MIXING ACTIONS OF THE RATIONALS
RICHARD MILES AND TOM WARD

ABSTRACT. We study mixing properties of algebraic actions of Q¢,
showing in particular that prime mixing Q% actions on connected
groups are mixing of all orders, as is the case for Z%actions. This
is shown using a uniform result on the solution of S-unit equa-
tions in characteristic zero fields due to Evertse, Schlickewei and
W. Schmidt. In contrast, algebraic actions of the much larger
group Q* are shown to behave quite differently, with finite order
of mixing possible on connected groups.

Mixing properties of Z%actions by automorphisms of a compact
metrizable abelian group are quite well understood. Roughly speak-
ing, the picture has three facets. Firstly, the one-to-one correspondence
between such actions and countably generated modules over the inte-
gral group ring Ry = Z[Z4) of the acting group Z? due to Kitchens
and K. Schmidt [6] allows any mixing problem to be reduced to the
case corresponding to a cyclic module of the form R;/P for a prime
ideal P C R;. Secondly, in the connected case PNZ = {0}, K. Schmidt
and Ward [13] showed that mixing implies mixing of all orders by re-
lating the mixing property to S-unit equations and exploiting a deep
result of Schlickewei on solutions of such equations [11] (see also [4]
and [14]). Finally, in the totally disconnected case P NZ = pZ for
some rational prime p, Masser [9] has shown that the order of mixing
is determined by the mixing behaviour of shapes, reducing the problem
— in principle — to an algebraic one.

Our purpose here is to show how some of this changes for algebraic
actions of infinitely generated abelian groups. The algebra is more in-
volved, so for simplicity we restrict attention to the simplest extreme
examples: actions of QZ, (isomorphic to the direct sum of countably
many copies of Z) and actions of Q? (which is a torsion extension
of Z4). These groups are the simplest non-trivial examples chosen from
the ‘dual’ categories of free abelian and infinitely divisible groups in the
sense of MacLane [8]. The algebraic difficulties mean we cannot present
the complete picture found for Z?-actions, and the emphasis is partly
on revealing or suggestive examples. Some topological properties (ex-
pansiveness and closed invariant sets) for actions of infinitely generated
abelian groups have been studied by Berend [1] and Miles [10].
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Let o be an action of a countable abelian group I' on a probability
space (X, B, u). For a sequence (7,) in I', write 7, — oo if for every
finite set F' C I' there is an N for which n > N implies that v, ¢ F.
The action « is said to be mizing on r sets if for any sets

Ay, . A € B,

ey A0 Mo, Ar) = p(Ay) -+ p(Ay) as s — v — oo for s # .

The order of mixing M(«) of a is the largest value of r for which «
is mixing on r sets, and « is said to be mixing of all orders, de-
noted M(«) = oo, if it is mixing on r sets for all r.

1. ALGEBRAIC ACTIONS

Just as for algebraic Z%-actions (see K. Schmidt’s monograph [12]),
Pontryagin duality gives a description of I'-actions by automorphisms
of compact abelian groups in terms of modules over the ring Z[T']. If «
is a I"-action by automorphisms of X, then the character group M = X
inherits the structure of a Z[I']-module via the dual automorphisms o,
for v € T'; conversely any Z[I']-module M defines a compact abelian
group Xy = M carrying a dual I'-action ay,. Write A = Ax for the
Haar measure on X.

A module is called cyclic if it is singly generated as a module, so
takes the form Z[I'|/I for some ideal I C Z[I'], and the dual I'-action
will be called prime (or radical) if the module takes the form Z[I'|/P
for some prime (resp. radical) ideal P C Z[I'].

The rings that arise here are R, = Z[QZ], corresponding to actions
of Q%,, and Rga = Z[Q), corresponding to actions of Q¢. Notice that
these are wildly different rings: for example, R, has infinite Krull di-
mension, while Rgas has Krull dimension d+1. Both are non-Noetherian
rings.

2. AcTIONS OF Q¢

The main result of [13] says that for an algebraic Z-action o on a
connected group,

M(a) >1 = M(a) = cc.

The same property turns out to also hold for the simplest actions of Q.
This is shown in Theorem 2.1 below, which is stated in a slightly more
general setting. The rational rank of an abelian group is the maximal
number of elements which are linearly independent over Z. Thus Q¢
and Z? have rational rank d, while Q* does not have finite rational rank.
If T has rational rank d, then Rr = Z[I'] has Krull dimension d+1, and
may or may not be Noetherian depending on the divisibility properties
of T.
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Theorem 2.1. Let a be an algebraic action of a countable torsion-free
group T of finite rational rank corresponding to a cyclic module Rp/I
with I NZ = {0} and I a radical ideal. Then

M(a) >1 = M(a) = cc.

