MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM OF SCHLICKEWEI

KLAUS SCHMIDT AND TOM WARD

Abstract

We prove that every mixing \mathbb{Z}^{d}-action by automorphisms of a compact, connected, abelian group is mixing of all orders.

1. Introduction

If α is a mixing automorphism of a compact, abelian group X, then α is Bernoulli and hence mixing of all orders ([6], [8]). However, if $d>1$, and if α is a mixing \mathbb{Z}^{d}-action by automorphismsms of a compact, abelian group X, then α need not be mixing of every order ([5]), and the intricate way in which higher order mixing can break down may be used to construct measurable isomorphism invariants for α ([3]). In [11] the question was raised whether higher order mixing can fail only if X is disconnected, and a partial result in this direction was obtained (the absence of nonmixing shapes for \mathbb{Z}^{d}-actions on connected groups). In this paper we answer this question by proving that every mixing \mathbb{Z}^{d}-action α by automorphisms of a compact, connected, abelian group is mixing of all orders. Even for commuting toral automorphisms this statement is far from obvious, and its proof depends on a highly nontrivial estimate by H.P. Schlickewei ([9]) of the maximal number of solutions $\left(v_{1}, \ldots, v_{r}\right)$ of equations of the form $a_{1} v_{1}+\cdots+a_{r} v_{r}=1$, subject to certain constraints, where the a_{i} and v_{i} lie in an algebraic number field \mathbb{K}.

2. Multiple mixing and prime ideals

Let (X, \mathfrak{S}, μ) be a standard (or Lebesgue) probability space, $d \geq 1$, and let $T: \mathbf{n} \rightarrow T_{\mathbf{n}}$ be a measure preserving \mathbb{Z}^{d}-action on (X, \mathfrak{S}, μ). The action T is mixing of order r (or r-mixing, or mixing on r sets) if,

[^0]for all sets B_{1}, \ldots, B_{r} in \mathfrak{S},
\[

$$
\begin{equation*}
\left.\lim _{\mathbf{n}_{l} \in \mathbb{Z}^{d}} \text { and } \mathbf{n}_{l}-\mathbf{n}_{l^{\prime}} \rightarrow \infty \text { for } 1 \leq l^{\prime}<l \leq r=\bigcap_{l=1}^{r} T_{-\mathbf{n}_{l}}\left(B_{l}\right)\right)=\prod_{l=1}^{r} \mu\left(B_{l}\right) . \tag{1}
\end{equation*}
$$

\]

In (1) we may obviously assume that $\mathbf{n}_{1}=\mathbf{0}$. Now assume that X is a compact, abelian group (always assumed to be metrizable), $\mathfrak{S}=\mathfrak{B}_{X}$ is the Borel field of X, and that $\mu=\lambda_{X}$ is the normalized Haar measure of X. We write \hat{X} for the dual group of X, denote by $\langle x, \chi\rangle=\chi(x)$ the value at $x \in X$ of a character $\chi \in \hat{X}$, and write $\hat{\eta}$ for the automorphism $\hat{\eta}(\chi)=\chi \cdot \eta, \chi \in \hat{X}$, of \hat{X} dual to a continuous automorphism η of X. A homomorphism $\alpha: \mathbf{n} \rightarrow \alpha_{\mathbf{n}}$ from \mathbb{Z}^{d} into the group $\operatorname{Aut}(X)$ of continuous automorphisms of X is a \mathbb{Z}^{d}-action by automorphisms of X. From (2.1) it is clear that a \mathbb{Z}^{d}-action α by automorphisms of a compact, abelian group X is r-mixing if and only if, for all characters $\chi_{1}, \ldots, \chi_{r}$ in \hat{X} with $\chi_{i} \neq 1$ for some $i \in\{1, \ldots, r\}$,

$$
\begin{equation*}
\lim _{\mathbf{n}_{l} \in \mathbb{Z}^{d}} \text { and } \mathbf{n}_{l}-\mathbf{n}_{l^{\prime}} \rightarrow \infty \text { for } 1 \leq l^{\prime}<l \leq r ~ \int\left(\chi_{1} \cdot \alpha_{\mathbf{n}_{1}}\right) \cdots\left(\chi_{r} \cdot \alpha_{\mathbf{n}_{r}}\right) d \lambda_{X}=0 . \tag{2}
\end{equation*}
$$

Again we may assume that $\mathbf{n}_{1}=\mathbf{0}$ in (2). The equivalence of (1) and (2) is seen by expanding the indicator functions of the sets B_{i} as Fourier series.

Before we discuss the higher order mixing properties of \mathbb{Z}^{d}-actions by automorphisms of compact, abelian groups we recall the algebraic description of such actions in [2] and [10]. Let $\mathfrak{R}_{d}=\mathbb{Z}\left[u_{1}^{ \pm 1}, \ldots, u_{d}^{ \pm 1}\right]$ be the ring of Laurent polynomials with integral coefficients in the commuting variables u_{1}, \ldots, u_{d}. If α is a \mathbb{Z}^{d}-action by automorphisms of a compact, abelian group X, then the dual group $\mathfrak{M}=\hat{X}$ of X becomes an \mathfrak{R}_{d}-module under the \mathfrak{R}_{d}-action defined by

$$
\begin{equation*}
f \cdot a=\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{f}(\mathbf{m}) \beta_{\mathbf{m}}(a) \tag{3}
\end{equation*}
$$

