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Abstract

We study the functorial and growth properties of closed orbits for maps. By viewing
an arbitrary sequence as the orbit-counting function for a map, iterates and Cartesian
products of maps define new transformations between integer sequences. An orbit
monoid is associated to any integer sequence, giving a dynamical interpretation of the
Euler transform.

1 Introduction

Many combinatorial or dynamical questions involve counting the number of closed orbits or
the periodic points under iteration of a map. Here we consider functorial properties of orbit-
counting in the following sense. Associated to a map T : X → X with the property that T
has only finitely many orbits of each length are combinatorial data (counts of fixed points
and periodic orbits), analytic data (a zeta function and a Dirichlet series) and algebraic data
(the orbit monoid). On the other hand, the collection of such maps is closed under disjoint
unions, direct products, iteration, and other operations. Our starting point is to ask how
the associated data behaves under those operations. A feature of this work is that these
natural operations applied to maps with simple orbit structures give novel constructions of
sequences with combinatorial or arithmetic interest. Routine calculations are suppressed
here for brevity; complete details, related results, and further applications will appear in the
thesis of the first author [16].

We define the following categories: maps M, comprising all pairs (X,T ) where T is
a map X → X with FT (n) = |{x ∈ X | T n(x) = x}| < ∞ for all n > 1; orbits
O = NN

0 , comprising all sequences (an)n>1 with an > 0 for all n > 1; and fixed points
F ⊆ O, comprising any sequence a = (an) with the property that there is some (X,T ) ∈M
with an = FT (n) for all n > 1. For (X,T ) ∈ M, a closed orbit of length n under T is any
set of the form τ = {x, Tx, . . . , T nx = x} with cardinality |τ | = n, and we write OT (n) for
the number of closed orbits of length n. Clearly

FT (n) =
∑
d|n

dOT (d), (1)

so

OT (n) =
1

n

∑
d|n

µ(n/d)FT (d), (2)
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and this defines a bijection between F and O (see Everest, van der Poorten, Puri and the
second author [7], [17] for more on the combinatorial applications of this bijection, and for
non-trivial examples of sequences in F; see Baake and Neumärker [3] for more on spectral
properties of the operators on O). Since the space X will not concern us, we will fix it to be
some countable set and refer to an element of M as a map T .

Recall from Knopfmacher [12] that an additive arithmetic semigroup is a free abelian
monoid G equipped with a non-empty set of generators P , and a weight function

∂ : G→ N ∪ {0}

with ∂(a+ b) = ∂(a) + ∂(b) for all a, b ∈ G, satisfying the finiteness property

P (n) = |{p ∈ P | ∂(p) = n}| <∞

for all n > 1. Given T ∈ M, we define the orbit monoid GT associated to T to be the free
abelian monoid generated by the closed orbits of T , equipped with the weight function

∂(a1τ1 + · · ·+ arτr) = a1|τ1|+ · · ·+ ar|τr|,

and write GT (n) for the number of elements of weight n. Finally, define orbit monoids G
to be the category of all such monoids associated to maps in M. Notice that every additive
arithmetic semigroup in the sense of Knopfmacher [12] is an orbit monoid, since for any
sequence (an) there is a map T with OT (n) = an for all n > 1 (indeed, Windsor [23] shows
that the map T may be chosen to be a C∞ diffeomorphism of a torus). We will write GT for
the sequence (GT (n)), since the sequence determines the monoid up to isomorphism.

As usual, we write ζ = (1, 1, 1, . . . ) and µ = (1,−1,−1, 0, . . . ) for the zeta and Möbius
functions viewed as sequences, and use the same symbols to denote their Dirichlet series.

There are natural generating functions associated to an element T ∈ M. If FT (n) is
exponentially bounded then the dynamical zeta function

ζT (s) = exp
∑
n>1

sn

n
FT (n)

converges in some complex disk (see Artin and Mazur [1]). If OT (n) is polynomially bounded
then the orbit Dirichlet series

dT (s) =
∑
n>1

OT (n)

ns
,

converges in some half-plane. The basic relation (1) is expressed in terms of these generating
functions by the two identities

ζT (s) =
∏
n>1

(1− s)−OT (n) =
∏
τ

(
1− s|τ |

)−1
,

where the product is taken over all closed orbits of T , and

dT (s)ζ(s+ 1) =
∑
n>1

FT (n)

ns+1
.
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Finally, a natural measure of the rate of growth in OT is the number

πT (N) = |{τ | |τ | 6 N}|

of closed orbits of length no more than N . Asymptotics for πT are analogous to the
prime number theorem. In the case of exponential growth, that is under the assumption
that lim supn→∞

1
n

logOT (n) = h > 0, a more smoothly averaged measure of orbit growth is
given by

MT (N) =
∑
|τ |6N

1

eh|τ |
,

and asymptotics for MT are analogous to Mertens’ theorem.

