we have
other results, although we also leave some interesting open problems.

The self-interaction in the model is introduced via the presence of Gn in (1.2). If the
condition {Xn−Gn = x} in (1.2) is replaced by {Xn = x} then there is no self-interaction
in the drift, which instead points away from a fixed origin. Such non-homogeneous
‘centrally biased’ walks were studied by Lamperti in [21, Section 4] and [23, Section 5];
for more recent work see e.g. [13, 27, 31]. Considering the process of norms Zn = ∥Xn∥
leads to a process on [0,∞) with mean drift

E[Zn+1 − Zn | Zn = x] ≈ ρ′x−β, (1.3)

ignoring higher-order terms. Such ‘asymptotically zero-drift’ processes are of independent
interest; the asymptotic analysis of such (not necessarily Markov) processes is sometimes
known as Lamperti’s problem following pioneering work of Lamperti [21–23]. From the
point of view of the recurrence classification of processes satisfying (1.3), the case β = 1
turns out to be critical, in which case the value of ρ′ ∈ R is crucial: we give a brief
summary of the relevant background in Section 3.1 below.
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We shall see below that considering the process Zn = ∥Xn −Gn∥ with Xn satisfying
(1.2) leads to a more complicated form of (1.3). Loosely speaking, we will obtain

E[Zn+1 − Zn | Zn = x] ≈ ρ′x−β − x

n
. (1.4)

We note that the two terms on the right-hand side of (1.4) are typically of the same
order, as can be predicted by solving the corresponding differential equation, and so both
contribute to the asymptotic behaviour.

Comparing (1.4) with (1.3), we see that the drift is now time- as well as space-
dependent. (A different variation on (1.3) with this property was studied in [30], where
processes with drift ρxαn−β were considered.) Thus (1.4) is an interesting starting point
for analysis in its own right. Additional motivation for (1.4) arises naturally from simple
random walk (SRW) and its centre of mass: if Zn = ∥Xn−Gn∥ where Xn is a symmetric
SRW on Zd and Gn its centre-of-mass as defined by (1.1), Zn satisfies (1.4) with β = 1
and ρ′ = ρ′(d); see Section 3.2 below.

Let us step back from the general setting for a moment to state one consequence of
our results, which is a (seemingly new) observation on SRW:

Theorem 1.1. Let d ∈ N. Suppose that (Xn)n∈N is a symmetric SRW on Zd, and
(Gn)n∈N is its centre-of-mass process as defined by (1.1). Then

(a) lim infn→∞ ∥Xn −Gn∥ <∞ a.s. for d ∈ {1, 2};

(b) limn→∞ ∥Xn −Gn∥ = ∞ a.s. for d ≥ 3.

Pólya’s recurrence theorem says that Xn is recurrent in d ≤ 2 and transient in d ≥ 3,
while results of Grill [15] say that the centre-of-mass process Gn is recurrent only in
d = 1 and transient for d ≥ 2. Thus the asymptotic behaviour of Xn −Gn is not trivial;
Theorem 1.1 says that it is recurrent if and only if d ∈ {1, 2}. In particular when d = 2,
Xn and Xn −Gn are both recurrent, but Gn is transient; see Figure 1 for a simulation.

Remark 1.1. Theorem 1.1 exhibits an amusing feature. With the notation ∆n := Xn+1−
Xn it is not hard to see from (1.1) that we may write (with X0 := 0)

Gn =
n−1∑
i=0

(
1− i

n

)
∆i; Xn −Gn =

n−1∑
i=0

(
i

n

)
∆i.

It follows that (for fixed n) Xn−Gn and Gn are very nearly time-reversals of each other:
writing ∆′

i := ∆n−i we see that

Xn −Gn =
n∑

i=1

(
1− i

n

)
∆′

i.

Despite this, the two processes behave very differently, as can be seen by contrasting
Theorem 1.1 with Grill’s result [15].

It is natural to ask whether a continuous analogue of Theorem 1.1 holds. In the
one-dimensional case, we would take Bt to be standard Brownian motion and Gt =
t−1

∫ t

0
Bsds, and ask about the joint behaviour of (Bt, Gt); in higher dimensions, writing

the d-dimensional Brownian motion as (B
(1)
t , . . . , B

(d)
t ), the ith component G

(i)
t of Gt is
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t−1
∫ t

0
B

(i)
s ds, and different components are independent. We could not find a Brownian

analogue of Grill’s theorem [15] for (compact set) recurrence/transience of Gt explicitly
stated in the literature. The process (tGt)t≥0 is integrated Brownian motion, or the
Langevin process, see e.g. [3, 19] and references therein. The two-dimensional process
(Bt, tGt)t≥0 is the Kolmogorov diffusion [19]. Theorem 1.1 gives basic information about
the joint behaviour of a discrete version of this process, under a re-scaling of the second
coordinate.

Figure 1: Simulation of 4× 104 steps of symmetric SRW starting at the origin of Z2 and
its centre of mass process (thick line). [color online]

In Section 2 we formally define our self-interacting random walk and state our main
results. In Section 3 we discuss some more of the motivation behind our model (coming
from the physics of polymers and also purely theoretical considerations) and also the
one-dimensional problems associated with (1.3) and (1.4), and explain how SRW (and
Theorem 1.1) fits into our picture. The subsequent sections are devoted to the proofs.
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We finish this section with some comments on the relation of our model to the existing
literature. We are not aware of any self-interacting random walk models similar to the
one studied here (i.e., interacting with the previous history of the process, as summarized
through the barycentre). In broad outline, our model is related to the vertex-reinforced
random walk (see [34, Section 5.3]) in that the evolution of the walk depends on the sites
previously visited. A significant difference is that in vertex-reinforced random walk this
self-interaction is local, in that only the occupation of nearest-neighbours of the current
site affects the law of the increment, whereas our interaction, mediated by the barycentre,
is global. In the continuous setting, self-interacting diffusions (or ‘Brownian polymers’)
with similar flavour and motivation to those of our model have also been studied over
the last two decades or so, but are rather different in detail to the model considered here:
see e.g. [4, 11, 32, 33] and references therein; some recent work on processes with self-
attracting drift defined through a potential includes [6]. In the self-interacting diffusion
setting, most of the results in the literature are concerned with the ergodic case; questions
of recurrence/transience seem to have received little attention (particularly in dimensions
greater than 1), and we do not know of any results on asymptotic directions. Also, it is
typically assumed that the vector consisting of the process and its empirical average are
Markovian, whereas our model is more general. See [32, Section 1] for a short survey.

2 The model and main results

2.1 Definitions and assumptions

We now define the stochastic process X := (Xn)n∈N on Rd (d ∈ N) that is our main
object of study. (We start at time n = 1 only so that (1.1) has the neatest form.) The
process X will not be Markovian, as the distribution of Xn+1 will depend on the entire
history X1, . . . , Xn, although to a large extent this dependence will be mediated through
the current centre of mass Gn defined at (1.1). Formally, we suppose that (Xn)n∈N is
adapted to the filtration (Fn)n∈N; note that by (1.1) G1, . . . , Gn are Fn-measurable. We
use the notation Pn[ · ] := P[ · | Fn] and En[ · ] := E[ · | Fn]. Throughout the paper we
understand log x to mean log x if x ≥ 1 and 0 otherwise.

We impose some specific assumptions on the law of ∆n := Xn+1 −Xn given Fn. We
assume that for some B ∈ (0,∞) and all n ∈ N,

Pn[∥∆n∥ ≤ B] = 1, a.s.. (2.1)

The assumption of uniformly bounded jumps can be replaced by an assumption on higher
order moments at the expense of additional technical complications, but (2.1) is natural
when the increments represent chemical bonds in a model for a polymer molecule.

Our next assumption will be a precise version of (1.2). We suppose that for some
ρ ∈ R and β ≥ 0, for any n ∈ N, writing x = Xn −Gn for convenience,

En[∆n] = ρ∥x∥−βx̂+O(∥x∥−β(log ∥x∥)−2), a.s., (2.2)

as ∥x∥ → ∞, where x̂ := x/∥x∥. (In (2.2) the exponent −2 on the logarithm is chosen
for simplicity; it could be replaced with any exponent strictly less than −1.) In equation
(2.2) and similar vector equations in the sequel, terms such as O( · ) indicate the presence
of a vector whose norm satisfies the given O( · ) asymptotics (similarly for o( · )); error
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terms not involving n are understood to be uniform in n. To be clear, (2.2) is to be
understood as, with Xn −Gn = x, as ∥x∥ → ∞,

sup
n∈N

ess sup ∥En[∆n]− ρ∥x∥−βx̂∥ = O(∥x∥−β(log ∥x∥)−2).

We also need to assume a uniform ellipticity condition, to ensure that our random
walk does not get ‘trapped’ in some subset of Rd. Let Sd := {e ∈ Rd : ∥e∥ = 1} denote
the unit-radius sphere in Rd. We suppose that there exists ε0 > 0 such that

ess inf
e∈Sd

Pn[∆n · e ≥ ε0] ≥ ε0. (2.3)

Write ∆n = (∆
(1)
n , . . . ,∆

(d)
n ) in Cartesian components. An immediate consequence of

(2.3) is the following lower bound on second moments: a.s.,

min
i∈{1,...,d}

En[(∆
(i)
n )2] ≥ 2ε30 > 0. (2.4)

Our primary standing assumption will be the following.

(A1) Let d ∈ N. Let X := (Xn)n∈N be a stochastic process on Rd and G := (Gn)n∈N its
associated centre-of-mass process defined by (1.1). For definiteness, take X1 ∈ Rd

to be fixed. Suppose that for some B <∞, ε0 > 0, ρ ∈ R, and β ≥ 0 the conditions
(2.1), (2.2), and (2.3) hold.

In the examples discussed later (see Section 2.3), (Xn, Gn)n∈N will be a Markov pro-
cess, but we do not assume the Markov property in general.

When β = 1, as in the Lamperti case [21, 23] the value of ρ in (2.2) will turn out
to be crucial. As in Lamperti’s problem, the recurrence classification depends on the
relationship between ρ and the covariance structure of ∆n. To obtain an explicit criterion,
we impose additional regularity conditions on that covariance structure. Specifically, we
sometimes suppose that (a) there exists σ2 ∈ (0,∞) such that, a.s.,

En[(∆
(i)
n )2] = σ2 + o((log ∥Xn −Gn∥)−1), (i ∈ {1, . . . , d}); (2.5)

and (b) for i, j distinct elements of {1, . . . , d}, a.s.,

En[∆
(i)
n ∆(j)

n ] = o((log ∥Xn −Gn∥)−1). (2.6)

Thus for β ≥ 1, when necessary we will impose the following additional assumption.

(A2) The conditions (2.5) and (2.6) hold for some σ2 ∈ (0,∞).

2.2 Results on self-interacting walk

Our first result, Theorem 2.1, constitutes the first part of our complete recurrence classi-
fication for Xn−Gn. Since we are dealing with non-Markovian processes, we first formally
define what we mean by recurrence and transience in this context.

