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Recent progress in understanding marine-terminating Arctic outlet glacier 1 

response to climatic and oceanic forcing: Twenty years of rapid change 2 

Abstract 3 

Until relatively recently, it was assumed that Arctic ice masses would respond to 4 

climatic/oceanic forcing over millennia, but observations made during the past 5 

two decades have radically altered this viewpoint and have demonstrated that 6 

marine-terminating outlet glaciers can undergo dramatic dynamic change at 7 

annual timescales. This paper reviews the substantial progress made in our 8 

understanding of the links between marine-terminating Arctic outlet glacier 9 

behaviour and the ocean-climate system during the past twenty years, when 10 

many ice masses have rapidly lost mass. Specifically, we assess three primary 11 

climatic/oceanic controls on outlet glacier dynamics, namely air temperature, 12 

ocean temperature and sea ice concentrations, and discuss key linkages 13 

between them. Despite recent progress, significant uncertainty remains over the 14 

response of marine-terminating outlet glaciers to these forcings, most notably (i), 15 

the spatial variation in the relative importance of each factor; (ii), the 16 

contribution of glacier-specific factors to glacier dynamics; and iii) the limitations 17 

in our ability to accurately model marine-terminating outlet glacier behaviour. 18 

Our present understanding precludes us from identifying patterns of outlet 19 

glacier response to forcing that are applicable across the Arctic and we 20 
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underscore the potential danger of extrapolating rates of mass loss from a small 21 

sample of study glaciers. 22 
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I Introduction 26 

Arctic warming is expected to far exceed the global average and is forecast to 27 

reach 4 to 7°C by 2100 (Meier et al., 2007; IPCC, 2007). Consequently, Arctic 28 

ice masses are expected to undergo rapid change during the 21st century and to 29 

contribute significantly to global sea level rise (e.g. Bamber et al., 2007). Indeed, 30 

estimates suggest that the Greenland Ice Sheet (GIS) contributed 0.46 mm a-1 31 

to sea level rise between 2000 and 2008 (van den Broeke et al., 2009). 32 

Assessing the potential response of Arctic ice masses to climate change is 33 

therefore crucial for the accurate prediction of near-future sea level rise (IPCC, 34 

2007). For the purposes of this paper, we define ‘Arctic ice masses’ as the 35 

major glaciated archipelagos within the Arctic Circle, namely the Greenland Ice 36 

Sheet (GIS), Svalbard, Novaya Zemlya (NZ), Severnaya Zemlya (SZ), Franz 37 

Josef Land (FJL) and the Canadian Arctic (Figure 1). Alaska is also included as 38 

results from the region have contributed significantly to our knowledge of 39 
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marine-terminating outlet glacier dynamics. Here we define a marine-40 

terminating outlet glacier as a channel of fast-moving ice that drains an ice cap 41 

or ice sheet and terminates in the ocean, at either a floating or grounded margin 42 

(Benn and Evans, 2010) (Figure 2). 43 

Our understanding of Arctic ice mass behaviour has advanced dramatically 44 

during the last twenty years, particularly during the last decade. Previously, it 45 

was generally assumed that large Arctic ice masses would respond to climatic 46 

warming at millennial timescales, primarily through increased surface melting, 47 

and that changes in ice flow would occur only at centennial timescales or longer 48 

(Huybrechts et al., 1991; IPCC, 2001; Greve, 2000). However, studies 49 

published during the past two decades have dramatically altered this viewpoint 50 

(e.g. Joughin et al., 2010; Rignot et al., 2008; van den Broeke et al., 2009) and 51 

have shown that most Arctic ice masses have rapidly lost mass since the 1990s. 52 

Crucially, losses have been concentrated at the coastal margins, particularly on 53 

marine-terminating outlet glaciers (e.g. Meier et al., 2007; Thomas et al., 2009; 54 

Joughin et al., 2010). Indeed, recent studies have demonstrated that marine-55 

terminating Arctic outlet glaciers can respond rapidly to climatic/oceanic forcing 56 

(e.g. Howat et al., 2007; Howat et al., 2008a; Joughin et al., 2008b; Howat et al., 57 

2011; Joughin et al., 2010; Andersen et al., 2012; Kjær et al., 2012) and can 58 

significantly influence the mass budget of their parent ice masses over annual 59 
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to decadal timescales (e.g. Stearns and Hamilton, 2007; Pritchard et al., 2009; 60 

Rignot et al., 2008).  61 

Results from the Antarctic, particularly Pine Island Glacier (Payne et al., 2004), 62 

have also highlighted the role of outlet glaciers and ice streams in enabling 63 

rapid coupling between forcing at the margins and the ice sheet interior and 64 

have raised concerns over the vulnerability of some regions to rapid mass loss 65 

(Joughin and Alley, 2011). Furthermore, iceberg-rafted debris from palaeo-ice 66 

sheets attest to major episodes of ice sheet collapse (e.g. Bond et al., 1992) 67 

and reconstructions of marine-based palaeo-ice sheets have highlighted the 68 

potential for rapid ice stream/outlet glacier retreat (Briner et al., 2009; e.g. 69 

Winsborrow et al., 2010). Theoretical considerations also suggest that glaciers 70 

resting on reverse bed slopes may potentially be unstable (Weertman, 1974; 71 

Thomas, 1979). Although this review focuses on the Arctic, these findings have 72 

demonstrated that marine-terminating outlet glaciers can respond rapidly to 73 

climatic/oceanic forcing and play a key role in regulating the mass balance of 74 

marine-based ice sheets. As a result, the factors controlling marine-terminating 75 

outlet glacier dynamics have emerged as a primary area of research. 76 

Recent mass deficits have been attributed to both increased marine-terminating 77 

outlet glacier discharge and to a more negative surface mass balance (SMB), 78 

primarily resulting from increased surface melting relative to accumulation 79 
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(Rignot et al., 2011; van den Broeke et al., 2009; Rignot et al., 2008; Zwally et 80 

al., 2011). The relative contribution of each of these two components varies 81 

across the Arctic, but is presently approximately equal on the GIS (van den 82 

Broeke et al., 2009). A number of potential controls on marine-terminating outlet 83 

glacier behaviour have been identified (Figure 3), which we broadly classify as 84 

(i), glacier-specific factors, which relate to the glaciological, topographic and 85 

geological setting of the glacier; and (ii), climatic/oceanic forcing, including air 86 

and ocean temperatures, sea ice and precipitation. Important glacier-specific 87 

factors include subglacial topography and geology, fjord bathymetry and 88 

topography, sedimentation at the grounding line and glacier velocity, size, 89 

surface slope and catchment area (Figure 3) (Meier and Post, 1987; Alley, 1991; 90 

Joughin et al., 2008b). Theory suggests that changes in marine-terminating 91 

outlet glacier dynamics can occur independently of climatic/oceanic forcing (e.g. 92 

Alley, 1991; Meier and Post, 1987) and the importance of glacier-specific 93 

factors, particularly subglacial topography, has been highlighted by recent 94 

studies (Thomas et al., 2009; Joughin et al., 2010; Joughin et al., 2012). 95 

Despite their apparent significance, however, the influence of glacier-specific 96 

factors on Arctic marine-terminating glacier behaviour is poorly understood. 97 

In contrast, concerns over anthropogenic climate change in the 1990s resulted 98 

in an increasing focus on climatic/oceanic forcing factors and recent work has 99 
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emphasised the widespread and synchronous nature of dynamic changes in 100 

many regions, particularly south-eastern Greenland (e.g. Howat et al., 2008a; 101 

Murray et al., 2010). Consequently, this paper focuses on the climatic/oceanic 102 

drivers of marine-terminating Arctic outlet glacier dynamics and discusses three 103 

primary controls: air temperatures, ocean temperatures and sea ice 104 

concentrations (Figure 3). It should be noted, however, that these forcing 105 

factors are not independent (Figure 3) and that interconnections between them 106 

may significantly influence outlet glacier behaviour, yet many of these 107 

relationships are poorly understood. We aim to: i), review and summarise recent 108 

developments relating to each of these climatic/oceanic forcing factors; ii), 109 

highlight key uncertainties surrounding marine-terminating Arctic outlet glacier 110 

response to climatic/oceanic forcing; and iii), recommend directions for future 111 

research. 112 

II Arctic mass balance trends: 1990 to 2010 113 

Rapid mass loss from Arctic masses has been documented since the early 114 

1990s by numerous independent studies (Table 1) (e.g. Moholdt et al., 2010b; 115 

Krabill et al., 2004; Rignot and Kanagaratnam, 2006; Velicogna and Wahr, 2006; 116 

