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Abstract. We study mixing properties of algebraic actions of Qd , showing in particular
that prime mixing Qd actions on connected groups are mixing of all orders, as is the case
for Zd -actions. This is shown using a uniform result on the solution of S-unit equations in
characteristic zero fields due to Evertse, Schlickewei and W. Schmidt. In contrast, algebraic
actions of the much larger group Q∗ are shown to behave quite differently, with finite order
of mixing possible on connected groups.

Mixing properties of Zd -actions by automorphisms of a compact metrizable abelian group
are quite well understood. Roughly speaking, the picture has three facets. First, the one-
to-one correspondence between such actions and countably generated modules over the
integral group ring Rd = Z[Zd ] of the acting group Zd due to Kitchens and Schmidt [6]
allows any mixing problem to be reduced to the case corresponding to a cyclic module of
the form Rd/P for a prime ideal P ⊂ Rd . Second, in the connected case P ∩ Z = {0},
Schmidt and Ward [13] showed that mixing implies mixing of all orders by relating
the mixing property to S-unit equations and exploiting a deep result of Schlickewei on
solutions of such equations [11] (see also [4] and [14]). Finally, in the totally disconnected
case P ∩Z = pZ for some rational prime p, Masser [9] has shown that the order of mixing
is determined by the mixing behaviour of shapes, reducing the problem—in principle—to
an algebraic one.

Our purpose here is to show how some of this changes for algebraic actions of infinitely
generated abelian groups. The algebra is more involved, so for simplicity we restrict
attention to the simplest extreme examples: actions of Q×

>0 (isomorphic to the direct sum
of countably many copies of Z) and actions of Qd (which is a torsion extension of Zd ).
These groups are the simplest non-trivial examples chosen from the ‘dual’ categories of
free abelian and infinitely divisible groups in the sense of MacLane [8]. The algebraic
difficulties mean we cannot present the complete picture found for Zd -actions, and the
emphasis is partly on revealing or suggestive examples. Some topological properties
(expansiveness and closed invariant sets) for actions of infinitely generated abelian groups
have been studied by Berend [1] and Miles [10].

Let α be an action of a countable abelian group � on a probability space (X,B, µ).
For a sequence (γn) in �, write γn → ∞ if, for every finite set F ⊂ �, there is an N for
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which n > N implies that γn /∈ F . The action α is said to be mixing on r sets if, for any
sets

A1, . . . , Ar ∈ B,

µ(αγ1A1 ∩ · · · ∩ αγr Ar) → µ(A1) · · · µ(Ar) as γs − γt → ∞ for s �= t .

The order of mixing M(α) of α is the largest value of r for which α is mixing on r sets,
and α is said to be mixing of all orders, denoted M(α) = ∞, if it is mixing on r sets for
all r .

1. Algebraic actions
Just as for algebraic Zd -actions (see Schmidt’s monograph [12]), Pontryagin duality gives
a description of �-actions by automorphisms of compact abelian groups in terms of
modules over the ring Z[�]. If α is a �-action by automorphisms of X, then the character
group M = X̂ inherits the structure of a Z[�]-module via the dual automorphisms α̂γ

for γ ∈ �; conversely any Z[�]-module M defines a compact abelian group XM = M̂

carrying a dual �-action αM . Write λ = λX for the Haar measure on X.
A module is said to be cyclic if it is singly generated as a module, so takes the

form Z[�]/I for some ideal I ⊂ Z[�], and the dual �-action will be said to be prime
(or radical) if the module takes the form Z[�]/P for some prime (respectively radical)
ideal P ⊂ Z[�].

The rings that arise here are R∞ = Z[Q×
>0], corresponding to actions of Q×

>0, and
RQd = Z[Qd ], corresponding to actions of Qd . Notice that these are wildly different
rings; for example, R∞ has infinite Krull dimension, while RQd has Krull dimension d +1.
Both are non-Noetherian rings.

2. Actions of Qd

The main result of [13] says that, for an algebraic Zd -action α on a connected group,

M(α) > 1 	⇒ M(α) = ∞.

The same property turns out to also hold for the simplest actions of Qd . This is shown in
Theorem 2.1 below, which is stated in a slightly more general setting. The rational rank
of an abelian group is the maximal number of elements which are linearly independent
over Z. Thus, Qd and Zd have rational rank d , while Q× does not have finite rational rank.
If � has rational rank d , then R� = Z[�] has Krull dimension d + 1, and it may or may
not be Noetherian depending on the divisibility properties of �.

THEOREM 2.1. Let α be an algebraic action of a countable torsion-free group � of finite
rational rank corresponding to a cyclic module R�/I with I ∩ Z = {0} and I a radical
ideal. Then

M(α) > 1 	⇒ M(α) = ∞.

