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Abstract. The exact order of mixing for zero-dimensional algebraic dynamical systems
is not entirely understood. Here non-Archimedean norms in function fields of positive
characteristic are used to exhibit an asymptotic shape in non-mixing sequences for
algebraic Z2-actions. This gives a relationship between the order of mixing and the convex
hull of the defining polynomial. Using these methods, we show that an algebraic dynamical
system for which any shape of cardinality three is mixing, is mixing of order three, and for
any k ≥ 1 exhibit examples that are k-fold mixing but not (k + 1)-fold mixing.

1. Introduction and definitions
Let α be a Zd -action by µ-preserving transformations of a non-trivial probability space
(X,S, µ). A sequence (n(j)1 ,n(j)2 , . . . ,n(j)r ) of r-tuples of elements of Zd with

n(j)s − n(j)t → ∞ as j → ∞ for every s �= t (1.1)

is mixing for α, if for any sets A1, . . . , Ar ∈ S,

lim
j→∞µ(α−n(j)1 (A1) ∩ · · · ∩ α−n(j)r (Ar)) = µ(A1) · · ·µ(Ar). (1.2)

If any sequence satisfying (1.1) has (1.2), then α is mixing of order r . As usual, an action
that is mixing of order 2 is simply called mixing. The maximum value of r for which (1.1)
implies (1.2)—if this is finite—is the order of mixing of α. If (1.1) implies (1.2) for all r ,
then α is mixing of all orders. A finite set {n1, . . . ,nr } of integer vectors is a mixing shape
for α if

lim
k→∞µ(α−kn1(A1) ∩ · · · ∩ α−knr (Ar)) = µ(A1) · · ·µ(Ar). (1.3)

In general, mixing properties of shapes have no bearing on the order of mixing.
For example, there are non-mixing actions for which all shapes are mixing
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(see [10, Theorem 1.2]). An algebraic dynamical system—one in whichX is assumed to be
a compact metrizable abelian group, µ is a Haar measure, and α acts by automorphisms—
with all shapes mixing is, in contrast, mixing of all orders. However, it is not clear whether
non-mixing shapes detect the exact order of mixing for algebraic systems that are not
mixing of all orders—see [7, §27, §28] for an overview of this problem, and [6] for
Ledrappier’s seminal example which showed that mixing algebraic Z2-actions need not
be mixing of all orders.

CONJECTURE 1.1. An algebraic dynamical system for which all shapes of cardinality r

are mixing is mixing of order r .

As remarked above, the (suitably interpreted) conjecture holds for ‘r = ∞’ in the sense
that all shapes mixing implies mixing of all orders for algebraic dynamical systems. It also
holds when r = 2—that is, if each element αn, n �= 0 is mixing, then the whole action α

is mixing (see [7, Theorem 1.6]). In Theorem 3.2 below we show that the conjecture holds
when r = 3 and d = 2. Moreover, a weaker lower bound for the order of mixing for d = 2
is shown in Theorem 3.1, and this is used to give examples with any given order of mixing
in §4.

2. Algebraic Z2-actions
Let R2 = Z[u±1

1 , u±1
2 ], the ring of Laurent polynomials with integer coefficients in the

commuting variables u1, u2. Following [3], associate a given algebraic Z2-action α on X

to an R2-module as follows. Let M be the countable Pontryagin (character) group of X,
and define ujm = α̂ej (m) for all m ∈ M , where ej ∈ Z2 is the j th unit vector and α̂ej

is the automorphism of M dual to αej for j = 1, 2. A polynomial F ∈ R2 has the form
F(u) = ∑

n∈Z2 cF (n)un, where cF (n) ∈ Z and cF (n) = 0 for all but finitely many n ∈ Z2,
and un = u

n1
1 u

n2
2 . ThenFm = ∑

n∈Z2 cF (n)α̂n(m) for everym ∈ M . Conversely, suppose
that M is a countable R2-module, and let XM = M̂ be its compact abelian character group.
Each uj is a unit in R2, so the map γj defined by γj (m) = ujm is an automorphism of
M . Define an algebraic Z2-action αM on XM by α

ej
M = γ̂j . Thus (XM, αM) ↔ M gives

a one-to-one correspondence between algebraic Z2-actions and countable R2 modules.
See [7, Ch. II] for a further explanation and many examples.