Gardner et al., 2011). Due to their remote location and considerable size, mass 117 

balance is usually determined indirectly using remotely sensed data and/or 118 

SMB modelling. Considerable advances have been made in these techniques 119 
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during the past twenty years, which have substantially improved our ability to 120 

quantify mass budgets and to assess the relative contribution of ice dynamics to 121 

mass loss (van den Broeke et al., 2009; Rignot and Kanagaratnam, 2006; 122 

Velicogna and Wahr, 2006; Krabill et al., 2004). At present, the primary 123 

techniques include Gravity Recovery and Climate Experiment (GRACE) data 124 

(e.g. Luthcke et al., 2006; Velicogna, 2009; Velicogna and Wahr, 2006; Khan et 125 

al., 2010; Mémin et al., 2011; Arendt et al., 2008; Wouters et al., 2008; Jacob et 126 

al., 2012; Bergmann et al., 2012), comparison of SMB with outlet glacier 127 

discharge (Rignot et al., 2008; Rignot and Kanagaratnam, 2006; van den 128 

Broeke et al., 2009; Rignot et al., 2011) and repeat laser or radar altimetry 129 

measurements (Krabill et al., 2004; Thomas et al., 2006; Abdalati et al., 2001; 130 

Thomas et al., 2009; Pritchard et al., 2009).  131 

The negative mass balance of the GIS has received particular attention and has 132 

been estimated via a number of techniques and for a range of time periods. The 133 

most recent values from GRACE (Jacob et al., 2012) and from the comparison 134 

of SMB/outlet glacier discharge (Rignot et al., 2011) are presented in Table 1. 135 

An important new trend is the rapid mass loss from the Canadian Arctic 136 

between 2007 and 2009, which made the archipelago the primary cryospheric 137 

contributor to eustatic sea level rise outside of the Greenland and Antarctic ice 138 

sheets (Table 1) (Gardner et al., 2011). Furthermore, the area has been 139 
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highlighted as the largest potential contributor to ice loss and sea level rise of 140 

any glaciated region during the 21st century (Radić and Hock, 2011). Negative 141 

mass balance trends have also been documented in Svalbard (Nuth et al., 2010; 142 

Hagen et al., 2009; Moholdt et al., 2010b) and the Russian Arctic (Table 1) 143 

(Sharov et al., 2009; Kotlyakov et al., 2010). However, the mass balance of the 144 

Russian Arctic archipelagos have been comparatively poorly documented 145 

(Bassford et al., 2006). This represents a significant limitation to our 146 

understanding of the Arctic cryosphere and highlights the need for further 147 

research in the region, as NZ, SZ and FJL account for approximately 20% of the 148 

glaciated area of the Arctic, excluding the GIS (Dowdeswell et al., 1997). 149 

1 Spatial trends in Arctic mass balance 150 

Arctic mass balance trends have been spatially non-uniform, with many areas 151 

exhibiting slight growth at high elevations and rapid marginal thinning (e.g. 152 

Thomas et al., 2008; Hagen et al., 2009; Sharov et al., 2009; Thomas et al., 153 

2006; Pritchard et al., 2009; Zwally et al., 2011; Sharov, 2010). Substantial 154 

thickening has been observed at high elevations on the GIS (Johannessen et al., 155 

2005; Thomas et al., 2006; Zwally et al., 2005; Ettema et al., 2009); Austfonna 156 

ice cap, Svalbard (Moholdt et al., 2010a; Bamber et al., 2004; Raper et al., 2005; 157 

Moholdt et al., 2010b); the northern ice cap, NZ (Sharov et al., 2009); Tyndall 158 

and Windy ice domes in FJL; Schmidt and Vavilov ice caps in SZ (Sharov, 159 
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2010); and some Canadian Arctic ice caps (Mair et al., 2009; Abdalati et al., 160 

2004). A number of potential explanations have been proposed for this interior 161 

thickening, including increased precipitation (Thomas et al., 2006; Zwally et al., 162 

2005), possibly related to changes in sea ice extent (Mair et al., 2009; Bamber 163 

et al., 2004; Raper et al., 2005), long-term accumulation trends (Koerner, 2005; 164 

Moholdt et al., 2010a) and/or surge dynamics (Bevan et al., 2007). However, 165 

interior gains have been far outweighed by low-elevation thinning and marginal 166 

retreat (e.g. Zwally et al., 2011; van den Broeke et al., 2009), resulting in an 167 

overall negative mass balance in many regions (Table 1). 168 

2 Dynamic contribution of marine-terminating outlet glaciers to mass loss 169 

In addition to rapid marginal thinning, peak losses have occurred on marine-170 

terminating outlet glaciers (Pritchard et al., 2009; Moon and Joughin, 2008; Sole 171 

et al., 2008). On many of these glaciers, thinning rates of 10s of m a-1 have far 172 

exceeded surface melt rates, suggesting that thinning is largely ‘dynamic’ (i.e. 173 

resulting from changes in ice flow, rather than increased surface melting) (e.g. 174 

Abdalati et al., 2001; Krabill et al., 2004; Burgess and Sharp, 2008; Thomas et 175 

al., 2009). The contribution of glacier dynamics to recent mass deficits has been 176 

further emphasised by rapid retreat rates, which have reached kilometres per 177 

year on the GIS (e.g. Howat et al., 2008a; Moon and Joughin, 2008; Joughin et 178 

al., 2008b; Joughin et al., 2010) and hundreds of metres per year elsewhere 179 
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(e.g. Sharov, 2005; Blaszczyk et al., 2009; Nuth et al., 2010; Burgess and 180 

Sharp, 2004). Furthermore, recent research has underscored the contribution of 181 

dynamic changes to decadal-scale losses, as initial perturbations at the glacier 182 

terminus may be rapidly transmitted to inland areas, producing widespread, 183 

substantial thinning (Zwally et al., 2011; Pritchard et al., 2009; Thomas et al., 184 

2011; Howat et al., 2008b; Howat et al., 2005). This longer-term component of 185 

dynamic loss is an important emerging area of research and has the potential to 186 

be the primary component of the GIS contribution to 21st century sea level rise 187 

(Price et al., 2011; Vieli and Nick, 2011). 188 

Although the dynamics of marine-terminating outlet glaciers are now recognised 189 

as a key component of Arctic ice mass loss, they have also been highlighted as 190 

a principle area of uncertainty (IPCC, 2007). Specifically, the primary 191 

climatic/oceanic controls and the mechanisms by which they induce a dynamic 192 

response are yet to be fully understood (Vieli and Nick, 2011; Sole et al., 2008; 193 

Howat et al., 2010). The following sections review the three main 194 

climatic/oceanic controls identified to date, namely surface air temperatures, 195 

ocean temperatures and sea ice concentrations, and discuss the primary 196 

linkages between these factors (Figure 3). All three forcing factors have 197 

undergone marked changes in recent years, which have been linked to both 198 

recent climatic warming (IPCC, 2007; ACIA, 2004) and to the onset of a 199 
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negative phase of the North Atlantic Oscillation (NAO) in the mid-1990s (Stern 200 

and Heide-Jørgensen, 2003; Gerdes et al., 2003; Hurrell et al., 2003; e.g. 201 

Holliday et al., 2008). 202 

 203 

III Air temperature forcing 204 

Arctic air temperatures have risen substantially since the mid-1990s (Hanna et 205 

al., 2008; IPCC, 2007; ACIA, 2004), although they are not unprecedented at 206 

decadal timescales (Chylek et al., 2006; Box et al., 2009). We present a new 207 

synthesis of air temperature data to investigate the spatial distribution of Arctic 208 

warming between 1990 and 2010 and to visualise this trend both in terms of 209 

magnitude and statistical significance (Figure 4). Linear trends were calculated 210 

from annual air temperature series, which were compiled from meteorological 211 

station data of varying temporal resolution (three-hourly to monthly). In order to 212 

account for missing values, three-hourly data were used only if: i), no more than 213 

two consecutive records were missing in a day and; ii), no more than three 214 

records in total were missing in a day. Daily data were only used if values were 215 

available for 22 or more days per month and monthly values were used only if 216 

data were available for all months of the year (Cappelen, 2011).  217 

Results suggest that warming has been greatest at coastal stations surrounding 218 