2 Functorial properties

Most functorial properties are immediate, so we simply record them here. Write T1 × T2 for
the Cartesian product of two maps, T1 t T2 for the disjoint union, defined by

(T1 t T2)(x) =

{
T1(x) if x ∈ X1,

T2(x) if x ∈ X2,

and write T k with k > 1 for the kth iterate of T . Then

1. FT1×T2 = FT1 FT2 (pointwise product);

2. dT1tT2 = dT1 + dT2 ;

3. ζT1tT2 = ζT1ζT2 ;

4. FTk(n) = FT (kn) for all k > 1 and n > 1.

In contrast to the first of these, it is clear that computing the number of closed orbits
under the Cartesian product of two maps is more involved.

Lemma 2.1. OT1×T2(n) =
∑

d1,d2∈N,
lcm(d1,d2)=n

OT1(d1)OT2(d2) gcd(d1, d2).

Proof. If (x1, x2) lies on a T1 × T2-orbit of length n, then, in particular,

T n1 (x1) = x1

and
T n2 (x2) = x2,

so xi lies on a Ti-orbit of length di for some di dividing n, for i = 1, 2. On the other hand,
if xi lies on a Ti-orbit of length di for i = 1, 2 then the T1× T2-orbit of (x1, x2) has cardinal-
ity lcm(d1, d2). On the other hand, if τ1, τ2 are orbits of length d1, d2 with lcm(d1, d2) = n,
then there are d1d2 points in the set τ1 × τ2, so this must split up into d1d2/n = gcd(d1, d2)
orbits of length n under T1 × T2.

3



Example 2.1. Let T be a map with one orbit of each length, so dT (s) = ζ(s). Then, by
Lemma 2.1 and a calculation,

OT×T (n) =
∑

d1,d2∈N,
lcm(d1,d2)=n

gcd(d1, d2) =
∑
d|n

σ(d)µ(n/d)2,

so

dT×T (s) =
ζ(s)2ζ(s− 1)

ζ(2s)
= 1 +

4

2s
+

5

3s
+

10

4s
+

7

5s
+

20

6s
+

9

7s
+

22

8s
+ · · · . (3)

By identifying an orbit of length n under T with a cyclic group Cn of order n, we see from
the proof of Lemma 2.1 that OT×T (n) is the number of cyclic subgroups of Cn×Cn, so OT×T
is A060648.

Example 2.1 is generalized in Example 3.2, where it corresponds to the case P = ∅.

Example 2.2. Let p be a prime, and assume that OT (n) = pn for all n > 1, so ζT (s) = 1
1−ps .

Then

OT×T (n) =
1

n

∑
d|n

µ(n/d)
∑
d1|d

d1p
d1
∑
d2|d

d2p
d2

 =
1

n

∑
d|n

µ(d)p2n/d,

which is the number of irreducible polynomials of degree n + 1 over Fp2 . In the case p = 2
this gives the sequence A027377, and in the case p = 3 this gives A027381.

The behavior of orbits under iteration is more involved. To motivate the rather dense for-
mula below, consider the orbits of length n under T p for some prime p. Points on an m-orbit
under T lie on an orbit of length m/ gcd(m, p) under T p. If m 6= n, np then m/ gcd(m, p) 6= n,
so the only points that can contribute to OT p(n) are points lying on n-orbits or on np-orbits
under T . Each np-orbit under T splits into p orbits of length n under T p. An n-orbit under T
defines an n-orbit under T p only if p - n. It follows that

OT p(n) =

{
pOT (pn) +OT (n) if p - n;

pOT (pn) if p|n.
(4)

In order to state the general case, fix the power m and write m = pa = pa11 · · · parr for the
decomposition into primes of m ∈ N; for any set J ⊆ I = {p1, . . . , pr} write paJ

J =
∏

pj∈J p
aj
j .

Finally, write D(n) for the set of prime divisors of n.

Theorem 2.1. Let m = pa and J = J(n) = D(m) \ D(n). Then

OTm(n) =
∑
d|paJ

J

m
d
OT (mn

d
). (5)

Proof. Notice that J depends on n, so the formula (5) involves a splitting into cases de-
pending on the primes dividing n, just as in the case of a single prime discussed above. We
argue by induction on the length

∑r
i=1 ai of m. If the length of m is 1, then m is a prime

and (5) reduces to (4). Assume now that (5) holds for
∑r

i=1 ai 6 k, and let m have length k;
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write I = D(m) and J = D(m)\D(n). We consider the effect of multiplying m by a prime q
on the formula (5), and write I ′ = D(mq), J ′ = D(mq) \ D(n).