Approximating indicator functions of the sets A1, . . . , Ar appearing in (1.2) with
trigonometric polynomials shows that for the algebraic action α corresponding to the
R2-module M , (1.2) is equivalent to the statement that for any m1, . . . ,mr ∈ M , not all
zero, the relation

m1u
n(j)1 + m2u

n(j)2 + · · · + mru
n(j)r = 0 (2.1)

holds for only finitely many j .
In order to use this to make progress with Conjecture 1.1, the following well-known

results are needed. A consequence of the algebraic formulation of mixing in (2.1) is
that a given sequence (n(j)1 ,n(j)2 , . . . ,n(j)r ) is mixing for αM on XM if and only if it is
mixing for αR2/P on XR2/P for every prime ideal P ⊂ R2 associated to the module M

(see [4, Theorem 3.3] or [8, Theorem 2.2] for a proof of this). Moreover, if XM is
connected (equivalently, if M is torsion-free as an additive group), then by [8], if αM is
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mixing, it is also mixing of all orders. If P is a prime ideal generated by a single prime
number then αR2/P is the Z2-shift on {0, . . . , p − 1}Z2

and is, therefore, mixing of all
orders. Finally, if P contains a prime number and is not of the form pR2 + FR2 for
some non-zero polynomial F , then R2/P is finite and αR2/P is not mixing. It follows that
in order to show Conjecture 1.1 for d = 2, it is sufficient to study algebraic dynamical
systems corresponding to cyclic modules of the form R2/P for some prime ideal P ⊂ R2

of the form 〈p,F 〉 = pR2 + FR2, where p is a prime number and F ∈ R2.

3. Asymptotic geometry
From now on we will only be working in rings of characteristic p for a fixed prime p,
so we replace the coefficient ring Z with the finite field Fp = Z/pZ. Notationally this

replaces the polynomial F ∈ R2 with the reduced mod p polynomial f = F̄ ∈ R
(p)

2 =
Fp[u±1

1 , u±2
2 ], and the prime ideal

P = 〈p,F 〉 = pR2 + FR2

with the prime ideal

p = 〈f 〉 = fR
(p)

2 .

Notice that R2/P is then the same ring as R(p)

2 /p. For simplicity of notation we will write

α = α
R
(p)
2 /p

for the Z2-action on the dual of R(p)

2 /p where p = 〈f 〉 for a fixed irreducible

polynomial f ∈ R
(p)

2 .
Let M(α) denote the order of mixing—the largest value of r for which (1.1) implies

(1.2)—of α. Finding M(α) is difficult (see [7, §28]) even for this special class of
systems. Our purpose here is to find a new inequality that relates M(α) to the shape
of the polynomial f .

The polynomial f can be written f (u) = ∑
n∈Z2 cf (n)un, where cf (n) ∈ Fp for all

n ∈ Z2 and cf (n) = 0 for all but finitely many n ∈ Z2. Let

S(f ) = {n ∈ Z2 | cf (n) �= 0}
denote the support of f , and N (f ) the convex hull of S(f ). Thus S(f ) is some finite set
of points in Z2, and N (f ) is a convex polygon in Z2.

The relationships found below between the faces of N (f ) and measurable properties of
the action are essentially equivalent to the geometry of half-spaces and relative entropies
in [4]. The approach taken here using non-Archimedean norms seems to be better adapted
to attacking Conjecture 1.1.

THEOREM 3.1. Assume that N (f ) is an R-gon and f is irreducible. Let α be the
Z2-action on the dual of R(p)

2 /〈f 〉. Then

R − 1 ≤ M(α) < |S(f )|.
THEOREM 3.2. Conjecture 1.1 holds when r = 3 for algebraic Z2-actions.
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The method of proof of Theorem 3.1 is to show that an arbitrary non-mixing sequence
for α must asymptotically reflect part of the structure of N (f ) (the slopes of the faces).
Theorem 3.2 then holds because the slopes of a triangle determine its shape.