Definition 2.1. An Rd-valued stochastic process (ξn)n∈N is said to be recurrent if
lim infn→∞ ∥ξn∥ <∞ a.s. and transient if limn→∞ ∥ξn∥ = ∞ a.s..
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Define

ρ0 := ρ0(d, σ
2) :=

1

2
(2− d)σ2. (2.7)

Theorem 2.1. Suppose that (A1) and (A2) hold with d ∈ N, β ≥ 1, and ρ ∈ R.

(i) Suppose that β = 1. Let ρ0 = ρ0(d, σ
2) be as defined at (2.7). Then Xn − Gn is

recurrent if ρ ≤ ρ0 and transient if ρ > ρ0.

(ii) Suppose that β > 1. Then Xn−Gn is recurrent if d ∈ {1, 2} and transient if d ≥ 3.

For almost all our remaining results we do not need to assume (A2). Set

ℓ(ρ, β) :=

(
ρ(1 + β)

2 + β

)1/(1+β)

. (2.8)

In the case β ∈ [0, 1), we have the following result, which completes the recurrence
classification for Xn −Gn and also gives a detailed account of the asymptotic behaviour
of the random walkXn. In particular, when ρ > 0, Xn and Gn are transient, and moreover
have a limiting direction, and the escape is quantified by super-diffusive but, for β > 0,
sub-ballistic strong laws of large numbers. The case β = 0 shows ballistic behaviour.

Theorem 2.2. Suppose that (A1) holds with d ∈ N, β ∈ [0, 1), and ρ ∈ R \ {0}. Then
Xn − Gn is transient if ρ > 0 and recurrent if ρ < 0. Moreover, if ρ > 0, there exists a
random u ∈ Sd such that, as n→ ∞, with ℓ(ρ, β) defined at (2.8),

n−1/(1+β)Xn
a.s.−→ (2 + β)ℓ(ρ, β)u, and n−1/(1+β)Gn

a.s.−→ (1 + β)ℓ(ρ, β)u.

At the level of detail displayed by Theorem 2.2, we can see a difference between the
asymptotic behaviour of the β ∈ [0, 1), ρ > 0 case of (2.2) compared to the ‘supercritical
Lamperti-type’ case in which the drift is away from a fixed origin (i.e., the analogue of
(2.2) holds but with x = Xn rather than x = Xn −Gn). See Theorem 2.5 below and the
remarks that precede it.

Our ultimate goal is a complete recurrence classification for the process Xn. Theorem
2.2 covers the case β ∈ [0, 1), ρ > 0. Otherwise, we have at the moment only the following
one-dimensional result (to be viewed in conjunction with Theorem 2.1).

Theorem 2.3. Suppose that (A1) holds for d = 1. Then if Xn−Gn is transient, Xn and
Gn are also transient, i.e., |Xn| → ∞ and |Gn| → ∞ a.s. as n→ ∞.

Our final result on our walk with barycentric interaction gives upper bounds on ∥Xn∥
for general d ∈ N. In view of the interpretation of (X1, . . . , Xn) as a model for a polymer
molecule in solution, we can describe the phases listed in Theorem 2.4 below as (i) exten-
ded, (ii) transitional, (iii) partially collapsed, and (iv) fully collapsed. See the discussion
in Section 3.3 below. Theorem 2.4(i) is included for comparison only; Theorem 2.2 gives
a much sharper result. Define

γ(d, σ2, ρ) :=

(
2− d− 2ρ

σ2

)−1

. (2.9)

Theorem 2.4. Suppose that (A1) holds with d ∈ N, β ≥ 0, and ρ ∈ R. Then the
following bounds apply.
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(i) (Theorem 2.2.) If β ∈ [0, 1) and ρ > 0, there exists C ∈ (0,∞) such that, a.s.,
∥Xn∥ ≤ Cn1/(1+β) for all but finitely many n ∈ N.

(ii) If β ≥ 1, then for any ε > 0, a.s., ∥Xn∥ ≤ n1/2(log n)(1/2)+ε for all but finitely many
n ∈ N.

(iii) Suppose that (A2) also holds. Suppose that β = 1 and ρ < −dσ2/2, and let
γ(d, σ2, ρ) ∈ (0, 1/2) be as defined at (2.9). Then for any ε > 0, a.s., for all
but finitely many n ∈ N, ∥Xn∥ ≤ nγ(d,σ2,ρ)+ε.

(iv) If β ∈ [0, 1) and ρ < 0, then for any ε > 0, a.s., ∥Xn∥ ≤ (log n)1+
1

1−β
+ε for all but

finitely many n ∈ N.

We suspect that the bounds in Theorem 2.4 are close to sharp, in that corresponding
lower bounds of almost the same order should be valid (only infinitely often, of course, in
the recurrent cases). However, the lower bounds of [29, Section 4] do not apply directly.

Given (1.1) it is evident that the bounds for ∥Xn∥ in Theorem 2.4 imply the same
bounds (up to multiplication by a constant) for ∥Gn∥, and hence ∥Xn − Gn∥ too. In
addition, the same upper bounds hold (again up to a constant factor) for the quantities
of diameter Dn and root-mean-square radius of gyration Rn given by

Dn := max
1≤i<j≤n

∥Xi −Xj∥, R2
n :=

1

n

n∑
i=1

∥Xi −Gn∥2 =
1

n2

n∑
i=1

i−1∑
j=1

∥Xi −Xj∥2;

these are both physically significant in the interpretation of (X1, . . . , Xn) as a polymer
chain (see pp. 95–96 of [17] and Section 3.3 below).

Finally, we briefly describe how our results compare to the more classical model stud-
ied by Lamperti [21, 23]. That is, suppose that (A1) holds but that (2.2) holds with
x = Xn instead of x = Xn−Gn. In this case, there is no self-interaction in the drift term,
and the drift is relative to a fixed origin. Lamperti studied examples of such processes (so-
called centrally biased random walks) in [21, Section 4] and [23, Section 5]. We see that
our recurrence classification for the self-interacting process Xn − Gn in the case β = 1,
Theorem 2.1, gives, surprisingly, essentially the same criteria as Lamperti’s [21, Theorem
4.1]. In the case β ∈ [0, 1), the difference between the two settings is clearly manifest in
the constant in the law of large numbers. The analogue of our Theorem 2.2 in the case
of drift relative to the origin is an immediate consequence of Theorem 2.2 of [27] with
Theorem 3.2 of [31] (see the discussion in [31, Section 3.2]):

Theorem 2.5. [27, 31] Suppose that (A1) holds, with the modification that (2.2) holds
with x = Xn instead of x = Xn − Gn. Suppose that d ∈ N, β ∈ [0, 1), and ρ > 0. Then
there exists a random u ∈ Sd such that, as n→ ∞,

n−1/(1+β)Xn
a.s.−→ (2+β)1/(1+β)ℓ(ρ, β)u, and n−1/(1+β)Gn

a.s.−→ (1+β)(2+β)−β/(1+β)ℓ(ρ, β)u.

The method of proof of Theorem 2.2 in the present paper (see Section 6.2) gives an
alternative proof of Theorem 2.5, avoiding the rather involved argument for establishing
a limiting direction used in [27]. Specifically, in the argument in Section 6.2, we can apply
the relevant law of large numbers (Theorem 3.2 of [31]) in place of our Lemma 6.1. Note
that under the assumption of bounded increments, the law of large numbers [31, Theorem
3.2] is available, unlike in the generality of Theorem 2.2 from [27]; thus in the more general
setting, the proof of [27] is currently the only one that the authors are aware of.
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2.3 Examples

To illustrate our assumptions and results, we give three examples of walks satisfying (A1)
and (A2). In all of the following examples, the couple (Xn, Gn) is Markov.

Example 1. For x ∈ Rd, let b1(x), . . . ,bd(x) denote an orthonormal basis for Rd such
that b1(x) = x̂, the unit vector in the direction x; we use the convention 0̂ := e1 :=
(1, 0, . . . , 0). Fix ε0 ∈ (0, 1/(2d)), ρ ∈ R, and β > 0. Take

Pn[∆n = bi(Xn −Gn)] = Pn[∆n = −bi(Xn −Gn)] =
1

2d
, (i ∈ {2, . . . , d}),

and

Pn[∆n = b1(Xn −Gn)] =


1
2d

+ ρ
2
∥Xn −Gn∥−β if |ρ|

2
∥Xn −Gn∥−β ≤ 1

2d
− ε0

1
d
− ε0 if ρ

2
∥Xn −Gn∥−β > 1

2d
− ε0

ε0 if ρ
2
∥Xn −Gn∥−β < − 1

2d
+ ε0

;

Pn[∆n = −b1(Xn −Gn)] =
1

d
− Pn[∆n = b1(Xn −Gn)].

In other words, for all ∥Xn −Gn∥ sufficiently large,

Pn[∆n = ±b1(Xn −Gn)] =
1

2d
± ρ

2
∥Xn −Gn∥−β.

Then writing x = Xn −Gn, we have for x ∈ Rd with ∥x∥ sufficiently large, a.s.,

En[∆n] = ρ∥x∥−βx̂; En[(∆
(i)
n )2] =

1

d

d∑
j=1

(bj · ei)2 =
1

d
.

It is not hard to verify that (A1) and (A2) (with σ2 = 1/d) hold in this case. In particular,
if β = 1 Theorem 2.1 says that Xn −Gn is transient if and only if ρ > (2− d)/(2d). See
Figure 2 for some simulations of this model.

Example 2. Here is another example satisfying (A1) and (A2), this time with jumps
supported on a unit sphere rather than being restricted to a finite set of possibilities. Let
β > 0 and ρ ∈ R. Given Fn and Xn −Gn = x, the jump ∆n is obtained as follows.

(i) Choose Un uniformly distributed on the unit sphere Sd.

(ii) Take ∆n = Un + ρ∥x∥−β1{ρ∥x∥−β<1/2}x̂.

So the jumps of the walk are uniform on a sphere, but the centre of the sphere is (for ∥x∥
large enough) shifted slightly in the direction ±x̂, depending on the sign of ρ. Conditions
(A1) and (A2) (again with σ2 = 1/d) are readily verified for this example.

Example 3. We sketch one more example with d ≥ 2, β > 0 and ρ > 0, which is
reminiscent of the walk avoiding its convex hull. Take the jump ∆n uniform on Sd minus
the circular cap of relative surface ρ∥Xn −Gn∥−β pointing towards the barycentre, i.e.,

∆n is uniform on
{
y ∈ Sd : y · x̂ > −1 + C(ρ)∥x∥−β/(d−1)

}
,

with x = Xn −Gn, where C(ρ) is a constant depending on ρ and d. Here we assume ∥x∥
is sufficiently large; if not we can take ∆n uniform on Sd.
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Figure 2: Simulation of 104 steps of the random walk and its centre of mass (thick line), as
described in Example 1, with d = 2, ρ = 0.1, ε0 = 0.01, and different values of β ∈ (0, 1];
the three pictures have β = 0.1 (top), β = 0.5 (bottom left), and β = 1 (bottom right).
Theorem 2.2 shows that in the two β < 1 cases, the random walk Xn is transient with
a limiting direction. In the β = 1 case, we know from Theorem 2.1 that Xn − Gn is
transient (ρ0 = 0 here), but transience of Xn itself is an open problem. [color online]
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2.4 Open problems and paper outline

Our results give a detailed recurrence classification (Theorem 2.1) for the processXn−Gn.
Of considerable interest is the asymptotic behaviour of Xn itself, for which we have a
complete picture only in the case β ∈ [0, 1), ρ > 0 (Theorem 2.2). We conjecture:

• ∥Xn∥ → ∞ a.s. if and only if ∥Xn −Gn∥ → ∞ a.s..