If q ∈ D(n) \ I then by (4) we have

OTmq(n) = qOTm(qn) = q
∑
d|paJ

J

m
d
OT (mnq

d
) = q

∑
d|p

aJ′
J′

m
d
OT (mnq

d
),

in accordance with (5).
If q ∈ I ∩ D(n), then I ′ = I and J ′ = J , so

OTmq(n) = qOTm(qn) = q
∑
d|p

aJ′
J′

m
d
OT (mnq

d
)

as required.
If q /∈ I ∪ D(n) then

OTmq(n) = qOTm(qn) +OTm(n)

= q
∑
d|paJ

J

m
d
OT (mqn

d
) +

∑
d|paJ

J

m
d
OT (mn

d
)

=
∑
d|paJ

J q

qm
d
OT (mqn

d
)

as required.
Finally, if q ∈ I \ D(n) then

OTmq(n) = qOTm(qn) +OTm(n)

= q
∑

d|p
aJ\{q}
J\{q}

m
d
OT (mqn

d
) +

∑
d|paJ

J

m
d
OT (mn

d
)

=
∑

d|p
aJ
J

q,

q-d

mq
d
OT mqn

d
+
∑

d|p
aJ
J

q,

q|d

m
d/q
OT (mn/d

d/q
)

=
∑
d|paJ

J q

qm

d
OT (mqn

d
),

completing the proof.

This defines a family of transformations on sequences, taking OT to OTk for each k > 1.

Example 2.3. Let T ∈M have OT (n) = n for all n > 1, so dT (s) = ζ(s− 1). Then by (2)
we have

OT 2(n) =
1

n

∑
d|n

µ
(n
d

)
FT 2(d) =

1

n

∑
d|n

µ
(n
d

)
σ2(2d)

since FT 2(d) = FT (2d) =
∑

e|2d eOT (e) =
∑

e|2d e
2, so

dT 2(s) =

(
5− 2

2s

)
ζ(s− 1) = 5 +

8

2s
+

15

3s
+

16

4s
+

25

5s
+

24

6s
+

35

7s
+

32

8s
+ · · · .

Thus OT 2 is A091574 (up to an offset).
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Example 2.4. More generally, if dT (s) = ζ(s− 1) and p is a prime, then

OT p(n) =
1

n

∑
d|n

µ
(n
d

)
σ2(pd) =

{
(p2 + 1)n if p - n;

p2n if p|n

so dT p(s) =

(
p2 + 1− p

ps

)
ζ(s − 1). Composite powers are more involved; full details are

in [16]. For example,

OT 4(n) =

{
16n if n is even;

21n if n is odd

so dT 4(s) =
(
2− 10

2s

)
ζ(s− 1).

An important family of dynamical systems – those of finite combinatorial rank – have
been studied by Everest, Miles, Stevens and Ward [6]. These have the property that their
orbit Dirichlet series is “Dirichlet–rational”, that is there is a finite set C ⊆ Z with the
property that dT (s) is a rational function in the variables {c−s | c ∈ C}. An easy consequence
of Theorem 2.1 is that this property is preserved under iteration.

Corollary 2.1. If maps S and T have Dirichlet–rational orbit Dirichlet series, then so
do S × T and T k for any k > 1.

Example 2.5. The quadratic map T : x 7→ 1−cx2 on the interval [−1, 1] at the Feigenbaum
value c = 1.401155 · · · (see Feigenbaum’s lecture notes [8]; this is at the end of a period-
doubling cascade) gives a particularly simple example of a Dirichlet–rational Dirichlet series.
This map has

OT (n) =

{
1 if n = 2k for some k > 0;

0 if not,

so dT (s) = 1
1−2−s and OT is (up to an offset) the Fredholm-Rueppel sequence A036987.

By (1) we have FT (n) = 2bnc2 − 1, where bnc2 = |n|−12 denotes the 2-part of n, so FT
is A038712. Using this we see that

OT 2(n) =
1

n

∑
d|n

µ
(n
d

)
(2b2dc2 − 1) =


3 if n = 1;

2 if n = 2k for some k > 1;

0 if not,

so

dT 2(s) =
3− 2−s

1− 2−s
.

More generally, the formula for FT shows that

dTk(s) = bkc2 − 1 + bkc2dT (s)

for any k > 1.
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Example 2.6. With T as in Example 2.5, a similar calculation using Lemma 2.1 shows that

dT×T (s) =
3

1− 2−(s−1)
− 2

1− 2−s
.

If S ∈M has

OS(n) =

{
1 if n = 3k for some k > 0;

0 if not,

then OT×S is A065333, the characteristic function of the 3-smooth numbers, so

dT×S(s) =
1

(1− 2−s)(1− 3−s)
,

dT×T×S(s) =
3

(1− 2−(s−1))(1− 3−s)
− 2

(1− 2−s)(1− 3−s)
,

and so on.

The thesis of the first author [16] characterizes the existence of “roots”: that is, given a
sequence a ∈ O and k > 1 to determine if there is some T ∈M with OTk = a. Instances of
no roots, unique roots, and uncountably many roots occur.

3 Multiplicative sequences

Multiplicative sequences in O are particularly easy to work with, and in this section we
describe simple examples of such sequences, and some properties of their product systems. In
particular, we show how simple orbit sequences may factorize (that is, be the orbit sequence
of the product of two maps) in many different ways. Since FT and OT are related by
convolution with µ and multiplication by n, it is clear that FT is multiplicative if and only
if OT is multiplicative. The next lemma is equally straightforward; we include the proof to
illustrate how the correspondence between FT and OT may be exploited.