Proof. The result in [13] depended on a bound for the number of solu-
tions to S-unit equations over number fields [11] with certain uniformity
properties; as shown in [12, Sect.VIII.27] it is enough to have a quali-
tative bound for any characteristic zero field. Here we use instead the
following deep result from [5].

Theorem. [EVERTSE, SCHLICKEWEI & W. SCHMIDT] Let K be an
algebraically closed field of characteristic zero, and let T' be a finitely
generated multiplicative subgroup of (K*)" with rank d. For fized

a,...,a, € KX,
the number of solutions (x1,...,z,) € I' of the equation
ary+ -+ az, =1
for which no proper subsum vanishes is bounded above by
exp ((6r)* (d+1)).

Returning to the proof of Theorem 2.1, write o = ag, /1, X = Xpg. /1
and A = Ax. Assume that the action is not mixing on r sets for
some r > 1. It follows that there are measurable sets A;,..., A, C X
and a sequence of r-tuples

(,rnnsal?) e
jz1

such that qgj) — qgj) — o0 as J — oo for s # t, for which

A <O{q§j)A1 N---N aqﬁj)Ar> as H A(Ag) as j — 0. (1)
s=1

By approximating the indicator functions of the sets appearing in (1)
and applying the orthogonality relations for characters on X, it follows

that there are non-zero elements ay,...,a, € Rr/I with the property
that
(Yq(\j)(al) +o c?q?-)(a,n) = 0 for infinitely many j. (2)
1 r

First assume that the ideal [ is a prime ideal P. Embed Rp/P into
a field K of characteristic zero (this is possible because P is prime
and PNZ = {0}); denote by

) ) :
q q (4)
T ou™ e uS e =u?
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the automorphism of K defined by the automorphism O[/q(\j) of Rp/P

(writing w9 for uf'---ul?, where ¢ = (q1,...,¢4) € I'?). Then equa-
tion (2) implies that

©) %)
ul a4 +u? a, =0 for infinitely many j (3)

holds in K. Rearranging, this gives an equation

@) _ (1) (G _ o)
(—az/a)u®® ~4 4 ... 4 (—a,/a;)u® ~9 =1 for infinitely many ;.

(4)
Assume that the rational rank of I' is d < oo and let (I',,) denote a
sequence of subgroups with the following properties:

e for each n, I, = Z%;
° F1CF2C"';
° F:UnZIFn.

Let A,, denote the set of solutions to (4) with each q? €T, for which
no subsum vanishes (thus A, is a subset of the set of values of j for
which (4) holds, A; C Ay C --+ and {J,5, A, is the set of all j for
which (4) holds). We may assume without loss of generality that the
map
i (6~ .a” — af)

is injective. Since I, is isomorphic to Z%, the theorem of Evertse,
Schlickewei and W. Schmidt applies to show that

|A,| < exp ((67‘)3r(d + 1)) ) (5)

Any finite bound in (5) would suffice to prove the main result in [13],
namely Theorem 2.1 for Z4-actions. Here the additional uniformity in
the theorem of Evertse, Schlickewei and W. Schmidt is needed: The
bound in (5) is independent of n, so it follows that equation (4) holds
without vanishing subsum for only finitely many j. Thus there exists
aset S C {2,...,7} such that

Z(—as/al)qu])_q(lj) = 0 for infinitely many j. (6)

ses

The identity (6) shows that « is not mixing on |S| < r sets. Thus for
any 7,1 <r < o0,

M(a) <r = M(a) <r,
M(a)>1 = M(a) = .