Proof. The result in [13] depended on a bound for the number of solutions to S-unit
equations over number fields [11] with certain uniformity properties; as shown in [12,
§VIII.27] it is enough to have a qualitative bound for any characteristic zero field. Here we
use instead the following deep result from [5]. �
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THEOREM. (Evertse, Schlickewei and W. Schmidt) Let K be an algebraically closed field
of characteristic zero, and let � be a finitely generated multiplicative subgroup of (K×)r

with rank d . For fixed
a1, . . . , ar ∈ K×,

the number of solutions (x1, . . . , xr) ∈ � of the equation

a1x1 + · · · + arxr = 1

for which no proper subsum vanishes is bounded above by

exp((6r)3r(d + 1)).

Returning to the proof of Theorem 2.1, write α = αR�/I , X = XR�/I and λ = λX .
Assume that the action is not mixing on r sets for some r > 1. It follows that there are
measurable sets A1, . . . , Ar ⊂ X and a sequence of r-tuples

(q
(j)

1 , . . . , q
(j)
r )j≥1 ∈ �r

such that q
(j)
s − q

(j)
t → ∞ as j → ∞ for s �= t , for which

λ(α
q

(j)

1
A1 ∩ · · · ∩ α

q
(j)
r

Ar) �→
r∏

s=1

λ(As) as j → ∞. (1)

By approximating the indicator functions of the sets appearing in (1) and applying
the orthogonality relations for characters on X, it follows that there are non-zero
elements a1, . . . , ar ∈ R�/I with the property that

α̂
q

(j)

1
(a1) + · · · + α̂

q
(j)
r

(ar) = 0 for infinitely many j. (2)

First assume that the ideal I is a prime ideal P . Embed R�/P into a field K of characteristic
zero (this is possible because P is prime and P ∩ Z = {0}); denote by

x �→ u
q

(j)

s,1
1 · · · uq

(j)
s,d

d x = uq
(j)
s x

the automorphism of K defined by the automorphism α̂
q

(j)
s

of R�/P (writing uq for

u
q1
1 · · · uqd

d , where q = (q1, . . . , qd) ∈ �d ). Then equation (2) implies that

uq
(j)

1 a1 + · · · + uq
(j)
r ar = 0 for infinitely many j (3)

holds in K. Rearranging, this gives an equation

(−a2/a1)u
q

(j)
2 −q

(j)
1 + · · · + (−ar/a1)u

q
(j)
r −q

(j)
1 = 1 for infinitely many j. (4)

Assume that the rational rank of � is d < ∞ and let (�n) denote a sequence of subgroups
with the following properties:
• for each n, �n

∼= Zd ;
• �1 ⊂ �2 ⊂ · · · ;
• � = ⋃

n≥1 �n.
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Let An denote the set of solutions to (4) with each q
(j)
s ∈ �n for which no subsum vanishes

(thus An is a subset of the set of values of j for which (4) holds, A1 ⊂ A2 ⊂ · · ·
and

⋃
n≥1 An is the set of all j for which (4) holds). We may assume without loss of

generality that the map

j �→ (q
(j)

2 − q
(j)

1 , . . . , q
(j)
r − q

(j)

1 )

is injective. Since �n is isomorphic to Zd , the theorem of Evertse, Schlickewei and
W. Schmidt applies to show that

|An| ≤ exp((6r)3r (d + 1)). (5)

Any finite bound in (5) would suffice to prove the main result in [13], namely Theorem 2.1
for Zd -actions. Here the additional uniformity in the theorem of Evertse, Schlickewei and
Schmidt is needed: the bound in (5) is independent of n, so it follows that equation (4)
holds without the vanishing subsum for only finitely many j . Thus, there exists a
set S � {2, . . . , r} such that

∑
s∈S

(−as/a1)u
q

(j)
s −q

(j)
1 = 0 for infinitely many j. (6)

The identity (6) shows that α is not mixing on |S| < r sets. Thus, for any r, 1 < r < ∞,

M(α) ≤ r 	⇒ M(α) < r,

so
M(α) > 1 	⇒ M(α) = ∞.

This proves Theorem 2.1 when I = P is prime. Assume now that I is a radical ideal and
that the system corresponding to the module R�/I is not mixing on r sets for some r > 1
but is mixing. As before, this means there is a sequence of r-tuples

(q
(j)

1 , . . . , q
(j)
r )j≥1 ∈ �r

such that q
(j)
s − q

(j)
t → ∞ as j → ∞ for s �= t , for which the equation

uq
(j)
1 a1 + · · · + uq

(j)
r ar = 0 for infinitely many j (7)

holds in the ring R�/I . Let

U = 〈〈c, a1,u
q − 1 | c ∈ Z\{0}, q ∈ �d 〉〉

where 〈〈A〉〉 denotes the multiplicative group generated by A. This is a multiplicative set,
and we claim that U ∩ I = ∅. If, for some q ∈ �d , uq − 1 ∈ I , then αR�/I is not mixing,
which is excluded by hypothesis. Since I is radical, it follows that (uq − 1)m /∈ I for
all m ≥ 1. If