Lemma 3.1. If any two of OT , OS and OT×S are multiplicative, then so is the third.

Proof. Assume the first two are multiplicative and gcd(m,n) = 1. Then

OT×S(mn) = 1
mn

∑
d|mn

µ(mn
d

)FT×S(d) = 1
mn

∑
d|m

∑
d′|n

µ(m
d

)µ( n
d′

)FT (dd′)FS(dd′)

= 1
mn

∑
d|m

∑
d′|n

µ(m
d

)µ( n
d′

)FT (d)FT (d′)FS(d)FS′(d′)

= 1
mn

∑
d|m

∑
d′|n

µ(m
d

)µ( n
d′

)FT×S(d)FT×S(d′) = OT×S(m)OT×S(n).

Now assume that OS is not multiplicative while OT is, and choose m,n of minimal
product with the property that gcd(m,n) = 1 and OS(mn) 6= OS(m)OS(n). Then, by
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construction, if ab < mn and gcd(a, b) = 1 we have OS(ab) = OS(a)OS(b), so we must
have FS(mn) 6= FS(m)FS(n). If mn = 1 then

OT×S(1) = FT×S(1) = FT (1)FS(1) = OT (1)OS(1) = OS(1) 6= 1,

so OT×S is not multiplicative. If mn > 1 then a calculation gives

OT×S(mn) = 1
mn

∑
d|m,d′|n,

dd′<mn

µ(mn
dd′

)FT×S(dd′) + 1
mn
FT×S(mn)

= 1
m

∑
d|m

µ(m
d

)FT×S(d) · 1
n

∑
d′|n

µ( n
d′

)FT×S(d′)

− 1
mn
FT×S(m)FT×S(n) + 1

mn
FT×S(mn)

= OT×S(m)OT×S(n)− 1
mn
FT (mn)FS(m)FS(n)︸ ︷︷ ︸

6=FS(mn)

6= OT×S(m)OT×S(n)

since FT (mn) > FT (1) = 1, so OT×S is not multiplicative.

This gives a bijective proof of (3) as follows. Write `(n) for the number of primitive
lattices of index n in Z2, so that (3) is equivalent to the statement

OT×T (n) =
∑
d|n

`(d).

Both sides of this equation are multiplicative, so it is enough to prove this for n = pr a prime
power. The primitive lattices of index pj in Z2 are in one-to-one correspondence with{[

a b
0 c

]
| ac = pj, a, c > 1, 0 6 b < pj, gcd(a, b, c) = 1

}
.

It follows that
∑

d|pr `(d) = pr + 2
∑r−1

j=0 p
j, in agreement with the formula for OT×T (pr).

Write P for the set of all prime numbers, and for a subset P ⊆ P write P c = P \ P .

Example 3.1. For any set P of primes, define sP ∈ O by

sP (n) =

{
0 if p|n for some p ∈ P ;

1 if not.

Lemma 3.2. If T is a map with OT = sP and k > 1, then

On(T k) =


∏

p∈Q,p|n

pap ·
∏

p∈Q,p-n

σ(pap) if p - n for all p ∈ P ;

0 if p|n for some p ∈ P,

where k =
∏
p∈P

pap ·
∏
p∈Q

pap with P ∩Q = ∅ is the prime decomposition of k.
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Proof. Let J ⊆ P ∪Q and I ⊆ Q. Then

OTk(n) =
∑
d|pJ

aJ

(k/d)OT (kn/d)

(where p - n for p ∈ J, p|n for p ∈ (P ∪Q) \ J)

=
∑

d|
∏

p-n p
ap

∏
p∈Q

(pap/d)OT (papn/d),

showing the second case. If p - n for p ∈ I, p|n for p ∈ Q \ I and p - n for any p ∈ P
then OT (papn/d) = 1, so

OTk(n) =
∑

d|
∏

p-n p
ap

∏
p∈Q

(pap/d)

=

(∏
p∈Q

pap

) ∑
d|

∏
p-n p

ap

1/d

=
∏
p∈Q

pap

 ∑
d|

∏
p-n p

ap

d/
∏

p-np
ap


=

∑
d|

∏
p-n p

ap

(
d/
∏

p-np
ap
)∏
p-n

pap
∏
p|n

pap

=
∏
p|n

pap

∏
p-n

∑
d|pap

d


=

∏
p∈Q
p|n

pap ·
∏
p∈Q
p-n

σ(pap),

showing the first case.

It is clear from Lemma 2.1 that if OS = sP and OT = sP c then OT×S = ζ, so the
sequence ζ factorizes in uncountably many ways into the orbit count of two combinatorially
distinct systems. Indeed, these sequences provide the only combinatorial factorization of ζ
into the orbit count of the product of two systems.

Proposition 3.1. If S and T are maps with OS×T = ζ, then there is a set P ⊆ P for
which OT = sp and OS = sP c.