This proves Theorem 2.1 when I = P is prime. Assume now that [ is
a radical ideal and that the system corresponding to the module Ryp/I
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is not mixing on r sets for some r > 1 but is mixing. As before, this
means there is a sequence of r-tuples
(q(lj), . ,qfﬁ) el
Jj=1
such that qgj ) qgj ) 5 00 as j — oo for s # t, for which the equation

(4) ()
ud’ a + -+ u?’ a, = 0 for infinitely many j (7)

holds in the ring Rr/I. Let
U=<ca,ul —1|ceZ\{0},qel>

where < A > denotes the multiplicative group generated by A. This is
a multiplicative set, and we claim that U NI = . If, for some q € I'?,
u? —1 € I, then ap. /s is not mixing, which is excluded by hypothesis.
Since [ is radical, it follows that (u? — 1)™ ¢ [ for all m > 1. If

(u?—1)"bc I forsomeqel mecZandb¢ I

then we must have (u? — 1)™b™ € I. Since [ is radical, this implies
that (u? —1)be€ I, soin Rr/I

b+1=u'%+1forall j>1,

which again contradicts the assumption that ap./; is mixing. By in-
duction, no product of the form

af(uql — )™ (u — )™

can be in /. Since Rr/I has no additive torsion, it follows that UNI =
(). By finding a maximal ideal above I in the localization of Rr at U, we
may find a prime ideal P D I with the property that PNU = 0 (see [3,
Prop. 2.11]). The equation (7) drops via the map + -z + P =T to a
non-trivial equation

@) &) e ,

u? @y + -+ +u? @ = 0 for infinitely many j, (8)
in which not all the coefficients have vanished. It follows that the
sequence

Jj>1
witnesses non-mixing on r sets in the prime system corresponding
to Rr/P, and the argument above shows that this is only possible
if M(ag.,p)=1. By [12, Th. 1.6], this would require that there be a
non-mixing element in I, which is impossible by the choice of U. [

Theorem 2.1 does not hold without the assumption that the ratio-
nal rank is finite — see Theorem 2.3. It also cannot hold without the
assumption of connectedness. In the notation of the proof of Theo-
rem 2.1, if the cyclic module Rr/I has additive torsion, then there is
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an element a + I and an integer k > 0 with ka € I. For a sufficiently
large n, a € Ry, and setting J = I N Ry, induces an inclusion

an/J C RF/I

which dualizes to show that the original action restricted to I',, has a
factor corresponding to Z[I',]/J for some ideal J with J NZ # {0}.
Since I',, & Z4, finite non-trivial order of mixing is possible unless there
are additional conditions on the ideal (see K. Schmidt [12, Chap. VIII]).

One of the most striking features of Z?-actions for d > 1 (as opposed
to actions of Z) is that simple examples may have order of mixing
satisfying

1 <M < oo.

This was first pointed out by Ledrappier [7], who showed that the Z2-

action a corresponding to the module Z[uf', ui']/(2,1 + u; + uy) has

M(a) = 2;

the papers [2] and [15] give related constructions for any specified order
of mixing. The same construction will give algebraic Q%actions for
any d > 1 with any specified order of mixing.

Theorem 2.1 shows that Q%actions on connected groups also behave
much like Z%actions. Further evidence for the essential similarity of
algebraic Q-actions and Z-actions is provided by the next result.

Proposition 2.2. Any mizing prime algebraic Q-action is mixing of
all orders.

Proof. Let the action correspond to the module Rgy/P for some prime
ideal P. If the action is not mixing on r sets for some r > 2 then as
before we find an equation
() ) . . .
w a4 - +u? a, = 0 for infinitely many j 9)
which holds in some field K (not necessarily of characteristic zero) with

qgj)—qij)—>ooin@asj—>oof01"87ét.

If PNZ # {0} and P contains a non-trivial polynomial, then the
variable u satisfies an algebraic equation over a finite field, so must be
a root of unity in K. This precludes mixing. So P = (p) for some
rational prime p, and the Q-action is a full Q shift on p symbols, so is
mixing of all orders.

If PNZ = {0} then we are in the setting of Theorem 2.1, which
shows that the system is mixing of all orders. U

Actions of the much larger group QZ, behave quite differently. A
simple argument using similar ideas shows the following.

Theorem 2.3. Let o be an algebraic action of QZ, corresponding to
a module Ry /P with PNZ = {0} and P a finitely generated prime
ideal. Then M(a) >1 = M = 0.
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The ring R, has ideals that are not finitely generated, and the next
example shows that these behave differently.

Example 2.4. Consider the natural action of Q% on @ (that is, the
rational r € Q%, acts via the automorphism dual to z — rz on Q).
This is mixing, since the equation ax + b = 0 in Q determines z. On
the other hand, the action is not mixing on 3 sets since

I-(D)+r-(-1)+(r—1)-(1)=0

for all r in Q, and as elements of QZ, r,7 —1 and -5 all go to infinity
as r — oo.
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