Theorems 2.2 and 2.3 verify the ‘if’ part of the conjecture when (i) β ∈ [0, 1) and ρ > 0,
and (ii) d = 1. Another open problem involves the angular behaviour of our model when
β ≥ 1. By analogy with [27] we suspect that there is no limiting direction in that case
(in contrast to Theorem 2.2).

The remainder of the paper is arranged as follows. In Section 3 we describe in more
detail how our model is related to Lamperti’s problem (Section 3.1), and to the centre-of-
mass of SRW (Section 3.2), and we prove Theorem 1.1. We also outline the motivation of
our random walk as a model for a random polymer in solution (Section 3.3). Section 4 is
devoted to preliminary computations for the processes Xn, Gn, and (especially) Xn−Gn.
In Section 5 we take a somewhat more general view, and study the asymptotic properties
of one-dimensional, not necessarily Markov, processes satisfying a precise version of (1.4).
The recurrence classification is a time-varying, more complicated analogue of Lamperti’s
results [21,23], and we use some martingale ideas related to those in [12,31]. In the case
β ∈ [0, 1), ρ > 0 we prove a law of large numbers that is a cornerstone of our subsequent
analysis for the random walk Xn. This law of large numbers is an analogue of that in [31]
for the supercritical Lamperti problem. While the results of [31] supply an upper bound
crucial to our approach, the law of large numbers in the present setting requires a new
idea, and our key tool here is a stochastic approximation lemma (Lemma 5.1), which may
be of independent interest. Section 6 is devoted to the proofs of our main theorems. The
basic method is an application of the results of Section 5 to the process ∥Xn−Gn∥, armed
with our computations in Section 4. We carry out this approach to prove Theorems 2.1
and 2.3 in Section 6.1. A crucial ingredient is the proof, in Section 6.2, that Xn−Gn has
a limiting direction. This enables us to prove Theorem 2.2. Finally, in Section 6.3, we
prove Theorem 2.4, building on some general results from [29].

3 Connections and further motivation

3.1 Lamperti’s problem and simple random walk norms

Our problem is related to a time-dependent version of the so-called Lamperti problem.
We briefly review the latter here. Let Z = (Zn)n∈N be a discrete-time stochastic process
adapted to a filtration (Fn)n∈N and taking values in an unbounded subset S of [0,∞).
The set S may be countable (as in the SRW example which follows in this section) or
uncountable (as in the application to stochastic billiards described in [29]).

Lamperti [21–23] investigated the extent to which the asymptotic behaviour of Z
is determined by the increment moments En[(Zn+1 − Zn)

k] when viewed as (random)
functions of Zn. Formally, suppose that for some k, En[(Zn+1 − Zn)

k] is well-defined for
all n. Then by standard properties of conditional expectations (see e.g. [8, Section 9.1]),
there exist a Borel-measurable function ϕk(n; · ) and an Fn-measurable random variable
ψk(n) (orthogonal to Zn) such that, a.s.,

En[(Zn+1 − Zn)
k] = E[(Zn+1 − Zn)

k | Zn] + ψk(n) = ϕk(n;Zn) + ψk(n).

12



Define
µk(n; x) := ϕk(n;x) + ψk(n). (3.1)

The µk(n;x) are, in general, Fn-measurable random variables; if Z is a Markov process
then µk(n;x) = E[(Zn+1 − Zn)

k | Zn = x] is a deterministic function of x and n, and
if in addition Z is time-homogeneous, µk(n; x) = µk(x) is a function of x only. For
many applications, including those described here, Z will not be time-homogeneous or
Markovian, but nevertheless the µk(n;x) are well-behaved asymptotically.

In this section, X = (Xn)n∈N will be the symmetric SRW on Zd (d ∈ N). That
is, X has i.i.d. increments ∆n := Xn+1 − Xn such that if {e1, . . . , ed} is the standard
orthonormal basis on Rd, for i ∈ {1, . . . , d}, P[∆n = ei] = P[∆n = −ei] = (2d)−1.

Let Fn = σ(X1, . . . , Xn) and consider the (Fn)n∈N-adapted process Z = (Zn)n∈N on
[0,∞) defined by Zn = ∥Xn∥. Here Z takes values in the countable set S = {∥x∥ : x ∈
Zd}. Note that Z is not in general a Markov process: when d = 2, given one of the two
Fn-events {Xn = (5, 0)} and {Xn = (3, 4)} we have Zn = 5 in each case but Zn+1 has
two different distributions; for instance Zn+1 can take the value 6 (with probability 1/4)
in the first case, but this is impossible in the second case.

We recall some simple facts about ∆n = Xn+1 −Xn in the case of SRW. We have

Pn[∥∆n∥ ≤ 1] = 1, a.s., and En[∆n] = 0, a.s.. (3.2)

Writing ∆n = (∆
(1)
n , . . . ,∆

(d)
n ) in Cartesian components, we have that

En[∆
(i)
n ∆(j)

n ] =
1

d
1{i = j}, a.s.. (3.3)

Elementary calculations based on Taylor’s expansion and (3.2) and (3.3) show that

En[Zn+1 − Zn] =
1

2d

d∑
i=1

(∥Xn + ei∥+ ∥Xn − ei∥ − 2∥Xn∥)

=
1

2∥Xn∥

(
1− 1

d

)
+O(∥Xn∥−2);

in the above notation, µ1(n; x) =
1
2x
(1− 1

d
)+O(x−2) as x→ ∞. As before, this asymptotic

expression is the compact notation for

sup
n∈N

ess supµ1(n; x) =
1

2x

(
1− 1

d

)
+O(x−2),

together with the same expression with ‘inf’ instead of each ‘sup’. Similarly

En[Z
2
n+1 − Z2

n] =
1

2d

d∑
i=1

(
∥Xn + ei∥2 + ∥Xn − ei∥2 − 2∥Xn∥2

)
= 1.

Then since (Zn+1 − Zn)
2 = Z2

n+1 − Z2
n − 2Zn(Zn+1 − Zn) we obtain

En[(Zn+1 − Zn)
2] =

1

d
+O(∥Xn∥−1).

In particular, (1.3) holds (interpreted correctly) with β = 1 and ρ′ = (1− (1/d))/2.
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3.2 Centre of mass for simple random walk

We saw in Section 3.1 how a mean drift described loosely by (1.3) arises from the process
of norms of symmetric SRW. In this section we describe how a process with mean drift
of the form (1.4) arises when considering the distance of a symmetric SRW to its centre
of mass. The motion of the centre of mass of a random walk is of interest from a physical
point of view, when, for example, the walk represents a growing polymer molecule: see
e.g. [1] and [37], especially Chapter 6.

The centre-of-mass process (defined by (1.1)) corresponding to a symmetric SRW on
Zd was studied by Grill [15], who showed that the process (Gn)n∈N returns to a fixed ball
containing the origin with probability 1 if and only if d = 1. In particular the process is
transient for d ≥ 2 and Grill gives a sharp integral test for the rate of escape of the lower
envelope. A consequence of his result is the following.

Theorem 3.1. [15] Let (Xn)n∈N be symmetric SRW on Zd and (Gn)n∈N the corresponding
centre-of-mass process defined by (1.1). Let d ∈ {2, 3, 4, . . .}. Then for any ε > 0,

∥Gn∥ ≥ (log n)−
1

d−1
−εn1/2, a.s.,

for all but finitely many n ∈ N. On the other hand, for infinitely many n ∈ N,

∥Gn∥ ≤ (log n)−
1

d−1n1/2, a.s..

A crude upper bound for ∥Gn∥, obtained by applying the triangle inequality ∥Gn∥ ≤
1
n

∑n
i=1 ∥Xi∥ and the law of the iterated logarithm for symmetric SRW on Zd (d ∈ N) to

each ∥Xi∥ (see e.g. Theorem 19.1 of [35]), is that for any ε > 0, a.s.,

∥Gn∥ ≤ 2

3d1/2
(1 + ε)(2n log log n)1/2,

for all but finitely many n ∈ N; it seems likely that this is an overestimate. In d = 1,
in the analogous continuous setting, a result of Watanabe [38, Corollary 1, p. 237] says
that, for Bt standard Brownian motion, for any ε > 0, for all t large enough,

1

t

∫ t

0

Bsds ≤ 3−1/2(1 + ε)(2t log log t)1/2, a.s.,

and this bound is sharp in that the inequality fails infinitely often, a.s., when ε = 0.
Standard strong approximation results show that this result can be transferred to ∥Gt∥
in d = 1.

The next result shows how the drift equation (1.4) arises in this context. Lemma 3.1
is a consequence of the more general Lemma 4.2 below.

Lemma 3.1. Let d ∈ N. Suppose that (Xn)n∈N is a symmetric SRW on Zd, and (Gn)n∈N
is its centre-of-mass process as defined by (1.1). Let Fn := σ(X1, . . . , Xn) and Yn :=
Xn −Gn. Then, a.s.,

En[∥Yn+1∥ − ∥Yn∥] =
(
1− 1

d

)
1

2∥Yn∥
− ∥Yn∥
n+ 1

+O(∥Yn∥−2);

En[(∥Yn+1∥ − ∥Yn∥)2] =
1

d
+O(∥Yn∥n−1) +O(∥Yn∥−1).
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Neglecting higher-order terms, the study of the process ∥Xn − Gn∥ for SRW leads
to the analysis of a process with drift given by (1.4). Lemma 3.1 can be generalized to
zero-drift Markov chains X = (Xn)n∈N satisfying appropriate versions of (3.2) and (3.3).
We prove our results on SRW by applying our general results given in Sections 4 and 5.

Proof of Lemma 3.1. This follows from Lemma 4.2 stated and proved in Section 4. Tak-
ing expectations in (4.10) and using (3.2) and (3.3) we obtain the first equation in the
statement of the lemma, using the fact that ∥Yn∥ = o(n) a.s. to simplify the error terms.
Similarly, squaring both sides of (4.10) and taking expectations we obtain the second
equation in the lemma.

Proof of Theorem 1.1. Let Zn = ∥Yn∥ = ∥Xn − Gn∥ and Fn = σ(X1, . . . , Xn). Then by
Lemma 3.1, a.s.,

En[Zn+1 − Zn] =

(
1− 1

d

)
1

2Zn

− Zn

n
+O(n−2Zn) +O(Z−2

n );

En[(Zn+1 − Zn)
2] =

1

d
+O(Znn

−1) +O(Z−1
n ).

Thus (5.4) and (5.5) hold with ρ′ = (d− 1)/(2d) and σ2 = 1/d. It follows from Theorems
5.1 and 5.2 (stated and proved in Section 5) that Zn is transient if and only if 2ρ′ > σ2,
or equivalently 1− (1/d) > (1/d), that is, d > 2.

