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Abstract

Problems related to the existence of integral and rational points on
cubic curves date back at least to Diophantus. A significant step in the
modern theory of these equations was made by Siegel, who proved that a
nonsingular plane cubic equation has only finitely many integral solutions.
Examples show that simple equations can have inordinately large integral
solutions in comparison to the size of their coefficients. A conjecture of
Hall attempts to control this by bounding the size of integral solutions
simply in terms of the coefficients of the defining equation. It turns out
that a similar phenomenon seems, conjecturally, to be at work for solu-
tions which are close to being integral in another sense. We describe this
conjecture as an illustration of an underlying motif – repulsion – in the
theory of Diophantine equations.

1 Challenging Questions.

In 1657, Pierre de Fermat challenged the English mathematicians Sir Kenelm
Digby and John Wallis to find all the integer solutions to the equation

y2 + 2 = x3. (1)

We can make an educated guess about his motivation.
Diophantus [32, Book VI, Prob. 19] asked for a right triangle, the sum of

whose area y and hypotenuse h is a square, and whose perimeter is a cube.
Taking the legs to be 2 and y, and h+ y to be 25, he noted that the square 25,
when added to 2, gives the cube 27. The two equations h2 = y2+4 and y+h = 25
give y = 621

50 as a solution to the problem. This is pleasing, but we are more
interested in the intermediate observation, namely a solution in integers to the
Diophantine equation (1).

Bachet, in his famous 1621 Latin translation of the Arithmetica of Diophan-
tus, noted that from the one solution 52 + 2 = 33 other rational numbers r may
be found with the property that r2 + 2 is a cube of a rational number. Fermat
acquired a copy of this work, and by 1636 had studied it carefully and made
significant advances. He also recorded several of his most influential marginal
notes in this book, including the comment concerning Fermat’s last theorem.

In 1656 the English mathematician Wallis, at the time chief cryptographer
to Parliament, published his Arithmetica infinitorum. Digby brought this to the
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attention of Fermat, prompting Fermat to begin a correspondence with “Wallis
and other English mathematicians” concerning some of his number problems.
This correspondence all passed through Digby’s hands, and thus in 1657 Fermat
challenged Digby and Wallis:

Can one find in integers a square other than 25, which, when in-
creased by 2, makes a cube? At first sight this appears difficult.
Bachet’s method gives infinitely many solutions in fractions, but the
setting of the integers, undoubtedly beautiful and subtle, was not
developed by Bachet nor in any other writings known to me.

That is, Fermat asked them to find all the integer solutions to the equation (1).
The solution (x, y) = (3, 5) noted by Diophantus is one, and Digby and

Wallis might have agreed it is the only one, since negative numbers had yet to
enjoy a fully equal status with their positive siblings. Presumably the challenge
was to show that, sign apart, there are no others, as Fermat claimed a proof
that this solution is unique. It is not clear from this distance in time if any of
the three protagonists ever did have a complete proof of this.

1.1 What if 2 had been 15?

What might have been the reaction if Fermat had instead challenged the English
mathematicians with the equation

y2 = x3 + 15?

The solution (1, 4) is easy to spot. It is less easy to notice that (109, 1138) is
also a solution – and not at all obvious that, issues of sign aside, there are no
others.

Even more challenging, what about the equation

y2 = x3 + 24?

The solution (1, 5) is once again easy to spot, as is the solution (−2, 4), and it
is not too difficult to find a third solution (10, 32). However, life is surely too
short to find the solution (8158, 736844) without mechanical help. Once again,
up to sign, this is the full list of solutions.

As these examples show, the effort involved in finding the solutions to the
Diophantine equation y2 = x3 +d depends in a rather unpredictable way on the
constant d. Among the many results on this problem, some stand out. Euler
showed that there are no positive rational solutions apart from (2, 3) when d = 1
using the method of descent, and a long series of other special cases were solved
by many other mathematicians (see Dickson [7, Chap. XX] for the details). A
snapshot of the state of knowledge on this question in 1914 may be found in the
work of Mordell [20], where many but not all values of d for which there are no
integral solutions are found.

