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toric singularities. This duality will be seen to be due to certain permutation symmetries
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ities and rederive all known cases of torically dual theories under this new light. We also

initiate an understanding of why such multiplicity symmetry naturally leads to monodromy

and Seiberg duality. Furthermore we discuss certain “flavor” and “node” symmetries of the

quiver and superpotential and how they are intimately related to the isometry of the back-

ground geometry, as well as how in certain cases complicated superpotentials can be derived

by observations of the symmetries alone.

∗Research supported in part by the CTP and the LNS of MIT and the U.S. Department of Energy

under cooperative research agreement # DE-FC02-94ER40818. A. H. is also supported by an A. P. Sloan

Foundation Fellowship, the Reed Fund and a DOE OJI award.

http://arXiv.org/abs/hep-th/0205144v3
mailto:fengb, sfranco, hanany, yhe@ctp.mit.edu


Contents

1. Introduction 2

2. Multiplicities in the GLSM Fields 3

2.1 C2/ZZn 4

2.2 C3/(ZZk × ZZk) 5

3. Toric Duality and Multiplicity Symmetry 6

3.1 Different Phases from a Unique Toric Diagram 7

3.2 Zeroth Hirzebruch surface 8

3.3 Second del Pezzo surface 10

3.4 Third del Pezzo surface 10

3.5 GLSM versus target space multiplicities 11

4. Global Symmetries, Quiver Automorphisms and Superpotentials 12

4.1 del Pezzo 3 13

4.2 Hirzebruch 0 18

4.3 del Pezzo 0 18

4.4 del Pezzo 1 19

4.5 del Pezzo 2 20

4.6 Summary 21

5. Multiplicity, Divisors and Monodromy 22

5.1 Multiplicity and Divisors 22

5.2 Partial Resolutions 25

6. Conclusions 26

7. Appendix: Multiplicities in C2/ZZn singularities 28

7.1 Finding the general dual cone 30

1



1. Introduction

The study of string theory on various back-grounds, in particular space-time singularities,

is by now an extensively investigated matter. Of special interest are algebraic singularities

which locally model Calabi-Yau threefolds so as to produce, on the world-volume of D-branes

transversely probing the singularity, classes of supersymmetric gauge theories.

Using the techniques of the gauged linear sigma model [1] as a symplectic quotienting

mechanism, toric geometry has been widely used [2, 3, 4, 5] to analyse the D-brane theories

probing toric singularities. The singularity resolution methods fruitfully developed in the

mathematics of toric geometry have been amply utilised in understanding the world-volume

gauge theory, notably its IR moduli space, which precisely realises the singularity being

probed.

To deal with the problem of finding the gauge theory on the D-brane given an arbitrary

toric singularity which it probes, a unified algorithmic outlook to the existing technology

[2, 3, 4, 5] of partial resolution of Abelian orbifolds has been established [6]. One interesting

byproduct of the algorithm is the harnessing of its non-uniqueness to explicitly construct

various theories with vastly different matter content and superpotential which flow in the IR

to the same moduli space parametrised by the toric variety [6, 7]. In fact these theories are

expected [8, 9] to be completely dual in the IR as field theories. The identification of the

moduli space is but one manifestation, in addition, they should have the same operator spec-

trum, same relevant and marginal deformations and correlation functions. The phenomenon

was dubbed toric duality.

Recently this duality has caught some attention [8, 9, 12, 13], wherein three contrasting

perspectives, respectively brane-diamond setups, dual variables in field theory as well as

N = 1 geometric transitions, have lead to the same conjecture that Toric Duality is Seiberg

Duality for N = 1 theories with toric moduli spaces. In addition, the same phases have been

independently arrived at via (p, q)-web configurations [15].

The Inverse Algorithm of [6] remains an effective - in the sense of reducing the compu-

tations to nothing but linear algebra and integer programming - method of deriving toric

(and hence Seiberg) dual theories. With this convenience is a certain loss of physical and

geometrical intuition: what indeed is happening to the fields (both in the sigma model and in

the brane world-volume theory) as one proceed with the linear transformations? Moreover,

in the case of the cone over the third del Pezzo surface (dP3), various phases have been

obtained using independent methods [8, 9, 13] while they have so far not been attained by

the Inverse Algorithm.

The purpose of this writing is clear. We first supplant the present shortcoming by explic-
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itly obtaining all phases of dP3. In due course we shall see the true nature of toric duality:

that the unimodular degree of freedom whence it arises as claimed in [7] - though such uni-

modularity persists as a symmetry of the theory - is but a special case. It appears that the

quintessence of toric duality, with regard to the Inverse Algorithm, is certain multiplicity

of fields in the gauged linear sigma model. Permutation symmetry within such multiplici-

ties leads to torically dual theories. Furthermore we shall see that these multiplicities have

beautiful combinatorial properties which still remain largely mysterious.

Moreover, we also discuss how symmetries of the physics, manifested through “flavor

symmetries” of multiplets of bi-fundamentals between two gauge factors, and through “node

symmetries” of the permutation automorphism of the quiver diagram. We shall learn how in

many cases the isometry of the singularity leads us to such symmetries of the quiver. More

importantly, we shall utilise such symmetries to determine, very often uniquely, the form of

the superpotential.

The outline of the paper is as follows. In Section 2 we present the multiplicities of the

GLSM fields for the theories C2/ZZn as well as some first cases of C3/(ZZk × ZZm) and observe

beautiful combinatorial properties thereof. In Section 3 we show how toric duality really

originates from permutation symmetries from the multiplicities and show how the phases of

known torically dual theories can be obtained in this new light. Section 4 is devoted to the

analysis of node and flavor symmetries. It addresses the interesting problem of how one may

in many cases obtain the complicated forms of the superpotential by merely observing these

symmetries. Then in Section 5 we briefly give an argument why toric duality should stem

from such multiplicities in the GLSM fields in terms of monodromy actions on homogeneous

cöordinates. We conclude and give future prospects in Section 6.

2. Multiplicities in the GLSM Fields

We first remind the reader of the origin of the multiplicity in the homogeneous coordinates

of the toric variety as described by Witten’s gauged linear sigma model (GLSM) language

[1]. The techniques of [2, 3, 4, 5] allow us to write the D-flatness and F-flatness conditions

of the world-volume gauge theory on an equal footing.

At the end of the day, the U(1)n N = 1 theory with m bi-fundamentals on the D-brane

is described by c fields pi subject to c − 3 moment maps: this gives us the (c − 3) × c

charge matrix Qt. The integral cokernel of Qt is a 3 × c matrix Gt; its columns, up to

repetition, are the nodes of the three-dimensional toric diagram corresponding to the IR

moduli space of the theory. These c fields pi are the GLSM fields of [1], or in the mathematics
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literature, the so-called homogeneous coordinates of the toric variety [17]. The details of this

forward algorithm from gauge theory data to toric data have been extensively presented as

a flow-chart in [6, 7] and shall not be belaboured here again.

The key number to our analyses shall be the integer c. It is so that the (r+2)×c matrix

T describes the integer cone dual to the (r + 2)×m matrix K coming from the F-terms. As

finding dual cones (and indeed Hilbert bases of integer polytopes) is purely an algorithmic

method, there is in the literature so far no known analytic expression for c in terms of m

and r; overcoming this deficiency would be greatly appreciated.

A few examples shall serve to illustrate some intriguing combinatorial properties of this

multiplicity.

We begin with the simple orbifoldC3/ZZn with the ZZn action on the coordinates (x, y, z) of

C3 as (x, y, z) → (ωax, ωby, ω−1z) such that ω is the nth root of unity and a+b−1 ≡ 0( mod n)

to guarantee that Zn ⊂ SU(3) so as to ensure that the resolution is a Calabi-Yau threefold.