The key step in the proof is to construct norms that reflect the geometry of N (f ).
To clarify this, an example is described in detail (see Example 3.3). Before doing this, some
background on non-Archimedean norms and Newton polygons is needed (see [2, Ch. 2] or
[5, Ch. IV.3] for more details). A non-Archimedean norm | · | on an integral domain S is a
function

| · | : S → R

with the properties:
(i) |a| ≥ 0;
(ii) |a| = 0 only for a = 0;
(iii) |a + b| ≤ max(|a|, |b|); and
(iv) |ab| = |a| · |b|;
for every a, b ∈ S. A norm always extends uniquely to the field K of quotients of S
(or to any intermediate ring between S and K). An immediate consequence of property (iii)
is that given any equation in S of the form

n∑
k=1

ak = 0 with ak �= 0, (3.1)

there must be at least two indices i �= j for which

max
1≤k≤n

|ak| = |ai| = |aj |. (3.2)

The Newton polygon of a polynomial g(x) = g0 +g1x+· · ·+gnx
n ∈ S[x] with respect to

the non-Archimedean norm | · | is defined to be the highest convex polygonal line joining
(0,−log |g0|) to (n,−log |gn|) which passes on or below all the points (j,−log |gj |) for
j = 0, . . . , n. The vertices of the Newton polygon are the points (j,−log |gj |) where
the slope changes, and the slope of a line in the Newton polygon joining the vertices
(i,−log |gi |) and (j,−log |gj |) is (log |gj |−log |gi |)/(i − j). The basic property of the
Newton polygon is the following: for each slope λ, there is a non-Archimedean norm | · |(λ)
on the extension ring S[x]/〈g〉, coinciding with | · | on the constant polynomials (identified
with S), and with |x|(λ) = exp(λ).

Up to a natural equivalence the (non-trivial) non-Archimedean norms on S = Fp[u±1]
are those of the form

|f |g = p−ordg f , (3.3)

(where g ∈ Fp[u] is an irreducible polynomial, and ordg f denotes the multiplicity of g in
the prime decomposition of f ), together with the exceptional norm

|f |∞ = pdeg f .

Example 3.3. Let f (u1, u2) = u2 +u1 +u3
1u2, and view f as an element of Fp[u±1

2 ][u±1
1 ]

(cf. Figure 1, showing the support of f as dots). Choose the norm | · | = | · |u2 on Fp[u±1
2 ],

so that |u2| = 1/p.
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FIGURE 1. The faces of N (u2 + u1 + u3
1u2).
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FIGURE 2. The Newton polygon of f ∈ Fp[u±1
2 ][u±1

1 ] with respect to | · |.

How this norm extends to the ring extension R = Fp[u±1
2 ][u±1

1 ]/〈f 〉 is determined by
the Newton polygon of f viewed as a polynomial for u1 with coefficients in Fp[u±1

2 ]:
f (u1) = u2 · u0

1 + 1 · u1
1 + 0 · u2

1 + u2 · u3
1. (3.4)

The four points that define the Newton polygon (Figure 2) are therefore

(0,−logp|u2|) = (0, 1),

(1,−logp|1|) = (1, 0),

(2,−logp|0|) = (2,∞)

and
(3,−logp|u2|) = (3, 1)

(logarithms base p are used for convenience, and |0| = 0). Notice that the Newton polygon
of f shown in Figure 2 does not coincide with the convex hull of the support in Figure 1, but
they have the same faces pointing towards negative powers of u2 in Figure 1 (equivalently,
towards monomials for which | · | is big).

From the Newton polygon in Figure 2, it follows that there are two norms | · |1, | · |2
extending | · | to R; the first has |u1|1 = 1/p (from the line segment with slope −1) and
the second has |u1|2 =√

p (from the line segment with slope 1/2).

Thus the vector
(

logp |u1|1
logp |u2|1

)
= ( −1

−1

)
is an outward normal to the face F1 of N (f ).

The same expression using | · |2 gives
(

logp |u1|2
logp |u2|2

)
= ( 1/2

−1

)
, an outward normal to the

face F2.
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FIGURE 3. The Newton polygon of f ∈ Fp[u±1
2 ][u±1

1 ] with respect to | · |′.

If the norm | · |′ = | · |∞ on Fp[u2] is chosen initially, then |u2|′ = p (so that the
monomials with big norm are in the upper-half plane of Figure 1) and the corresponding
Newton polygon is determined from (3.4) by the points

(0,−logp|u2|) = (0,−1),

(1,−logp|1|) = (1, 0),

(2,−logp|0|) = (2,∞)

and

(3,−logp|u2|) = (3,−1).

The resulting Newton polygon is shown in Figure 3; it shows there is only one extension

to R, and the resulting norm | · |′1 has the property that
(

logp |u1|′1
logp |u2|′1

)
= (

0
1

)
is an outward

normal to the face F3 of N (f ).