Baffin Bay and the Davis Strait (Figure 4), which is consistent with dramatic 219 
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mass loss from the Canadian Arctic between 2004 and 2009 (Gardner et al., 220 

2011). Significant warming has also occurred in the Kara Sea region, 221 

particularly on FJL (Figure 4), although data coverage is comparatively sparse. 222 

Warming from the mid-1990s has been linked to negative SMB on a number of 223 

Arctic ice masses, particularly the GIS (e.g. Bhattacharya et al., 2009; Hanna et 224 

al., 2008; Box et al., 2006; Mote, 2007; Ettema et al., 2009; Abdalati and Steffen, 225 

2001). However, whilst warming directly affects SMB, a key recent development 226 

has been to consider the potential impact of meltwater on outlet glacier 227 

dynamics. 228 

1 Air temperatures, meltwater production and ice velocities on temperate and 229 

polythermal glaciers 230 

The relationship between air temperatures, meltwater supply and ice velocities 231 

has been well-documented on temperate glaciers (e.g. Fountain and Walder, 232 

1998; Iken and Bindschadler, 1986; Willis, 1995), but had not been extensively 233 

considered on large Arctic ice masses until relatively recently. On temperate 234 

glaciers, surface meltwater is thought to access large portions of the glacier bed 235 

during the melt season, resulting in elevated basal water pressures, reduced 236 

basal drag and enhanced ice motion (e.g. Fountain and Walder, 1998; Nienow 237 

et al., 1998; Willis, 1995; Iken and Bindschadler, 1986; Kamb, 1987). As the 238 

melt season progresses, continued meltwater input promotes the development 239 
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of a more efficient subglacial drainage system, which lowers basal water 240 

pressures and reduces the sensitivity of glacier velocities to additional melt 241 

(Figure 5) (e.g. Nienow et al., 1998; Willis, 1995). Recent studies have 242 

demonstrated a similar relationship on polythermal glaciers in the Canadian 243 

Arctic (e.g. Copland et al., 2003; Bingham et al., 2008; Bingham et al., 2003; 244 

Boon and Sharp, 2003) and in Svalbard (Rippin et al., 2005; Vieli et al., 2004; 245 

Nuttall and Hodgkins, 2005). In particular, extensive investigations on John 246 

Evans Glacier (JEG), Ellesmere Island, Canada, showed that surface meltwater 247 

could rapidly access the bed through predominantly cold ice and cause 248 

substantial seasonal acceleration (Copland et al., 2003; Bingham et al., 2008; 249 

Bingham et al., 2003; Bingham et al., 2005). 250 

2 Surface meltwater and ice velocities in the GIS ablation zone 251 

Until a decade ago, it was largely assumed that penetration of surface 252 

meltwater to the bed of large Arctic ice masses would be minimal and that its 253 

effect on ice velocities would be limited, especially on the GIS (Hodgkins, 1997; 254 

Copland et al., 2003; Zwally et al., 2002). This viewpoint was radically altered 255 

by GPS measurements from Swiss Camp in the west Greenland ablation zone, 256 

which first demonstrated a close correspondence between surface meltwater 257 

inputs and ice velocities (Zwally et al., 2002). Here we define the ablation zone 258 

as areas that experience melt, with the exception of fast-flowing, marine 259 
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terminating outlet glaciers, which are discussed separately (Section II 3), due to 260 

their differing response to meltwater inputs. Results from Swiss Camp showed 261 

that velocities closely followed seasonal and interannual variations in surface 262 

melwater production, as previously observed on temperate glaciers, and this 263 

was attributed to meltwater-enhanced basal sliding (Zwally et al., 2002). Most 264 

importantly, the study highlighted meltwater-enhanced basal lubrication as a 265 

potential mechanism for rapid, dynamic and widespread response of the GIS to 266 

atmospheric warming (Zwally et al., 2002). 267 

The work of Zwally et al. (2002) was supported by subsequent results from the 268 

west Greenland ablation zone, which provided further evidence of rapid 269 

coupling between seasonal meltwater inputs and ice velocities (e.g. Catania 270 

and Neumann, 2010; Bartholomew et al., 2010; Bartholomew et al., 2011; Das 271 

et al., 2008; Joughin et al., 2008a; van de Wal et al., 2008). Studies also 272 

identified supraglacial lake drainage events as a potential mechanism for rapid 273 

transfer of meltwater to the bed (e.g. Krawczynski et al., 2009; Das et al., 2008). 274 

Large volumes of water released during drainage events may promote crevasse 275 

propagation through the full ice thickness by offsetting rapid refreezing and 276 

maintaining high water pressures at the crevasse tip (Krawczynski et al., 2009; 277 

van der Veen, 2007; Alley et al., 2005; van der Veen, 1998). Drainage events 278 

have immediately preceded velocity increases in the west Greenland ablation 279 
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zone (Das et al., 2008; Box and Ski, 2007; McMillan et al., 2007), on land-280 

terminating west Greenland outlet glaciers (Sneed and Hamilton, 2007; 281 

Shepherd et al., 2009) and on JEG (Copland et al., 2003; Bingham et al., 2003; 282 

Boon and Sharp, 2003), providing empirical support for their role in meltwater 283 

delivery to the bed. 284 

The potential impact of surface meltwater inputs on the GIS was also explored 285 

using numerical modelling, which predicted far greater losses with enhanced 286 

basal sliding (Parizek and Alley, 2004; Huybrechts and de Wolde, 1999; van de 287 

Wal and Oerlemans, 1997). This occurred via a number of proposed feedback 288 

mechanisms, which are illustrated for an idealised section of the GIS (Figure 6). 289 

Specifically, feedbacks could develop between glacier acceleration, dynamic 290 

thinning and surface melting: increased basal sliding would promote dynamic 291 

thinning and bring a greater portion of the ice sheet into the ablation zone, thus 292 

exposing a greater area to melting and enhanced lubrication (Figure 6) (Parizek 293 

and Alley, 2004).  294 

3 Surface meltwater and marine-terminating Arctic outlet glacier dynamics  295 

The close coupling between surface meltwater and ice velocities observed in 296 

the GIS ablation zone led to increased consideration of the influence of 297 

meltwater on marine-terminating outlet glacier dynamics (e.g. Hall et al., 2008; 298 

Krabill et al., 2004). This was further motivated by the concurrence of the onset 299 
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of marine-terminating Arctic glacier retreat from the mid-1990s with atmospheric 300 

warming (e.g. Howat and Eddy, 2011; Dyurgerov and McCabe, 2006; Bevan et 301 

al., 2012a) and the coincidence of substantial changes in glacier dynamics with 302 

elevated air temperatures (e.g. Howat et al., 2008a; Moon and Joughin, 2008; 303 

Rignot and Kanagaratnam, 2006).  304 

Recent results from marine-terminating Arctic outlet glaciers appear to support 305 

meltwater-enhanced basal lubrication as a mechanism for ice acceleration at 306 

sub-annual timescales: glacier velocities in the Uummannaq region of west 307 

Greenland (Howat et al., 2010) and on Duvebreen, Austfonna (Dunse et al., 308 

2012) (Figure 1), closely corresponded to the seasonal melt cycle. Similarly, 309 

results from Petermann Glacier (Figures 1 & 2) (Nick et al., 2012) and 310 

Daugaard Jensen Gletscher  (Figure 1) (Bevan et al., 2012b) suggest that 311 

seasonal velocities primarily reflect variations in surface meltwater availability 312 

and data from Helheim Glacier (HH) (Figure 1) indicate that surface meltwater 313 

can be transmitted to the bed within 12 to 36 hours (Andersen et al., 2010a). 314 

Despite an apparent relationship at seasonal or shorter timescales, however, 315 

the influence of meltwater-enhanced basal lubrication on interannual marine-316 

terminating outlet glacier behaviour remains equivocal (e.g. Bingham et al., 317 

2003; Vieli et al., 2004; van de Wal et al., 2008; Seale et al., 2011; McFadden et 318 

al., 2011). Evidence from the GIS suggests that meltwater input to the bed may 319 



 