for all $a \in \mathfrak{M}$ and $f=\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{f}(\mathbf{m}) u^{\mathbf{m}} \in \mathfrak{R}_{d}$, where $u^{\mathbf{n}}=u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ for every $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$, and where $\beta_{\mathbf{n}}=\widehat{\alpha_{\mathbf{n}}}$ is the automorphism of $\mathfrak{M}=\hat{X}$ dual to $\alpha_{\mathbf{n}}$. In particular,

$$
\begin{equation*}
\widehat{\alpha_{\mathbf{n}}}(a)=\beta_{\mathbf{n}}(a)=u^{\mathbf{n}} \cdot a \tag{4}
\end{equation*}
$$

for all $\mathbf{n} \in \mathbb{Z}^{d}$ and $a \in \mathfrak{M}$. Conversely, if \mathfrak{M} is an \mathfrak{R}_{d}-module, and if

$$
\begin{equation*}
\beta_{\mathbf{n}}^{\mathfrak{M}}(a)=u^{\mathbf{n}} \cdot a \tag{5}
\end{equation*}
$$

for every $\mathbf{n} \in \mathbb{Z}^{d}$ and $a \in \mathfrak{M}$, then we obtain a \mathbb{Z}^{d}-action

$$
\begin{equation*}
\alpha^{\mathfrak{M}}: \mathbf{n} \rightarrow \alpha_{\mathbf{n}}^{\mathfrak{M}}=\widehat{\beta_{\mathbf{n}}^{\mathfrak{M}}} \tag{6}
\end{equation*}
$$

on the compact, abelian group

$$
\begin{equation*}
X^{\mathfrak{M}}=\widehat{\mathfrak{M}} \tag{7}
\end{equation*}
$$

dual to the \mathbb{Z}^{d}-action $\beta^{\mathfrak{M}}: \mathbf{n} \rightarrow \beta_{\mathbf{n}}^{\mathfrak{M}}$ on \mathfrak{M}. In this notation the r-mixing condition (2.2) is equivalent to the condition that, for all nonzero elements $\left(a_{1}, \ldots, a_{r}\right) \in \mathfrak{M}^{r}$,

$$
\begin{equation*}
u^{\mathbf{m}_{1}} \cdot a_{1}+\cdots+u^{\mathbf{m}_{r}} \cdot a_{r} \neq 0 \tag{8}
\end{equation*}
$$

whenever $\mathbf{m}_{l} \in \mathbb{Z}^{d}$ and $\mathbf{m}_{l}-\mathbf{m}_{l^{\prime}}$ lies outside some sufficiently large finite subset of \mathbb{Z}^{d} for all $1 \leq l^{\prime}<l \leq r$.

If \mathfrak{M} is an \mathfrak{R}_{d}-module, then a prime ideal $\mathfrak{p} \subset \mathfrak{R}_{d}$ is associated with \mathfrak{M} if $\mathfrak{p}=\left\{f \in \mathfrak{R}_{d}: f \cdot a=0\right\}$ for some $a \in \mathfrak{M}$, and \mathfrak{M} is associated with a prime ideal $\mathfrak{p} \subset \mathfrak{R}_{d}$ if \mathfrak{p} is the only prime ideal in \mathfrak{R}_{d} which is associated with \mathfrak{M}. A nonzero Laurent polynomial $f \in \mathfrak{R}_{d}$ is a generalized cyclotomic polynomial if there exist $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^{d}$ and a cyclotomic polynomial c in a single variable such that $\mathbf{n} \neq \mathbf{0}$ and $f=u^{\mathbf{m}} c\left(u^{\mathbf{n}}\right)$. The following theorem was proved in [10].
Theorem 2.1. Let α be a \mathbb{Z}^{d}-action by automorphisms of a compact, abelian group X, and let $\mathfrak{M}=\hat{X}$ be the $\mathfrak{\Re}_{d}$-module arising from α via (2.3)-(2.4). The following conditions are equivalent.
(1) α is mixing (i.e. 2-mixing);
(2) $\alpha_{\mathbf{m}}$ is ergodic for every $\mathbf{0} \neq \mathbf{m} \in \mathbb{Z}^{d}$;
(3) None of the prime ideals associated with \mathfrak{M} contains a generalized cyclotomic polynomial.

If the \mathbb{Z}^{d}-action α in Theorem 2.1 is mixing, then the higher order mixing behaviour of α is again determined by the prime ideals associated with $\mathfrak{M}=\hat{X}$.