3.3 The process viewed as a new random polymer model

In this section we briefly summarize motivation of self-interacting random walks arising
from polymer physics, and give an interpretation of our model described by (A1) in
that context. Much more background is provided by, for instance, [28, Section 2.2], [37,
Chapter 7], [17, Chapter 7], and, for the underlying physics, [36]. Recent accounts of
some of the relevant probability theory are given in [14,16].

The sites visited by the walk Xn represent the monomers that make up a long polymer
molecule in solution in Rd (of course, physically d ∈ {2, 3} are most interesting). The line
segments between successive sites Xn and Xn+1 represent the chemical bonds holding the
molecule together; in this regard our condition of uniformly bounded increments in (A1)
is natural. We assume that the polymer solution is dilute, so that interaction between
different polymer molecules can be neglected.

In real polymers, a phase transition is observed between polymers in poor solvents (or
at low temperature) and good solvents (or high temperature) [36, Chapter 7]. In poor
solvents, a polymer molecule collapses as the attraction between monomers overcomes
the excluded volume effect caused by the fact that no two monomers can occupy the
same physical space. In good solvents, a polymer molecule exists in an extended phase
where the excluded volume effect dominates.

It is the extended phase that is believed to lie in the same universality class as SAW.
Heuristic arguments dating back to P.J. Flory (see e.g. [28, Section 2.2]) suggest that
in this phase ∥Xn∥ should exist on ‘macroscopic scale’ of order nν for an exponent ν =
ν(d) ∈ [1/2, 1], with ν < 1 for d > 1 and ν > 1/2 for d ≤ 3. So for d ∈ {2, 3}, the
polymer is expected to be super-diffusive but sub-ballistic. According to Theorem 2.4(i),
our model defined by (A1) has macroscopic scale exponent max{1/2, 1/(1 + β)} when
ρ > 0; for β < 1 this regime therefore corresponds to polymers in the extended phase,
where the excluded volume effect, summarized by repulsion from the centre of mass,
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dominates. For instance, since ν(2) = 3/4, in d = 2 the ‘physical’ choice of our model
has β = 1/3 and ρ > 0; it is not clear to what extent that case of our model replicates
the behaviour of SAW.

On the other hand, the collapsed phase corresponds to taking ρ < 0 in (A1), where
the polymer’s self-attraction, summarized through its centre of mass, is dominant. See
Theorem 2.4(iii) and (iv). Between the poor and good solvent phases, there is a trans-
itional phase at the so-called θ-point at which the temperature achieves a specific (critical)
value T = θ. Here the excluded volume effect and self-attraction are in balance, and the
molecule behaves rather like a simple random walk path. Compare Theorem 2.4(ii).

4 Properties of the self-interacting random walk

Under the assumption (A1), we are going to study the process Xn−Gn and in particular
determine whether it is transient or recurrent. It suffices to study ∥Xn − Gn∥. In this
section we analyse the basic properties of the latter process; subsequently we will apply
our general results of Section 5 on processes that satisfy, roughly speaking, (1.4).

We introduce some convenient notation that we use throughout. For n ∈ N set

Yn := Xn −Gn, ∆n := Xn+1 −Xn.

We start with some elementary relations amongst Xn, Gn, and Yn following from (1.1).

Lemma 4.1. Suppose that (Xn)n∈N is a stochastic process on Rd, and (Gn)n∈N is its
centre-of-mass process as defined by (1.1). For n ∈ N we have

Gn+1 =
n

n+ 1
Gn +

1

n+ 1
Xn+1; and (4.1)

Yn+1 =
n

n+ 1
(Yn +∆n). (4.2)

Moreover G1 = X1 and for n ∈ {2, 3, . . .},

Gn = X1 +
n∑

j=2

1

j − 1
Yj. (4.3)

Proof. Equation (4.1) is immediate from (1.1). Then from (4.1) we have that for n ∈ N,

Yn+1 = Xn+1 −Gn+1 =
n

n+ 1
(Xn+1 −Gn) , (4.4)

from which (4.2) follows since Xn+1−Gn = Yn+∆n. For (4.3), we have from (4.1) again
that for n ∈ N,

Gn+1 −Gn =
1

n+ 1
(Xn+1 −Gn) =

1

n
Yn+1,

where the final equality is obtained from (4.4). Thus for n ≥ 2,

Gn −G1 =
n−1∑
j=1

(Gj+1 −Gj) =
n−1∑
j=1

1

j
Yj+1,

from which (4.3) follows.
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The main result of this section concerns the increments of the process ∥Yn∥ under
assumption (A1) and also possibly (A2). Part (i) of Proposition 4.1 gives basic regularity
properties, including boundedness of jumps. Part (ii) gives an expression for the mean
drift when β ∈ [0, 1). Part (iii) deals with the case β ≥ 1 when (A2) also holds.

Proposition 4.1. Suppose that (A1) holds.

(i) There exists C ∈ (0,∞) for which, for any n ∈ N,

Pn[|∥Yn+1∥ − ∥Yn∥| > C] = 0, a.s.. (4.5)

In addition

lim sup
n→∞

∥Yn∥ = ∞, a.s.. (4.6)

(ii) If β ∈ [0, 1) then, a.s.,

En[∥Yn+1∥ − ∥Yn∥] = ρ∥Yn∥−β − ∥Yn∥
n+ 1

+O(∥Yn∥−β(log ∥Yn∥)−2). (4.7)

(iii) Suppose also that (A2) holds and β ≥ 1. Then, a.s.,

En[∥Yn+1∥ − ∥Yn∥] =
(
ρ1{β=1} +

1

2
(d− 1)σ2

)
∥Yn∥−1 − ∥Yn∥

n+ 1

+ o(∥Yn∥−1(log ∥Yn∥)−1); (4.8)

En[(∥Yn+1∥ − ∥Yn∥)2] = σ2 +O(n−1∥Yn∥) + o((log ∥Yn∥)−1). (4.9)

We prove Proposition 4.1 via a series of lemmas. The first gives information on the
increments of the process given by the distance of a general stochastic process to its
centre-of-mass. In particular, it shows that ∥Yn∥ inherits boundedness of jumps from Xn,
and gives an expression for the increments of ∥Yn∥ in terms of ∆n, the increments of Xn.

Lemma 4.2. Suppose that (Xn)n∈N is a stochastic process on Rd, and (Gn)n∈N is its
centre-of-mass process as defined by (1.1). Suppose that X1 ∈ Rd is fixed and that (2.1)
holds for some B ∈ (0,∞). There exists C ∈ (0,∞) for which, for all n ∈ N, (4.5) holds.
Moreover, a.s.,

∥Yn+1∥ − ∥Yn∥ =
n

n+ 1

(
Yn ·∆n

∥Yn∥
+

∥∆n∥2

2∥Yn∥
− (Yn ·∆n)

2

2∥Yn∥3

)
+O(∥Yn∥−2)− ∥Yn∥

n+ 1
.

(4.10)

Proof. We work with the process (∥Yn∥)n∈N. From (2.1) and the triangle inequality, we
have the simple bound ∥Xn∥ ≤ ∥X1∥+B(n−1) a.s., for all n ∈ N. Applying the triangle
inequality in (1.1) then yields the equally simple bound

∥Gn∥ ≤ 1

n

n∑
i=1

(∥X1∥+B(i− 1)) ≤ ∥X1∥+
Bn

2
.

Combining these two inequalities together with the fact that ∥Yn∥ ≤ ∥Xn∥ + ∥Gn∥, it
follows that ∥Yn∥ ≤ 2∥X1∥+(3Bn/2) a.s., for all n ∈ N. Then from the triangle inequality
and (4.2) we have that

|∥Yn+1∥ − ∥Yn∥| ≤ ∥Yn+1 − Yn∥ ≤ 1

n
∥Yn∥+ ∥∆n∥ ≤ 5B

2
+

2∥X1∥
n

,
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a.s., by (2.1), and this lattermost quantity is uniformly bounded. Thus we have (4.5).
For the final statement of the lemma, note that, from (4.2),

∥Yn+1∥ =
n

n+ 1

(
∥Yn∥2 + ∥∆n∥2 + 2Yn ·∆n

)1/2
. (4.11)

Now writing y = Yn for convenience, we obtain from (4.11) that

∥Yn+1∥ − ∥Yn∥ = ∥y∥

[
n

n+ 1

(
1 +

∥∆n∥2 + 2y ·∆n

∥y∥2

)1/2

− 1

]
. (4.12)

Using Taylor’s formula for (1 + x)1/2 with Lagrange remainder in (4.12) implies that

∥Yn+1∥ − ∥Yn∥ =
n∥y∥
n+ 1

(
∥∆n∥2 + 2y ·∆n

2∥y∥2
− (∥∆n∥2 + 2y ·∆n)

2

8∥y∥4
+O(∥y∥−3)

)
− ∥y∥
n+ 1

,

using (2.1) for the error bound. Simplifying and again using (2.1), this becomes

∥Yn+1∥ − ∥Yn∥ =
n∥y∥
n+ 1

(
∥∆n∥2

2∥y∥2
+

y ·∆n

∥y∥2
− (y ·∆n)

2

2∥y∥4
+O(∥y∥−3)

)
− ∥y∥
n+ 1

.

Then equation (4.10) follows.

Now we turn to the model defined by (A1), starting with the drift of ∥Yn∥. For
a, b ∈ R, we use the standard notation a ∧ b := min{a, b}.

Lemma 4.3. Suppose that (A1) holds. Then the drift of ∥Yn∥ satisfies, a.s.,

En[∥Yn+1∥ − ∥Yn∥] =
n

n+ 1

(
ρ∥Yn∥−β +Θn∥Yn∥−1

)
− ∥Yn∥
n+ 1

+O(∥Yn∥−(1∧β)(log ∥Yn∥)−2), (4.13)

where Θn is the Fn-measurable random variable given by

Θn =
1

2
∥Yn∥−2En[∥Yn∥2∥∆n∥2 − (Yn ·∆n)

2]. (4.14)

Moreover, there exists C <∞ such that Θn ∈ [0, C] a.s., and if β ∈ [0, 1), (4.7) holds.

Proof. Taking expectations in (4.10), using the fact that

∥Yn∥−1En[Yn ·∆n] = ρ∥Yn∥−β +O(∥Yn∥−β(log ∥Yn∥)−2),

by (2.2), we obtain

En[∥Yn+1∥ − ∥Yn∥] =
n

n+ 1

(
ρ∥Yn∥−β +

1

2∥Yn∥3
En[∥Yn∥2∥∆n∥2 − (Yn ·∆n)

2]

)
+O(∥Yn∥−(β∧1)(log ∥Yn∥)−2)− ∥Yn∥

n+ 1
.

By the fact that |Yn ·∆n| ≤ ∥Yn∥∥∆n∥ and the jumps bound (2.1) we have that

0 ≤ En[∥Yn∥2∥∆n∥2 − (Yn ·∆n)
2] ≤ C∥Yn∥2, a.s.,

for some C ∈ (0,∞). Thus defining Θn by (4.14) we obtain (4.13) and the fact that
Θn ∈ [0, C] a.s.. Then (4.7) follows when β ∈ [0, 1).
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The next result shows how the ellipticity condition (2.3) leads to (4.6).