17 

 

have a limited impact on interannual velocity changes on fast-flowing marine-320 

terminating outlet glaciers and that ice flow may be more responsive to 321 

conditions at the ice-ocean interface (Joughin et al., 2008a; Nick et al., 2009). A 322 

similar pattern has been observed on JEG (Bingham et al., 2003) and 323 

Hansbreen, Spitzbergen (Figure 1) (Vieli et al., 2004), where periods of high 324 

melt coincided with reduced seasonal acceleration or even deceleration. 325 

Furthermore, numerical modelling results from HH (Nick et al., 2009) suggest 326 

that changes in frontal position, as opposed to meltwater-enhanced basal 327 

lubrication, are the dominant control on interannual behaviour. Thus, evidence 328 

suggests that meltwater-enhanced basal lubrication may significantly influence 329 

marine-terminating outlet glacier dynamics at subannual timescales, but its role 330 

in driving interannual retreat remains uncertain. 331 

To date, research into the influence of meltwater on marine-terminating outlet 332 

glacier dynamics has predominantly focused on enhanced basal lubrication. 333 

However, meltwater may also influence dynamics by promoting crevasse 334 

propagation at the terminus and/or lateral margins (Figure 3), which together 335 

could reduce resistive stresses and promote glacier retreat (Sohn et al., 1998; 336 

van der Veen, 1998; Vieli et al., 2007; Andersen et al., 2010b; van der Veen et 337 

al., 2011). This partly agrees with model results from JI, which suggest that 338 

increased crevasse water levels can partially reproduce observed patterns of 339 
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retreat and acceleration, but this may also reflect the choice of calving model 340 

(Vieli and Nick, 2011). Numerical modeling studies also suggest that 341 

acceleration at Jakobshavn Isbrae (JI), west Greenland, may have resulted 342 

from weakening at its lateral margins, potentially due to hydrofracturing and/or 343 

meltwater induced warming of the ice (van der Veen et al., 2011). Thus, whilst 344 

the role of meltwater-enhanced fracture as a primary trigger of retreat remains 345 

equivocal, this mechanism warrants further consideration given the sensitivity of 346 

marine-terminating glaciers to changes at the terminus (Nick et al., 2009; Vieli 347 

and Nick, 2011). 348 

4 Subglacial drainage systems of large Arctic ice masses 349 

Research into the subglacial hydrology of Arctic ice masses has predominantly 350 

focused on land-terminating sections, but recent advances, particularly from the 351 

GIS, may provide insight into the comparative insensitivity of marine-terminating 352 

outlet glaciers to meltwater-enhanced basal lubrication at interannual 353 

timescales. Although the subglacial hydrology of marine-terminating outlet 354 

glaciers is comparatively poorly understood and the response of individual 355 

glaciers may vary significantly, observations suggest that the seasonal evolution 356 

of the subglacial drainage system is very similar to that observed on temperate, 357 

polythermal and land-terminating outlet glaciers and sections of the GIS 358 

ablation zone: the subglacial drainage system is thought to evolve during the 359 
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melt season, causing variation in the sensitivity of ice velocities to meltwater 360 

inputs (Figure 5) (e.g. Bartholomew et al., 2010; Howat et al., 2010; Shepherd 361 

et al., 2009; Copland et al., 2003; Vieli et al., 2004; Bartholomew et al., 2011; 362 

Sole et al., 2011; Dunse et al., 2012). Early in the melt season, the drainage 363 

system may be relatively inefficient (Figure 5) (Kamb, 1987; Bingham et al., 364 

2003; Bartholomew et al., 2010; Price et al., 2008). Consequently, meltwater 365 

can rapidly increase basal water pressures, causing rapid ice acceleration and 366 

surface uplift (Bartholomew et al., 2010; Copland et al., 2003; Bingham et al., 367 

2005). As the melt season progresses, continued inflow of surface meltwater 368 

may promote the development of a more efficient, chanellized drainage system 369 

which operates at lower basal water pressures (Figure 5) (Kamb, 1987; 370 

Bingham et al., 2003; Bingham et al., 2006; Shepherd et al., 2009; Palmer et 371 

al., 2011; Sole et al., 2011). Thus, the sensitivity of ice velocities to surface melt 372 

may decline and only large meltwater inputs may induce substantial velocity 373 

change (Figure 5) (Bartholomew et al., 2010; Shepherd et al., 2009; Schoof, 374 

2010; Dunse et al., 2012). The primary implication of these results is that ice 375 

velocities depend not only on surface meltwater inputs, but also on the 376 

subglacial hydrological system. 377 

The evolution of the subglacial drainage system has important implications for 378 

the response of marine-terminating outlet glaciers to interannual variations in 379 
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meltwater availability and atmospheric warming (Sundal et al., 2011; Price et al., 380 

2008; Schoof, 2010; van de Wal et al., 2008). As observed at seasonal 381 

timescales, continually high meltwater inputs are likely to promote the formation 382 

of an efficient basal drainage system, operating at low water pressures (Figure 383 

5). Consequently, increased meltwater input at interannual timescales may not 384 

necessarily equate to increased ice velocities, and may even cause 385 

deceleration above critical thresholds of water supply (Schoof, 2010; Sundal et 386 

al., 2011; Vieli et al., 2004). This is consistent with empirical results from 387 

Kangiata Nunata Sermia, south-western Greenland, where meltwater-induced 388 

summer speed-up events are thought to contribute little to annual ice velocities, 389 

partly because they are offset by the deceleration associated with the formation 390 

of an efficient subglacial system (Sole et al., 2011). The key conclusion of these 391 

findings is that the evolution of the hydrological system may act as a buffer 392 

against accelerated ice loss through meltwater-enhanced basal sliding in 393 

response to increased melt and atmospheric warming (Price et al., 2008; 394 

Schoof, 2010; Vieli et al., 2004).  395 

 396 

IV Oceanic forcing 397 

Whilst atmospheric warming has received substantial scientific attention, 398 

oceanic forcing has been recently recognised as a key control on marine-399 
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terminating outlet glacier dynamics. This was partly instigated by results from 400 

the GIS (e.g. Moon and Joughin, 2008; Sole et al., 2008; Pritchard et al., 2009), 401 

where retreat rates were approximately two orders of magnitude greater on 402 

marine-terminating glaciers (10s to 1000s of m a-1) than on their land-403 

terminating counterparts (0.1 to 1 m a-1) (Figure 7). A similar pattern has been 404 

observed elsewhere in the Arctic, including Austfonna ice cap (Dowdeswell et 405 

al., 2008), Devon Ice Cap (Burgess and Sharp, 2008; Burgess and Sharp, 406 

2004; Dowdeswell et al., 2004; Shepherd et al., 2007) and in Arctic Alaska 407 

(Arendt et al., 2006). Furthermore, thinning rates have been greatest on glaciers 408 

occupying deep bedrock troughs (Thomas et al., 2009), which may allow warm, 409 

sub-surface Atlantic Water (AW) from the continental shelf to access the glacier 410 

termini (e.g. Rignot et al., 2010; Straneo et al., 2010; Straneo et al., 2011). 411 

Oceanic forcing may be of particular concern in the near-future, as model 412 

predictions suggest that ocean temperatures around the GIS may warm by 1.7 413 

to 2°C by 2100 (Yin et al., 2012). 414 

1 Submarine melting at marine-terminating outlet glacier termini 415 

Measurements of submarine melt rates at the termini of marine-terminating 416 

glaciers are rare, but estimates suggest that rates range between 0.7± 0.2 and 417 

3.9 ± 0.8 m per day in central west Greenland (Rignot et al., 2010) and 4.34 ± 418 

0.94 m per day at JI (Motyka et al., 2011). Substantially higher melt rates of 6.9 419 
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to 12.4 m per day have been estimated at LeConte Glacier, Alaska (Figure 1) 420 

(Motyka et al., 2003), probably reflecting its comparatively southerly location. 421 

These results highlight the potential sensitivity of marine-terminating glaciers to 422 

oceanic warming, which could influence outlet glacier dynamics via a number of 423 

mechanisms (Figure 8). First, enhanced submarine melting may cause 424 

grounding-line retreat at floating and grounded margins, potentially resulting in 425 

further un-grounding and the development of positive feedbacks if retreat 426 

occurs into deeper water (Vieli et al., 2001; Meier and Post, 1987; Howat et al., 427 

2008a; Joughin et al., 2008b; Vieli and Nick, 2011; Nick et al., 2012). Second, 428 

oceanic warming may cause rapid thinning of floating termini (e.g. Motyka et al., 429 