Nowadays the numerical facts above – not only the stated solutions, but the
much deeper claim that there are no other integral solutions – can be checked
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easily using one of the many sophisticated computational packages available,
such as Magma [3]. This is greatly to be celebrated, although the facility with
which these calculations can now be done risks obscuring the remarkable achieve-
ments made in Diophantine analysis over the last forty years that have made
this possible. It is not our intention to survey these achievements (a detailed
overview may be found in the lovely monograph of Hindry and Silverman [17]),
although some highlights on the theoretical side will appear naturally.

1.2 Satisfying Fermat

Out of a patriotic desire to satisfy Fermat, we start with a (now elementary)
proof that (3,±5) are indeed the only integral solutions to y2 = x3 − 2. The
language of (and one result from) modern algebra makes this straightforward.
Plainly x must be odd, for otherwise y2 ≡ 2 (mod 4), which is impossible.
The ring R = Z[

√
−2] is a unique factorization domain (indeed, is a Euclidean

domain – see Hardy and Wright [15, §14.7] for an account) whose only units
are ±1. Factorizing there gives

(y +
√
−2)(y −

√
−2) = x3.

In the ring R, gcd(y +
√
−2, y −

√
−2) | 2

√
−2. Since x is odd, the greatest

common divisor is a unit, and so must be ±1. It follows that each factor is a
unit multiple of a cube in R. Write (absorbing −1 = (−1)3 if necessary)

y +
√
−2 = (a+ b

√
−2)3

with a, b ∈ Z. Comparing coefficients of
√
−2 gives

1 = 3a2b− 2b3 = b(3a2 − 2b2)

which forces b = 3a2 − 2b2 = ±1. Solving gives b = 1 and a = ±1, and the two
choices give y = ∓5 and x = 3.

2 Siegel’s Theorem

The following is a special case of a wonderful and deeply influential result,
proved by Siegel [29] in 1929. Siegel’s result was far more general, showing that
all curves with positive genus have finitely many integral points, but for the case
at hand may be stated as follows. (The genus is a measure of the complexity of
a curve, and curves of genus zero may have infinitely many integral points.)

Theorem 2.1. Given an integer d 6= 0, the equation

y2 = x3 + d (2)

has only finitely many integral solutions.
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This specific result was known considerably earlier. Mordell [22] reported to
the London Mathematical Society in 1918 that an earlier result of his [21], in
conjunction with Thue’s work [33], would show Theorem 2.1. Once again there
is an important letter, sent by Siegel to Mordell in 1925 (an extract appears
in [28]), outlining Siegel’s ideas which eventually gave the general result that
any nonsingular cubic curve has only finitely many integer points [29]. In honour
of Mordell’s contribution to this subject, the equation (2) in Theorem 2.1 is often
known as Mordell’s equation.

Even in its simplest form, Siegel’s proof was recognized as noneffective, a
term whose meaning will be discussed shortly. Siegel gave a second proof of
finiteness using unique factorization, in a manner very similar to the proof in
the case d = −2 above, by working in a suitably large ring and then reducing to
a number of simpler equations called S-unit equations. This approach led to an
effective proof, following Alan Baker’s seminal work on transcendence theory.
The terms effective and noneffective, although ubiquitous in number theory, are
never precisely defined. A definition for general use might read as follows.

effective (adj.): adequate to accomplish a purpose; producing the
intended or expected result; 1350–1400; ME fr. L. effectivus = prac-
tical.

One might expect that an effective proof is one which produces an algorithm
to implement the conclusion of a theorem. In our context, an effective proof
might consist of a bound on the size of the largest solution. This would allow
all solutions to be found, by simply checking integers below that bound to see
if they satisfy the equation. This sounds desirable and practical, but there are
examples where the gap between what theory provides and what is practical
remains large.

Theorem 2.2 (Baker [1], 1968). Any integral solution of (2) satisfies

log |x| < 1010|d|10
4

.

Even checking Euler’s result that x = 2 gives the only positive integral
solution to y2 = x3 +1 is not computationally feasible using Baker’s bound. So,
despite the etymology, effective as used in number theory (which would certainly
include the statement in Theorem 2.2) does not always mean practical.