This convention in chosen in accordance with the standard literature [2, 3, 4, 5].

Let us first choose a = 0 so that the singularity is effectively C ×C2/ZZn; with the toric

diagram of the Abelian ALE piece we are indeed familiar: the fan consists of a single 2-

dimensional cone generated by e2 and ne1 − e2 [16]. This well-known N = 2 theory, under

such embedding as a C3 quotient, can thus be cast into N = 1 language. Applying the

Forward Algorithm of [2, 3, 4, 5] to the N =1 SUSY gauge theory on this orbifold should

give us none other than the toric diagram for C2/ZZn. This is indeed so as shown in the

following table. What we are interested in is the matrix Gt, whose integer nullspace is the

charge matrix Qt of the linear sigma model fields. We should pay special attention to the

repetitions in the columns of Gt.

2.1 C2/ZZn

We present the matrix Gt, whose columns, up to multiplicity, are the nodes of the toric

diagram for C2/ZZn for some low values of n:

n = 2

(
0 0 0 0 1

−1 0 0 1 0

2 1 1 0 0

)

n = 3

(
0 0 0 0 0 0 0 0 1

−2 −1 −1 −1 0 0 0 1 0

3 2 2 2 1 1 1 0 0

)

n = 4

(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−3 −2 −2 −2 −2 −1 −1 −1 −1 −1 −1 0 0 0 0 1 0

4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0 0

)

We plot in Figure 1 the above vectors in ZZ
3 and note that they are co-planar, as guaran-

teed by the Calabi-Yau condition. The black numbers labelling the nodes are the multiplicity
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(0, 0, 1)(0, 1, 0) (0, −1, 2)

n = 2

(1, 0, 0)

(0, 0, 1)(0, 1, 0) (0, −1, 2)

n = 3

(1, 0, 0)

(0, −2, 3)

(0, 0, 1)(0, 1, 0) (0, −1, 2)

(1, 0, 0)

(0, −2, 3) (0, −3, 4)

n = 4

(0, 0, 1)(0, 1, 0) (0, −1, 2)

(1, 0, 0)

(0, −2, 3) (0, −3, 4)

n = 5

(0, −4, 5)

1

1 12

1 13

1

3

4 61

1

4 1

51

1

11010 5

Figure 1: The familiar toric diagrams for C2/(ZZk × ZZm), but with the multiplicity of the sigma

model fields explicitly labelled.

of the vectors (in blue) corresponding to the nodes in the toric diagram. These toric dia-

grams in Figure 1 are indeed as expected and are the well-known examples of C2/ZZn. Now

note the multiplicities: a pattern in accordance with Pascal’s triangle can clearly be observed.

For general n, we expect 1’s on the extremal vertices of the triangles while for the ith internal

colinear node, we have multiplicity
(

n

i

)
. Therefore for this case c =

n∑
i=1

(
n

i

)
+ 1 = 2n + 1.

Though we do not have a general proof of this beautiful pattern, we can prove explicitly this

expression for c, which we leave to the Appendix.

2.2 C3/(ZZk × ZZk)

As pointed out in [6], in the study of arbitrary toric singularities of local Calabi-Yau three-

folds, one must be primarily concerned with the 3-dimensional Abelian quotient C3/(ZZk ×

ZZk). Partial resolutions from the latter using the Inverse Algorithm suffices to handle

the world volume gauge theory. Such quotients have also been extensively investigated

in [2, 3, 4, 5, 23, 24]

As is well-known, the toric diagrams for these singularities are (k +1)× (k +1) isosceles

triangles. However current restrictions on the running time prohibits constructing the linear

sigma model to high values of k. We have drawn these diagrams for the first two cases,

explicating the multiplicity in Figure 2. From the first two cases we already observe a

pattern analogous to the above C2/ZZn case: each side of the triangle has the multiplicity

according to the Pascal’s Triangle. This is to be expected as one can partially resolve the
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(1, 1, 1)

(1, 0, 1) (0, 1, 1)

(1, −1, 1) (0, 0, 1) (−1, 1, 1)

(k,m) = (2,2)

(1, −1, 1)

(0, −1, 2)

(0, 0, 1)

(2, −1, 0) (1, 0, 0) (0, 1, 0) (−1, 2, 0)

(k,m) = (2,3)

(1, −1, 1)

(−1, −1, 3)

(0, −1, 2) (−1, 0, 2)

(0, 0, 1) (−1, 1, 1)

(2, −1, 0) (1, 0, 0) (0, 1, 0) (−1, 2, 0)

(k,m) = (3,3)

2

11

2

1

2

1
3 3

1

1

2 6

3

1

3

1
3 3

1

21

3

3

Figure 2: The familiar toric diagrams for C2/ZZn, but with the multiplicity of the sigma model

fields explicitly labelled.

singularity to the C2 orbifold. We still do not have a general rule for the multiplicity of the

inner point, except in the special case of C3/(ZZ3 × ZZ3), where it corresponds to the sum of

the multiplicities of its neighbouring points. For contrast we have also included ZZ2 ×ZZ3, the

multiplicities of whose outside nodes are clear while those of the internal node still eludes

an obvious observation.

3. Toric Duality and Multiplicity Symmetry

What we shall see in this section is that the numerology introduced in the previous section

is more than a combinatorial curio, and that the essence of toric duality lies within the

multiplicity of linear sigma model fields associated to each node of the toric diagram.

Some puzzles arose in [8, 9] as to why not all of the four Seiberg dual phases of the third

del Pezzo surface could be obtained from partially resolving C3/(ZZ3 × ZZ3). In this section
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we shall first supplant this shortcoming by explicitly obtaining these four phases. Then we

shall rectify some current misconceptions of toric duality and show that the unimodular

transformations mentioned in [7] is but a special case and that

PROPOSITION 3.1 Toric duality is due to the multiplicity of the gauged linear sigma model

fields associated to the nodes of the toric diagram of the moduli space.

Let us address a subtlety of the above point. By toric duality we mean so in the restrict

sense of confining ourselves to the duality obtainable from the canonical method of partial

resolution, which guarantees physicality. There are other sources of potentially dual theories

posited in [6, 7] such as the “F-D ambiguity” and the “repetition ambiguity.” Because

these do not necessarily ensure the gauge theory to have well-behaved matter content and

superpotential and have yet to be better understood, the toric duality we address here will

not include these cases.

3.1 Different Phases from a Unique Toric Diagram

Let us recapitulate awhile. In [7] the different phases of gauge theories living on D-branes

probing toric singularities were studied. The strategy adopted there was to start from toric

diagrams related by unimodular transformations. Different sets of toric data related in this

way describe the same variety. Subsequently, the so called Inverse Algorithm was applied,

giving several gauge theories as a result. These theories fall into equivalence classes that

correspond to the phases of the given singularity.

In this section we show how indeed all phases can be obtained from a single toric diagram.

The claim is that they correspond to different multiplicities of the linear σ-model fields that

remain massless after resolution. In order to ensure that the final gauge theory lives in the

world volume of a D-brane, we realize the different singularities as partial resolutions of the

C3/(ZZ3 × ZZ3) orbifold (Figure 3).

The resolutions are achieved by turning on Fayet-Iliopoulos terms. Then some fields

acquire expectation values in order to satisfy D-flatness equations. As a result, mass terms

for some of the chiral superfields are generated in the superpotential. Finally, these massive

fields can be integrated out when considering the low energy regime of the gauge theory.

Alternatively, we can look at the resolution process from the point of view of linear σ-model

variables. The introduction of FI parameters allows us to eliminate some of them. The

higher the dimensionality of the cone in which the ζi’s lie, the more fields (nodes on the toric

diagram) we can eliminate. In this way, we can obtain the sub-diagrams that are contained

in a larger one, by deleting nodes with FI parameters.
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5,13,20

4,16,23

37,41,42 38,39,40

36 29

8,27,28

9,11,26

30,31,32,33,34,35
17,18,19,21,22,24,25

1,2,3,6,7,14,15

Figure 3: Toric diagram of C3/(ZZ3 × ZZ3), with the GLSM fields labelled explicitly (q.v. [6]).