2011; Thomas, 2004; Nick et al., 2012) and the formation of deeply incised 430 

basal channels (Rignot and Steffen, 2008), which together make the termini 431 

more vulnerable to full thickness fracture and eventual disintegration (Figure 8). 432 

Third, submarine melting may influence the terminus geometry and calving 433 

rates by undercutting at the grounding line and/or waterline (Figure 8) (Vieli et 434 

al., 2002; Benn et al., 2007). 435 

2 Oceanic controls on marine-terminating glacier dynamics 436 

Our understanding of oceanic forcing has been largely developed from 437 

observations from the GIS, where warming has immediately preceded the 438 

retreat and acceleration of a number of marine-terminating outlet glaciers (e.g. 439 
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Hanna et al., 2009; Holland et al., 2008; Murray et al., 2010; Motyka et al., 440 

2011; Bevan et al., 2012a; Rignot et al., 2012). This was first investigated in 441 

detail at JI, which was one of the earliest and most significant contributors to 442 

recent GIS mass losses (Thomas et al., 2003; Motyka et al., 2011; Rignot and 443 

Kanagaratnam, 2006; Joughin et al., 2004; Joughin et al., 2008c; Motyka et al., 444 

2010). Following 50 years of comparative stability (Sohn et al., 1998; Csatho et 445 

al., 2008), JI’s floating terminus began to retreat in October 1998 (Luckman and 446 

Murray, 2005) and subsequent periods of acceleration often coincided with the 447 

loss of sections of its tongue (Joughin et al., 2004; Joughin et al., 2008c). Initial 448 

retreat was accompanied by rapid thinning, which may have ungrounded the 449 

tongue from its underlying pinning points, and caused a substantial reduction in 450 

resistive stresses (Joughin et al., 2004; Thomas, 2004; Thomas et al., 2003). 451 

This may have initiated feedbacks between retreat, dynamic thinning and 452 

acceleration, which led to the disintegration of the ice tongue by spring 2003 453 

(Thomas, 2004; Joughin et al., 2004; Joughin et al., 2008c). 454 

The underlying driver(s) of mass losses at JI remain subject to debate, but 455 

evidence suggests that oceanic warming, rather than increased air 456 

temperatures, was the primary cause (Motyka et al., 2010; Motyka et al., 2011; 457 

Holland et al., 2008; Thomas, 2004). Thinning rates on JI's floating tongue far 458 

exceeded estimated surface melt rates and closely followed substantial sub-459 
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surface ocean warming, which is thought to have increased basal melt rates by 460 

25% (Motyka et al., 2011; Holland et al., 2008; Thomas et al., 2003). Estimates 461 

suggest that the resultant thinning was sufficient to destabilise the ice tongue 462 

and to initiate rapid mass loss (Motyka et al., 2011). Numerical modelling results 463 

agree with these findings and suggest that increased submarine melting is 464 

capable of triggering the behaviour observed at JI, but that dynamic feedbacks 465 

are also required (Vieli and Nick, 2011). 466 

Subsequent to retreat at JI, marine-terminating outlet glaciers in south-eastern 467 

Greenland followed a similar progression of dynamic change (e.g. Howat et al., 468 

2008a; Howat et al., 2007; Joughin et al., 2008b; Luckman et al., 2006). Losses 469 

began with retreat, thinning and acceleration proportional to retreat, which 470 

suggests that changes also resulted from a loss of resistive stresses at the 471 

terminus (Howat et al., 2008a; Howat et al., 2007; Howat et al., 2005). The 472 

trigger for these changes remains equivocal, with both air temperatures (Hanna 473 

et al., 2008; Box et al., 2009) and ocean temperatures (Seale et al., 2011; 474 

Hanna et al., 2009; Murray et al., 2010) increasing substantially prior to retreat. 475 

However, the initiation of glacier response at the terminus (Howat et al., 2008a; 476 

Howat et al., 2005; Howat et al., 2007) suggests that meltwater-enhanced basal 477 

lubrication was unlikely to be the primary trigger and that forcing factors 478 

operating at the calving front, such as oceanic warming, were the more likely 479 
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cause. This is consistent with numerical modelling results from HH, which 480 

suggested that interannual glacier dynamics are comparatively insensitive to 481 

enhanced basal lubrication, but are acutely sensitive to calving front 482 

perturbations (Nick et al., 2009). 483 

3 Marine-terminating outlet glacier dynamics and Atlantic Water distribution  484 

An important emerging theme has been the relationship between marine-485 

terminating outlet glacier dynamics and variations in the distribution and 486 

properties of warm Atlantic Water (AW) (Murray et al., 2010; Straneo et al., 487 

2011; Straneo et al., 2010; Holland et al., 2008; Andersen et al., 2012). Until 488 

recently, it was assumed that oceanic changes at the continental shelf could be 489 

transmitted into outlet glacier fjords, but this was largely untested (Straneo et 490 

al., 2010; Mortensen et al., 2011). However, recent studies have shown that AW 491 

can access the fjords of a number of large outlet glaciers in Greenland (Straneo 492 

et al., 2010; Straneo et al., 2011; Holland et al., 2008; Mayer et al., 2000; 493 

Johnson et al., 2011; Christoffersen et al., 2011) and Svalbard (Nilsen et al., 494 

2008). These results marked a significant advance in our understanding, as 495 

they demonstrated that rapid connections could exist between marine-496 

terminating outlet glaciers and oceanic variability in the northern North Atlantic, 497 

particularly via deep fjords (Straneo et al., 2010). This conclusion was 498 

supported by the coincidence of glacier retreat in south-eastern Greenland in 499 
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the early 2000s with AW incursion onto the coast (Christoffersen et al., 2011; 500 

Murray et al., 2010; Seale et al., 2011) and provides a plausible mechanism for 501 

widespread and synchronous retreat. 502 

4 Marine-terminating outlet glacier dynamics and fjord circulation  503 

Recent research into the role of AW has led to increased consideration of the 504 

factors controlling its distribution within glacial fjords. A number of possible 505 

controls have been identified (Figure 9), including: the temperature, salinity and 506 

volume of subtropical waters at the continental shelf; along-shore wind patterns; 507 

storm tracks; and fjord stratification (Straneo et al., 2011; Straneo et al., 2010; 508 

Nilsen et al., 2008; Christoffersen et al., 2011). Fjord circulation can also be 509 

influenced by subglacial meltwater, which forms a rising plume of cool, buoyant 510 

water at the calving front and promotes a compensatory inflow of warmer water 511 

at depth (Figure 9) (Straneo et al., 2011; Motyka et al., 2011; Motyka et al., 512 

2003). Thus, plumes may substantially increase submarine melt rates (Motyka 513 

et al., 2003; Jenkins, 2011; Seale et al., 2011) and model results suggest that 514 

melt increases linearly with oceanic warming and to the power of one-third with 515 

subglacial discharge (Xu et al., 2012; Jenkins, 2011). A key implication of this 516 

relationship is that positive feedbacks could develop, whereby atmospheric 517 

warming increases subglacial discharge and ice sheet runoff, which strengthens 518 

the plume and enhances submarine melt rates (Seale et al., 2011). Feedbacks 519 
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between glacier runoff and ocean properties have been identified as a potential 520 

trigger for recent retreat in south-eastern Greenland (Seale et al., 2011; Murray 521 

et al., 2010) and variations in meltwater production may be an important control 522 

on AW distribution in the region (Murray et al., 2010).  523 

 524 

V Sea ice forcing 525 

The increasing focus on oceanic forcing has led to further consideration of the 526 

influence of sea ice on marine-terminating Arctic outlet glacier behaviour (Figure 527 

3). Although sea ice is discussed separately, it should be noted that it is 528 

influenced by both air and ocean temperatures (Figure 3) and that these factors 529 

are not independent. It should also be noted that sea ice concentrations may 530 

significantly affect SMB, through their influence on accumulation and ablation 531 

patterns (Figure 3) (e.g. Rennermalm et al., 2009; Bamber et al., 2004). The 532 

influence of sea ice on marine-terminating Arctic outlet glacier dynamics was 533 

first documented in northern Greenland, where semi-permanent fast ice 534 

contributed significantly to the stability of several marine-terminating outlet 535 

glaciers (Reeh et al., 2001; Mayer et al., 2000; Higgins, 1989; Higgins, 1990; 536 