Lemma 4.4. Suppose that (A1) holds. Then lim supn→∞ ∥Yn∥ = ∞ a.s..

Proof. We have from (4.11) that

∥Yn+1∥2 − ∥Yn∥2 =
(

n

n+ 1

)2 (
∥∆n∥2 + 2Yn ·∆n

)
− 2n+ 1

(n+ 1)2
∥Yn∥2. (4.15)

Fix p ∈ N, and define Fn,1 := ∩np+(p−1)
i=np {∆i · Ŷi ≥ ε0} and Fn,2 := {∥Ynp∥ ≤ ε0np

16
}. Fix

also np ∈ N with ε0np ≥ 16C, where C is as in (4.5), and consider n ≥ np only. By (2.3)
we have that Pn[Fn,1] ≥ εp0 a.s., and hence Lévy’s extension of the second Borel–Cantelli
lemma (see e.g. [10, Theorem 5.3.2]) implies that P[Fn,1 i.o.] = 1.

Now, observe from (4.5) that ∥Yi+1∥ ≤ ∥Yi∥ + C, a.s., which implies on Fn,2 that
∥Yi∥ ≤ 1

8
ε0np for all i ∈ {np, . . . np+(p−1)}. Then, on Fn,1∩Fn,2, we obtain from (4.15)

that, a.s.,

∥Yi+1∥2 − ∥Yi∥2 ≥ −2

i
∥Yi∥2 +

1

4

(
ε20 + 2ε0∥Yi∥

)
≥ 1

4
ε0∥Yi∥+

1

4
ε20 ≥

1

4
ε20,

for any i with np ≤ i ≤ np+ (p− 1) and any n ≥ np. Hence on Fn,1 ∩ Fn,2, a.s.,

∥Y(n+1)p∥2 = ∥Ynp∥2 +
np+(p−1)∑

i=np

(∥Yi+1∥2 − ∥Yi∥2) ≥ pε20/4.

Thus, up to sets of probability zero, {(Fn,1 ∩Fn,2) i.o.} ⊆ {lim supn→∞ ∥Yn∥ ≥ p1/2ε0/2}.
Moreover, by definition of Fn,2, {F c

n,2 i.o.} ⊆ {lim supn→∞ ∥Yn∥ = ∞}. Since {Fn,1 i.o.} ⊆
{(Fn,1∩Fn,2) i.o.}∪{F c

n,2 i.o}, it follows that {Fn,1 i.o.} ⊆ {lim supn→∞ ∥Yn∥ ≥ p1/2ε0/2}.
Since p was arbitrary, the result follows from the fact that P[Fn,1 i.o.] = 1, as shown in
the first part of this proof.

When (A1) holds with β ≥ 1, we need more regularity to obtain a well-behaved
version of (4.13). Thus we impose (A2) and use the following result, which in addition
gives an expression for the second moment of the increment ∥Yn+1∥ − ∥Yn∥.

Lemma 4.5. Suppose that (A1) and (A2) hold. Then Θn as defined by (4.14) satisfies

Θn =
1

2
(d− 1)σ2 + o((log ∥Yn∥)−1), a.s.. (4.16)

Moreover, (4.9) holds.

Proof. First we prove (4.16). We have that

En[∥∆n∥2] =
d∑

i=1

En[(∆
(i)
n )2] = dσ2 + o((log ∥Yn∥)−1),

by (2.5). Also if Yn = (y1, . . . , yd) ∈ Rd, with the convention that an empty sum is 0,

En[(Yn ·∆n)
2] =

d∑
i=1

y2iEn[(∆
(i)
n )2] + 2

d∑
i=2

i−1∑
j=1

yiyjEn[∆
(i)
n ∆(j)

n ]
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= ∥Yn∥2
[
σ2 + o((log ∥Yn∥)−1)

]
, (4.17)

by (2.5) and (2.6). Then (4.16) follows from (4.14).
Next we prove (4.9). Squaring both sides of (4.10) and taking expectations we obtain

En[(∥Yn+1∥ − ∥Yn∥)2] = ∥Yn∥−2En[(Yn ·∆n)
2] +O(n−1∥Yn∥) +O(∥Yn∥−1).

Now using (4.17) yields (4.9).

Proof of Proposition 4.1. We collect results from Lemmas 4.2, 4.3, 4.4, and 4.5.

5 Recurrence classification for processes satisfying

equation (1.4)

5.1 Introduction

In this section we state general results for processes with drift of the form (1.4). We will
later apply these results to the process ∥Xn−Gn∥ satisfying (A1) (and maybe also (A2)),
but for this section we work in some generality.

Let (Zn)n∈N be a stochastic process taking values in an unbounded subset S of [0,∞),
adapted to a filtration (Fn)n∈N. Recall the definition of µk(n; x) from (3.1), so that
En[(Zn+1 −Zn)

k] = µk(n;Zn) a.s.. As discussed in Section 3.1, the case where µ2(n;x) is
O(1) and µ1(n; x) → 0 as x→ ∞ arises often in applications; the case where µ1(n;x) → 0
uniformly in n is sometimes known as Lamperti’s problem after Lamperti’s work [21–23].
Roughly speaking, the Lamperti problem has µ1(n;x) ≈ ρx−β, β > 0, ρ ∈ R, ignoring
higher-order terms. Results of Lamperti [21,23] imply that the case β = 1 is critical from
the point of view of the recurrence classification. The supercritical case, when β ∈ [0, 1),
ρ > 0, has also been studied (see [31] and references therein).

In this section we study the analogous problem for which µ1(n;x) ≈ ρx−β − (x/n). In
keeping with the applications of the present paper, and to ease technical difficulties, we
adopt some stronger regularity assumptions than imposed in [21,23] or [31]. Nevertheless,
this version of the problem is more difficult than the classical case (without the extra−x/n
term in the drift). Thus although the ideas in this section are related to those in [21,23]
and [31], we have to proceed somewhat differently. In particular, to obtain our β < 1
law of large numbers in this setting (an analogue of [31, Theorem 2.3] for the standard
Lamperti case), we use a ‘stochastic approximation’ result (Lemma 5.1), the proof of
which uses ideas somewhat similar to those in [30,31].

We impose some regularity conditions on (Zn)n∈N. Suppose that there exists C ∈
(0,∞) such that for all n ∈ N,

Pn[|Zn+1 − Zn| > C] = 0, a.s.. (5.1)

We also assume that
lim sup
n→∞

Zn = ∞, a.s., (5.2)

without which the question of whether (Zn)n∈N is recurrent or transient (in the sense of
Definition 2.1) is trivial. Note that (5.2) is implied by a suitable ‘irreducibility’ assump-
tion, such as, for all y > 0, infn∈N Pn[Zm−Zn > y for some m > n] > 0, a.s.. In our case,
as in the standard Lamperti problem, we will see a distinction between the ‘critical’ case
where β = 1 and the ‘supercritical’ case where β ∈ [0, 1). Thus we deal with these two
cases separately in the remainder of this section.
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5.2 The critical case: β = 1

For x > 0 and n ∈ N define

r(n;x) := n−1x2 + (log(1 + x))−1. (5.3)

For p > 0 we write logp x for (log x)p. We impose the further assumptions that there
exist ρ′ ∈ R and s2 ∈ (0,∞) such that

µ1(n;x) = ρ′x−1 − x

n
+ o(x−1r(n;x)), (5.4)

µ2(n;x) = s2 + o(r(n;x)). (5.5)

Theorem 5.1. Suppose that the process (Zn)n∈N satisfies (5.1), (5.2), (5.4) and (5.5)
for some ρ′ ∈ R and s2 ∈ (0,∞). Then if 2ρ′ ≤ s2, Zn is recurrent.

Proof. Let Wn := log logZn. Write Dn := Zn+1 − Zn. First note that Taylor’s formula
implies that for x, h with x→ ∞ and h = o(x/ log x),

log log(x+ h) = log log x+
h

x log x
− (log x+ 1)h2

2x2 log2 x
+O(h3x−3(log x)−1).

Setting x = Zn and h = Dn and then taking expectations, we obtain

En[Wn+1 −Wn] =
µ1(n;Zn)

Zn logZn

− (logZn + 1)µ2(n;Zn)

2Z2
n log

2 Zn

+O(Z−3
n ),

using (5.1) for the error term. By (5.4) and (5.5) this last expression is

2ρ′ − s2

2Z2
n logZn

− s2

2Z2
n log

2 Zn

− 1

n logZn

+ o(Z−2
n (logZn)

−1r(n;Zn)) < 0,

for all n and Zn large enough, provided 2ρ′ − s2 ≤ 0, by (5.3). Thus there exist non-
random constants w0 ∈ (0,∞) and n1 ∈ N for which, for all n ≥ n1, on {Wn > w0},

En[Wn+1 −Wn] < 0, a.s..

By Doob’s decomposition, we may write Wn = Mn + An, n ≥ n1, where Wn1 = Mn1 ,
(Mn)n≥n1 is a martingale, and the previsible sequence (An)n≥n1 is defined by

An =
n−1∑
m=n1

Em[Wm+1−Wm] ≤
n−1∑
m=n1

Em[Wm+1−Wm]1{Wm ≤ w0} ≤ C

n−1∑
m=n1

1{Wm ≤ w0},

since the uniform jumps bound (5.1) for Zn implies a uniform jumps bound for Wn,
n ≥ n1. Hence Wn → ∞ implies that lim supn→∞An < ∞ so Mn → ∞ also. However,
(Mn)n≥n1 is a martingale with uniformly bounded increments (by (5.1)) so P[Mn → ∞] =
0 (see e.g. [10, Theorem 5.3.1, p. 204]). Hence P[lim infn→∞Wn <∞] = 1.

Theorem 5.2. Suppose that the process (Zn)n∈N satisfies (5.1), (5.2), (5.4) and (5.5)
for some ρ′ ∈ R and s2 ∈ (0,∞). Then if 2ρ′ > s2, Zn is transient.
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Proof. This time set

Wn :=
1

logZn

+
9

log n
.

Again write Dn := Zn+1 − Zn. We want to compute

En[Wn+1 −Wn] = En

[
(log(Zn +Dn))

−1 − (logZn)
−1
]

+ 9
[
(log(n+ 1))−1 − (log n)−1

]
. (5.6)

Observe that, for the final term on the right-hand side of (5.6),

(log(n+ 1))−1 − (log n)−1 =
log(1− (n+ 1)−1)

log n log(n+ 1)
= − 1

n log2 n
+O(n−2). (5.7)

Also for the expectation on the right-hand side of (5.6) we have that

En

[
(log(Zn +Dn))

−1 − (logZn)
−1
]

= (logZn)
−1En

[(
1 +

log(1 + (Dn/Zn))

logZn

)−1

− 1

]
.

Taylor’s formula implies that for a = O(1) and y = o(1),

(1 + a log(1 + y))−1 = 1− ay +
2a2 + a

2
y2 +O(y3).