Theorem 2.2. Let α be a \mathbb{Z}^{d}-action by automorphisms of a compact, abelian group X, and let $\mathfrak{M}=\hat{X}$ be the \mathfrak{R}_{d}-module arising from α via (2.3)-(2.4). The following conditions are equivalent for every $r \geq 2$.
(1) α is r-mixing;
(2) For every prime ideal $\mathfrak{p} \subset \mathfrak{R}_{d}$ associated with \mathfrak{M}, the \mathbb{Z}^{d}-action $\alpha^{\mathfrak{\Re}_{d} / \mathfrak{p}}$ defined in (2.5)-(2.7) is r-mixing.
Proof. Suppose that α is r-mixing. If $\mathfrak{p} \subset \mathfrak{R}_{d}$ is a prime ideal associated with \mathfrak{M}, then there exists an element $a \in \mathfrak{M}$ such that $\mathfrak{p}=\left\{f \in \mathfrak{R}_{d}\right.$: $f \cdot a=0\}$, and we set $\mathfrak{Y}=\mathfrak{R}_{d} \cdot a \subset \mathfrak{M}$. Then $\mathfrak{Y} \cong \mathfrak{R}_{d} / \mathfrak{p}$ and $Y=\widehat{\mathfrak{Y}}=X / \mathfrak{Y}^{\perp}$, where $\mathfrak{Y}^{\perp}=\{x \in X:\langle x, a\rangle=1$ for all $a \in \mathfrak{Y}\}$ is the annihilator of \mathfrak{Y}. Since \mathfrak{Y} is invariant under the \mathbb{Z}^{d}-action $\beta: \mathbf{n} \rightarrow$ $\beta_{\mathbf{n}}=\widehat{\alpha_{\mathbf{n}}}$ dual to $\alpha, \mathfrak{Y}^{\perp}$ is a closed, α-invariant subgroup of X, and the \mathbb{Z}^{d}-action α^{Y} induced by α on Y is a factor of α and hence r-mixing.

Since the \mathfrak{R}_{d}-module arising from α^{Y} is equal to $\hat{Y}=\mathfrak{Y} \cong \mathfrak{R}_{d} / \mathfrak{p}$ we conclude that $\alpha^{\Re_{d} / \mathfrak{p}}$ must be r-mixing.

Conversely, if α is not r-mixing, then (2.8) shows that there exists a nonzero element $\left(a_{1}, \ldots, a_{r}\right) \in \mathfrak{M}^{r}$ and a sequence $\left(\mathbf{n}^{(m)}=\right.$ $\left.\left(\mathbf{n}_{1}^{(m)}, \ldots, \mathbf{n}_{r}^{(m)}\right), m \geq 1\right)$ in $\left(\mathbb{Z}^{d}\right)^{r}$ such that $\lim _{m \rightarrow \infty} \mathbf{n}_{l}^{(m)}-\mathbf{n}_{l^{\prime}}^{(m)}=\infty$ for $1 \leq l^{\prime}<l \leq r$ and $u^{\mathbf{n}_{1}^{(m)}} \cdot a_{1}+\cdots+u^{\mathbf{n}_{r}^{(m)}} \cdot a_{r}=0$ for every $m \geq 1$. There exists a Noetherian submodule $\mathfrak{N} \subset \mathfrak{M}$ such that $\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathfrak{N}$, and (2.8) implies that the \mathbb{Z}^{d}-action $\alpha^{\mathfrak{N}}$, which is a quotient of α, is not r-mixing.

Since \mathfrak{N} is Noetherian, the set of (distinct) prime ideals associated with \mathfrak{N} is finite and equal to $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}\right\}$, say. By Theorem VI.5.3 in [4] there exist submodules $\mathfrak{W}_{1}, \ldots, \mathfrak{W}_{m}$ of \mathfrak{N} such that $\mathfrak{N} / \mathfrak{W}_{i}$ is associated with \mathfrak{p}_{i} for $i=1, \ldots, m, \bigcap_{i=1}^{m} \mathfrak{W}_{i}=\{0\}$, and $\bigcap_{i \in S} \mathfrak{W}_{i} \neq$ $\{0\}$ for every subset $S \subsetneq\{1, \ldots, m\}$. In particular, the map $a \rightarrow$ $\left(a+\mathfrak{W}_{1}, \ldots, a+\mathfrak{W}_{m}\right)$ from \mathfrak{N} into $\mathfrak{K}=\bigoplus_{i=1}^{m} \mathfrak{N} / \mathfrak{W}_{i}$ is injective, and the dual homomorphism from $\bar{X}=\widehat{\mathfrak{K}}$ to $\widehat{\mathfrak{N}}=X^{\mathfrak{N}}$ is surjective. Hence $\alpha^{\mathfrak{N}}$ is a factor of $\alpha^{\mathfrak{K}}$, so that $\alpha^{\mathfrak{K}}$ cannot be r-mixing. By applying (2.8) to the \mathfrak{R}_{d}-module \mathfrak{K} we see that there exists a $j \in\{1, \ldots, m\}$ such that $\alpha^{\mathfrak{N} / \mathfrak{W}_{j}}$ is not r-mixing.