Weidick, 1975). Fast-ice was thought to promote glacier stability by suppressing 537 

calving and by preventing calved material from moving away from the terminus 538 

(Reeh et al., 2001; Higgins, 1990). In contrast, periods of fast-ice disintegration 539 
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were accompanied by rapid calving and release of trapped ice. Early 540 

investigations suggested that fast-ice break-up occurred at decadal intervals, 541 

when summer temperatures were exceptionally warm (Reeh et al., 2001; 542 

Higgins, 1989; Higgins, 1990), but this pattern has changed substantially in 543 

recent years, with disintegration now occurring several times per decade 544 

(Hughes et al., 2011). 545 

1 Sea ice influence on the seasonal calving cycle 546 

Recent studies have investigated the influence of sea ice on calving rates at 547 

more southerly Greenland glaciers (Howat et al., 2010; Ahn and Box, 2010), 548 

particularly on JI (Sohn et al., 1998; Joughin et al., 2008c; Amundson et al., 549 

2010). As in northern Greenland, sea ice concentrations at JI appear to 550 

influence the timing and nature of calving events, but this occurs on seasonal, 551 

as opposed to decadal, timescales (Amundson et al., 2010; Joughin et al., 552 

2008c). In winter, sea ice binds together icebergs to form a semi-rigid, seasonal 553 

ice shelf, or mélange, which is pushed along the fjord as a coherent mass by 554 

the advancing calving front (Figure 10) (Amundson et al., 2010). The mélange 555 

suppresses calving rates by up to a factor of six and alters the terminus 556 

geometry and near-front stress fields, causing seasonal terminus advance and 557 

deceleration (Joughin et al., 2008c; Sohn et al., 1998; Amundson et al., 2010). 558 

Conversely, spring-time mélange disintegration allows high rates of summer 559 
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calving to commence, which initiates seasonal retreat and acceleration (Figure 560 

10) (Ahn and Box, 2010; Amundson et al., 2010; Howat et al., 2010; Joughin et 561 

al., 2008c). A similar relationship has been documented on the Agassiz Ice 562 

Cap, Ellesmere Island, Arctic Canada, where peak glacier velocities have 563 

coincided with seasonal sea ice disintegration (Williamson et al., 2008). 564 

However, observations also indicated that sea ice weakening and/or thinning, 565 

as opposed to complete disintegration, may be sufficient to initiate seasonal 566 

acceleration (Williamson et al., 2008). 567 

2 Sea ice influence on interannual marine-terminating outlet glacier behaviour 568 

Observations from JI have contributed substantially to our understanding of sea 569 

ice forcing at seasonal timescales, but have also highlighted its potential 570 

influence on interannual behaviour of marine-terminating outlet glaciers 571 

(Joughin et al., 2008c). Initial retreat at JI began within one year of the onset of 572 

sea ice decline in the surrounding Disko Bay (Joughin et al., 2008c). Estimates 573 

suggest that the extension of ice free conditions by one or two months may 574 

have been sufficient to trigger the initial retreat by extending the duration of 575 

seasonally high calving rates (Joughin et al., 2008c). This is consistent with 576 

numerical modelling results which demonstrated that reduced mélange duration 577 

could trigger rapid retreat at JI, although it could not replicate the magnitude of 578 

subsequent seasonal variations in terminus position (Vieli and Nick, 2011). A 579 
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similar response has been observed in the Uummannaq region (Howat et al., 580 

2010) and at KG (Christoffersen et al., 2011; Seale et al., 2011), where 581 

interannual retreats also followed sea ice decline. It is thought that delayed 582 

winter sea ice formation at KG (Christoffersen et al., 2011; Seale et al., 2011) 583 

and early mélange clearance in the Uummannaq region (Howat et al., 2010) 584 

may have initiated glacier retreat by extending the calving season. 585 

Although the influence of sea ice on marine-terminating outlet glacier behaviour 586 

has been little-studied outside of the GIS, Arctic sea ice has declined markedly 587 

in recent years (e.g. Rodrigues, 2009; Serreze et al., 2009; Kwok and Rothcock, 588 

2009) and its influence may become increasingly widespread if current losses 589 

continue. On the basis of the relationships observed in Greenland, we suggest 590 

that sea ice decline may affect glacier dynamics via two potential mechanisms: 591 

i), seasonal calving may be extended in areas which currently experience 592 

seasonally ice-free conditions; and ii), areas currently characterised by 593 

interannual fast-ice may transition to a seasonal sea-ice loss. We suggest that 594 

the former process may become increasingly significant on the eastern and 595 

central-western Greenland coast, on the western coasts of NZ and Svalbard 596 

and in the southern Canadian Arctic, where the ice-free season has extended 597 

markedly during the past thirty years (Rodrigues, 2008) and losses are 598 

predicted to continue during the 21st century (Figure 11) (ACIA, 2004; IPCC, 599 
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2007). This mechanism may eventually cease, however, if areas become 600 

perennially ice-free. The latter process may become increasingly important on 601 

the coasts of north-eastern Greenland, north-eastern Svalbard, eastern NZ, 602 

southern FJL and the northern Canadian Arctic, where sea ice concentrations 603 

are predicted to decline markedly by 2100 (Figure 11) (IPCC, 2007; ACIA, 604 

2004). Observations suggest that this may already be occurring in north-eastern 605 

Greenland, where fast-ice break up has occured several times in the past 606 

decade (Hughes et al., 2011), in comparison to the decadal intervals recorded 607 

by earlier work (Higgins, 1989; Higgins, 1990; Reeh et al., 2001). 608 

 609 

VI Key uncertainties and future directions for research  610 

Despite recent advances, the response of marine-terminating outlet glaciers to 611 

climatic/oceanic forcing continues to be an area of rapidly developing research 612 

and significant uncertainties remain over the relative importance of each forcing 613 

factor and the mechanisms by which these factors influence glacier dynamics 614 

(Vieli and Nick, 2011; Sole et al., 2008; Howat et al., 2010). The following 615 

subsections outline the primary uncertainties surrounding marine-terminating 616 

Arctic outlet glacier behaviour and highlight key areas for future research. 617 

1 Spatial variation in the relative importance of climatic/oceanic forcing factors  618 
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Our understanding of marine-terminating Arctic outlet glacier response to 619 

climatic/oceanic forcing has been primarily based on observations from a small 620 

number of Greenland outlet glaciers, with the majority of research focusing on JI 621 

and south-eastern Greenland, particularly HH and KG. Consequently, it is 622 

uncertain whether the relationships observed at these locations can be 623 

extrapolated to other Arctic regions and/or whether recent changes represent a 624 

longer-term trend or shorter-term variability (Price et al., 2011; Vieli and Nick, 625 

2011). Although glaciers within certain regions have shown some common 626 

response to climatic/oceanic forcing, most notably south-eastern Greenland 627 

(Howat et al., 2008a; Murray et al., 2010; Bjørk et al., 2012), this pattern is far 628 

from ubiquitous. Results from west Greenland found no correlation between 629 

retreat and climatic/oceanic forcing for a sample of 59 marine-terminating outlet 630 

glaciers (McFadden et al., 2011) and comparison of 15 major Greenland outlet 631 

glaciers between 1985 and 2011 showed some common response to forcing, 632 

but also highlighted several notable differences (Bevan et al., 2012a). 633 

Furthermore, assessment of decadal and interannual velocity changes on >200 634 

major Greenland outlet glaciers demonstrated substantial variations in glacier 635 

behaviour at both regional and local scales and highlighted the importance of 636 

glacier-specific factors (Moon et al., 2012). In contrast to the GIS, observations 637 

in the Canadian Arctic (Gardner et al., 2011) and Novaya Zemlya (Moholdt et al., 638 
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2012) have found no difference between area-averaged thinning rates in land- 639 

and marine-terminating basins (Gardner et al., 2011). Moreover, the longer-term 640 

evolution of HH, KG and JI has differed markedly following their earlier mass 641 

losses (Howat et al., 2011; Thomas et al., 2011) and numerical modelling 642 

studies indicate that marine-terminating outlet glaciers can rapidly adjust to 643 

short-term calving front perturbations (Vieli and Nick, 2011). Together, this 644 

evidence suggests that the relative importance of climatic/oceanic controls 645 

varies across the Arctic and that present theories of outlet glacier response to 646 

forcing cannot be universally applied to all glaciers, regions or ice masses. We 647 

therefore draw attention to the danger of extrapolating recent rapid mass losses 648 

from a small number of glaciers and highlight the need for continued research 649 

into the climatic/oceanic drivers of marine-terminating outlet glacier behaviour 650 

on each of the major Arctic ice masses. 651 

2 Glacier-specific factors 652 

Results from the GIS have highlighted the substantial variation in marine-653 

terminating outlet glacier response to climatic/oceanic forcing, (McFadden et al., 654 