Of course Theorem 2.2 was never intended to be a practical tool, and was
never claimed to be one. It merely says that with the methods then available,
this is the best bound obtainable, and sets a challenge for future generations.
Dramatic improvements followed fairly quickly. For example, Stark [31] shows
that

log max{|x|, |y|} 6 C|d|1+ε,

where C = C(ε) is an effectively computable constant depending only on ε. This
is a considerable improvement upon Baker’s bound. However, the size of C(ε)
is necessarily large, and checking all the values of x and y below the bound is
not computationally feasible, even for small values of |d|.
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Despite the power of these results and the direction of research initiated
by the work of Baker and Stark, the modern computational facility for solv-
ing Mordell’s equation came about not by further reducing the size of the
bounds above. The method is actually less direct; see the work of Gebel,
Pethö, and Zimmer [12] for complete details about the toolkit now used. In
a later paper [13], the same authors show how this method resolves the equa-
tion for |d| 6 104, and for almost all d with |d| 6 105.

Today, after major theoretical and computational improvements, computer
packages will find all the integral solutions of equations y2 = x3 + d provided d
lies within reasonable bounds. To give an idea of what counts as reasonable it
is worthwhile doing some experiments yourself.

3 Hall’s Conjecture

To reiterate, solving Mordell’s equation in practice does not rely upon obtaining
a very strong upper bound for the size of the largest solution, then checking
smaller solutions on a computer. In fact an important, simple, natural, question
remains unsolved to this day.

Question 1. What is the best theoretical bound (in terms of d) for the size of
the largest integer x solving y2 = x3 + d in integers?

The truth is that the best known bound is far from what seems likely to be
true. What seems likely to be true is the subject of the following conjecture
made by Hall [14], which we will now discuss. Hall’s conjecture has been subject
to extensive numerical checking, but a proof seems to require dramatically more
powerful methods than those currently available.

Conjecture 1 (Hall). Given ε > 0, there is a constant C = C(ε) such that, for
any nonzero d ∈ Z, any integral solution of y2 = x3 + d satisfies

log |x| < (2 + ε) log |d|+ C.

Originally, Hall [14] conjectured the same bound but with ε = 0. This is no
longer thought to be likely.

The audacious nature of the conjecture is not immediately apparent. Our
second and third examples (d = 15 and d = 24) show that simple equations with
small coefficients can have enormously large integral solutions. What Hall’s
conjecture suggests is that, when properly calibrated, the phenomenon of large
integral solutions of an equation with small coefficients is not beyond constraint.

The conjecture of Hall follows from the infamous ABC conjecture, formu-
lated by Masser and Oesterlé [25] in 1985, about the relative sizes of a zero sum
of three integers. Write

r(N) =
∏
p|N

p
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(where the product is taken over the prime factors of N) for the radical of an
integer N . The ABC conjecture says that for any ε > 0 there is a constant K(ε)
such that, whenever

A+B + C = 0

in nonzero coprime integers A,B,C, we have

max{|A|, |B|, |C|} 6 K(ε)r(ABC)1+ε.

To see how this relates to the Mordell equation, assume that x and y are
integers with y2 = x3 + d. Then for any ε > 0 the ABC conjecture implies that

|x|3 6 max{|x|3, y2, d} 6 K(ε)r(x3y2d)1+ε 6 K(ε)|xyd|1+ε.

The Hall bound follows by taking logs and noting that |y| is approximately |x|3/2.
Hall’s conjecture has been extensively tested. Table 1 shows values of in-

tegers x and d with an integral y satisfying y2 = x3 + d having log x large
in comparison with 2 log |d|. It is taken from Elkies’ website [8] (see also the
paper [13]). The table is surprising in two opposite senses: firstly, it gives
more examples of inordinately large solutions of simple Diophantine equations,
and secondly, it shows that they nonetheless fall within sight of a reasonable
constraint upon how large they could be when viewed on a logarithmic scale.

Table 1: Large values of log x/2 log |d| in Hall’s conjecture.

d x log x log x/2 log |d|
-1641843 5853886516781223 36.305 1.268

-30032270 38115991067861271 38.179 1.108

1090 28187351 17.154 1.226

193234265 810574762403977064 41.236 1.080

17 5234 8.562 1.511

225 720114 13.487 1.245

24 8158 9.006 1.417

-307 939787 13.753 1.200

-207 367806 12.815 1.201

28024 3790689201 22.055 1.076

Does Table 1 convince? Taken together with the implication of the ABC
conjecture, the answer is probably yes, in the sense that this is evidence for a
sensible conjecture. We have presented it because, later on, two more tables
will appear and a direct comparison will be invited.