Proof. It is clear from Lemma 2.1 that OS and OT take values in {0, 1}, and moreover
that {OS(p),OT (p)} = {0, 1} for p ∈ P. Fix a pair of maps satisfying the hypothesis, and
let P = {p ∈ P | OT (p) = 0}, so that P c = {p ∈ P | OS(p) = 0}.

Assume that p|n for some p ∈ P , so that OT (p) = 0 and OS(p) = 1. If OT (n) = 1, then

1 =
∑

lcm(d,d′)=n

gcd(d, d′)OT (d)OS(d′) > p,
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which is impossible, so OT (n) = 0. By symmetry, if p|n for some p ∈ P c, then OS(n) = 0.
Now if n 6= 1 is not divisible by any p ∈ P , then

1 =
∑

lcm(d,d′)=n

gcd(d, d′)OT (d)OS(d′)

=
∑

lcm(d,d′)=n,

D(d)⊆Pc,D(d′)⊆P

gcd(d, d′)OT (d)OS(d′)

= OT (n)
∑
d′|n

d′OS(d′),

so OT (n) = 1. It follows that OT = sP , and by symmetry OS = sP c as required.

Products of the systems in Example 3.1 enjoy remarkable combinatorial properties, il-
lustrated in the examples below. The calculations in the examples all follow from the next
lemma. Let S ⊆ P be a set of primes. Write bncS for the S-part of n, that is

bncS =
∏
p∈S

|n|−1p .

Write gcd(n, S) as shorthand for gcd(n,
∏

p∈S p).

Lemma 3.3. For any set S ⊆ P,∑
n>1

bncS
ns

= ζ(s)
∏
p∈S

(
ps − 1

ps − p

)
. (6)

Proof. Recall that ∑
n>1,gcd(n,S)=1

1

ns
=
∏
p∈S

(
1− p−s

)
ζ(s). (7)

Write S = {p1, . . . }. Then, writing n = pa11 · · · parr m with gcd(m,S) = 1,∑
n>1

bncS
ns

=
∑

gcd(m,S)=1

∑
a1>0

· · ·
∑
ar>0

pa11 · · · parr
(pa11 · · · parr )sms

=
∑

gcd(m,S)=1

1

ms

∑
a2>0

· · ·
∑
ar>0

pa22 · · · parr
(pa22 · · · parr )s

∑
a1>0

1

(pa11 )s−1

=
∑

gcd(m,S)=1

1

ms

∑
a2>0

· · ·
∑
ar>0

pa22 · · · parr
(pa22 · · · parr )s

(
1

1− p−(s−1)1

)
,

so by induction we have∑
n>1

bncS
ns

=
∑

gcd(m,S)=1

1

ms

∏
p∈S

(
1

1− p−(s−1)

)
= ζ(s)

∏
p∈S

(
1− p−s

) 1

1− p−(s−1)

since I can write
∑

gcd(m,S)=1 as (1− p−s1 )
∑

gcd(m,S\{p1})=1 as in (7), as required.

10



Notice that (6) interpolates between ζ(s) (when S = ∅) and ζ(s − 1) (when S = P).
Of course how the abscissa of convergence moves from 1 at S = ∅ to 2 at S = P is rather
subtle. A similar argument gives the following.

Lemma 3.4. Let S be a set of primes. Then

aS,n =
∏
p∈S

(
1

p− 1

)(
p+ 1

|n|p
− 2

)
for all n > 1 if and only if ∑

n>1

aS,n
ns

= ζ(s)
∏
p∈S

ps + 1

ps − p
.

Proof. First, if q /∈ S and gcd(m, q) = 1, then

aS,mqk = aS,m (8)

for all k > 0, since |q|p = 1 for all p ∈ S. Second, we have an extension of the identity (7):
if q /∈ S, then ∑

m>1,gcd(m,q)=1

aS,m
ms

=
(
1− q−s

)∑
n>1

aS,n
ns

(9)

by the usual argument and (8). We now prove the lemma by induction on the cardinality
of S. Assume we have the lemma for some set S, and assume that q /∈ S. Write S ′ = S∪{q},
and notice that

∑
n>1

aS′,n
ns

=
∑
n>1

1
q−1

(
q+1
|n|q − 2

)
aS,n

ns

=

(
q + 1

q − 1

)∑
n>1

aS,n/|n|q
ns

− 2

q − 1

∑
n>1

aS,n
ns

=

(
q + 1

q − 1

) ∑
m>1,gcd(m,q)=1

∑
k>0

qkaS,mqk

(qk)sms
− 2

q − 1

∑
n>1

aS,n
ns

=

(
q + 1

q − 1

) ∑
m>1,gcd(m,q)=1

aS,m
ms

∑
k>0

1

(qk)s−1
− 2

q − 1

∑
n>1

aS,n
ns

by (8)

=
q + 1

q − 1

(
1− q−s

) 1

1− q1−s
∑
n>1

aS,n
ns
− 2

q − 1

∑
n>1

aS,n
ns

by (9).