Example 3.3 generalizes to the next lemma.

LEMMA 3.4. For each face F of the convex hull N (f ), there is a norm | · |(F ) on the ring

R
(p)

2 /〈f 〉 with the property that the vector
(

logp |u1|(F)
logp |u2|(F)

)
is an outward normal to the face

F of N (f ).

Proof. Choose a face F of N (f ). If necessary, exchange u1 and u2 so that F is not
a vertical line. By replacing u2 with u−1

2 if necessary, assume further that F is one of
the lower faces of N (f ) when drawn in the plane (that is, like F1 or F2 in Figure 1).
Let | · | = | · |u2 be the norm corresponding to the irreducible polynomial g = u2 in Fp[u2]
as in (3.3). We may also assume (after multiplying f by a suitable monomial) that f is a
polynomial in u1 with coefficients in Fp[u2],

f =
n∑

k=0

qi(u2)u
k
1 with q0qn �= 0. (3.5)

For each non-zero coefficient qi , let mi be the largest m for which um2 divides qi(u2) in
Fp[u2]. By the definition of the norm | · |,

−logp|qi(u2)| = mi.
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On the other hand, the coefficient of umi

2 in qi is non-zero, so (i,mi) ∈ S(f ). This shows
that the points (i,mi) appear both in the Newton polygon of f (considered as a polynomial
in u1 as in (3.5)) and in the support of f . ComparingN (f ) and the Newton polygon shows
that the lower faces of N (f ) comprise exactly the Newton polygon of f . Thus, there is a
norm | · |(F ) on R

(p)

2 /〈f 〉 extending | · | for which

|u1|(F ) = pλ,

where λ is the slope of F . The vector(
logp |u1|(F )
logp |u2|(F )

)
=

(
λ

−1

)

is therefore an outward normal to the face F . ✷

These norms will now be used to show that a non-mixing sequence must asymptotically
approximate some of the structure of N (f ), by applying the simple observation that (3.1)
implies (3.2) to the algebraic characterization of mixing, using a norm adapted to the
shape N (f ).

PROPOSITION 3.5. Assume that (A(j)) = (n(j)1 ,n(j)2 , . . . ,n(j)r ) is a sequence in (Z2)r

with the property that

m1u
n(j)1 + m2u

n(j)2 + · · · + mru
n(j)r = 0 (3.6)

for all j , where m1, . . . ,mr ∈ R
(p)

2 /p are non-zero. Write N (A(j)) for the convex hull

of the set {n(j)1 ,n(j)2 , . . . ,n(j)r }. Fix a face F of N (f ). Then there is a constant K > 0

such that there is a face of N (A(j)) spanned (without loss of generality) by n(j)1 ,n(j)2 ,

and a vector m(j) with the property that the line through n(j)1 ,m(j) is parallel to F and

‖m(j) − n(j)2 ‖ ≤ K .

Proof. Pick a face F of N (f ) and use Lemma 3.4 to find a norm | · | on R
(p)

2 /〈f 〉 so that(
logp |u1|
logp |u2|

)
is an outward normal to N (f ) through F . Let L = 2 maxi=1,...,r{|logp |mi ||}.

Fix j for now, and choose t to maximize |un(j)t |. This corresponds to n(j)t being extremal

in N (A(j)) in the direction of
(

logp |u1|
logp |u2|

)
. Let & be the line through n(j)t parallel to F .

Assume that no other point of A(j) lies within L of the line &. Then for i �= t we get

n(j)i

(
logp |u1|
logp |u2|

)
< n(j)t

(
logp |u1|
logp |u2|

)
− L

and
|miu

n(j)i | = |mi ||un(j)i | < p−L|mi||un(j)t | ≤ |mtu
n(j)t |.