4 Repellent Powers

It might not be apparent so far, but the point at infinity is enormously im-
portant in understanding solutions of Mordell’s equation. For example, the set
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of rational points on the curve forms a group under a natural geometric form
of addition, which will be described in Section 5. The point at infinity is the
identity element for this group operation.

From our viewpoint, Siegel’s theorem may be interpreted to say that the
point at infinity repels the integer points on the curve y2 = x3 + d. In other
words, there is a (punctured) neighborhood of the point at infinity free of integer
points. Empirically, we might even say we observe integer points repelling each
other. For a sophisticated instance of this repulsion property being used to
understand integral points on elliptic curves, see the recent work of Helfgott
and Venkatesh [16]. Their methods will yield explicit constants that might well
quantify practically the rate at which integral points repel each other coordinate-
wise. This repulsion between integral points will be something of a mantra
throughout this paper, and will inform the latter part significantly. For now
though, consider the idea of points with fixed arithmetic properties repelling
each other as a kind of paradigm for understanding other results in Diophantine
equations.

The results stated so far may be seen as an instance of a general tendency for
distinct integral powers to repel each other. Thus, for example, Baker’s result
may be phrased as follows. If x and y are positive integers with y2 6= x3 then
there is a constant C = C(x) with

|y2 − x3| > C(log x)10
−4

;

Stark’s result says that for any κ < 1 there is a constant C = C(κ) with

|y2 − x3| > C(log x)κ,

and Hall’s conjecture says that for any ε < 1/2 there is a constant C = C(ε)
with

|y2 − x3| > Cx
1
2−ε.

These are all statements about (subsequences of) the sequence

a = (an) = (1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, . . . )

of perfect powers: numbers of the form nm with n,m ∈ N and m > 2. A gap of
one is seen early on, and the conjecture of Catalan [6] is that 8 and 9 are the only
consecutive pair in the sequence a. The proof of this result followed a path that
once again illustrates the slightly ambiguous way in which the word effective
is used. Tijdeman [34] used sharpened versions of Baker’s theorem to find a
number T with the property that any positive integral solution (x, y,m, n) to the
Diophantine equation xm− yn = 1 must have max{x, y,m, n} 6 T . This meant
that a proof of Catalan’s conjecture was reduced to a finite list of possibilities
to check – surely the most effective of effective statements. Unfortunately a
by-product of the transcendence methods used was that the number T was
enormous, leaving a finite but hopelessly impractical calculation to be done.
The conjecture was finally proved by Mihăilescu [19] using a mixture of analytic
and algebraic methods.
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Pillai studied many properties of the sequence of perfect powers, and in a
paper [26] of 1945 wrote

I take this opportunity to put in print a conjecture which I gave
during the conference of the Indian Mathematical Society held at
Aligarh. Arrange all the powers of integers like squares, cubes, etc.
in increasing order [...]. Let an be the nth member of this series [...].
Then

lim inf
n→∞

(an − an−1) =∞.

The conjecture of Pillai is exactly equivalent to the conjecture that for any k > 1
the Diophantine equation xm − yn = k has only finitely many solutions. This
remarkable problem remains open, and is the subject of a recent survey by
Waldschmidt [35].

4.1 The Gap Principle

The phenomena we are describing in this paper will be familiar to workers in
Diophantine equations, although possibly under another name: the gap princi-
ple. Again, this is not formulated precisely anywhere that we can find. Roughly
stated, it says that where Diophantine phenomena occur (say, as rational solu-
tions to a Diophantine equation or to an inequality) subject to some reasonable
constraint, they will respond by exhibiting measurable gaps. This data is then
fed back into the technicalities of the argument. Strictly speaking, there is no
single gap principle; it is more of a style of argument. We invite readers to
explore the current literature on Diophantine equations to see where this term
– or this phenomenon – occurs.