So if we write φ(s) =
∑

n>1
aS,n
ns , then∑

n>1

aS′,n
ns

= φ(s)

((
q + 1

q − 1

)
(1− q−s)

(
1

1− q1−s

)
− 2

q − 1

)
= φ(s)

(
qs + 1

qs − q

)
,

11



showing the lemma for the set S ′. All that remains is to check the case of a singleton S = {p},
which is easy.

Example 3.2. If OS = sP and OT = ζ then, by Lemmas 2.1 and 3.4,

dS×T (s) =
∏
p∈P

(
1−p1−s

1+p−s

)
ζ2(s)ζ(s−1)

ζ(2s)
= ζ(s)

∏
p/∈P

1+p−s

1−p1−s .

Example 3.3. Taking P = {2}, OS = sP , OT = ζ again, we have

dS×T (s) =
(

1−21−s

1+2−s

)
ζ2(s)ζ(s−1)

ζ(2s)
.

The sequence OS×T = (1, 1, 5, 1, 7, 5, 9, 1, 17, . . . ) is A035109, which arises in work of Baake
and Moody [2, Eq. (5.10)], where it is shown to count the elements of Z3 with m distinct
colours so that one colour occupies a similarity sublattice of index m while the other colours
code the cosets.

Example 3.4. Let dS(s) = ζ(s− a) and dT (s) = ζ(s− b). Then a calculation shows that

OS×T (n) =
1

n

∑
d|n

µ(n/d)σa+1(d)σb+1(d)

(the details are in [16]), so Ramanujan’s formula gives

dS×T (s) =
ζ(s− a)ζ(s− b)ζ(s− a− b− 1)

ζ(2s− a− b)
.

These examples give an indication of how analytic properties of dS and dT relate to those
of dTk and dS×T , and this is pursued in [16].

4 Counting in orbit monoids

Counting in GT involves counting additive partitions, with two changes: some parts may
be missing (that is, a “restricted” additive partition) and some parts may come in several
versions. Thus the sequence GT is the Euler transform of the sequence OT (see Sloane and
Plouffe [18, pp.20–22]).

Lemma 4.1. For any map T ∈M,

1 +
∞∑
n=1

GT (n)sn =
∞∏
i=1

(
1− si

)−OT (i)
= ζT (s) (10)

and

nGT (n)−FT (n)−
n−1∑
k=1

FT (k)GT (n− k) = 0 (11)

for all n > 1.

12

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035109


Proof. The first equality in (10) is clear, since the coefficient of sn in the right-hand side
counts partitions of n into parts i with multiplicity OT (i); the second equality is the usual
Euler product expansion of the dynamical zeta function. The recurrence relation (11) may
be seen by expanding the zeta function as

1 +
∞∑
n=1

GT (n)sn =
∞∑
k=0

1

k!

(
∞∑
n=1

FT (n)
sn

n

)k

and verifying that (11) satisfies this relation.

Thus the categories F, O and G are related as follows,

F??
generating function

��

__
Möbius convolution

��
G oo

Euler
// O

and we indicate in this section how various growth properties of any one sequence relate to
growth properties of the others, mostly by pointing out how these quantities arise in abstract
analytic number theory. These results extend those of Puri and Ward [17] concerning rela-
tions between growth in FT and in OT , and some related asymptotic results are discussed
in the paper of Baake and Neumärker [3]. Before listing these, we discuss some of the state-
ments. It is often possible to estimate FT (n) (or even to have a closed formula for FT (n)),
and a reasonable combinatorial replacement for “hyperbolicity” is the assumption (12) of
a uniform exponential growth rate in FT , where h plays the role of topological entropy.
A similar assumption often used in abstract analytic number theory is (16) (hypotheses of
this shape are often called “Axiom A” or “Axiom A]” in number theory). The assump-
tion (16) is weaker than (12): it is pointed out in [10] that there are arithmetic semigroups
with GT (n)e−hn − C3 converging to zero exponentially fast for which nFT (n)e−hn does not
converge. The hypothesis is weakened further in (17), which is a permissive form of expo-
nential growth rate assumption. The hypothesis (12) fails for many non-hyperbolic systems.
If T is a quasihyperbolic toral automorphism or a non-expansive S-integer map with S finite
(see [4] or Example 4.7) then (12) fails since the ratio FT (n+ 1)/FT (n) does not converge
as n → ∞. In both cases the conclusions of Theorem 4.1[1] also fail (see Noorani [15] and
Waddington [20] for the case of a quasihyperbolic toral automorphism and [6] for the case
of S-integer systems with S finite). As pointed out by Lindqvist and Peetre [14], Meissel
considered the sum

∑
p

1
p(log p)a

in 1866, and the dynamical analogue of Meissel’s theorem

is given in Theorem 4.1[4] below. In Theorem 4.1, [1] is proved here and [2]–[4] are simply
interpretations for orbit–counting of well-known results in number theory.