Put $\mathfrak{V}=\mathfrak{N} / \mathfrak{W}_{j}, \mathfrak{p}=\mathfrak{p}_{j}$, and use Lemma 3.4 in [3] to find integers $1 \leq t \leq s$ and submodules $\mathfrak{V}=\mathfrak{N}_{s} \supset \cdots \supset \mathfrak{N}_{0}=\{0\}$ such that, for every $k=1, \ldots, s, \mathfrak{N}_{k} / \mathfrak{N}_{k-1} \cong \mathfrak{R}_{d} / \mathfrak{q}_{k}$ for some prime ideal $\mathfrak{p} \subset \mathfrak{q}_{k} \subset \mathfrak{R}_{d}, \mathfrak{q}_{k}=\mathfrak{p}$ for $k=1, \ldots, t$, and $\mathfrak{q}_{k} \supsetneq \mathfrak{p}$ for $i=t+1, \ldots, s$. We choose Laurent polynomials $g_{k} \in \mathfrak{q}_{k} \backslash \mathfrak{p}, k=t+1, \ldots, s$, and set $g=g_{t+1} \cdots g_{s}$. Since $\alpha^{\mathfrak{V}}$ is not r-mixing, (2.8) implies the existence of a nonzero element $\left(a_{1}, \ldots, a_{r}\right) \in \mathfrak{V}^{r}$ and a sequence $\left(\mathbf{n}^{(m)}=\right.$ $\left.\left(\mathbf{n}_{1}^{(m)}, \ldots, \mathbf{n}_{r}^{(m)}\right), m \geq 1\right)$ in $\left(\mathbb{Z}^{d}\right)^{r}$ such that $\lim _{m \rightarrow \infty} \mathbf{n}_{l}^{(m)}-\mathbf{n}_{l^{\prime}}^{(m)}=\infty$ whenever $1 \leq l^{\prime}<l \leq r$, and $u^{\mathbf{n}_{1}^{(m)}} \cdot a_{1}+\cdots+u^{\mathbf{n}_{r}^{(m)}} \cdot a_{r}=0$ for every $m \geq 1$. Put $b_{i}=g \cdot a_{i}$, and note that $0 \neq\left(b_{1}, \ldots, b_{r}\right) \in\left(\mathfrak{N}_{t}\right)^{r}$, since $g \cdot a \neq 0$ for every nonzero element $a \in \mathfrak{V}$. There exists a unique integer $p \in\{1, \ldots, t\}$ such that $\left(b_{1}, \ldots, b_{r}\right) \in\left(\mathfrak{N}_{p}\right)^{r} \backslash\left(\mathfrak{N}_{p-1}\right)^{r}$, and by setting $b_{i}^{\prime}=b_{i}+\mathfrak{N}_{p-1} \in \mathfrak{N}_{p} / \mathfrak{N}_{p-1} \cong \mathfrak{R}_{d} / \mathfrak{p}$ we obtain that $0 \neq\left(b_{1}^{\prime}, \ldots, b_{r}^{\prime}\right) \in$ $\left(\mathfrak{N}_{p} / \mathfrak{N}_{p-1}\right)^{r} \cong\left(\mathfrak{R}_{d} / \mathfrak{p}\right)^{r}$ and $u_{1}^{\mathbf{n}_{1}^{(m)}} \cdot b_{1}^{\prime}+\cdots+u^{\mathbf{n}_{r}^{(m)}} \cdot b_{r}^{\prime}=0$ for every $m \geq 1$, so that $\alpha^{\Re_{d} / \mathfrak{p}}$ is not r-mixing by (2.8). Since the prime ideal \mathfrak{p} is associated with the submodule $\mathfrak{N} \subset \mathfrak{M}, \mathfrak{p}$ is also associated with \mathfrak{M}, and the theorem is proved.

3. Schlickewei's theorem and mixing

Theorem 2.2 shows that a \mathbb{Z}^{d}-action α by automorphisms of a compact, abelian group X is mixing of order $r \geq 2$ if and only if the
\mathbb{Z}^{d}-actions $\alpha^{\Re_{d} / \mathfrak{p}}$ are r-mixing for all prime ideals $\mathfrak{p} \subset \mathfrak{R}_{d}$ associated with the \mathfrak{R}_{d}-module $\mathfrak{M}=\hat{X}$ defined by α (cf. (2.3)-(2.8)). In order to be able to apply this result we shall characterize those prime ideals $\mathfrak{p} \subset \mathfrak{R}_{d}$ for which $\alpha^{\Re_{d} / \mathfrak{p}}$ is r-mixing for every $r \geq 2$.

We identify \mathbb{Z} with the set of constant polynomials in \mathfrak{R}_{d} and note that, for every prime ideal $\mathfrak{p} \subset \mathfrak{R}_{d}, \mathfrak{p} \cap \mathbb{Z}$ is either equal to $p \mathbb{Z}$ for some rational prime $p=p(\mathfrak{p})$, or to $\{0\}$, in which case we set $p(\mathfrak{p})=0$.

Theorem 3.1. Let $d \geq 1$, and let $\mathfrak{p} \subset \mathfrak{R}_{d}$ be a prime ideal such that $\alpha^{\Re_{d} / \mathfrak{p}}$ is mixing (cf. Theorem 2.1).
(1) If $p(\mathfrak{p})>0$ then $\alpha^{\Re_{d} / \mathfrak{p}}$ is r-mixing for every $r \geq 2$ if and only if $\mathfrak{p}=(p(\mathfrak{p}))=p(\mathfrak{p}) \mathfrak{R}_{d}$;
(2) If $p(\mathfrak{p})=0$ then $\alpha^{\Re_{d} / \mathfrak{p}}$ is r-mixing for every $r \geq 2$.

Theorem 3.1 (1) follows from Theorem 3.3 (2) of [Sc2]. We postpone the proof of Theorem 3.1 (2) for the moment and look instead at some of the consequences of that theorem. If α is a \mathbb{Z}^{d}-action by automorphisms of a compact, abelian group X with completely positive entropy, then it is mixing of all orders by Theorem 6.5 and Corollary 6.7 in [7]. If the group X is zero-dimensional, the reverse implication is also true.

Corollary 3.2. Let α be a \mathbb{Z}^{d}-action by automorphisms of a compact, abelian, zero-dimensional group X. The following conditions are equivalent.
(1) α has completely positive entropy;
(2) α is r-mixing for every $r \geq 2$.