A simple observation of this type is that the denominators of a sequence of
good rational approximations to a real number must grow rapidly. To make this
precise, assume that α ∈ R is a real number with the property that there is an

infinite sequence of rational approximations
(
pn
qn

)
in lowest terms with∣∣∣∣α− pn

qn

∣∣∣∣ 6 1

q2+εn

for some fixed ε > 0 and with qn+1 > qn for all n > 1. Then, by the triangle
inequality,

1

qnqn+1
6

∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ 6 ∣∣∣∣α− pn
qn

∣∣∣∣+

∣∣∣∣α− pn+1

qn+1

∣∣∣∣ 6 2

q2+εn

.

It follows that qn+1 > q
1+ε/2
n for sufficiently large n. A consequence of this

observation is that there must be extremely rapid growth in the size of qn:
there is some constant c > 0 for which qn > ee

cn

.
We mention two further instance of gap principles, one old and one recent

and very germane. Ingram [18] showed that large gaps occur between integral
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multiples of a point P on a Mordell curve in the following sense. If n1 < n2
and n1P, n2P (in the group theory sense) are both integral points, then an

2
1 < n2

for some explicit constant a > 1. This is a strong repulsion property for integer
points along a sequence (nP ) and, just as with the results in [16], might well
translate back into a good bound for the corresponding coordinates. An instance
of the kind of applications Ingram obtains is that on Mordell curves of the
form (2), for all large enough d with d sixth power–free (that is, not divisible
by a6 for any integer a > 2), there is at most one n > 3 such that nP is integral
(see [18, Proposition 15]).

An earlier – and highly influential – manifestation of a gap principle occurs
in a paper of Mumford [24]. His result was about rational points lying on more
complicated plane curves. Complicated here means not just higher degree but
higher genus, a geometric measure of complexity – for example, Mumford’s
results apply to equations y2 = f(x) where f(x) ∈ Q[x] has degree at least 5,
and f(0) 6= 0. He showed that the rational solutions exhibit naturally occurring,
expanding gaps (when viewed in the most näıve sense, so that the numerators
and denominators grow large very quickly). Although in one sense his result
was superseded by Faltings’ general proof that such curves contain only finitely
many rational points, packages such as Magma [3] will now enumerate rational
points on higher-genus curves with some ease. The repelling nature of them
brings Mumford’s remark vividly to life.

Example 4.1 (Taken from [4]). The genus-2 curve y2 = x6 + 1025 has the
following rational points, together with sign changes:

(2, 33),

(
5

2
,

285

23

)
, (8, 513),

(
1

4
,

2049

43

)
,

(
20

91
,

24126045

913

)
(and may have others).

5 Generalizing Siegel’s Theorem and Hall’s Con-
jecture

We will now describe a recent attempt to generalize both Siegel’s theorem and
Hall’s conjecture in one go. We need to begin by talking a little about rational
solutions of our equations. Although it is not obvious, there are infinitely many
rational solutions to each of our three starting equations. In each case, there
is a way to produce them all, starting with a finite set of rational points. This
statement summarizes enormous theoretical and practical knowledge about ra-
tional solutions (as opposed to integral solutions) of equations defining elliptic
curves. For example, the rational points on

y2 = x3 + 15. (3)

are all generated from the two points (1, 4) and (1
4 ,

31
8 ), using the chord-and-

tangent method of constructing new points. The essential observation is that
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the line joining any two rational points on the curve (or the tangent to a single
rational point) intersects the curve again at a third rational point. For example,
the line joining our two initial points meets the curve again at (− 11

9 ,
98
27 ).

This operation, together with reflection in the x-axis, allows all rational
points on the curve to be found — but this is not an easy result to prove. To help
orient the reader, notice that this is an instance of Mordell’s theorem [23], which
says that the set of rational solutions of such an equation is always generated
from a finite set of rational solutions in the same geometric way.

Indeed, the operation of joining two points with a line, finding the third
point of intersection, and then reflecting in the x-axis (extended by continuity
to allow the original points to be identical) is a binary operation giving the set
of rational points on the curve the structure of an abelian group (once the point
at infinity is added), and Mordell’s theorem states that this group is finitely
generated. It must therefore have the form Zr × F for some finite group F ,
and r is called the rank of the curve. The quantity r, like d in (2) or ∆E in
Section 7, is an important measure of the size or the complexity of the curve.