In the following, we present the partial resolutions of C3/(ZZ3 × ZZ3) that lead to the

different phases for the F0, dP2 and dP3 singularities.

3.2 Zeroth Hirzebruch surface

F0 has been shown to have two phases [6, 7]. The corresponding quiver diagrams are pre-

sented in Figure 4. The superpotentials can be found in [6, 7] and we well present them in a

more concise form below in (3.2) and (3.3). Indeed we want to rewrite them in a way such

that the underlying SU(2) × SU(2) global symmetry of these theories is explicit. Geomet-

rically, it arises as the product of the SU(2) isometries of the two IP1’s in F0 = IP1 × IP1.

The matter fields lie in the following representations of the global symmetry group

SU(2) × SU(2)

Xi
12 ( , ·)

Xi
23 (·, )

Xi
34 ( , ·)

Xi
41 (·, )

dual on 4
=⇒

SU(2) × SU(2)

Xi
12 ( , ·)

Xi
23 (·, )

Xi
43 ( , ·)

Xi
14 (·, )

Xij
31 ( , )

(3.1)

It was shown in [8, 9, 13] that these two theories are indeed Seiberg duals. Therefore,

they should have same global symmetries as inherited from the same geometry. For example,

if we start from phase II and dualize on the gauge group 4, we see that the dual quarks X i
43

8



31X

X12
iX X12

iX

X23
i

43X i

X14
i iX41X23

i

i
34X

21

34

21

34

I II

ij

>>

>>

>>

>>>>
>>

>>

>>>>

>>

Figure 4: Quiver diagrams of the two torically dual theories corresponding to the cone over the

zeroth Hirzebruch surface F0.

and X i
14 are in the complex conjugate representations to the original ones, while the X ij

31’s are

in ( , ) since they are the composite Seiberg mesons (X ij
31 = X i

34X
j
41). The corresponding

superpotentials have to be singlets under the global symmetries. They are given by

WII = ǫijX
i
12X

j
34ǫmnXm

23X
n
41 (3.2)

WI = ǫijǫmnX i
12X

m
23X

jn
31 − ǫijǫmnX i

41X
m
23X

jn
31 (3.3)

We identify WII as the singlet appearing in the product X12 X34 X23 X41 = ( , ·) ⊗

( , ·) ⊗ (·, ) ⊗ (·, ), while WI is the singlet obtained from X12 X23 X31 − X41 X43 X31 =

( , ·)⊗(·, )⊗( , )−(·, )⊗( , ·)⊗( , ). In [7] we obtained these two phases by unimodular

I II

6,17,18

30,32

5 11

37 38

5 9

37 38

6,7,15,30

Figure 5: Toric diagrams of the two torically dual theories corresponding to the cone over the

zeroth Hirzebruch surface F0, with the surviving GLSM fields indicated explicitly.

transformations of the toric diagram. Now we refer to Figure 5, where we make two different

choices of keeping the GLSM fields during partial resolutions. We in fact obtain the two

phases from the same toric diagram with different multiplicities of its nodes. This is as
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claimed, torically (Seiberg) dual phases are obtained from a single toric diagram but with

different resolutions of the multiple GLSM fields. We have checked that the same result holds

if we perform unimodular transformations and make different choices out of the multiplicities

for each of these SL(3; ZZ)-related toric diagrams. Every diagram could give all the phases.

3.3 Second del Pezzo surface

Following the same procedure, we can get the two phases associated to dP2 by partial reso-

lutions conducing to the same toric diagram. These theories were presented in [8, 9]. The

GLSM fields surviving after partial resolution are shown in Figure 6.

37

8

11

4

36

6,7,12,17,19

9

8

37

36

4
7,12,14

15,18,21

I II

Figure 6: Toric diagrams of the two torically dual theories corresponding to the cone over the

dP2, with the surviving GLSM fields indicated explicitly.

3.4 Third del Pezzo surface

There are four known phases that can live on the world volume of a D-brane probing dP3.

They were obtained using different strategies. In [8], the starting point was a phase known

from partial resolution of C3/(ZZ3 × ZZ3) [7]. Then, the phases were found as the set of all

the Abelian theories which is closed under Seiberg duality transformations. In [9] the phases

were calculated as partial resolutions of the C3/(ZZ3 × ZZ3) orbifold singularity. Finally, an

alternative vision was elaborated in [13], where four dimensional, N = 1 gauge theories were

constructed wrapping D3, D5 and D7 branes over different cycles of Calabi-Yau 3-folds.

From that perspective, the distinct phases are connected by geometric transitions.

The partial resolutions that serve as starting points for the Inverse Algorithm to compute

the four phases are shown in Figure 7. With these choices we do indeed obtain the four phases

of the del Pezzo Three theory from a single toric diagram without recourse to unimodular

transformations.
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I III

II IV

5

4

9

8

4041

1,3,7

12,21,22

9

8

5

4

3837

15,18,20

6,7,12,14

5 11

27

3837

4
3,6,12,17,18

30,31,32

15,18,31,35
5,12,14

1,2,3,6

5 9

84

37 39

Figure 7: Toric diagrams of the four torically dual theories corresponding to the cone over the

dP3, with the surviving GLSM fields indicated explicitly.

Having now shown that all the known cases of torically dual theories can be obtained,

each from a single toric diagram but with different combinations from the multiplicity of

GLSM fields, we summarise the results in these preceding subsections (cf. Figure 8).

We see that as is with the cases for the Abelian orbifolds of C2 and C3, in Section 2, the

multiplicity of the outside nodes is always 1 while that of the internal node is at least the

sum of the outside nodes. What is remarkable is that as we choose different combinations

of GLSM models to acquire VEV and be resolved, what remains are different number of

multiplicities for the internal node, each corresponding to one of the torically dual theories.

This is what we have drawn in Figure 8.

3.5 GLSM versus target space multiplicities

Let us pause for a moment to consider the relation between the multiplicities of linear σ-

model and target space fields. We present them in (1).

We can immediately notice that there exist a correlation between them, namely the

phases with a larger number of target space fields have also a higher multiplicity of the

GLSM fields. Bearing in mind that partial resolution corresponds (from the point of view

of the GLSM) to eliminating variables and (from the original gauge theory perspective) to

integrating out massive fields, we can ask whether different phases are related by an operation

of this kind. An important point is that, on the gauge theory side, the elimination of fields is

achieved by turning on non-zero vevs for bifundamental chiral fields. Apart from generating
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Figure 8: GLSM multiplicities in the toric diagrams associated to the dual theories. The outside

nodes each has a single GLSM corresponding thereto, i.e., with multiplicity 1.

Singularity Phase Central GLSM Fields Target Space Fields

F0 I

II

5

4

12

8

dP2 I

II

6

5

13

11

dP3 IV

III

II

I

11

8

7

6

18

14

14

12

Table 1: The number of GLSM multiplicities in the centre of the toric diagram versus the number

of fields in the final gauge theory.

mass terms for some fields, bifundamental vevs higgs the corresponding gauge factors to the

diagonal subgroups. As a consequence gauge symmetry is always reduced. All the theories

in Table 1 have the same gauge group, so we conclude that they cannot be connected by this

procedure.

4. Global Symmetries, Quiver Automorphisms and Superpotentials

As we mentioned before, the calculation of the superpotential is not an easy task, so it would

be valuable to have guiding principles. Symmetry is definitely one of these ideas. We have

seen that the isometry SU(2)×SU(2) of IP1× IP1 suffices to fix the superpotential of F0. We

will now see that the SU(3) isometry of C3/ZZ3 does the same job for dP0. These examples
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tell us that the symmetry of a singularity is a very useful piece of information and can help us

in finding and understanding the superpotential. Indeed our ultimate hope is to determine

the superpotential by direct observation of the symmetries of the background.