Proof. Since X is zero-dimensional, every prime ideal \mathfrak{p} associated with the \mathfrak{R}_{d}-module $\mathfrak{M}=\hat{X}$ arising from α via (2.3)-(2.4) contains a nonzero constant, so that $p(\mathfrak{p})>0$. According to Theorem 6.5 in [7], this implies that α has completely positive entropy if and only if $\mathfrak{p}=p(\mathfrak{p}) \cdot \mathfrak{R}_{d}$ for every prime ideal \mathfrak{p} associated with \mathfrak{M}, and the equivalence of (1) and (2) follows from Theorem 2.2 and Theorem 3.1 (1).

The next corollary shows that the higher order mixing behaviour of \mathbb{Z}^{d}-actions by automorphisms of compact, connected, abelian groups is quite different from the zero-dimensional case, and requires no assumptions concerning entropy.

Corollary 3.3. Let $d \geq 1$, and let α be a mixing \mathbb{Z}^{d}-action on a compact, connected, abelian group X. Then α is r-mixing for every $r \geq 2$.

Proof. The group X is connected if and only if the dual group \hat{X} is torsion-free, i.e. if and only if $n a \neq 0$ whenever $0 \neq a \in \hat{X}$ and $0 \neq$ $n \in \mathbb{Z}$. We write $\mathfrak{M}=\hat{X}$ for the \mathfrak{R}_{d}-module defined by α via (2.3)(2.4), note that the connectedness of X implies that $p(\mathfrak{p})=0$ for every prime ideal $\mathfrak{p} \subset \mathfrak{R}_{d}$ associated with \mathfrak{M}, and apply Theorems 2.2 and 3.1 (2).

Corollary 3.4. Let A_{1}, \ldots, A_{d} be commuting automorphism of the n torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ with the property that the \mathbb{Z}^{d}-action $\alpha:\left(m_{1}, \ldots, m_{d}\right) \rightarrow$ $\alpha_{\left(m_{1}, \ldots, m_{d}\right)}=A_{1}^{m_{1}} \cdots A_{d}^{m_{d}}$ is mixing. Then α is r-mixing for every $r \geq 2$.

The proof of Theorem 3.1 (2) depends on a result by Schlickewei [9]. Let \mathbb{K} be an algebraic number field of degree D, and let $P(\mathbb{K})$ be the set of places and $P_{\infty}(\mathbb{K})$ the set of infinite (or archimedean) places of \mathbb{K}. For every $v \in P(\mathbb{K}),|\cdot|_{v}$ denotes the associated absolute value, normalized so that $|a|_{v}$ is equal to the standard absolute value $|a|$ if $v \in P_{\infty}(\mathbb{K})$ and $a \in \mathbb{Q}$, and $|p|_{v}=p^{-1}$ if v lies above the rational prime p. Let $S, P_{\infty}(\mathbb{K}) \subset S \subset P(\mathbb{K})$, be a finite set of cardinality s. An element $a \in \mathbb{K}$ is an S-unit if $|a|_{v}=1$ for every $v \in P(\mathbb{K}) \backslash S$.

Theorem 3.5. (Schlickewei) Let a_{1}, \ldots, a_{n} be nonzero elements of \mathbb{K}. Then the equation

$$
\begin{equation*}
a_{1} v_{1}+\cdots+a_{n} v_{n}=1 \tag{9}
\end{equation*}
$$

has not more than

$$
(4 s D!)^{2^{36 n D!} s^{6}}
$$

solutions $\left(v_{1}, \ldots, v_{n}\right)$ in S-units such that no proper subsum $a_{i_{1}} v_{i_{1}}+$ $\cdots+a_{i_{k}} v_{i_{k}}$ vanishes.

Proof. Proof of Theorem 3.1 (2) For every field \mathbb{F} we set $\mathbb{F}^{\times}=\mathbb{F} \backslash$ $\{0\}$. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the algebraic closure of \mathbb{Q}, and let $V(\mathfrak{p})=\{\mathbf{c}=$ $\left(c_{1}, \ldots, c_{d}\right) \in\left(\overline{\mathbb{Q}}^{\times}\right)^{d}: f(\mathbf{c})=0$ for every $\left.f \in \mathfrak{p}\right\}$ and $V_{\mathbb{C}}(\mathfrak{p})=\{\mathbf{c}=$ $\left(c_{1}, \ldots, c_{d}\right) \in\left(\mathbb{C}^{\times}\right)^{d}: f(\mathbf{c})=0$ for every $\left.f \in \mathfrak{p}\right\}$.