To fix notation both now and for the sequel, note that if P = (x, y) is a
rational solution of y2 = x3 + d and d is integral, then x3 and y2 have the same
denominator. Thus the denominator of y2 must be the square of a cube, and
that of x3 the cube of a square, so we may write

P =

(
AP
B2
P

,
CP
B3
P

)
,

with AP , BP , CP ∈ Z, and with both coordinates of P in lowest terms.
Siegel’s theorem makes a statement about the rational solutions P of the

equation BP = 1, which we may interpret as a statement about the solu-
tions (x, y) under the condition that the denominator of x (or of y) is divisible
by no primes.

Question 2. What can be said about the points P such that BP is divisible
by one prime?

In other words, what can be said about the set of rational solutions P with
the property that BP is a prime power? There is a name for points of this form.
If the point P has BP composed of primes from a set S then P is called an S-
integral point. The Siegel–Mahler theorem predicts that for a fixed finite set of
primes S, there are only finitely many S-integral points. What we are doing
is slightly different, fixing the size of the set S (typically |S| = 1), but not its
contents. Reynolds [27] proved (under a general form of the ABC conjecture)
that only finitely many perfect powers will occur among the BP , so the first
interesting case is when BP is a prime.

Sometimes, it is provable that only finitely many points P have BP equal to
a prime. Indeed, this is true of our starting equation

y2 = x3 − 2. (4)

To see this, note that on the curve (4), all the rational points can be generated
by the single point (3, 5). Since this point is the image of a rational point under
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a 3-isogeny, [10, Theorem 1.3] applies to demonstrate the finiteness claim (an
isogeny is a map defined by rational functions with rational coefficients from one
elliptic curve to another that is a homomorphism of the group law; see [30] for
a detailed discussion). Inspection suggests that, in truth, none of the rational
points yield prime values BP . However – a familiar refrain – the amount of
checking of small cases remains, as yet, unfeasible.

On the other hand, searching yields a large number of rational points P on
equation (3) with BP equal to a prime. The examples below, and all that follow,
were obtained using searches in Pari-GP [2]. What prevents us exhibiting many
more examples is lack of space, not data. Readers interested in following this
up should consult [11].

Example 5.1. The following x-coordinates of rational points P on the curve

y2 = x3 + 15

have BP equal to a prime: − 11
32 , 75721

532 , 578509
3672 , − 349755479

119092 , 556386829130869
176841892 , and

64892429414388628056900713281
2594769767501772 .

6 The condition that BP is a prime

Computational evidence, as well as a heuristic argument [10, 11], suggests that
when the set of rational points is generated by more than one point, as in
equation (3) for example, there will be infinitely many points P with BP equal
to a prime.1 Although the papers [10, 11] contain a great deal of numerical
evidence, as well as a reasoned heuristic argument, we must admit that the
conjecture has not been proved, even for one curve.

The question we now ask can be put roughly as follows.

Question 3. Where are the rational points P with BP a prime?

It makes sense to set the question in a slightly wider context, even though
our main concern lies with the case stated.

Definition 6.1. The length of a rational point P is the number of distinct
prime divisors of BP .

Thus the integral points are precisely the length-0 points. Length-1 points
are those with BP equal to a prime power. Our comments will apply to rational
points whose length is bounded, but the question above asks simply for the
location of the length-1 points. As discussed in Section 4, Siegel’s theorem may
be interpreted to say that the point at infinity repels length-0 points. Is it
possible that the same might be true for length-1 points? In other words, do
length-1 points have bounded x-coordinates?

A first attack is computational. To increase the options, a search was made
on curves y2 = x3+Ax+B with 4A3+27B2 6= 0, that is, on elliptic curves (which

1This holds provided a technical assumption is met, namely, that the set of points should
not lie in the image of a rational isogeny.
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is the proper setting for this question for reasons we will expand on later). This
does yield examples of length-1 points with inordinately large x-coordinates.

Example 6.2. The curve y2 = x3 − 7x+ 10 contains a rational point P with

BP = 14476032998358419473538526891666573479317742071,

a prime, and with
x(P ) = 175567.984 . . . .

The x-coordinate has been expressed as a real number to emphasize its rough
size – this is less apparent when the number is written in rational form with a
numerator and denominator.