2011; Moon et al., 2012) and the role of glacier-specific controls, particularly 655 

fjord geometry and basal topography, is being increasingly recognised (Howat 656 

and Eddy, 2011; Thomas et al., 2009; Joughin et al., 2010; Nick et al., 2009; 657 

Joughin et al., 2012; Bevan et al., 2012a). Traditional theories of tidewater 658 
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glacier dynamics and ice sheet instability suggest that a reverse basal slope 659 

may initiate rapid retreat via a series of positive feedbacks, as the glacier 660 

terminus retreats into progressively deeper water (Figure 12) (e.g. Meier and 661 

Post, 1987; Vieli et al., 2001; Vieli et al., 2002; Joughin et al., 2008b; Hughes, 662 

1986; Weertman, 1974). This behaviour may occur independently of 663 

climatic/oceanic forcing (e.g. Alley, 1991; Pfeffer, 2003), but may also be 664 

initiated by perturbations at the calving front (e.g. Meier and Post, 1987; 665 

Joughin et al., 2008b; Howat et al., 2008a; Pfeffer, 2007; Nick et al., 2009). 666 

However, the influence of overdeepenings on glacier dynamics remains subject 667 

to debate and recent modelling results suggest that stable grounding-line 668 

positions can be achieved on a reverse bedrock slope (Nick et al., 2010; 669 

Gudmundsson et al., 2012). Furthermore, the importance of other glacier-670 

specific factors, such as variations in fjord width, is being increasingly 671 

acknowledged (Jamieson et al., in press). Assessing the role of glacier-specific 672 

controls is a key area for future study, as inadequate consideration of these 673 

factors may lead to substantial errors in estimates of glacier response to 674 

climatic/oceanic forcing and their contribution to sea level rise. A full analysis is, 675 

however, currently constrained by limited data availability. 676 

3 Quantitative assessment of marine-terminating outlet glacier response to 677 

climatic/oceanic forcing 678 
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Even on comparatively well-studied sections of the GIS, previous studies have 679 

tended to infer causality from the coincidence of climatic/oceanic change and 680 

marine-terminating outlet glacier response (e.g. Moon and Joughin, 2008; 681 

Luckman et al., 2006). As a consequence, the mechanisms linking 682 

climatic/oceanic forcing and glacier dynamics are often poorly understood (Vieli 683 

and Nick, 2011; Nick et al., 2009) and the extent to which forcing can explain 684 

glacier behaviour has not been extensively assessed. This has been improved 685 

in recent years through the development of numerical models focusing on the 686 

response of individual outlet glaciers to forcing (Nick et al., 2009; Vieli and Nick, 687 

2011). However, marine-terminating outlet glacier dynamics are not yet 688 

adequately represented in ice sheet-scale models (Zwally et al., 2011; Vieli and 689 

Nick, 2011; Price et al., 2011) and this is recognised as a significant limitation in 690 

our capacity to accurately predict near-future sea level rise (IPCC, 2007). We 691 

therefore highlight numerical modelling as an important area for future 692 

development and emphasise the need to combine results with remotely sensed 693 

and observational data, in order to improve our understanding of recent 694 

changes in Arctic marine-terminating outlet glacier dynamics. 695 

 696 

VII Conclusions 697 
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Arctic ice masses have rapidly lost mass since the mid-1990s due to a 698 

combination of negative SMB and accelerated discharge from marine-699 

terminating glaciers (van den Broeke et al., 2009). Studies conducted during the 700 

past twenty years have fundamentally altered our understanding of ice mass 701 

response to climatic/oceanic forcing and have demonstrated that changes in 702 

marine-terminating glacier dynamics can result in dramatic mass losses at 703 

annual timescales (e.g. Howat et al., 2008b; Rignot and Kanagaratnam, 2006; 704 

Stearns and Hamilton, 2007). In this paper, we identify and review three primary 705 

climatic/oceanic drivers of marine-terminating Arctic outlet glacier behaviour: air 706 

temperatures, ocean temperatures and sea ice. Although discussed separately, 707 

these factors are interconnected and we highlight a number of potentially 708 

important linkages which may significantly influence glacier dynamics. We 709 

suggest that meltwater-enhanced basal sliding may contribute to marine-710 

terminating outlet glacier velocities at seasonal timescales (Nick et al., 2012; 711 

Howat et al., 2010), but its net effect on interannual behaviour may be limited, 712 

potentially due to the capacity of the subglacial hydrological system to evolve in 713 

response to meltwater inputs (Sundal et al., 2011; Price et al., 2008). Instead, 714 

marine-terminating outlet glaciers may respond to atmospheric warming via a 715 

number of alternative mechanisms, including: i), hydrofracture of crevasses at 716 

the terminus/lateral margins; ii), meltwater-enhanced submarine melting, via 717 
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plume circulation and; iii), sea ice loss due to atmospheric warming. Marine-718 

terminating outlet glaciers are potentially highly sensitive to oceanic warming 719 

(Rignot et al., 2010), which may cause retreat through: i),submarine melting and 720 

rapid thinning across floating sections; ii), grounding-line retreat; iii), alteration of 721 

the calving front geometry at the grounding line and/or waterline and; iv), sea 722 

ice loss due to oceanic warming. We emphasise the need to further investigate 723 

controls on Atlantic Water distribution within glacier fjords and feedbacks 724 

between fjord circulation, subglacial meltwater and submarine melting. We also 725 

underscore the influence of sea ice on seasonal and interannual outlet glacier 726 

dynamics, via its influence on calving rates (Joughin et al., 2008c; Amundson et 727 

al., 2010), and suggest that sea ice forcing may become increasingly important 728 

during the 21st century if current negative trends continue.  729 

We suggest that the respective role of each climatic/oceanic factor varies 730 

across the Arctic and that outlet glacier response to forcing within one region 731 

cannot be assumed to apply elsewhere. Moreover, glacier-specific factors may 732 

substantially modulate the response of individual glaciers to climatic/oceanic 733 

forcing and we highlight this as priority area for future research. Numerical 734 

modelling results have improved our understanding of marine-terminating outlet 735 

glacier behaviour, but remain a key area for future development. 736 

Notwithstanding recent advances, substantial uncertainties remain over the 737 
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respective roles of the various climatic/oceanic and glacier-specific forcing 738 

factors and we highlight the potential danger of extrapolating mass loss rates 739 

from a small number of study glaciers. Consequently, the response of marine-740 

terminating Arctic outlet glaciers to climatic/oceanic forcing remains a key area 741 

for future research and is crucial for accurate prediction of near-future sea level 742 

rise and Arctic ice mass response to climate warming. 743 
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Region Sub-region Rate of mass 

loss (km3 a-1) 

Measurement period Measurement method Source 

 

Greenland Greenland Ice 

Sheet 

224.76 ± 19* 1992-2009 SMB /D Rignot et al., 2011 

Greenland Greenland Ice 

Sheet 

203.57± 8.25*# 2003-2010 GRACE Jacob et al., 2012 

Canadian Arctic 

 

Ellesmere, Devon, 

Axel Heiberg and 

Baffin islands 

56.24 ± 6.42* 2004-2009 SMB/D, ICESat laser altimetry and GRACE Gardner et al., 2011 

Canadian Arctic 

 

Ellesmere, Devon, 

Axel Heiberg 

islands 

34.23 ± 4.56* 2004-2009 SMB/D, ICESat laser altimetry and GRACE Gardner et al., 2011 

Canadian Arctic 

 

Baffin Island 22.0 ± 4.28* 2004-2009 SMB/D, ICESat laser altimetry and GRACE Gardner et al., 2011 

Russian Arctic Novaya Zemlya 3.67 ± 2 2003 - 2010 GRACE Jacob et al., 2012 

Russian Arctic Severnaya Zemlya  0.92 ± 2 2003 - 2010 GRACE Jacob et al., 2012 

Russian Arctic Franz Josef Land 0 ± 2 2003 - 2010 GRACE Jacob et al., 2012 

Svalbard Spitzbergen 3.59 ± 1.17 2003-2008 ICESat laser altimetry and SPOT HRS 5 

stereoscopic images 

Moholdt et al., 2010b 

Svalbard Austfonna Ice Cap 1.3 ± 0.5  2002-2008 ICESat laser altimetry, airborne laser altimetry, 