Suppose that $\alpha^{\Re_{d} / \mathfrak{p}}$ is not r-mixing for some $r \geq 3$, and that r is the smallest integer with this property. According to (2.8) there exists a nonzero element $\left(a_{1}, \ldots, a_{r}\right) \in\left(\mathfrak{R}_{d} / \mathfrak{p}\right)^{r}$ and a sequence $\left(\mathbf{n}^{(m)}=\right.$ $\left.\left(\mathbf{n}_{1}^{(m)}, \ldots, \mathbf{n}_{r}^{(m)}\right), m \geq 1\right)$ in $\left(\mathbb{Z}^{d}\right)^{r}$ such that $\lim _{m \rightarrow \infty} \mathbf{n}_{l}^{(m)}-\mathbf{n}_{l^{\prime}}^{(m)}=\infty$ whenever $1 \leq l^{\prime}<l \leq r$, and $u^{\mathbf{n}_{1}^{(m)}} \cdot a_{1}+\cdots+u^{\mathbf{n}_{r}^{(m)}} \cdot a_{r}=0$ for every $m \geq 1$. For simplicity we assume that $\mathbf{n}^{(m)} \neq \mathbf{n}^{(n)}$ whenever $1 \leq m<n$, and that $\mathbf{n}_{1}^{(m)}=\mathbf{0}$ for all $m \geq 1$. The minimality of r is easily seen to imply that $a_{i} \neq 0$ for $i=1, \ldots, r$. Choose $f_{i} \in \mathfrak{R}_{d}$ such that $a_{i}=f_{i}+\mathfrak{p}, i=1, \ldots, r$, set, for every $\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p})$ and
$\mathbf{m}=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}, \mathbf{c}^{\mathbf{m}}=c_{1}^{m_{1}} \cdots c_{d}^{m_{d}}$, and note that

$$
\begin{equation*}
f_{1}(\mathbf{c})+f_{2}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{2}^{(m)}}+\cdots+f_{r}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{r}^{(m)}}=0 \tag{10}
\end{equation*}
$$

for all $\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p})$ and $m \geq 1$.
If $V(\mathfrak{p})$ is finite, then $V(\mathfrak{p})=V_{\mathbb{C}}(\mathfrak{p})$ consists of the orbit of a single point $\mathbf{c}=\left(c_{1}, \ldots, c_{d}\right)$ under the Galois group $G a l[\overline{\mathbb{Q}}: \mathbb{Q}]$, and the assumption that $\alpha^{\Re_{d} / \mathfrak{p}}$ is mixing is equivalent to saying that $\mathbf{c}^{\mathbf{m}} \neq 1$ whenever $\mathbf{0} \neq \mathbf{m} \in \mathbb{Z}^{d}$. The evaluation map $f \rightarrow f(\mathbf{c}), f \in \mathfrak{R}_{d}$, has kernel \mathfrak{p}, and may thus be regarded as an injective homomorphism from $\mathfrak{R}_{d} / \mathfrak{p}$ into \mathbb{C}; in particular, $f_{1}(\mathbf{c}) \cdots f_{r}(\mathbf{c}) \neq 0$. We denote by \mathbb{K} the algebraic number field $\mathbb{Q}(\mathbf{c})=\mathbb{Q}\left(c_{1}, \ldots, c_{d}\right)$ and set $S=P_{\infty}(\mathbb{K}) \cup$ $\left\{v \in P(\mathbb{K}):\left|c_{i}\right|_{v} \neq 1\right.$ for some $\left.i \in\{1, \ldots, d\}\right\}$. Then S is finite, and Schlickewei's Theorem 3.5 implies that the equation

$$
-\frac{f_{2}(\mathbf{c})}{f_{1}(\mathbf{c})} v_{2}-\cdots-\frac{f_{r}(\mathbf{c})}{f_{1}(\mathbf{c})} v_{r}=1
$$

has only finitely many solutions $\left(v_{2}, \ldots, v_{r}\right)$ in S-units such that $f_{i_{1}}(\mathbf{c}) v_{i_{1}}+$ $\cdots+f_{i_{k}}(\mathbf{c}) v_{i_{k}} \neq 0$ whenever $1<i_{1}<\cdots<i_{k} \leq r$. However, the properties of \mathbf{c} and S imply that the vectors $\left(\mathbf{c}^{\mathbf{n}_{2}^{(m)}}, \ldots, \mathbf{c}^{\mathbf{n}_{r}^{(m)}}\right), m \geq 1$, are all distinct, and that $\mathbf{c}_{i}^{\mathbf{n}_{i}^{(m)}}$ is an S-unit for every $i=2, \ldots, r$ and $m \geq 1$. From (10) we conclude that, for all but finitely many $m \geq 1$, one of the subsums $f_{i_{1}}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{i_{1}}^{(m)}}+\cdots+f_{i_{k}}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{i_{k}}^{(m)}}$ vanishes. For some choice of $1<i_{1}<\cdots<i_{k} \leq r$ we obtain an infinite set M of positive integers such that $f_{i_{1}}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{i_{1}}^{(m)}}+\cdots+f_{i_{k}}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{i_{k}}^{(m)}}=0$ for every $m \in M$, and this is easily seen to imply that $\alpha^{\Re_{d} / \mathfrak{p}}$ fails to be k-mixing, where $k<r$, contrary to the minimality of r.