Before going into the detailed discussion, we want to distiguish two kinds of symmetries,

which are related to the background in closed string sector, that can be present in the gauge

theory. The first one is the isometry of the variety. For example, the SU(2) × SU(2) of

IP1 × IP1 and SU(3) of C3/ZZ3. These symmetries are reflected in the quiver by the grouping

of the fields lying in multiple arrows into representations of the isometry group. We will

call such a symmetry as flavor symmetry. As we have seen, this flavor symmetry is very

strong and in the aforementioned cases can fix the superpotential uniquely.

The second symmetry is a remnant of a continuous symmetry, which is recovered in

the strong coupling limit and broken otherwise. For del Pezzo surfaces dPn we expect this

continuous symmetry to be the Lie group of En. We will refer to it as the node symmetry,

because under its action nodes and related fields in the quiver diagram are permuted. We

will show that using the node symmetry we can group the superpotential terms into a more

organized expression. This also fixes the superpotenial to some level.

We will begin this section by discussing how symmetry can guide us to write down the

superpotential using dP3 as an example. Then for completeness, we will consider the other

toric del Pezzo and the zeroth Hirsebruch surface as well as a table summarizing our results.

4.1 del Pezzo 3

The node symmetries of dP3 phases have been discussed in detail in [9]. It was found that

they are D6, ZZ2×ZZ2, ZZ2×ZZ2 and D6 for models I, II, III and IV respectively (where D6 is the

dihedral group of order 12). For the convenience of the reader, we remark here that in the

notation of [8], these models were referred to respectively as II, I, III and IV therein. Here we

will focus on how the symmetry enables us to rewrite the superpotentials in an enlightening

and compact way. Furthermore, we will show how they indeed in many cases fix the form of

the superpotential. This is very much in the spirit of the geometrical engineering method of

obtaining the superpotential [13, 12] where the fields are naturally organised into multiplets

in accordance with Hom’s of (exceptional collections of) vector bundles.

We recall that the complete results, quiver and superpotential, were given in [9, 8] for

the four phases of dP3. Our goal is to re-write them in a much more illuminating way. First

we give the quiver diagrams of all four phases in Figure 9. In this figure, we have carefully

drawn the quivers in such a manner that the symmetries are obviously related to geometric
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actions (rotations and reflections) on them; this is what we mean by quiver automorphism.

Now let us move on to see how the symmetry determines the superpotentials.

Model IV

4

5

1

2

6

3

1

2

3

6

5

Model I

4

1

4

Model III

2

3

6

5

34

5

6

21

Model II

Figure 9: Quiver diagrams of the four torically dual theories corresponding to the cone over dP3.

We see explicitly the node symmetries to be respectively: D6, ZZ2 × ZZ2, ZZ2 × ZZ2 and D6.

Let us first focus on model I. We see that its quiver exhibits a D6 symmetry of the Star

of David. This quiver has the following closed loops (i.e. gauge invariant operators): one

loop with six fields, six loops with five fields, nine loops with four fields and two loops with

three fields. Our basic idea is following:

• If a given loop is contained in the superpotential, all its images under the node sym-

metry group also have to be present;
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• Since we are dealing with affine toric varieties we know that every field has to appear

exactly twice so as to give monomial F-term constraints [6];

• Moreover, in order to generate a toric ideal, the pair must have opposite signs.

We will see that these three criteria will be rather discriminating. The gauge invari-

ants form the following orbits under the action of D6 (by (a, b, c . . . n) we mean the term

XabXbc . . .Xna in the superpotential):

(1) {(1, 2, 3, 4, 5, 6)}

(2) {(1, 2, 3, 4, 5), (2, 3, 4, 5, 6), (3, 4, 5, 6, 1), (4, 5, 6, 1, 2), (5, 6, 1, 2, 3), (6, 1, 2, 3, 4)}

(3) {(1, 2, 3, 5), (2, 3, 4, 6), (3, 4, 5, 1), (4, 5, 6, 2), (5, 6, 1, 3), (6, 1, 2, 4)}

(4) {(1, 2, 4, 5), (2, 3, 5, 6), (3, 4, 6, 1)}

(5) {(1, 3, 5), (2, 4, 6)}

(4.1)

This theory has 12 fields, thus all the terms in the superpotential must add up to 24 fields.

This leaves us with only two possibilities. One is that the superpotential is just given by

the six quartic terms in (3) and the other is that W = (1) + (4) + (5). The first possibility

is excluded by noting the following. The field X12 shows up in (1, 2, 3, 5) with positive sign

(which let us assume ab initio to be positive coefficient at this moment), so the sign in front

of (6, 1, 2, 4) must be negative, forcing the sign in front of (2, 3, 4, 6) to be positive because

of the field X46. Whence the sign in front of (1, 2, 3, 5) must be negative due to the field

X23, contraciting our initial choice. So the toric criterion together with the node symmetry

of the quiver leaves us with only one possibility for the superpotential. We can represent the

gauge invariant terms as

= X12X23X34X45X56X61; = X13X35X51; = X24X46X62;

= X23X35X56X62; = X13X34X46X61; = X12X24X45X51.

where the sign has been determined by toric criteria. This gives the following nice schematic

representation for the superpotential as:

WI = − ( + + ) + ( + ) = − ZZ3( ) + ZZ2( ).

This is of course the same as the one given in [9, 8].

Model II has a ZZ2 × ZZ2 node symmetry. One ZZ2 is a mirror reflection with respect to

the plane (1234) and the other ZZ2 is a π rotation with respect to the (56) line accompanied

by the reversing of all the arrows (charge conjugation of all fields). From the quiver and the
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action of the symmetry group, we see that the gauge invariants form the following orbits:

(1) {(2, 6, 4, 1, 3), (2, 5, 4, 1, 3)}

(2) {(2, 6, 4, 3), (2, 5, 4, 3), (4, 1, 2, 6), (4, 1, 2, 5)}

(3) {(2, 6, 1), (2, 5, 1), (3, 6, 4), (3, 5, 4)}

(4) {(6, 1, 3), (5, 1, 3)}

(4.2)

Since we have 14 fields, all terms in superpotential must add to give 28 fields. Taking into

account the double arrow connecting nodes 1 and 3, we see that orbits containing 13 fields

should appear four times. There are four possible selections giving a total 28 fields: (2)+(3);

(2) + (4) + (4); (1) + (4) + (3) and (1) + (4) + (4) + (4). The first choice gives three X26

fields while the fourth gives three X61 fields. These must be excluded. We do not seem to

have a principle to dictate to us which one of the remaining is correct.

However, experience has lead us to observe the following patten: fields try to couple to

different fields as often as possible. In second choice the field X26 always couples to X64

while in the third choice it couples to both X64 and X61. Using our rule of thumb, we select

the third choice which will turn out to be the correct one.

Next let us proceed to write the superpotential for this third choice. Let us take the term

+X12X26X61 as our starting point. since the field X12 appears again in the loop X12X25X51,

it must have negative sign. Using same reason we can write down orbits (1) + (3) as

[X12X26X61 − X12X25X51 + X36X64X43 − X35X54X43]

+[−X26X64X41Y13X32 + X25X54X41?X32]

where we have chosen arbitrarily the field Y13 from the doublet (X13, Y13) and left the ? mark

undetermined (either to be Y13 or X13). Then we use another observed fact that multiple

fields such as (X13, Y13) are also transformed under the action of the symmetry generators.

Since loops (2, 6, 4, 1, 3), (2, 5, 4, 1, 3) are exchanged under the ZZ2 action, we should put X13

in the ? mark.