Theorem 4.1. Let T be a map in M.
[1] Assume that there are constants C1 > 0, h > 0 and h′ < h with

FT (n) = C1e
hn + O(eh

′n). (12)

Then

OT (n) =
C1

n
ehn + O

(
eh
′n/n

)
, (13)
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πT (N) =
eh(N+1)

eh − 1
+ O

(
ehN/N3/2

)
, (14)

and

MT (N) =
N∑
n=1

OT (n)

ehn
= C1

N∑
n=1

1

n
+ C2 + O

(
eh
′′N
)

(15)

where h′′ = max{h′ − h,−h/2}, for some constant C2.
[2] Assume that there are constants C3 > 0, h > 0 and h′ < h with

GT (n) = C3e
hn + O(eh

′n). (16)

Then, for any α > 1,

πT (N) = C4
ehN

N
+ O

(
ehN/Nα

)
and (equivalently)

FT (N) = ehN + O
(
ehN/Nα−1) .

[3] Assume that there are constants C5 > 0, h > 0 with

GT (n) = (C5 + r(n)) ehn, (17)

where
∞∑
n=0

sup
k>n
|r(k)| <∞. Then

N∑
n=1

nOT (n)

ehn
= N + O(1); (18)

N∑
n=1

OT (n)

ehn
= logN + C6 + O(1/N); (19)

N∏
n=1

(
1− e−hn

)OT (n)
=
C7

N
+ O(1/N2);

and if in addition ζT (−eh) 6= 0 then, for any λ > 1,

OT (n) =
ehn

n
+ O

(
ehn/nλ

)
(20)

as n→∞.
[4] Assume that there are constants C8 > 0, h > 0 with

GT (n)

ehn
= C8 + O

(
1/ log(n)2+ε

)
as n→∞. (21)

Then
∞∑
k=1

OT (k)

ehkka
=

1

a
+ C9 + O(a)

as a→ 0.

14



Proof. [1] The estimate (13) is easy to see; it is implicit in [17] and [21] for example. By (1),
we have

FT (n) > nOT (n) > FT (n)−
∑

d|n,d<n

FT (d),

so
C1e

hn + O(eh
′n) > nOT (n) > C1e

hn − n
(
C1e

hn/2 + O(eh
′n/2)

)
which gives (13). The proofs of (14) – a dynamical prime number theorem – and (15) – a
dynamical Mertens’ theorem – use similar arguments to those in [5] where a more delicate
non-hyperbolic problem is studied. Turning to (14), notice that (13) implies that∣∣∣∣∣πT (N)−

N∑
n=1

C1

n
ehn

∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=1

O
(
eh
′n/n

)∣∣∣∣∣ = O
(
eh
′N
)
.

Now ∣∣∣∣∣∣
N∑
n=1

C1

n
ehn −

N∑
n=N−k(N)

C1

n
ehn

∣∣∣∣∣∣ 6
N−k(N)−1∑

n=1

C1e
hn = O

(
eh(N−k(N))

)
where k(N) = bN1/4c. Thus

N∑
n=N−k(N)

C1

n
ehn =

C1e
hN

N

k(N)∑
r=0

e−hr
(
1− r

N

)−1
=

C1e
hN

N

 eh

eh − 1
−O

(
e−hk(N)

)
+ O

k(N)∑
r=0

r
N


=

C1e
h(N+1)

eh − 1
+ O

ehN
N2

k(N)∑
r=0

r


=

C1e
h(N+1)

eh − 1
+ O

(
ehN/N3/2

)
.

Finally, notice that
FT (n)

nehn
− C1

n
=

1

n
O
(
e(h−h

′)n
)
, (22)

so

N∑
n=1

OT (n)

ehn
− C1

N∑
n=1

1

n
=

N∑
n=1

1

n

(
FT (n)

ehn
− C1

)
+
∑ 1

n

∑
d|n,d<n

µ(n/d)
FT (d)

ehn
. (23)

The bound (22) shows that the two terms on the right-hand side of (23) converge, giving (15)
without error term. To see the error term, notice that∣∣∣∣∣

∞∑
n=N+1

1

n

(
FT (n)

ehn
− C1

)∣∣∣∣∣ 6
∞∑

n=N+1

1

n
O
(
e(h
′−h)n

)
= O

(
e(h
′−h)n

)
15



and ∣∣∣∣∣∣
∞∑

n=N+1

1

n

∑
d|n,d<n

µ(n/d)
FT (d)

ehn

∣∣∣∣∣∣ 6
∞∑

n=N+1

(
ehn/2

ehn
+ O

(
e−hn/2

))
= O

(
e−hN/2

)
.

[2] These are standard results from Knopfmacher [12, Ch. 8].
[3] The results (18)–(20) are shown in [12] to be consequences of Knopfmacher’s Axiom A#

in (17); (20) is due to Indlekofer [9].
[4] This is shown by Wehmeier [22].