Applying this formula with a = 1/ logZn and y = Dn/Zn we obtain,

En

[
(log(Zn +Dn))

−1 − (logZn)
−1
]

= − µ1(n;Zn)

Zn log
2 Zn

+
µ2(n;Zn)

2Z2
n log

2 Zn

+
µ2(n;Zn)

Z2
n log

3 Zn

+O(Z−3
n ),

by (5.1). Now using (5.4) and (5.5) we obtain,

En

[
(log(Zn +Dn))

−1 − (logZn)
−1
]

=
1

2Z2
n log

2 Zn

(
−(2ρ′ − s2) + o(r(n;Zn)) +O((logZn)

−1)
)
+

1

n log2 Zn

. (5.8)

Suppose that 2ρ′ − s2 ≥ 2ε > 0. Then by (5.3), (5.6), (5.7) and (5.8) we have that
there exist non-random constants n0 ∈ N and x0 ∈ (1,∞) such that for all n ≥ n0, on
{Zn ≥ x0}, a.s.,

En[Wn+1 −Wn] ≤ − ε

2Z2
n log

2 Zn

− 8

n log2 n
+

3

2n log2 Zn

. (5.9)

We have that the right-hand side of (5.9) is bounded above by

1

log2 Zn

(
−ε
2Z2

n

+
3

2n

)
≤ 1

log2 Zn

(
−ε
2Z2

n

+
3ε

8Z2
n

)
,

provided n ≥ 4Z2
nε

−1, and this last upper bound is negative for Zn ≥ x0. On the other
hand, if n ≤ 4Z2

nε
−1 the right-hand side of (5.9) is bounded above by

1

n

(
3/2

log2 Zn

− 8

log2 n

)
≤ 1

n

(
7

log2 n
− 8

log2 n

)
< 0,
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for Zn ≥ x0 and n ≥ n0. Thus in either case we have concluded that for all n ≥ n0, on
{Zn ≥ x0},

En[Wn+1 −Wn] < 0, a.s.. (5.10)

Now fix K > 1 and x1 ≥ x0. Define the stopping times

σK := min{n ≥ max{n0, x
18K
1 } : Zn ≥ x4K1 }; τK := min{n ≥ σK : Zn ≤ x1}.

By (5.2) we have that P[σK <∞] = 1. From (5.10) and the definition of τK we have that
(Wn∧τK )n≥σK

is a non-negative supermartingale, and hence it converges almost surely to
a [0,∞)-valued random variable W := W (K). In particular, since σK < ∞ a.s., we have
limn→∞Wn∧τK =W , a.s.. Moreover

E[W ] ≥ E[W1{τK<∞}] = E[WτK1{τK<∞}] ≥
P[τK <∞]

log x1
, (5.11)

since ZτK ≤ x1. On the other hand, since (Wn∧τK )n≥σK
is a supermartingale,

E[W ] ≤ E[WσK
] ≤ 1

4K log x1
+

9

18K log x1
=

3

4K log x1
, (5.12)

using the facts that ZσK
≥ x4K1 and σK ≥ x18K1 . Combining (5.11) and (5.12) we see that

P[τK <∞]

log x1
≤ 3

4K log x1
.

On {σK <∞}∩{τK = ∞}, we have that lim infn→∞ Zn ≥ x1, so the preceding argument
shows that P[lim infn→∞ Zn ≥ x1] ≥ 1 − 3

4K
for any K and any x1 ≥ x0. It follows that

P[Zn → ∞] = 1.

5.3 The supercritical case: β ∈ [0, 1)

Once again we will assume that (5.1) and (5.2) hold. We will also assume that there exist
β ∈ [0, 1) and ρ ∈ R \ {0} such that

µ1(n;x) = ρx−β − x

n
+ o(x−β) + o(xn−1). (5.13)

Theorem 5.3. Consider the process (Zn)n∈N satisfying (5.1), (5.2), and (5.13), where
β ∈ [0, 1). Then Zn is transient if ρ > 0 and recurrent if ρ < 0.

Proof. First suppose that ρ > 0. By (5.1) we can choose ρ′ ∈ (0,∞) so that 2ρ′ > C2 >
En[(Zn+1 − Zn)

2], a.s., and, by (5.13),

En[Zn+1 − Zn] ≥ (ρ′ + o(1))Z−1
n − Zn

n
+ o(Z−1

n r(n;Zn)), a.s..

It is this inequality, rather than the equality (5.4), that is needed in the proof of Theorem
5.2. Hence following that proof implies transience. Similarly, if ρ < 0 we have, for any
ρ′ ∈ (−∞, 0), a.s.,

En[Zn+1 − Zn] ≤ (ρ′ + o(1))Z−1
n − Zn

n
+ o(Z−1

n r(n;Zn)).

Using this inequality in the proof of Theorem 5.1 implies recurrence.
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The rest of this section works towards a proof of the following law of large numbers.

Theorem 5.4. Consider the process (Zn)n∈N satisfying (5.1), (5.2), and (5.13), where
β ∈ [0, 1) and ρ > 0. Then, with ℓ(ρ, β) as defined at (2.8), as n→ ∞,

Zn

n1/(1+β)

a.s.−→ ℓ(ρ, β). (5.14)

The proof uses the following lemma, which is of some independent interest, and falls
loosely into a family of “stochastic approximation” results; see e.g. [34, Section 2.4].

Lemma 5.1. Suppose that (Vn)n∈N is a non-negative process adapted to the filtration
(Fn)n∈N. Suppose that there exists r > 0 such that the following hold.

(a) There exists a non-negative sequence (γn)n∈N adapted to (Fn)n∈N with
∑

n∈N γn <∞
a.s. such that for any b > 0 and all n ∈ N we have that, a.s.,

En

[
(Vn+1 − Vn)

2
]
≤ C(b)γn on {Vn ≤ b},

where C(b) is a constant depending only on b.

(b) There exists ε > 0, and for any δ ∈ (0, r) there is a sequence of events An = An(δ),
n ∈ N, such that An ∈ Fn, P[An i.o.] = 0, and a.s. for all n ∈ N,

En[Vn+1] ≤ Vn on {Vn > r + δ} ∩ Ac
n, and En[Vn+1] ≥ Vn on {Vn < r − δ} ∩ Ac

n,

and also Ac
n ⊆ {Vn+1 > (1− ε)Vn}.

Then a.s. limn→∞ Vn = V∞ exists in [0,∞). If, additionally,

(c) there exists a non-negative sequence (γ̃n)n∈N adapted to (Fn)n∈N with
∑

n∈N γ̃n =
+∞ a.s. such that for any a, b with 0 < a < b and r /∈ [a, b], for all n large enough,
on {Vn ∈ [a, b]}, a.s.,

En[Vn+1 − Vn] ≤ −C̃(a, b)γ̃n if r < a,

En[Vn+1 − Vn] ≥ C̃(a, b)γ̃n if r > b,

where C̃(a, b) > 0 is a constant depending only on a and b,

then V∞ ∈ {0, r}.

Proof. We first show that under conditions (a) and (b) of the lemma, Vn converges a.s.
to some finite limit V∞. We claim that

P
[
{lim inf

n→∞
Vn ≤ r} ∪ {∃ lim

n→∞
Vn > r}

]
= 1. (5.15)

Indeed, suppose that {lim infn→∞ Vn ≤ r} does not hold, so that lim infn→∞ Vn > r + δ
for some δ > 0. For M ∈ N let

τ (M) := inf{n ≥M : Vn ≤ r + δ or An(δ) occurs},

and define V
(M)
n := Vn∧τ (M) . Then, for each M , by (b), (V

(M)
n )n≥M , is a non-negative

supermartingale and hence converges a.s.. On the other hand, from (b) and our assump-
tion that lim infn→∞ Vn > r + δ it follows that a.s. τ (M) = ∞ for some M ; in this case
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V
(M)
n ≡ Vn for all n ≥ M and hence Vn must also converge a.s., and the limit must be

greater than r. This establishes (5.15).
By an analogous argument with a bounded submartingale we also establish

P
[
{lim sup

n→∞
Vn ≥ r} ∪ {∃ lim

n→∞
Vn < r}

]
= 1. (5.16)

Given (5.15) and (5.16), to show that limn→∞ Vn exists a.s. it suffices to demonstrate this
convergence on the set

E := {lim sup
n→∞

Vn ≥ r} ∩ {lim inf
n→∞

Vn ≤ r}.

Let us prove that on E in fact lim supn→∞ Vn = r. For δ > 0 define

Eδ := E ∩ {lim supVn > y + δ} where y = r + 2δ.

We will show that P[Eδ] = 0 for any δ > 0, which yields the desired conclusion.
Fix some ν0 such that Vν0 > y + δ. Iteratively for i = 0, 1, 2, . . . define

τi := min{n > νi : Vn ≤ y − δ},
κi := min{n > τi : Vn > y − δ},

νi+1 := min{n > τi : Vn ≥ y + δ}.

On E we have Vn ≤ r + δ infinitely often, so that Vn ≤ y − δ infinitely often. Thus our
definitions imply that τi, κi, and νi are finite for all i on Eδ. Next, setting Bn := {Vn−1 ≤
y − δ, Vn > y}, we have by Lévy’s extension of the second Borel–Cantelli lemma (see
e.g. [10, Theorem 5.3.2])

{{Vκi
> y, κi <∞} i.o.} ⊆ {Bn i.o.} =

{∑
n∈N

Pn[Bn+1] = ∞

}
,

up to events of probability 0. On the other hand,

Pn[Bn+1] = Pn[Vn+1 > y]1{Vn ≤ y − δ}
≤ Pn[|Vn+1 − Vn| > δ]1{Vn ≤ y − δ}
≤ δ−2En[(Vn+1 − Vn)

2]1{Vn ≤ y − δ}, (5.17)

by Chebyshev’s inequality, so that by (5.17) and (a),∑
n∈N

Pn[Bn+1] ≤
∑
n∈N

δ−2C(y − δ)γn <∞, a.s. (5.18)

Thus on Eδ, by (5.18) and the Borel–Cantelli lemma, {Vκi
> y} occurs only finitely often

a.s., so there is some N1 ∈ N for which Vκi
∈ (y − δ, y] for all i ≥ N1. Now let

ηi := min{n > κi : Vn ≤ y − δ or Vn ≥ y + δ} ≤ νi+1.

On Eδ all the ηi are also finite (since the νi are finite). For n ∈ N define

In =

{
1, if κi ≤ n < ηi for some i and Ac

n occurs;
0, otherwise,

25



Dn = En[(Vn+1 − Vn)In] and Mn =
n−1∑
s=κ0

[(Vs+1 − Vs)Is −Ds],

with an empty sum understood as zero so that Mn = 0 for n ≤ κ0. Then (Mn)n∈N is a
zero-mean martingale adapted to (Fn)n∈N, and it is not hard to see that

En[M
2
n+1 −M2

n] = En[(Mn+1 −Mn)
2] ≤ En[(Vn+1 − Vn)

2In].