Finally we can write down the orbit (4) which is uniquelly fixed to be +[−X61X13X36 +

X51Y13X35]. Combining all these considerations we write down the superpotential as

WII = [X12X26X61 − X12X25X51 + X36X64X43 − X35X54X43]

+[−X61X13X36 + X51Y13X35] + [−X26X64X41Y13X32 + X25X54X41X13X32]

= (ZZ2 × ZZ2)[ ] + ZZ2[ ] + ZZ2[ ],

where := X12X26X61, := X61X13X36 and := X26X64X41Y13X32. Once again,

symmetry principles has given us the correct result without using the involved calculations

of [8, 9].
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Model III posesses a ZZ2 × ZZ2 node symmetry: one ZZ2 is the reflection with respect

to plane (246) while the other ZZ2 is a reflection with respect to plane (136). Under these

symmetry action, the orbits of closed loops are

(1) {(4, 1, 5, 6), (4, 3, 5, 6), (2, 1, 5, 6), (2, 3, 5, 6)}

(2) {(4, 1, 5), (4, 3, 5), (2, 1, 5), (2, 3, 5)}
(4.3)

Furthermore, the sum of these two oribts gives 28 fields which is as should be because we

again have 14 fields. Using the same principles as above we can write down the superpotential

as

WIII = [X41X15X54 − X54X43X35 + Y35X52X23 − X52X21Y15]

+[−X41Y15X56X64 + X64X43Y35Y56 − X23X35X56X62 + X62X21X15Y56]

= (ZZ2 × ZZ2)[ + ],

where := X41X15X54 and := −X41Y15X56X64. Let us explain above formula. First

let us focus on the first row of superpotential. Under the ZZ2 action relative to plane (246)

we transfer X41X15X54 to X54X43X35, while under the ZZ2 action relative to plane (136) we

transfer X41X15X54 to −X52X21Y15. This tell us that (X15, X35) and (Y15, Y35) are ZZ2|246

multiplets while (X15, Y15) and (X35, Y35) are ZZ2|136 multiplets. Same ZZ2×ZZ2 action work on

the second row of superpotential if we notice that (X56, Y56) are permuted under both ZZ2|246

and ZZ2|136 action. The only thing we need to add is that since X15 in term X41X15X54 so

we must choose Y15 in term −X41Y15X56X64 to make the field X41 couple to different fields.

This will fix the relationship between the first row and the second row. Again we obtain the

result of [8, 9] by symmetry.

For model IV, there is a ZZ3 symmetry rotating nodes (123) and a ZZ2 reflection symmetry

around plane (123). There is also a further symmetry that will be useful in writing W : a

mirror reflection relative to plane (145). The closed loops are organized in a single orbit

{(1, 6, 4), (2, 6, 4), (3, 6, 4), (1, 6, 5), (2, 6, 5), (3, 6, 5)} (4.4)

This orbit will appear twice due to the multiple arrows. Using the ZZ3 symmetry first we

write down the terms [X41X16X64 + X43X36Y64 + X42X26Z64] where the triplet of fields

(X64, Y64, Z64) are rotated under the ZZ3 also. Next using the ZZ2 symmetry relative to plane

(145), we should get −(X41Y16?) where we do not know whether ? should be Y64 or Z64. How-

ever, at this stage we have the freedom to fix it to be Y64, so we get [−X41Y16Y64−X43Y36Z64−

X42Y26X64]. Notice that in principle we can have [−X41Y16Y64 − X43Y36X64 − X42Y26Z64] as

17



well. However, this choice does not respect the ZZ3 symmetry and X42 couples to same field Z64

twice. Now we act with the other ZZ2 symmetry and get [X51Y16X65+X53Y36Y65+X52Y26Z65].

Finally we are left with the term −[X51X16?+X53X36?+X52X26?] where ZZ3 symmetry gives

two ordered choices (Y65, Z65, X65) or (Z65, X65, Y65). We do not know which one should be

picked. The correct choice is −[X51X16Y65 +X53X36Z65 +X52X26X65] which happens to have

the same order as the second row. Putting all together we get

WIV = [X41X16X64 + X43X36Y64 + X42X26Z64]

− [X41Y16Y64 + X43Y36Z64 + X42Y26X64]

+ [X51Y16X65 + X53Y36Y65 + X52Y26Z65]

− [X51X16Y65 + X53X36Z65 + X52X26X65]

= (ZZ4 × ZZ3)[ ],

where := X41X16X64. This is again in agreement with known results.

4.2 Hirzebruch 0

The two phases of F0 were considered in section 3.3. We saw that they both have an

SU(2) × SU(2) flavor symmetry coming from the isommetries of IP1 × IP1. Besides that,

they also have a ZZ2 × ZZ2 node symmetry. For phase II, one of the ZZ2 actions interchanges

(12) ↔ (34) while the other interchanges (23) ↔ (41). For phase I, one ZZ2 exchanges

2 ↔ 4, while the second ZZ2 interchanges 1 ↔ 3 and charge conjugate all the fields. The

superpotentials can be fixed uniquely by flavor symmetry as (cf. (3.2) and (3.3))

WI = ǫijǫmnX i
12X

m
23X

jn
31 − ǫijǫmnX i

41X
m
23X

jn
31

WII = ǫijX
i
12X

j
34ǫmnXm

23X
n
41

where the way we wrote them exhibits both flavor and node symmetries. However, as it can

be seen easily, if we only use node symmetry, there are several choices to write down the

superpotential just like in the case of phase IV of dP3. The reason for that is because we

have too many multiple arrows in the quiver. In these situations, it is hard to determine

how these multiple arrows transform under the discrete node symmetry. Here we are saved

by utilising the additional flavor symmetry.

4.3 del Pezzo 0

The quiver for this model is presented in Figure 10. This is a well known example and has also

been discussed in [13, 14]. The SU(3) isommetry of IP2 appears as an SU(3) flavor symmetry.
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The three fields lying on each side of the triangle form fundamental representations of SU(3).

Furthermore, this theory has a ZZ3 node symmetry that acts by cyclically permuting the nodes

(123). After all the cone over del Pezzo 0 is none other than the resolution OIP2(−3) 7→C3/ZZ3.

Bearing these symmetries in mind, we can write down the superpotential uniquely as

W = ǫαβγX
(α)
12 X

(β)
23 X

(γ)
31 (4.5)

which is explicitly invariant under both SU(3) (α, β and γ indices) and ZZ3 cyclic permuta-

tions of (123).

>>
>

2

<<<

<<
<

3

1

Figure 10: The quiver diagram for the theory corresponding to the cone over dP0.

4.4 del Pezzo 1

The quiver for this model is shown in Figure 11. This theory has a ZZ2 node symmetry that

acts by interchanging (23) ↔ (14) and charge conjugating all the fields. From this symmetry,

we have the following orbits of closed loops

(1) {(1, 2, 3, 4)}

(2) {(1, 3, 4), (2, 3, 4)}
(4.6)

We need 20 fields in the superpotential which can be obtained by using each orbit twice.

Furthermore, this theory has an SU(2) flavor symmetry with respect to which the triplet

between nodes 3, 4 splits into the doublet Xα
34 and a singlet X3

34. This flavor symmetry comes

from the blow up of IP2 at one point [1, 0, 0] which breaks the SU(3) isometry to SU(2).

Using these inputs we get the superpotential uniquely as

W =
[
ǫαβXα

34X
β
41X13 − ǫαβXα

34X
β
23X42

]
+ ǫαβX12X

3
34X

α
41X

β
23 (4.7)

where we can see that under the ZZ2 transformation the two terms in the brackets transform

into one another, while the last one is invariant.