6.1 Generalizing Siegel’s Theorem

Does this mean that the obvious generalization of Siegel’s theorem is false? One
might think so given Example 6.2 above, and others like it – but that is to miss
the flow of our argument thus far. Drawing a parallel with our earlier comments,
the evidence both from examples of Siegel’s theorem and from the constraints
along the lines of Hall’s conjecture suggests that the right parameter to measure
is log x/ log |d| (for a suitable notion of the parameter d adapted to more general
curves). Viewed on this logarithmic scale, we present computational evidence
(see Table 2) to suggest that infinity does indeed repel length-1 points. In other
words, we are suggesting that the generalization of Siegel’s theorem may be
credibly strengthened along the lines of Hall’s conjecture.

More even than this, an elliptic curve is fundamentally a projective object
(in particular, the process of adding the point at infinity as the identity element
can be formalized by viewing the curve as a subset of projective space). What
this means is that its true nature only becomes revealed when viewed as lying in
projective space. On that basis, there are no specially favored points: although
the point at infinity is chosen traditionally as the identity for the group law, the
group structure makes sense with any chosen rational point as identity, with
the appropriate changes. Thus we are drawn, perhaps with some trepidation,
towards a belief that all rational points (or even all algebraic points) repel the
points with length below a fixed bound. In other words, around each rational
point there is a punctured neighborhood free of points of bounded length.

In order to examine this conjecture, as well as to frame it along earlier lines,
we introduce a suitable notion of the distance between two points.

Definition 6.3. Given a rational point Q, we define the logarithmic distance
from P 6= Q to Q to be

hQ(P ) = − log |x(Q)− x(P )|

when Q is finite, and
log |x(P )|

when Q is the point at infinity.
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To understand the thinking behind Definition 6.3, start with the assumption
that points close to the point at infinity must be considered large, and the point
at infinity (in projective space) is a point like any other point. For the sake
of consistency, logarithmic distances work the same way, so that points which
are close to each other have a large logarithmic distance – a general feature of
such distances in Diophantine geometry. To see why this is natural, notice that
a measure of the size of a rational number a

b in lowest terms is given by the
height H(ab ) = max{|a|, |b|}. Then a rational number very close to, but not
equal to, a specified number necessarily has very large height.

Conjecture 2. Let k denote a fixed positive integer, and assume that d is sixth
power–free. Then the set of rational points on the curve (2) repels the rational
points with length below k (the “Siegel part” of the conjecture). If Q denotes a
fixed rational point, then there is a constant C = C(k,Q) such that

hQ(P ) 6 C log |d|

for any rational point P with length below k (the “Hall part”).

Notice that if Q is not the point at infinity, then the coordinates of Q de-
termine d, so in this case the conjecture suggest that there is a constant C =
C(k,Q) for which hQ(P ) 6 C for all rational points P 6= Q on the curve with
length below k.

The condition on d, that it is not divisible by any sixth power, is a natural
one. Without this condition, we would be free to multiply the equation through
by sixth powers of integers to create more and more integral and length-1 points
in an artificial way. The general hypothesis, of which this is the special case
for y2 = x3 + d, is that an elliptic curve be in minimal form.

In the next section, computational evidence for Conjecture 2 will be pre-
sented. Notice that some evidence for Conjecture 2 already comes from the
data examined in the first part of the article. The conjecture predicts that in-
tegral points are not simply repelled by the point at infinity, but also by each
other – exactly what we observe. Conversely, the conjecture too sheds light
upon the data. Looked at this way, we should not be surprised that, when more
than a couple of integral points exist, the outliers are forced to lie a long way
out.

7 Computational Evidence

This was obtained in [9] for elliptic curves (see [5, 30] for background) of the
form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, . . . , a6 ∈ Z. The role of the parameter d, measuring the complexity of
the curve, is played here by the discriminant, a nonzero integer

∆E ∈ Z[a1, . . . , a6].

13



This is given by a (complicated) explicit polynomial in the variables a1, . . . , a6.
Write hE = log |∆E |. Each curve E is recorded as a list [a1, a2, a3, a4, a6], and
Table 2 shows what we believe is the maximal distance h from infinity of the
length-1 points on that curve.