Standard estimates for the harmonic series allow (15) to be simplified; for example under
the hypothesis of Theorem 4.1[1] we have

MT (N) = C1 logN + O(1/N).

Notice that the statements (15) and (19) are versions of what is usually called a dynamical
Mertens’ theorem, though they may equally be seen in more elementary terms as conse-
quences of OT (n)

ehn
being close to 1

n
and the Euler–Maclaurin summation formula. Theo-

rem 4.1[1] has the following kind of consequence: If T is a hyperbolic toral automorphism
or mixing shift of finite type with entropy h, then∑

|τ |6n

1

eh|τ |
= log n+ C10 + O(1/n)

and ∏
τ

(
1− e−h|τ |

)−1
=
C11

n
+ O(1/n2)

where τ runs over the closed orbits of T . A stronger hypothesis than (21),

ζT (z) ∼ C12

1− ehz
(24)

as z → e−h with 0 < z < e−h, is considered in [11], where it is shown to give

N∑
n=1

OT (n)

ehn
=

N∑
n=1

1

n
+ C13 + o(1);

hence
N∏
n=1

(
1− ehn

)−OT (n)
= C12e

γN + o(N)

and
N∑
n=1

FT (n)

ehn
= N + o(N). (25)
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As pointed out in [11], the hypothesis (24) does not permit any smaller error in (25) for
the following reason. For any sequence (wn) of non-negative integers with

∑∞
n=1

wn

n
< ∞,

choose (an)with 0 6 an < n and an ≡ 2n + wn2n (mod n) and consider a map T with

OT (n) = 1 + (2n + wn2n − an)/n.

This gives property (24), and a calculation shows that the error term in (25) is as big

as O
(∑N

n=1wn

)
.

For a map T ∈M with infinitely many orbits, it is clear that GT is isomorphic to
∑

N N0

as a semigroup. The information about how many orbits T has of each length is contained
in the weight function ∂, and in each example we compute the size of the level set GT (n)
for each n > 1. If the sequence FT is a linear recurrence sequence, then the relation (11)
shows that GT is also a linear recurrence sequence. Example 4.4 shows that GT may satisfy
a relation of smaller degree, while Example 4.3 shows that GT may be of higher degree.

Example 4.1. Let T : X → X be the golden mean shift, so that FT = (1, 3, 4, 7, . . . ) is the
Lucas sequence A000032. By (2), OT is A006206. Write τi for the unique orbit of length i

for 1 6 i 6 4, and write τ
(1)
5 , τ

(2)
5 for the two orbits of length 5. Then the elements in GT

with weight 5 are

τ
(1)
5 , τ

(2)
5 , τ4 + τ1, τ3 + τ2, τ3 + 2τ1, τ2 + 3τ1, 2τ2 + τ1, 5τ1,

so GT (5) = 8. The relation (10) shows that GT (n) is the (n+ 1)st Fibonacci number, so GT
is A000045.

Example 4.2. Let T ∈ M have dT (s) = ζ(s). Then there is a one-to-one correspondence
between elements of GT and partitions of natural numbers, so GT is the classical partition
function A000041.

Example 4.3. Let T : X → X be the full shift on a symbols, so that ζT (s) = 1
1−as ; (10)

shows that GT (n) = an − an−1 for all n > 1. Thus FT in this case is a linear recurrence of
degree 1 while GT is a linear recurrence of degree 2.

Example 4.4. Let X = Z[1
6
] and let T : X → X be the map dual to r 7→ 2

3
r on Z[1

6
].

Then FT (n) = 3n − 2n is A001047 (a linear recurrence of degree 2) by [13] so GT (n) = 3n−1

by (10), and GT is A000244 (a linear recurrence of degree 1). More generally, if b > a > 0
are coprime integers, then the dual map to r 7→ a

b
r on Z[a

b
] has

ζT (s) =
1− as
1− bs

,

so GT (n) = (bn − abn−1) for all n > 1.

Example 4.5. The quadratic map T from Example 2.5 has a particularly simple monoid: GT
is the binary partition function A018819 (the number of partitions of n into powers of 2; by
Sloane and Sellers [19] this is also the number of “non-squashing” partitions of n).
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Example 4.6. An example similar in growth rate to Example 4.5 is studied in [6]: the map
dual to x 7→ 2x on the localization Z(3) at the prime 3 has FT (n) = |2n − 1|−13 , so

OT (n) =

{
1 if n = 1 or 2 · 3k, k > 1;

0 if not,

and therefore GT (2n + 1) is the number of partitions of 6n + 3 into powers of 3 for n > 0,
and GT (2n) = GT (2n+ 1) for n > 1.

Example 4.7. An example of a map that is not hyperbolic but still has exponentially many
periodic orbits is given by the simplest non-trivial S-integer map dual to x 7→ 2x on Z[1/3].
By [4] this has FT (n) = (2n − 1)|2n − 1|3, and a calculation shows that OT is A060480, and
thus GT = (1, 1, 3, 4, 10, 13, 33, 56, 10, . . . ).
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