19



X 42

41X α X 23
α

X 12

13X

1

4

2

3
, XX 34

α

34
3

Figure 11: The quiver diagram for the theory corresponding to the cone over dP1.

4.5 del Pezzo 2

The first phase of dP2 has a ZZ2 node symmetry that interchanges nodes 1 and 2. The quiver

for the phase I is given in Figure 4.5. From this we read out the orbits of closed loops:

(1) {(4, 1, 5, 3), (4, 2, 5, 3)}

(2) {(4, 1, 5), (4, 2, 5)}

(3) {(3, 1, 5), (3, 2, 5)}

(4.8)

Since we need a total of 26 fields in the superpotential, the only solution consistent with

the toric condition is W = (1) + (2) + (3) + (3). Knowing this we can write down the

superpotential. First we have the terms [X41X15X54 − X42X25X54]. Under this choice,

(X15, X25) and (Y15, Y25) are ZZ2 multiplets. This gives us immediately −[X41Y15X53X34 −

X42Y25Y53X34], where we couple X41 to Y15 (likewise X42 to Y25) because X41 has coupled to

X15 in the orbit (2). Furthermore, we have chosen arbitrarily (X53, Y53) as the ZZ2 multiplets

and Z53 as the ZZ2 singlet. Next we will have −[X31X15Y53−X32X25X53], where we couple X31

to Y53 instead of X53 because this term has the negative sign2. The last terms are obviously

+[X31Y15Z53 − X32Y25Z53]. Adding all pieces together we get

WI = [X41X15X54 − X42X25X54] − [X41Y15X53X34 − X42Y25Y53X34]

− [X31X15Y53 − X32X25X53] + [X31Y15Z53 − X32Y25Z53].

Now we move to phase II. The quiver is given by Figure 4.5. It has a ZZ2 symmetry that

interchanges nodes 1 ↔ 2 and 4 ↔ 5 and charge conjugates all the fields. From this we read

2Here we do not consider the Z53 because it is the singlet under the ZZ2 action.
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4

5

1 23

4

5

231

Model I Model II

Figure 12: Quiver diagrams for the two models corresponding to the cone over dP2.

out the orbits of closed loops:

(1) {(1, 4, 5, 2, 3)}

(2) {(1, 4, 2, 3), (1, 5, 2, 3)}

(3) {(1, 4, 5, 3), (3, 4, 5, 2)}

(4) {(3, 1, 5), (3, 4, 2)}

(5) {(4, 5, 3)}

(4.9)

We need 22 fields in the superpotential. The only consistent choice results in WII = (1) +

(2) + (4) + (5). Orbits 1 and 5 give the terms [X45X53X34] − [X14X45X52X23X31]. Notice

that under the ZZ2 action (X23, X31) are doublet as well as (Y23, Y31). Now we consider orbit

4. ZZ2 action tell us that there are two choices, −[X53Y31X15 +X34X42Y23] or −[X53X31X15 +

X34X42X23], where the sign is determined by X53 of orbit 5. However, field X23X31 at orbit

1 tell us that the second choice should have positive sign and give a contradiction. This fixes

the first choice. Finally the orbit 2 gives +[Y23X31X15X52 + X42X23Y31X14] where the field

X31 couples to X15 because the field X15 has coupled to Y31 at orbit 4 (same reason for X42

couples to X23). Combining all together we get

W = [X34X45X53] − [X53Y31X15 + X34X42Y23]

+[Y23X31X15X52 + X42X23Y31X14] − [X23X31X14X45X52]. (4.10)

4.6 Summary

Let us make some remarks before ending this section. The lesson we have learnt is that

symmetry considerations can become a powerful tool in determining the physics. These

symmetries are inherited a fortiori from the isometries of the singularity which we probe.

They exhibit themselves as “flavor symmetries”, i.e., grouping of multiplets of arrows be-

tween two nodes, as well as “node symmetries,” i.e., the automorphism of the quiver itself.
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Relatively straight-forward methods exist for determining the matter content while the gen-

eral techniques of reconstructing the superpotential are rather involved. The discussion of

this section may serve to shed some light.

First we see that using symmetry we can group the terms in the superpotential into a

more compact and easily understood way. Second, in some cases, the symmetry can fix the

superpotential uniquely. Even if not so, we can still constrain it significantly. For example,

in the toric case, we can see which closed polygons (gauge invariant operators) will finally

show up in the superpotential. Combining some heurestic arguments, we even can write

down the superpotential completely. This is indeed far more convenient than any known

methods of superpotential calculations circulated amongst the literature.

However, we remark that application of Seiberg duality does tend to break the most

obvious symmetry deducible from geometry alone in certain cases. Yet we can still find a

phase which exhibits maximal symmetry of the singularity. Without much ado then let us

summarise the results (the most symmetric case) in Table 2.

5. Multiplicity, Divisors and Monodromy

Now let us return to address the meaning of the multiplicities. Some related issues have been

raised under this light in [19, 20]. First recall some standard results from toric geometry.

Our toric data is given by a matrix Gt of dimension 3×c, whose columns (up to multiplicity)

are the generators ~vj := Gij
t of the cone (fan) in ZZ

3. Its integer cokernel is thus a (c− 3)× c

matrix Qt, which provides c − 3 relations (
∑

j qjvj = 0 with qj := Qij
t ) among the vi and

hence a (C∗)c−3 action in Cc so that the symplectic quotient is the c−(c−3) = 3 dimensional

toric singularity in which we are interested. Let the coordinates of Cc be (z1, . . . , zc), then

the torus action is given as

(z1, . . . , zc) ∼ (λQi1
t z1, . . . , λ

Qic
t zc)

for i = 1, . . . , (c − 3) and λ ∈C∗.

5.1 Multiplicity and Divisors

It is well-known [16] that for any toric variety X with fan Σ each 1-dimensional cone corre-

sponds to Cartier divisor3 of X. Since all our toric singularities are Calabi-Yau and have the

3A brief reminder on Cartier divisors. A Cartier divisor D is determined by a sheaf of nonzero rational

functions fa on open cover
⋃

a
Ua such that the transition function fa/fb on overlaps Ua ∩ Ub are nowhere

zero. It determines an (ordinary) Weil divisor as
∑
V

ordV (D)V for co-dimension 1 subvarieties V , where ord
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Quiver Superpotential Symmetry

F0

X12
iX

X23
iiX41

i
34X

21

34

>>

>>>>

>>

W = ǫijX
i
12X

j
34ǫmnX

m
23X

n
41 ZZ2 × ZZ2

dP0

>>
>

2

<<<

<<
<

3

1

W = ǫαβγX
α
12X

β
23X

γ
31 ZZ3

dP1

X 42

41X α X 23
α

X 12

13X

1

4

2

3
, XX 34

α

34
3

W =
[
ǫαβXα

34X
β
41X13 − ǫαβXα

34X
β
23X42

]
+ ǫαβX12X

3
34X

α
41X

β
23 ZZ2

dP2

4

5

1 23

WI = [X41X15X54 − X42X25X54] − [X41Y15X53X34 − X42Y25Y53X34]

−[X31X15Y53 − X32X25X53] + [X31Y15Z53 − X32Y25Z53]
ZZ2

dP3

4

1

6

5

2

3

W = + ( + + ) + ( + );

= X12X23X34X45X56X61; = X13X35X51; = X24X46X62;

= X23X35X56X62; = X13X34X46X61; = X12X24X45X51.

ZZ2 × ZZ3

Table 2: Summary of the maximally symmetric phases.

endpoints of vi coplanar, this simply means that each node of the toric diagram corresponds

is the order of the defining equation f of V . The sheaf generated by fa is clearly a subsheaf of the sheaf of

rational functions on X ; the former is called the Ideal Sheaf, denoted as O(−D).