(uq − 1)mb ∈ I for some q ∈ �d,m ∈ Z and b /∈ I,

then we must have (uq − 1)mbm ∈ I . Since I is radical, this implies that (uq − 1)b ∈ I ,
so in R�/I

b + I = ujqb + I for all j ≥ 1,
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which again contradicts the assumption that αR�/I is mixing. By induction, no product of
the form

a�
1(u

q1 − 1)m1 · · · (uqk − 1)mk

can be in I . Since R�/I has no additive torsion, it follows that U ∩ I = ∅. By finding a
maximal ideal above I in the localization of R� at U , we may find a prime ideal P ⊃ I

with the property that P ∩ U = ∅ (see [3, Proposition 2.11]). Equation (7) drops via the
map x → x + P = x to a non-trivial equation

uq
(j)

1 a1 + · · · + uq
(j)
r ar = 0 for infinitely many j, (8)

in which not all the coefficients have vanished. It follows that the sequence

(q
(j)

1 , . . . , q
(j)
r )j≥1 ∈ �r

witnesses non-mixing on r sets in the prime system corresponding to R�/P , and the
argument above shows that this is only possible if M(αR�/P ) = 1. By [12, Theorem 1.6],
this would require that there be a non-mixing element in �, which is impossible by the
choice of U . �

Theorem 2.1 does not hold without the assumption that the rational rank is finite—see
Theorem 2.3. It also cannot hold without the assumption of connectedness. In the notation
of the proof of Theorem 2.1, if the cyclic module R�/I has additive torsion, then there is
an element a + I and an integer k > 0 with ka ∈ I . For a sufficiently large n, a ∈ R�n ,
and setting J = I ∩ R�n induces an inclusion

R�n/J ⊂ R�/I,

which dualizes to show that the original action restricted to �n has a factor corresponding
to Z[�n]/J for some ideal J with J ∩ Z �= {0}. Since �n

∼= Zd , finite non-trivial order
of mixing is possible unless there are additional conditions on the ideal (see Schmidt [12,
Ch. VIII]).

One of the most striking features of Zd -actions for d > 1 (as opposed to actions of Z)
is that simple examples may have order of mixing satisfying

1 < M < ∞.

This was first pointed out by Ledrappier [7], who showed that the Z2-action α

corresponding to the module Z[u±1
1 , u±1

2 ]/〈2, 1 + u1 + u2〉 has

M(α) = 2;
the papers [2] and [15] give related constructions for any specified order of mixing.
The same construction will give algebraic Qd -actions for any d > 1 with any specified
order of mixing.

Theorem 2.1 shows that Qd -actions on connected groups also behave much like
Zd -actions. Further evidence for the essential similarity of algebraic Q-actions
and Z-actions is provided by the next result.

PROPOSITION 2.2. Any mixing prime algebraic Q-action is mixing of all orders.
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Proof. Let the action correspond to the module RQ/P for some prime ideal P . If the action
is not mixing on r sets for some r ≥ 2 then as before we find an equation

uq
(j)

1 a1 + · · · + uq
(j)
r ar = 0 for infinitely many j (9)

which holds in some field K (not necessarily of characteristic zero) with

q
(j)
s − q

(j)
t → ∞ in Q as j → ∞ for s �= t .

If P ∩ Z �= {0} and P contains a non-trivial polynomial, then the variable u satisfies an
algebraic equation over a finite field, so must be a root of unity in K. This precludes
mixing. So P = 〈p〉 for some rational prime p, and the Q-action is a full Q shift on p

symbols, so is mixing of all orders.
If P ∩ Z = {0} then we are in the setting of Theorem 2.1, which shows that the system

is mixing of all orders. �

Actions of the much larger group Q×
>0 behave quite differently. A simple argument

using similar ideas shows the following.

THEOREM 2.3. Let α be an algebraic action of Q×
>0 corresponding to a module R∞/P

with P ∩Z = {0} and P a finitely generated prime ideal. Then M(α) > 1 	⇒ M = ∞.

The ring R∞ has ideals that are not finitely generated, and the next example shows that
these behave differently.

Example 2.4. Consider the natural action of Q×
>0 on Q̂ (that is, the rational r ∈ Q×

>0 acts
via the automorphism dual to x �→ rx on Q). This is mixing, since the equation ax+b = 0
in Q determines x. On the other hand, the action is not mixing on three sets since

1 · (1) + r · (−1) + (r − 1) · (1) = 0

for all r in Q, and as elements of Q×
>0, r, r − 1 and r/(r − 1) all go to infinity as r → ∞.
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