Moreover, since for κi ≤ n < ηi we have y − δ < Vn ≤ y + δ, from (a) it follows that

En[M
2
n+1 −M2

n] ≤ C(y + δ)γn.

This implies that the increasing process associated with Mn is bounded by a constant
times

∑
n∈N γn and hence is a.s. finite by (a). Consequently, by [10, Theorem 5.4.9] the

martingale Mn converges a.s. to some finite limit; in particular, there is some N2 ∈ N for
which supn,m≥N2

|Mn −Mm| < δ a.s.. Then for all i ≥ N1 such that κi ≥ N2 we have

Vηi = Vκi
+ [Mηi −Mκi

] +

ηi−1∑
s=κi

Ds < y + δ,

since, by (b), Dn ≤ 0 for n ∈ [κi, ηi), n ≥ N2, and Vκi
≤ y for all i ≥ N1. Consequently,

the process Vn eventually exits the interval (y − δ, y + δ) only on the left (and it cannot
jump over it, as we showed above), contradicting Eδ. So P[Eδ] = 0.

A similar argument shows that on E not only lim supn→∞ Vn = r but also
lim infn→∞ Vn = r; we sketch the changes needed to adapt the previous argument to
this case. Analogously to Eδ above, we define E ′

δ := E ∩ {lim inf Vn < y − δ} where
y = r − 2δ and δ ∈ (0, r/3). Also fix some ν ′0 such that Vν′0 < y − δ, and iteratively set

τ ′i := min{n > ν ′i : Vn ≥ y + δ},
κ′i := min{n > τ ′i : Vn < y + δ},

ν ′i+1 := min{n > τ ′i : Vn ≤ y − δ}.

This time let B′
n := {Vn−1 ≥ y+δ, Vn < y}. Now by definition of Ac

n, {Vn > (1−ε)−1r}∩
Ac

n ⊆ {Vn+1 > r} ⊆ (B′
n+1)

c, so that

Pn[B
′
n+1] ≤ Pn[B

′
n+1]1(A

c
n) + 1(An)

≤ Pn[B
′
n+1]1{Vn < (1− ε)−1r}+ 1(An).

A similar argument as that for (5.17) and (5.18), using Chebyshev’s inequality and
(a), with C(y − δ) in (5.18) now being replaced by C((1 − ε)−1r), shows that, a.s.,
Pn[B

′
n+1]1{Vn < (1 − ε)−1r} is summable, while 1(An) is a.s. summable by assumption

in (b). As before, it follows that {Vκ′
i
< y} a.s. occurs only finitely often. Then a similar

argument to the previous case, with the martingale Mn, shows that P[E ′
δ] = 0 as well.

Consequently, on E, limn→∞ Vn a.s. exists and equals r in this case. Thus the first
claim of the lemma follows, and V∞ = limn→∞ Vn a.s. exists in [0,∞).

To prove the second claim of the lemma, under the additional condition (c), we show
that P[V∞ ∈ (0, r)∪(r,∞)] = 0. To this end, suppose that Vn → y > r (the case y ∈ (0, r)
can be handled similarly). Choose a small δ > 0 such that y − δ > r. Then a.s. there
exists an N3 such that |Vn − y| < δ for all n ≥ N3. Now define D′

n = En[(Vn+1 − Vn)] and
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the martingale M ′
n =

∑n−1
s=1 [(Vs+1 − Vs)−D′

s]. Then by (c) we have that for all n ≥ N3,
D′

n = En[(Vn+1−Vn)] ≤ −C̃(y− δ, y+ δ)γ̃n. By a similar argument to that for Mn above,
M ′

n must converge a.s.. However this leads to a contradiction with the inequality

[Vn − VN3 ]− [M ′
n −M ′

N3
] =

n−1∑
s=N3

D′
s ≤ −C̃(y − δ, y + δ)

n−1∑
s=N3

γ̃s,

since, a.s., as n → ∞ the right-hand side converges to −∞ while the left-hand side
converges to a finite limit.

Now we can give the proof of Theorem 5.4.

Proof of Theorem 5.4. It suffices to prove that

lim
n→∞

n

Z1+β
n

=
2 + β

ρ(1 + β)
, a.s.. (5.19)

Set Vn = (n− 1)/Z1+β
n and Ṽn = n/Z1+β

n = n
n−1

Vn. Writing Dn := Zn+1 − Zn, we have

Vn+1 − Vn = Ṽn

[(
1 +

Dn

Zn

)−(1+β)

−
(
1− 1

n

)]
= Ṽn

[
1

n
− (1 + β)Dn

Zn

+O(Z−2
n )

]
,

using Taylor’s formula and (5.1) for the error term. Hence

Vn+1 − Vn =
Ṽn
n

[
1− (1 + β)nDn

Zn

+O(nZ−2
n )

]
. (5.20)

Taking conditional expectations in (5.20) we obtain, on {Zn → ∞}, a.s.,

En[Vn+1 − Vn] =
Ṽn
n

[
1− (1 + β)nµ1(n;Zn)

Zn

+O(nZ−2
n )

]
=
Ṽn
n

[2 + β + o(1)− ((1 + β)ρ+ o(1))Vn] , (5.21)

using (5.13), and then using the fact that Zn → ∞ to simplify the error terms. Similarly,
squaring both sides of (5.20) and taking expectations, on {Zn → ∞}, a.s.,

En[(Vn+1 − Vn)
2] =

Ṽ 2
n

n2

[
1− 2(1 + β)nµ1(n;Zn)

Zn

(1 + o(1)) +
(1 + β)2n2µ2(n;Zn)

Z2
n

(1 + o(1))

]
,

using (5.1) to obtain the error terms. Then from (5.5) and (5.13) we obtain

En[(Vn+1 − Vn)
2] =

Ṽ 2
n

n2

[
3 + 2β + o(1)− (2ρ(1 + β) + o(1))Vn +

(c+ o(1))n2

Z2
n

]
, (5.22)

for some c ∈ (0,∞) (depending on s2 and β) as Zn → ∞ and n → ∞. For a fixed b > 0
and A < ∞, there exists a (non-random) n0 for which {Vn ≤ b} implies that {Zn ≥ A}
for all n ≥ n0. In particular, from (5.22) we have that for some (non-random) C(b) <∞,
on {Vn ≤ b}, for any n ∈ N, a.s.,

En[(Vn+1 − Vn)
2] ≤ Ṽ 2

n

n2

[
O(1) + (c+ o(1))n2(Ṽn/n)

2
1+β

]
≤ C(b)n− 2

1+β .
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Since β < 1,
∑

n∈N n
−2/(1+β) < ∞ so that the conditions of part (a) of Lemma 5.1

are satisfied with the present choice of Vn and γn = n−2/(1+β). Let An := {Zn < A}.
By Theorem 5.3, Zn → ∞ a.s., so that An occurs only finitely often for any A ∈ (0,∞).
Taking r = 2+β

ρ(1+β)
, the conditions on En[Vn+1] in part (b) of Lemma 5.1 are shown to hold

for any δ ∈ (0, r), taking A = A(δ) sufficiently large, by (5.21). Indeed, from (5.21), on
{Vn > r + δ} for some δ ∈ (0, r),

En[Vn+1 − Vn] ≤ −δ(1 + β)ρ(1 + o(1))n−1Ṽn,

which is negative on Ac
n for our choice of A = A(δ). A similar argument holds for the

other condition on En[Vn+1] in Lemma 5.1(b). The final condition in (b), that Ac
n implies

that Vn+1 > (1 − ε)Vn for some ε ∈ (0, 1), follows from (5.20) and the fact that Dn is
uniformly bounded (by (5.1)), taking A and n sufficiently large in our choice of An.

The conditions in part (c) of Lemma 5.1 follow from (5.21) again, with γ̃n = n−1,
noting that the o(1) terms in (5.21) are uniformly small on {Vn ≤ b} for any n ≥ n0 (for
some non-random n0 ∈ N).

Hence we conclude from Lemma 5.1 that Vn → V∞ a.s. where V∞ ∈ {0, r}. To
complete the proof of the theorem we must show that P[Vn → 0] = 0. This, however,
follows from the fact that lim supn→∞(n−1/(1+β)Zn) < ∞ a.s. due to [31, Theorem 2.3],
noting the remark following that theorem.

6 Proofs of main theorems on self-interacting walks

6.1 Recurrence classification: Proofs of Theorems 2.1 and 2.3

We apply the results of Section 5 to Zn = ∥Yn∥ = ∥Xn −Gn∥.

Proof of Theorem 2.1. Suppose that (A1) and (A2) hold, and that β ≥ 1. First note that
with Zn = ∥Yn∥, (4.5) and (4.6) imply (5.1) and (5.2). Now from (4.8) we obtain, with
r(n;x) defined by (5.3),

En[Zn+1 − Zn] =

(
ρ1{β=1} +

1

2
(d− 1)σ2

)
1

Zn

− Zn

n
+ o(Z−1

n r(n;Zn)), a.s.

Similarly, we have from (4.9) that

En[(Zn+1 − Zn)
2] = σ2 +O(Znn

−1) + o((logZn)
−1).

First suppose that β = 1. Thus (5.4) and (5.5) hold with ρ′ = ρ + (d − 1)(σ2/2) and
s2 = σ2. It follows from Theorems 5.1 and 5.2 that Zn is transient if and only if 2ρ′ > s2,
or equivalently 2ρ > σ2(2− d), i.e., ρ > ρ0. This proves part (i) of the theorem.

Finally suppose that β > 1. This time (5.4) and (5.5) hold with ρ′ = (d − 1)(σ2/2)
and s2 = σ2. It follows from Theorems 5.1 and 5.2 that Zn is transient if and only if
2ρ′ > s2, or equivalently σ2(2− d) < 0, i.e., d > 2. This proves part (ii).

Proof of Theorem 2.3. Suppose that d = 1. If Yn is transient, then by (4.5) we have that
with probability 1 either: (i) Yn → +∞; or (ii) Yn → −∞. In case (i), there exists
N ∈ [2,∞) for which Yn ≥ 1 for all n ≥ N , so (4.3) with (4.5) implies that for n ≥ N ,

Gn ≥ X1 − CN +
n∑

j=N

1

j − 1
→ ∞, a.s.,
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as n → ∞; a similar argument applies in case (ii). Since Xn = Yn +Gn, and Yn, Gn are
transient with the same sign, it follows that Xn is transient too.

6.2 Limiting directions: Proof of Theorem 2.2

The key first step in the proof of Theorem 2.2 is the following application of the law of
large numbers, Theorem 5.4.

Lemma 6.1. Suppose that (A1) holds with d ∈ N, β ∈ [0, 1), and ρ > 0. As n→ ∞,

n−1/(1+β)∥Xn −Gn∥
a.s.−→ ℓ(ρ, β).

Proof. We take Zn = ∥Yn∥ = ∥Xn −Gn∥ and apply Theorem 5.4. The conditions of the
latter are verified since (4.5), (4.6), and (4.7) imply (5.1), (5.2), and (5.13) respectively.

The second step in the proof of Theorem 2.2 is to show that the process Yn = Xn−Gn

has a limiting direction. Together with Lemma 6.1 and the simple but useful relation
(4.3), we will then be able to deduce the asymptotic behaviour of Xn and Gn.