GNSS surface profiles and RES 

Moholdt et al., 2010a 

Svalbard Barentsoya and 

Edgeoya 

0.46 ± 0.30 2003-2008 ICESat laser altimetry and topographic maps Moholdt et al., 2010b 

Svalbard Vestfonna Ice Cap 0.39 ± 0.20 2003-2008 ICESat laser altimetry and topographic maps  Moholdt et al., 2010b 

Svalbard Kvitoyjokeln ice 

cap 

0.32 ± 0.08 2003-2008 ICESat laser altimetry and topographic maps  Moholdt et al., 2010b 

Table 1. Recent mass losses from the major glaciated regions and sub-regions of the Arctic. Data are first ordered according to regional mass loss rates 1196 
and then according to mass loss rates from each sub-region. The most recent estimates of total mass loss were used for each region and the latest 1197 
values obtained from GRACE and SMB/D are presented for the GIS. Abbreviations are as follows: (SMB) Surface mass balance, (D) Discharge, (GRACE) 1198 



 

 

Gravity Recovery and Climate Experiment, (SPOT) Système Pour l'Observation de la Terre, (GNSS) Global Navigation Satellite System and (RES) Radio 1199 
Echo Sounding.* Mass loss rates converted from Gt a

-1
 to km

3
 a

-1
, assuming an ice density of 0.917 kg km

3
 (IPCC, 2007).

 #
This value includes peripheral 1200 

ice caps and glaciers (Jacob et al., 2012).1201 



 

 

 
Figure 1. Regional overview map showing the location of major ice masses, outlet glaciers and other sites discussed in the 
text. Major water masses are also labelled. Glacier abbreviations are as follows: Helheim Glacier (HH), Kangerdlugssuaq 
Glacier (KG), Daugaard Jensen Gletscher (DJ), Kangiata Nunata Sermia (KNS), Jakobshavn Isbrae (JI), Petermann Glacier (PG), 
Hansbreen (HB), Duvebreen (DB) and John Evans Glacier (JEG). Inset: Overview map of Alaska, showing the location of 
LeConte Glacier (LCG).



 

 

 

Figure 2. Visible satellite imagery of selected marine-terminating Arctic outlet glaciers and Arctic ice masses at 1:1,000,000 
scale. Images are ordered by glacier location, from west to east, and show A) Petermann Glacier, north-west Greenland; B) 
Kangerdlugssuaq Glacier, east Greenland; C) Vestfonna Ice Cap, Svalbard and; D) Northern ice cap, Novaya Zemlya. Outlet 
glacier and ice mass locations are shown in Figure 1. Major outlet glaciers are labelled according to terminus type (M = 
marine; L = land) and approximate near-terminus flow direction is marked (dashed lines). Imagery source: Global Land 
Cover Facility (www.landcover.org).



 

 

 
Figure 3. Illustration of the primary climatic/oceanic forcing factors (black CAPS) and glacier-specific controls (white CAPS) thought to influence marine-terminating Arctic outlet glacier 
behaviour and mass balance. The major processes (black italics) and potential feedback mechanisms (white italics) are included. The role of meltwater enhanced basal sliding is represented 
with a dashed line as its influence on multi-year glacier behaviour remains equivocal. Imagery source: Global Land Cover Facility (www.landcover.org). 



 

 

 
Figure 4. Linear trend in mean annual air temperatures between 1990 and 2010 for selected Arctic meteorological stations. 
Symbol colour shows the magnitude of the linear trend in ˚C per year between 1990 and 2010. Symbol size shows the R

2
 

value of the relationship: a larger symbol represents a larger R
2 

value and therefore a more statistically significant trend. 
Meteorological stations were selected according to data availability for the study period. Meteorological data sources: 
Danish Meteorological Institute, Weather and climate data from Greenland 1958-2010; Norwegian Metrological Institute, 
Eklima climate database; Royal Netherlands Meteorological Institute, Climate Explorer; Scientific Research Institute of 
Hydrometeorological Information, World Data Center - Baseline Climatological Data Sets; and National Climate Data and 
Information Archive, Canadian Daily Climate Data. 



 

 

 

Figure 5. Idesalised seasonal evolution of glacier response to meltwater inputs. The graph illustrates the theoretical 
response of outlet glacier velocities to meltwater inputs during the melt season. The bottom panels illustrate an idealised 
plan view of the subglacial hydrological system at different stages of the melt season (bottom panels modified from 
Fountain and Walder, 1998). Individual glacier response to meltwater forcing may vary significantly from this idealised 
situation.



 

 

 

Figure 6. Proposed feedback mechanisms between surface meltwater availability, basal sliding and ice sheet geometry for 
an idealised section of the GIS. Atmospheric warming may increase surface meltwater input to the bed, resulting in 
enhanced basal sliding and transfer of a greater portion of the outlet glacier to the ablation zone. Further feedbacks may 
then develop between dynamic thinning, inland migration of basal sliding and ice acceleration. The response of individual 
sections of the ice sheet may vary significantly from these idealised theoretical responses. 



 

 

 

Figure 7. Mean rate of Greenland outlet glacier frontal position change (m a
-1

) grouped according to terminus type. Data 
provided by T. Moon, 2011 (Moon and Joughin, 2008). The mean rate of retreat, advance and net frontal position change 
were calculated for land-terminating and tidewater glacier termini and are shown in the bars above. Values were 
calculated for three time periods (1992-2000, 2000-2006 and 2006-2007) and maximum rates of retreat / advance are 
given in brackets above the corresponding bar. Mean values are calculated from a sample of 139 (1992-2000), 169 (2000-
2006) and 154 (2006-2007) tidewater glaciers and 10 (1992-2000), 14 (2000-2006) and 13 (2006-2007) land-terminating 
glaciers. Glaciers terminating in ice shelves were excluded from the analysis, as data were only available from 3 glaciers for 
1992-2000 and 2000-2006 and no data were available for 2006-2007.  



 

 

 

Figure 8. Illustration of the influence of oceanic warming and submarine melting on outlet glacier dynamics and geometry 
for A) an initially floating terminus and B) an initially grounded terminus. In A), feedbacks may develop between submarine 
melting, grounding line retreat, thinning and calving front retreat. In B), changes in terminus geometry may initiate 
feedbacks between grounding line/terminus retreat, thinning and floatation. 

  



 

 

 

Figure 9. Schematic illustrating the circulation pattern and water properties within a large Arctic outlet glacier fjord. Fjord 
circulation and water mass depths are based on conditions within Helheim Glacier fjord (Straneo et al., 2011). The primary 
controls on fjord circulation are thought to be water properties at the continental shelf, winds/storm tracks and glacial 
meltwater input. 



 

 

 

Figure 10. Illustration of the influence of sea ice and mélange formation on Arctic outlet glacier dynamics during A) 
mélange formation at the end of the calving season and B) mélange disintegration at the start of the calving season. In A) 
the mélange binds together material within the fjord, thus suppressing calving and promoting seasonal advance. In B) 
mélange disintegration allows seasonally high calving rates to commence and promotes glacier retreat. 



 

 

 

Figure 11. Multi-model mean sea ice concentration (%) for January to March (JFM) and June to September (JAS) in the 
Arctic for the periods (a) 1980 to 2000 and b) 2080 to 2100 for the SRES A1B scenario. The dashed white line indicates the 
present-day 15 % average sea ice concentration limit. Modified from IPCC (2007) and Flato et al., 2004. Note the 
substantial reduction in summer sea ice concentrations predicted across the Arctic by 2100, which may extend seasonally 
ice free conditions in southerly areas and may result in a transition from multi-year fast ice to seasonal sea-ice 
disintegration in northern regions. 

  



 

 

 

Figure 12. Illustration of feedbacks between glacier retreat, dynamic thinning and ice acceleration during retreat into 
progressively deeper water. Initial retreat reduces resistive stresses acting on the outlet glacier, promoting dynamic 
thinning and terminus floatation, which in turn makes the terminus increasingly vulnerable to fracture and further retreat. 
Positive feedbacks may also develop between grounding line retreat and submarine melt rates. These feedbacks may occur 
independently of climatic/oceanic forcing, but may also be triggered by forcing. 

 