23



to a Cartier divisor of X. In terms of our coordinates, each node vi corresponds to a divisor

D determined by the hyperplane zi = 0 of the ideal sheaf O(D). Multiplicities in the toric

data simply means that to each node vi with multiplicity mi we must now associate a divisor

D⊕mi so that the sheaf is generated by sections zmi

i of O(miD).

Let us rephrase the above in more physical terms. As will be discussed in greater detail

in a forthcoming work on the precise construction of gauge invariant operators [27], the

multiplicity mi in the GLSM fields (homogeneous coordinates) pi corresponding to node vi

simply means the following. The gauge invariant operators (GIO) are in the form
∏
j

Xj

constructed in terms of the original world volume fields Xj , each Xj is then writable as

products of the gauged linear sigma model fields pi. It is these GIO’s that finally parametrise

the moduli space; i.e., algebraic relations among these GIO’s by virtue of the generating

variables pi are precisely the algebraic equation of the toric variety which the D-brane probes.

Multiplicities in pi simply means that the mi fields (pi)k=1,...,mi
must appear together in each

of the expressions Xj in terms of p’s.

There is therefore, in describing the moduli space of the world-volume theory by the

methods of the linear sigma model, an obvious symmetry, per construtio: the cyclic permu-

tation of the fields pi, or equivalently the cyclic symmetry on the section zmi

i . We summarise

this in the following:

PROPOSITION 5.2 Describing the classical moduli space of the world-volume N = 1 SUSY

gauge theory using the gauge linear sigma model prescription leads to an obvious permutation

symmetry in the sigma model fields (and hence in the toric geometry) which realises as a

product cyclic group ∏

i

ZZmi
with

∑

i

mi = c.

The index i runs over the nodes vi (of multiplicity mi) of the toric diagram.

One thing to note is that there is in fact an additional symmetry, in light of the uni-

modular transformation mentioned in [7], and in fact there is a combined obvious symmetry

of ∏

i

ZZmi
× SL(3; ZZ).

The above symmetry arises as a vestige of the very construction of the GLSM approach

of encoding the moduli space and its geometrical meaning in terms of sections of the ideal

sheaf tensored by itself multiple times is now clear. What is not clear is the necessity of

its emergence. Points have arisen in the existing literature [5, 19] that the multiplicity of

pi (or what was referred to as a redundancy of the homogeneous coordinates) ensures that
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the D-brane does not see any non-geometrical phases. This is to say that of the c pi’s, at

each point in the Kähler moduli space, only a subset (chosen in accordance with Proposition

5.2) is needed to describe the toric singularity M . Which coordinates we choose depends on

the region in the Kähler moduli, i.e., how we tune the FI-parametres in the field theory. In

summary then, the Forward Algorithm in computing the moduli space of the N = 1 gauge

theory encodes more than merely the complex structure of the toric singularity M , but also

the Kähler structure of the resolution, given here in terms of the pair (M,O(miD)), where

O(miD) are sheafs of rational functions as determined by the multiplicities mi.

5.2 Partial Resolutions

Now let us turn to the Inverse Algorithm of finding the gauge theory given a toric singularity.

It is a good place to point out here that the process used in the standard Inverse Algorithm,

commonly referred to as “partial resolution” is strictly somewhat of a misnomer. The process

of “partial resolution” is a precise toric method [16, 17] of refining a cone - the so-called

“star-division” - into ones of smaller volume (when the volume is one, i.e., the generating

lattice vectors are neighbourwise of determinant 1, the singularity is completely resolved).

Partial resolutions in the sense of [5, 6, 7], where we study not the refinement but rather a

sub-polytope of the toric diagram (in other words one piece of the refinement), has another

meaning.

We recall that for the cases of interest one begins with the cone of D′ = C3/(ZZk×ZZk), then

resolves it completely into the fan Σ
D̃′

for D̃′ = ˜C3/(ZZk × ZZk). The given toric singularity

D for which we wish to construct the gauge theory is then a cone σ ⊂ Σ
D̃′

. It is then

well-known (see e.g. [17, 18]) that the variety D is a closed subvariety of D′.

It was pointed out in [21] (at least for Abelian orbifolds) that each additional field in a

GLSM gives rise to a line bundle R over the final toric moduli space. Let us adhere to the

notation of [21, 20]; the Grothendick group K(M) of coherent sheafs over M are generated

by a basis {Ri} of such line bundles. Now take a basis {Si} for Kc(M), the compactly

supported K-group of M , which is dual to K(M) in the sense that there exists a natural

pairing [22]

(R, S) =
∫

M
ch(R)chc(S)Td(M), R ∈ K(M), S ∈ Kc(M)

in the context of the McKay Correspondence [25, 26].

Indeed the Si’s are precisely linear combinations of the sheafs O(mjD) mentioned earlier

and so each S can be represented as O(
∑

ij sijmijDi), summed over the divisors Di, of

multiplicity mij , and with coefficients sij . Finally we have the push-forward of the sheafs Si

to compact cycles C ⊂ M , giving a basis {SCi
}.
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With this setup one can compute the quiver of the gauge theory on the D-branes probing

M using the following prescription for the adjacency matrix

aij =
∫

M
ch(Ri)ch

c(SCj
)Td(M).

Of course, homological algebraic calculations on exceptional collections of sheafs over M

(c. f. e. g. [10, 11, 25, 15]) are equivalent to the above. We use this language of the R, S

basis because the {SCi
} are explicitly generated by the sections zm

ij where we recall mij to

be the multiplicity of the j-th node.

Our final remark is that there in fact exists a natural monodromy action which is none

other than the Fourier-Mukai transform

ch(S) → ch(S) − (S ′, S)ch(S ′), (5.1)

giving rise to a permutation symmetry among the {SCi
}. In the language of [10, 11, 25], this

is a mutation on the exceptional collection. In the language of (p, q)-branes and geometrical

engineering [10, 11, 15], this is Picard-Lefschetz monodromy on the vanishing cycles. What

we see here is that the multiplicity endows the {SCi
} with an explicit permutation symmetry

(generated by the matrices mij) of which the monodromy (5.1) is clearly a subgroup. There-

fore we see indeed that the multiplicity symmetry naturally contains a monodromy action

which in the language of [6, 7] is toric duality, or in the language of [8, 9], Seiberg duality.

Of course one observes that the multiplicity gives more than (5.1); this is indeed en-

countered in our calculations. Many choices of partial resolutions by different choices of

multiplicities result in other theories which are not related to the known ones by any mon-

odromy. What is remarkable is that all these extra theories do not seem physical in that

they either have ill-behaved charge matrices or are not anomaly free. It seems that the

toric dual theories emerging from the multiplicity symmetry in addition to the restriction of

physicality, are constrained to be monodromy related, or in other words, Seiberg dual. We

do point out that toric duality could give certain “fractional Seiberg dualities” which we will

discuss in [28]; such Seiberg-like transformations have also been pointed out in [13].

What we have given is an implicitly algebro-geometric argument, rather than an explicit

computational proof, for why toric duality should arise from multiplicity symmetry. We

await for a detailed analysis of our combinatorial algorithm.

6. Conclusions

In studying the D-brane probe theory for arbitrary toric singularities, a phenomenon where

many different N = 1 theories flow to the same conformal fixed point in the IR, as described
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by the toric variety, was noted and dubbed “toric duality” [6]. Soon a systematic way of

extracting such dual theories was proposed in [7]. There it was thought that the unimodular

degree of freedom in the definition of any toric diagram was key to toric duality.

In this short note we have addressed that the true nature of toric duality results instead

from the multiplicity of the GLSM fields associated to the nodes of the toric diagram. The

unimodularity is then but a special case thereof.