This shows that in (3.6) one term is bigger than all the others, which is impossible for a
non-Archimedean norm |·|. Therefore, for every j there must be a second point n(j)s within
distance L of the line &. If necessary, pass to a subsequence so that t and s are independent
of j . By renaming the indices assume t = 1, s = 2.
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Let V be the rational subspace normal to
(

logp |u1|
logp |u2|

)
, and choose a basis b1,b2 of Z2

with b1 ∈ V . For every n ∈ Z2 the component a2b2 of n = a1b1 + a2b2 can be found
by projection along V . Since n(j)2 is within L of the line & = V + n(j)1 , the projections

of n(j)1 and n(j)2 onto b2Z are close together, say within distance K . This shows that

n(j)2 = m(j) + c(j) with m(j) ∈ V + n(j)1 , ‖c(j)‖ < K . ✷

Proof of Theorem 3.1. First recall that S(f ) is automatically a non-mixing shape for α
(see [7, Examples 27.1]), so

M(α) < |S(f )|.
On the other hand, the convex hull N (A(j)) is a convex polygon. By Proposition 3.5,
each face F of N (f ) must appear with a uniformly bounded error as one of the faces
of N (A(j)). Since the differences in (1.1) go to infinity, the slope of this matching face
approaches the slope of F . It follows that there must be at least R faces on the convex set
N (A(j)), so A(j) must have at least R points. Thus R − 1 ≤ M(α). ✷

Proof of Theorem 3.2. If N (f ) lies on a line, then α cannot be mixing. If N (f ) is an
R-gon with R > 3 then Theorem 3.1 shows that M(α) ≥ 3. So assume that N (f ) is a
triangle, with vertices di for i = 1, 2, 3. Let Fi be the face of N (f ) spanned by di ,di+1

(reduce subscripts mod 3). Assume additionally that α is not mixing of order 3. We will
deduce that there is a shape of cardinality 3 which is not mixing.

There exist non-zero elements a, b, c ∈ R
(p)

2 /〈f 〉, and three sequences n(j)i of lattice
points with (1.1) and

aun(j)1 + bun(j)2 + cun(j)r = 0 (3.7)

for all j . Without loss of generality, assume that n(j)i ,n(j)i+1 (again, reduce subscripts mod 3)
are the two points in A(j) satisfying Proposition 3.5 for the face Fi . Let i = 1. Then there
exists m(j) ∈ Z2 bounded away from n(j)2 such that m(j) is actually on the line through

n(j)1 parallel to F1. Passing to a subsequence, we may assume that

n(j)2 − m(j) = k

is independent of j . Transform equation (3.7) to

aun(j)1 + (buk)um(j) + cun(j)r = 0.

In other words, by changing b slightly we can assume that n(j)1 and n(j)2 are actually on

a line parallel to F . By changing n(j)2 if necessary by another bounded amount, we can
assume that there exists sj ∈ N with

n(j)2 − n(j)1 = sj (d2 − d1).

Repeat this for the face F2, and change the vector n(j)3 accordingly. Now we know that
there exists tj ∈ N such that

n(j)3 − n(j)2 = tj (d3 − d2).
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FIGURE 4. The support of a polynomial giving three-fold mixing.
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FIGURE 5. The support of a polynomial giving four-fold mixing.

Using Proposition 3.5 again for the face F3, we see that n(j)1 and n(j)3 are almost on the
same line parallel to F3. This almost similarity between N (f ) and N (A(j)) shows that
|sj − tj | is bounded. Changing n(j)3 , again by a uniformly bounded amount, we can achieve
sj = tj so the triangles are similar. This shows that {d1,d2,d3} is a non-mixing shape. ✷

4. Examples
Example 4.1. Theorem 3.1 shows that if f is an irreducible polynomial for which the
support S(f ) coincides with the extreme points of the Newton polygon N (f ), then
M(α) = |S(f )| − 1. In order to produce an example α with prescribed order of mixing
M(α) = k, it is therefore sufficient to exhibit such an irreducible polynomial with
|S(f )| = k + 1. This may be done using Eisenstein’s irreducibility criterion (see [1]
for a general norm-theoretic treatment of the Eisenstein criterion). Two simple examples
will illustrate the method; it is clear from these how to build an example for any order of
mixing. We are grateful to Klaus Schmidt for pointing out that an explicit construction of
such a family of examples was not known previously.
(1) To find an example with order of mixing 3, consider f (u1, u2) = u2

1 + u1u
2
2 + u3

2 +
u2 ∈ F[u2][u1]; the prime u2 ∈ F[u2] divides the coefficients u2

2 and u3
2 + u2, but

u2
2 does not divide the coefficient u3

2 + u2. By Eisenstein’s criterion f is irreducible.
The support of the polynomial is shown in Figure 4.
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(2) To find an example with mixing of order 4, let f (u1, u2)=u6
1+u5

1u2+u3
1u

2
2+u2+u3

2.
As before, this is seen to be irreducible by viewing it as a polynomial in u1 with
coefficients in F[u2]. The support of the polynomial is shown in Figure 5.