We use the notation Ŷn := Yn/∥Yn∥, with the convention that 0̂ := 0. Then (Ŷn)n∈N
is an (Fn)-adapted process, and using the vector-valued version of Doob’s decomposition
we may write

Ŷn = An +Mn, (6.1)

where M1 = Ŷ1, (Mn)n∈N is an (Fn)-adapted d-dimensional martingale and (An)n∈N is
the previsible sequence defined by A1 = 0 and An =

∑n−1
m=1 Em[Ŷm+1 − Ŷm] for n ≥ 2.

Lemma 6.2. Suppose that (A1) holds with d ∈ N, β ∈ [0, 1), and ρ > 0. Let the Doob
decomposition of Ŷn be as given at (6.1). There exists a d-dimensional random vector A∞
such that An → A∞ a.s., as n→ ∞.

Proof. We have from (4.2) that, with ∆n := Xn+1 −Xn as usual,

An+1 − An = En

[
Yn +∆n

∥Yn +∆n∥
− Ŷn

]
= En

[
∆n

∥Yn +∆n∥

]
− ŶnEn

[
∥Yn +∆n∥ − ∥Yn∥

∥Yn +∆n∥

]
=: T1 − ŶnT2.

We deal with the expectations T1 and T2 separately. First,

T1 = ∥Yn∥−1En[∆n]− En

[
(∥Yn +∆n∥ − ∥Yn∥)∆n

∥Yn∥∥Yn +∆n∥

]
.

The numerator in the last expectation is bounded in absolute value by ∥∆n∥2, by the
triangle inequality. Then using the fact that ∥∆n∥ is uniformly bounded, and that ∥Yn∥ ∼
ℓ(ρ, β)n1/(1+β) by Lemma 6.1, it follows that

T1 = ∥Yn∥−1En[∆n] +O(n−2/(1+β)), a.s.,

as n→ ∞. Similarly, we have that

T2 = En

[
∥Yn +∆n∥2 − ∥Yn∥2

∥Yn +∆n∥(∥Yn +∆n∥+ ∥Yn∥)

]
.
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Again using the boundedness of ∥∆n∥ and that ∥Yn∥ ∼ ℓ(ρ, β)n1/(1+β), we obtain

T2 = En

[
2∆n · Yn + ∥∆n∥2

∥Yn +∆n∥(∥Yn +∆n∥+ ∥Yn∥)

]
= En

[
Ŷn ·∆n

∥Yn∥

]
+O(n−2/(1+β)), a.s..

On applying (2.2) to evaluate the terms En[∆n] and En[∆n · Ŷn], the leading terms in T1
and ŶnT2 cancel to give

An+1 − An = O(∥Yn∥−β−1(log ∥Yn∥)−2) +O(n−2/(1+β)).

Since ∥Yn∥ ∼ ℓ(ρ, β)n1/(1+β), and β < 1, these two O( · ) terms are summable, so that∑∞
n=1 ∥An+1 − An∥ <∞, a.s., implying that An converges a.s..

Lemma 6.3. Suppose that (A1) holds with d ∈ N, β ∈ [0, 1), and ρ > 0. Let the Doob
decomposition of Ŷn be as given at (6.1). There exists a d-dimensional random vector
M∞ such that Mn →M∞ a.s., as n→ ∞.

Proof. Taking expectations in the vector identity ∥Mn+1 −Mn∥2 = ∥Mn+1∥2 − ∥Mn∥2 −
2Mn · (Mn+1 −Mn) and using the martingale property, we have

En[∥Mn+1∥2 − ∥Mn∥2] = En[∥Mn+1 −Mn∥2] = En[∥Ŷn+1 − Ŷn − En[Ŷn+1 − Ŷn]∥2].

Expanding out the expression in the latter expectation, it follows that

En[∥Mn+1∥2 − ∥Mn∥2] = En[∥Ŷn+1 − Ŷn∥2]− (En[Ŷn+1 − Ŷn])
2 ≤ En[∥Ŷn+1 − Ŷn∥2].

Here we have from (4.2) that

∥Ŷn+1 − Ŷn∥ =

∥∥∥∥Yn(∥Yn∥ − ∥Yn +∆n∥) + ∆n∥Yn∥
∥Yn∥∥Yn +∆n∥

∥∥∥∥ ≤ 2∥∆n∥
∥Yn +∆n∥

,

by the triangle inequality. Since ∥∆n∥ is uniformly bounded, and ∥Yn∥ ∼ ℓ(ρ, β)n1/(1+β)

by Lemma 6.1, it follows that ∥Ŷn+1 − Ŷn∥ = O(n−1/(1+β)), so that

En[∥Mn+1∥2 − ∥Mn∥2] = O(n−2/(1+β)), a.s..

Hence
∑∞

n=1 En[∥Mn+1∥2 − ∥Mn∥2] <∞, a.s., which implies that Mn has an almost-sure
limit, by e.g. the d-dimensional version of [10, Theorem 5.4.9, p. 217].

Proof of Theorem 2.2. Combining Lemmas 6.2 and 6.3 with the decomposition (6.1), we
conclude that Ŷn → A∞ +M∞ =: u, for some random unit vector u, a.s., as n→ ∞. In
other words, the process Yn has a limiting direction. It follows from the representation
(4.3) that the processes Gn and Xn have the same limiting direction. Specifically,

Gn = X1 +
n∑

j=2

1

j − 1
∥Yj∥Ŷj = X1 +

n∑
j=2

1

j − 1
[ℓ(ρ, β) + o(1)]j1/(1+β)[u+ o(1)], a.s.,

by Lemma 6.1. Hence

Gn = [(1 + β)ℓ(ρ, β)u+ o(1)]n1/(1+β), a.s.,

and the result for Xn follows since Xn = Gn + Yn.
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6.3 Upper bounds: Proof of Theorem 2.4

Theorem 2.4 will follow from the next result, which gives bounds for ∥Yn∥.

Proposition 6.1. Suppose that (A1) holds with d ∈ N, β ≥ 0, and ρ ∈ R. Then the
following bounds apply.

(i) If β ≥ 1, then for any ε > 0, a.s., for all but finitely many n ∈ N, ∥Yn∥ ≤
n1/2(log n)(1/2)+ε.

(ii) If (A2) holds, β = 1, and ρ < −(dσ2/2), then for any ε > 0, a.s., for all but finitely
many n ∈ N, ∥Yn∥ ≤ nγ(d,σ2,ρ)+ε where γ(d, σ2, ρ) is given by (2.9).

(iii) If β ∈ [0, 1) and ρ < 0, then for any ε > 0, a.s., for all but finitely many n ∈ N,
∥Yn∥ ≤ (log n)

1
1−β

+ε.

To prove this result we apply some general results from [29]. Section 4 of [29] dealt
with stochastic processes that were time-homogeneous, but that condition was not used
in the proofs of the results that we apply here, which relied on the very general results
of Section 3 of [29]: the basic tool is Theorem 3.2 of [29].

It is most convenient to again work in some generality. Again let (Zn)n∈N denote a
stochastic process on [0,∞). Recall the definition of µk(n; x) from (3.1). The next result
gives the upper bounds that we need. Part (i) is contained in [29, Theorem 4.1(i)]. Part
(ii) is a variation on [29, Theorem 4.3(i)] that is more suited to the present application.
Part (iii) is also based on [29] but does not seem to have appeared before.

Lemma 6.4. Suppose that (Zn)n∈N is such that (5.1) holds.

(i) Suppose that for some A < ∞, xµ1(n; x) ≤ A for all n and x sufficiently large.
Then for any ε > 0, a.s., Zn ≤ n1/2(log n)(1/2)+ε for all but finitely many n ∈ N.

(ii) Suppose that for some v > 0 and κ > 1, 2xµ1(n; x) ≤ −κµ2(n; x) + o(1) and

µ2(n;x) ≥ v for all n and x sufficiently large. Then, for any ε > 0, a.s. Zn ≤ n
1

1+κ
+ε

for all but finitely many n ∈ N.

(iii) Suppose that for some β ∈ [0, 1) and A > 0, xβµ1(x;n) ≤ −A for all n and x large

enough. Then for any ε > 0, a.s., for all but finitely many n ∈ N, Zn ≤ (log n)
1

1−β
+ε.

Proof. First we prove part (ii). Let κ′ = κ− ε for ε ∈ (0, κ). Writing Dn = Zn+1 − Zn,

En[Z
1+κ′

n+1 − Z1+κ′

n ] = Z1+κ′

n En[(1 + (Dn/Zn))
1+κ′ − 1]

= (1 + κ′)Zκ′

n

(
µ1(n;Zn) +

κ′

2Zn

µ2(n;Zn) +O(Z−2
n )

)
,

using Taylor’s formula and (5.1). Under the conditions of part (ii), we have

µ1(n;Zn) +
κ′

2Zn

µ2(n;Zn) +O(Z−2
n ) ≤ − ε

2Zn

µ2(n;Zn) + o(Z−1
n ) < 0,

for all n and Zn large enough. Hence En[Z
1+κ′

n+1 − Z1+κ′
n ] is uniformly bounded above and

the result follows from Theorem 3.2 of [29].
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It remains to prove part (iii). For α > 0, define fα(x) := exp{xα}. First we show
that, under the conditions of the lemma, for any α ∈ (0, 1− β), for some C <∞,

En[fα(Zn+1)− fα(Zn)] ≤ C, a.s.. (6.2)

Writing Dn = Zn+1 − Zn, we have that

En[fα(Zn+1)− fα(Zn)] = fα(Zn)En [exp{(Zn +Dn)
α − Zα

n} − 1] .

Since Dn = O(1) a.s., by (5.1), Taylor’s formula applied to the last expression yields

En[fα(Zn+1)− fα(Zn)] = fα(Zn)En

[
αDnZ

α−1
n +O(Z2α−2

n )
]
.

Here we have that En[Dn] ≤ −AZ−β
n for all Zn, n large enough. Since α < 1 − β we

obtain (6.2). Now we can apply Theorem 3.2 of [29] to complete the proof.

Finally we complete the proofs of Proposition 6.1 and Theorem 2.4.

Proof of Proposition 6.1. Under the conditions of part (i) of Proposition 6.1, we have
from (4.5) and Lemma 4.3 that the conditions of Lemma 6.4(i) hold for Zn = ∥Yn∥. Thus
we obtain part (i) of the proposition. Similarly, under the conditions of part (ii), we have
from (4.5), (4.8) and (4.9) that Lemma 6.4(ii) holds for Zn = ∥Yn∥ and κ = − 2ρ

σ2 −(d−1),
which is greater than 1 for ρ < −dσ2/2. Finally, under the conditions of part (iii), we
have from (4.5) and (4.7) that Lemma 6.4(iii) holds for Zn = ∥Yn∥.

Proof of Theorem 2.4. Part (i) of the theorem follows from Theorem 2.2. Parts (ii), (iii),
and (iv) follow from Proposition 6.1 with (4.3) and the triangle inequality; note this
introduces an extra logarithmic factor in the case of part (iv) of the theorem.
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