We have presented some first cases of the familiar examples of the Abelian quotients

C2/ZZn and C3/(ZZm × ZZk) and observed beautiful combinatorial patterns of the multiplicities

corresponding to the nodes. As the process of finding dual cones is an algorithmic rather

than analytic one, at this point we do not have proofs for these patterns, any further than

the fact that for C2/ZZn, the total multiplicity is 2n + 1. It has been suggested unto us by

Gregory Moore that at least the 2n behaviour could originate from the continued fraction

which arise from the Hirzebruch-Jung resolution of the toric singularity. Using this idea to

obtain expressions for the multiplicities, or at least the total number of GLSM fields, would

be an interesting pursuit in itself.

We have shown that all of the known examples of toric duality, in particular the theories

for cones over the Zeroth Hirzebruch, the Second and Third del Pezzo Surfaces, can now be

obtained from any and each of unimodularly equivalent toric diagrams for these singularities,

simply by choosing different GLSM fields to resolve. The resulting multiplicities once again

have interesting and yet unexplained properties. The outside nodes always have only a single

GLSM field associated thereto while the interior node could have different numbers greater

than one, each particular to one member of the torically dual family.

As an important digression we have also addressed the intimate relations between certain

isometries of the target space and the symmetries exhibited by the terms in the superpotential

and the quiver. We have argued the existence of two types of symmetries, namely “flavor

symmetry” and “node symmetry”, into whose multiplets the fields in the superpotential

organise themselves. In fact in optimistic cases, from the isometry of the underlying geometry

alone one could write down the superpotential immediately. In general however the situation

is not as powerful, though we could still see some residuals of the isometry. Moreover, Seiberg

dualities performed on the model may further spoil the discrete symmetry. We conjecture

however that there does exist a phase in each family of dual theories which does maximally

manifest the flavor symmetry corresponding to the global isometry as well as the node

symmetry corresponding to the centre of the Lie group one would observe in the close string

sector. We have explicitly shown the cases of the cones over the toric del Pezzo surfaces.

Finally we have made some passing comments to reason why such multiplicities should
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determine toric duality. Using the fact that nodes of toric diagrams correspond to divisors

and that there is a natural monodromy action on the set of line bundles and hence the divisor

group, we see that permutation symmetry among the multiplicities can indeed be realised as

this monodromy action. Subsequently, as Seiberg duality is Picard-Lefshetz monodromy [13],

it is reasonable to expect that toric duality, as a consequence of multiplicity permutation,

should lead to Seiberg duality. Of course this notion must be made more precise, especially

in the context of the very concrete procedures of our Inverse Algorithm. What indeed do

the multiplicities mean, both for the algebraic variety and for the gauge theory? This still

remains a tantalising question.
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7. Appendix: Multiplicities in C2/ZZ
n singularities

Let us see that it is possible to perform a general systematic study of the multiplicities

of linear σ-model fields. As an example, we will focus here on the specific case of An−1

singularities. They produce N = 2 gauge theories with quivers given by the Dynkin diagrams

of the An−1 (SU(n)) Lie algebras (Figure 13). These singularities correspond to the C2/ZZ
n

orbifolds.

n nodes

Figure 13: Quiver diagram for an An−1 singularity.

There are n adjoint fields φi’s, n Qi’s in bifundamentals and n Q̃i’s in antibifundamentals.

The superpotential is
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W =
n∑

i=1

(φi − φi+1)Q̃iQi (7.1)

with the identification φn+1 = φ1. The moduli space is determined by solving D and F-

flatness equations. D-flat directions are parametrized by the algebraically independent holo-

morphic gauge invariant monomials that can be constructed with the fields, so the moduli

space can be found by considering the conditions imposed on this gauge invariant operators

by the F-flatness conditions

∂W

∂φi

= Q̃iQi − Q̃i−1Qi−1 = 0 (7.2)

∂W

∂Q̃i

= (φi − φi+1)Qi = 0

∂W

∂Qi

= (φi − φi+1)Q̃i = 0

where no summation over repeated indices is understood. Looking at the Higgs branch, the

last two equations in (7.2) imply

φ1 = φ2 = ... = φn (7.3)

while the first one gives 4

Qi = Q̃−1
i Q̃i−1Qi−1 (7.4)

Iterating (7.4) we see that

Qi = Q̃−1
i Q̃1Q1 (7.5)

Thus, we see that the original 3n fields can be expressed in terms of only n + 2

φi = φ1 (7.6)

Qi = Q̃−1
i Q̃1Q1

Q̃i

4In the general case of N D-branes sitting on the singularity, the Qi’s become matrices and cannot be

inverted
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Following [6], we can use the toric geometry language to encode the relations between

monomials into a matrix K, which defines a cone

KT =




φ1 . . . φn Q2 . . . . . . Qn Q1 Q̃1 . . . . . . . . . Q̃n

φ1 1 . . . 1 0 0 . . . 0 0 0 . . . . . . . . . 0

Q1 0 . . . 0 1 1 . . . 1 1 0 . . . . . . . . .
...

Q̃1
...

... 1 1 . . . 1 0 1
...

...
...

... −1 0 . . . 0
... 0

. . .
...

...
...

... 0 −1
...

...
. . .

...
...

...
...

...
. . .

...
...

. . .
...

Q̃n 0 . . . 0 0 −1
... 1




(7.7)

7.1 Finding the general dual cone

In what follows, we will discuss linear combinations, linear independence and generators, in

the restricted sense of linear combinations with coefficients in ZZ > 0. The reader should

keep this in mind.

The dual cone of matrix K consists of all vectors v ∈ ZZ
n+2 such that v.k ≥ 0 for any

column k of the matrix KT . We can generate any vector in ZZ
n+2 making linear combinations

of vectors with entries ±1 and 0. Looking carefully at (7.7), we see that KT contains a

(n + 2) × (n + 2) identity submatrix, formed by the first and the last n + 1 columns. This

forbids −1 entries. Then the T matrix is given by a set of vectors from those 2n+2 with 0

and 1 components which satisfy the following conditions:

1) v.k ≥ 0 ∀ k

2) All v’s in the dual cone are linearly independent.

3) They generate all the v’s such that satisfy condition 1 (that is, we do not have to add

extra vectors to our set).

Let us see that we can find a set of vectors that satisfy these three conditions for any

n. Then, we would have found the dual cone for the general An−1 singularity. We will

first propose some candidate vectors, and then we will check that they indeed satisfy the

requirements.
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Vectors Number

(1, 0, ..., 0) 1

(0, 1, 0, ... all 0 and 1 combinations ...) 2n−1

(0, 0, 1, ... all 0 and 1 combinations ...) 2n−1

(7.8)

which give a total of 2n + 1 vectors. From the expression of KT (7.7), we immediately check

that (1) is satisfied. Looking at the first three entries of the vectors, we see they are all

linearly independent (not only in our restricted sense of ZZ > 0 linear combinations), then

(2) is true.

Finally, we have to check that every v for which v.k ≥ 0 can be obtained from this

set. In fact, all the vectors with 0,1 components can be generated, except those of the form

(0, 0, 0, ... at least a 1 ...). But these have v.k ≤ 0 for k being any of the Q2 to Qn columns

of KT , so we have shown that (3) is also true.

Summarising, using the notation of [6], the dual cone for a general An−1 singularity can

be encoded in the following T matrix

T =




1 0 . . . . . . 0 0 . . . . . . 0

0 1 . . . . . . 1 0 . . . . . . 0
... 0 . . . . . . 0 1 . . . . . . 1

...

...

all combinations

of 0’s and 1’s︸ ︷︷ ︸
2n−1

all combinations

of 0’s and 1’s︸ ︷︷ ︸
2n−1




(7.9)

We see that there are 2n +1 linear σ-model fields. This is consistent with claim made in

section 2 that the field multiplicity of each node of the toric diagram is given by a Pascal’s

triangle, since

n∑

i=1


n

i


+ 1 = 2n + 1 (7.10)
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