A moment's reflection shows that we have now proved enough to obtain Corollary 3.4. For Theorem 3.1 (2) and Corollary 3.3, however, we have to deal with the case where $V(\mathfrak{p})$ is infinite. Since $p(\mathfrak{p})=0$, the natural homomorphism $\iota: \mathfrak{N}=\mathfrak{R}_{d} / \mathfrak{p} \longmapsto \mathcal{N}=\mathbb{Q} \otimes_{\mathbb{Z}} \mathfrak{N}$, defined by $a \rightarrow 1 \otimes a$ for every $a \in \mathfrak{N}$, is injective, and we put $z_{i}=\iota\left(u_{i}+\mathfrak{p}\right)$ and $z_{d+i}=\iota\left(u_{i}^{-1}+\mathfrak{p}\right)$ for $i=1, \ldots, d$. Noether's normalization lemma ($[1]$), applied to the \mathbb{Q}-algebra \mathcal{N}, allows us to find an integer $t \in\{1, \ldots, 2 d\}$ and \mathbb{Q}-linear functions w_{1}, \ldots, w_{t} of the elements $z_{1}, \ldots, z_{2 d}$ such that $\left\{w_{1}, \ldots, w_{t}\right\}$ is algebraically independent over \mathbb{Q} and each $z_{1}, \ldots, z_{2 d}$ is integral over $\mathbb{Q}\left[w_{1}, \ldots, w_{t}\right]$. We choose and fix monic polynomials $Q_{i} \in \mathbb{Q}\left[w_{1}, \ldots, w_{t}\right][y]=\mathbb{Q}\left[w_{1}, \ldots, w_{t}, y\right]$ such that $Q_{i}\left(w_{1}, \ldots, w_{t}, z_{i}\right)=$ 0 for $i=1, \ldots, 2 d$ and regard each Q_{i} either as a polynomial in y with coefficients in $\mathbb{Q}\left[w_{1}, \ldots, w_{t}\right]$, or as an element of $\mathbb{Q}\left[w_{1}, \ldots, w_{t}, y\right]$.

Put $W_{\mathbb{C}}(\mathfrak{p})=\left\{\left(c_{1}, \ldots, c_{d}, c_{1}^{-1}, \ldots, c_{d}^{-1}\right):\left(c_{1}, \ldots, c_{d}\right) \in V_{\mathbb{C}}(\mathfrak{p})\right\} \subset \mathbb{C}^{2 d}$, define a surjective map $\omega: W_{\mathbb{C}}(\mathfrak{p}) \longmapsto \mathbb{C}^{t}$ by $\omega(\mathbf{c})=\left(w_{1}(\mathbf{c}), \ldots, w_{t}(\mathbf{c})\right)$
for every $\mathbf{c} \in W_{\mathbb{C}}(\mathfrak{p})$, and note that $V_{\mathbb{C}}(\mathfrak{p})=\pi\left(W_{\mathbb{C}}(\mathfrak{p})\right) \subset\left(\mathbb{C}^{\times}\right)^{d} \subset \mathbb{C}^{d}$, where $\pi: \mathbb{C}^{2 d} \longmapsto \mathbb{C}^{d}$ is the projection onto the first d coordinates. We write $R \subset \mathbb{Q}$ for the set of rational numbers which occur as one of the coefficients of one of the linear maps w_{i} (regarded as a rational linear map in $2 d$ variables), or of one of the polynomials Q_{i} (regarded as a polynomial in $t+1$ variables with rational coefficients), and let \mathcal{P} denote a nonempty, finite set of rational primes which contains every prime divisor appearing in any element of R (either in the numerator or the denominator). Put $\mathbb{K}=\{a+b \sqrt{-1}: a, b \in \mathbb{Q}\}$ and denote by $S^{\prime} \subset$ $P(\mathbb{K})$ the (finite) set of all places of \mathbb{K} which are either infinite, or which lie above one of the primes in \mathcal{P}. There exists an integer $D \geq 1$ such that, for every $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{t}\right) \in \mathbb{K}^{t}$ and $\boldsymbol{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{2 d}\right) \in \omega^{-1}(\boldsymbol{\beta})$, the algebraic number field $\mathbb{K}(\gamma)$ generated by \mathbb{K} and $\left(\gamma_{1}, \ldots, \gamma_{2 d}\right)$ has degree $(\mathbb{K}(\gamma): \mathbb{K}) \leq D$. Then $\mathbb{K}(\gamma)$ has at most D distinct places above every place of \mathbb{K}, and it follows that the cardinality $|S(\gamma)|$ of the set $S(\gamma)$ of places of $\mathbb{K}(\gamma)$ which lie above one of the elements of S^{\prime} is bounded by $D \cdot\left|S^{\prime}\right|$, where $\left|S^{\prime}\right|$ is the cardinality of S^{\prime}.

Let $\Sigma \subset \mathbb{K}$ be the set of S^{\prime}-units, and let $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{t}\right) \in \Sigma^{t} \subset \mathbb{K}^{t}$. We claim that every coordinate of every $\boldsymbol{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{2 d}\right) \in \omega^{-1}(\boldsymbol{\beta})$ is an $S(\gamma)$-unit. Indeed, if $v^{\prime} \in P(\mathbb{K}) \backslash S^{\prime}$, and if $v \in P(\mathbb{K}(\gamma))$ lies above v^{\prime}, then γ_{i} is a root of the monic polynomial $Q_{i}(\boldsymbol{\beta}, y) \in \mathbb{K}[y]$, and each coefficient ζ of Q_{i} satisfies that $|\zeta|_{v^{\prime}} \leq 1$. It follows that $\left|\gamma_{i}\right|_{v} \leq 1$ for $i=1, \ldots 2 d$. In particular, since $\gamma_{i}^{-1}=\gamma_{i+d}$ for $i \in\{1, \ldots, d\}$, we obtain that $\left|\gamma_{i}^{-1}\right|_{v}=\left(\left|\gamma_{i}\right|_{v}\right)^{-1} \leq 1$, so that $\left|\gamma_{i}\right|_{v}=\left|\gamma_{i+d}\right|_{v}=1$, as claimed.