Note that in these examples we are choosing the shape of the support freely; it is also
possible to find examples for which any prescribed shape is the minimal non-mixing shape
by [10], though not in a constructive fashion.

Example 4.2. Theorem 3.2 shows that the system corresponding to the ideal p = 〈2, 1 +
u1 + u2 + u2

2〉 is 3-mixing, answering a question in [7, p. 283].

Example 4.3. In the previous example, we used the fact from [7] that no shape with
cardinality 3 is non-mixing. An alternative method to show this is to use a result of Voloch
on solutions to ax + by = 1 in function fields. Consider again p = 〈2, 1 + u1 + u2 + u2

2〉;
then Theorem 3.1 states that

2 ≤ M(α) < 4,

and we wish to show that M(α) = 3. To see this, assume that

(n(j)1 ,n(j)2 ,n(j)3 = 0)

is a non-mixing sequence for α with n(j)s − n(j)t → ∞ as j → ∞ for s �= t . Then there
are elements m1,m2,m3 of R2/p, not all zero, with

m1u
n(j)1 + m2u

n(j)2 = −m3 (4.1)

for infinitely many j . The field of fractions of R2/p may be identified with F2(t) by the
map u1 �→ t , u2 �→ 1 + t + t2, and in this field (4.1) becomes

ax + by = 1 (4.2)

with infinitely many solutions for x, y in the finitely generated multiplicative subgroup
G = 〈〈t, 1 + t + t2〉〉 of F2(t)

∗. By [9], it follows that (4.2) is a G-trivial equation: there
is an n ≥ 1 for which an, bn ∈ G. Since G is generated by irreducible polynomials, this
can only be true if a, b ∈ G. So there is an infinite family of equations

um(j)
1 + um(j)

2 = 1 (4.3)

with m(j)

1 , m(j)

2 , and m(j)

1 − m(j)

2 → ∞ as j → ∞. By considering the shape of
N (1 + u1 + u2

1 + u2), this shows that the polynomial in (4.3) has the same shape as

N (1 + u1 + u2
1 + u2), so (without loss of generality), m(j)

1 = (0,m(j)) and m(j)

2 =
(2m(j), 0) for some m(j) → ∞. Thus the equation reduces to

(1 + t + t2)m(j) = 1 + t2m(j). (4.4)

Write m(j) = 2e&, & odd, for some e ≥ 0. Then the left-hand side of (4.4) is

(1 + t + t2)2e& = (1 + t + O(t2))2e

= 1 + t2
e + O(t2)2e

= 1 + t2
e+1&,

which is impossible. It follows that M(α) = 3.
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5. Further results
Remark 5.1. (1) An extension of the arguments above using the product formula for norms
in function fields can be used to show that the set of ratios of lengths of faces of N (A(j))

in a sequence that witnesses the failure of R-fold mixing is bounded.
(2) If S(f ) is a rectangle, then the methods used above show that the only non-mixing

sequences of cardinality 4 asymptotically arise from the non-mixing shape S(f ). However,
if |S(f )| = 4 and S(f ) has a pair of non-parallel sides, then this approach does not give
anything stronger than (1) above. Since this approach does not give Conjecture 1.1 even
for r = 4 it has not been pursued further.

(3) Further progress on these problems, particularly when S(f )∩N (f )◦ is non-empty,
seems to require Diophantine results on S-unit equations in finite characteristic.

The method used to prove Proposition 3.5 may also be applied to prove the following
theorem, the first part of which relates to Zd -actions for any d ≥ 2.

THEOREM 5.2. (1) If a sequence (n(j)1 ,n(j)2 , . . . ,n(j)r ) in (Zd )r has the property that, for
every s �= t ,

n(j)s − n(j)t

‖n(j)s − n(j)t ‖
−→ v(s, t),

for some vector v(s, t) whose entries are linearly independent over Q, then the sequence
is a mixing sequence for any mixing algebraic Zd -action.

(2) Now fix d = 2 and let α be determined by an irreducible polynomial f ∈ R
(p)

2
as above. Then any shape that does not contain all the faces of N (f ) as directions of
differences is a mixing shape for α.

Note added in proof. Professor David Masser has now proved Conjecture 1.1.
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