The curves are all in minimal form and all have rank 2, and the search range
runs over length-1 points of the form mP+nQ, where P and Q denote generators
of the torsion-free part of the group of rational points, and |m|, |n| 6 150.
The search range is necessarily constrained because checking that points have
length 1 requires primality testing on some large integers. In every case, the
largest value h occurs fairly early, strengthening our belief that it is truly the
maximum – see [9] for details. Conjecture 2, suitably extended to more general
elliptic curves, predicts that the ratio h/hE will be uniformly bounded. Readers
are invited to compare this table of values with the one for Hall’s conjecture
itself (Table 1) given earlier.

Table 2: Infinity-repelling length-1 points.

E |∆E | h h/hE

[0,0,1,-199,1092] 11022011 12.809 0.789
[0,0,1,-27,56] 107163 11.205 0.967
[0,0,0,-28,52] 236800 13.429 1.085
[1, -1, 0, -10, 16] 10700 9.701 1.045
[1,-1,1,-42,105] 750592 8.136 0.601
[0, -1, 0, -25, 61] 154368 16.592 1.388
[1, -1, 1, -27, 75] 816128 12.363 0.908
[0, 0, 0, -7, 10] 21248 12.075 1.211
[1, -1, 0, -4, 4] 892 11.738 1.727
[0, 0, 1, -13, 18] 3275 6.511 0.804
[0, 1, 0, -5, 4] 4528 7.377 0.876
[0, 1, 1, -2, 0] 389 9.707 1.627
[1, 0, 1, -12, 14] 2068 9.819 1.286

Table 3 shows some curves with Q = (0, 0), and the maximal distance hQ
from Q of the length-1 points. The remarks about search ranges and our confi-
dence about the true nature of the maximum apply here as before; see also [9].
Note that points P close to Q = (0, 0) yield large values of hQ(P ) because these
are logarithmic distances. The thrust of Conjecture 2 is that these values, prop-
erly scaled, are not inordinately large, but satisfy a reasonable constraint. Once
again, a direct comparison is invited between this table and Table 1.
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Table 3: Curves with Q = (0, 0).

E |∆E | hQ hQ/hE

[0, 0, 0, 150, 0] 216000000 6.436 0.335
[0, 0, 0, -90, 0] 46656000 3.756 0.212
[0,0,0,-132,0] 147197952 4.470 0.237
[0,1,0,-648,0] 17420977152 0.602 0.025
[0,0,0,34,0] 2515456 2.107 0.143
[0,0,0,-136,0] 160989184 0.279 0.014
[0,1,0,-289,0] 1546140752 5.712 0.269

8 A Theorem

Given the speculative nature of this study, it is a little surprising to find certain
conditions where the Siegel part of the conjecture can be proved unconditionally,
and the Hall part conditionally, at least when Q is the point at infinity. What
follows is a modest result, but it does yield examples where further testing may
be carried out, and it provides some support for Conjecture 2. Recall that
rational points Q1 and Q2 are independent in the group law on the rational
points of the curve if there is no point P with Q1 = aP and Q2 = bP for
integers a, b.

Theorem 8.1 (Everest and Mahé [9]). Consider the equation

y2 = x3 −Nx

for some positive integer N . Assume that Q1 and Q2 are independent rational
points with x(Q1) < 0 and with x(Q2) equal to a square.

1. (“Siegel part”) There is a bound upon |x(P )| as P runs over length-1 points
in the group generated by Q1, Q2.

2. (“Hall part”) Assume additionally that the ABC conjecture holds in Z.
Then there is a constant K, independent of N , for which

log |x(P )| 6 K logN,

for all length-1 rational points P .

Example 8.2. The points Q1 = [−9, 9], Q2 = [49/4,−217/8] on the curve

y2 = x3 − 90x

satisfy the hypotheses of Theorem 8.1. Computations support the belief that
infinitely many length-1 points lie in the group generated by Q1 and Q2.
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Example 8.3. The points Q1 = [−9, 120], Q2 = [841, 24360] on the curve

y2 = x3 − 1681x

satisfy the hypotheses of Theorem 8.1. Note that x(Q2) = 292. Also, in this
case Q1 and Q2 are generators for the torsion-free part of the group of rational
points. As before, it seems likely that infinitely many length-1 points lie in the
group generated by Q1 and Q2.

Dedication. The first author dedicates this paper to the staff of Mulbarton
Ward and the Weybourne Day Unit in Norwich. The second author dedicates
this paper to the memory of his friend and colleague Graham Everest (1957–
2010).
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