Since Σ is dense in \mathbb{C}, the set $\Omega=\pi\left(\omega^{-1}\left(\Sigma^{t}\right)\right) \subset V(\mathfrak{p})$ is dense in $V_{\mathbb{C}}(\mathfrak{p})$, and for every $\mathbf{c}=\left(c_{1}, \ldots, c_{d}\right) \in \Omega$ we either have that $f_{1}(\mathbf{c})=0$ and $f_{2}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{2}^{(m)}}+\cdots+f_{r}(\mathbf{c}) c^{\mathbf{n}_{r}^{(m)}}=0$ for every $m \geq 1$, or that $f_{1}(\mathbf{c}) \neq 0$, in which case case Schlickewei's theorem implies that the equation

$$
-\frac{f_{2}(\mathbf{c})}{f_{1}(\mathbf{c})} v_{2}-\cdots-\frac{f_{r}(\mathbf{c})}{f_{1}(\mathbf{c})} v_{r}=1
$$

has at most $C=\left(4 D\left|S^{\prime}\right| D!\right)^{2^{36(r-1) D!}\left(D\left|S^{\prime}\right|\right)^{6}}$ distinct solutions $\left(v_{2}, \ldots, v_{r}\right)$ in S-units for which no subsum $f_{i_{1}}(\mathbf{c}) v_{i_{1}}+\cdots+f_{i_{k}}(\mathbf{c}) v_{i_{k}}$ vanishes. For all $1 \leq m<n, k<r$, and $\left\{i_{1}, \ldots, i_{k}\right\} \subsetneq\{1, \ldots, r\}$ with $1 \leq i_{1}<\cdots<$ $i_{k} \leq r$, we set $\Phi^{(m, n)}=\left\{\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p}): \mathbf{c}^{\mathbf{n}_{i}^{(m)}}=\mathbf{c}^{\mathbf{n}_{i}^{(n)}}\right.$ for $\left.i=2, \ldots, r\right\}$ and $\Psi\left(i_{1}, \ldots, i_{k}\right)^{(m)}=\left\{\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p}): f_{i_{1}}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{i_{1}}^{(m)}}+\cdots+f_{i_{k}}(\mathbf{c}) \mathbf{c}^{\mathbf{n}_{i_{k}}^{(m)}}=0\right\}$. As we have just seen,

$$
\begin{equation*}
\Omega \subset \bigcup_{s \leq m<n \leq C+s+2} \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, r\}} \Psi\left(i_{1}, \ldots, i_{k}\right)^{(m)} \cup \Phi^{(m, n)} \tag{11}
\end{equation*}
$$

for every $s \geq 1$. Since the sets appearing in the right hand side of (11) are all closed subsets of the perfect set $V_{\mathbb{C}}(\mathfrak{p})$, we obtain that

$$
V_{\mathbb{C}}(\mathfrak{p})=\bigcup_{s \leq m<n \leq C+s+2} \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \subsetneq\{1, \ldots, r\}} \Psi\left(i_{1}, \ldots, i_{k}\right)^{(m)} \cup \Phi^{(m, n)}
$$

for every $s \geq 1$. As the ideal $\mathfrak{p} \subset \mathfrak{R}_{d}$ is prime, the variety $V_{\mathbb{C}}(\mathfrak{p})$ must, for every $s \geq 1$, be contained in one of the sets $\Psi\left(i_{1}, \ldots, i_{k}\right)^{(m)}$ or $\Phi^{(m, n)}$ with $s \leq m<n \leq C+s+2$ and $\left\{i_{1}, \ldots, i_{k}\right\} \subsetneq\{1, \ldots, r\}$. The second possibility is excluded by our assumption that $\alpha^{\Re_{d} / \mathfrak{p}}$ is mixing, and we conclude that there exists, for infinitely many $m \geq 1$, a subset $\left\{i_{1}, \ldots, i_{k}\right\} \subsetneq\{1, \ldots, r\}$ (depending on m) such that $V_{\mathbb{C}}(\mathfrak{p}) \subset$ $\Psi\left(i_{1}, \ldots, i_{k}\right)^{(m)}$. Since there are only finitely many such subsets we obtain that $\alpha^{\Re_{d} / \mathfrak{p}}$ fails to be k-mixing for some $k<r$, contrary to the minimality of r, exactly as in the case where $V(\mathfrak{p})$ is finite. This contradiction implies that $\alpha^{\Re_{d} / \mathfrak{p}}$ is r-mixing for every $r \geq 2$.

References

[1] M. Atiyah and I. G. MacDonald: Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass. (1969).
[2] B. Kitchens and K. Schmidt: Automorphisms of compact groups, Ergod. Th. \& Dynam. Sys. 9 (1989), 691-735.
[3] B. Kitchens and K. Schmidt: Mixing Sets and Relative Entropies for Higher Dimensional Markov Shifts, Preprint (1991).
[4] S. Lang: Algebra (2nd Ed.), Addison-Wesley, Reading, Mass. (1984).
[5] F. Ledrappier: Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Ser. A. 287 (1978), 561-562.
[6] D. Lind: The structure of skew products with ergodic group automorphisms, Israel J. Math. 28 (1977), 205-248.
[7] D. Lind, K. Schmidt, and T. Ward: Mahler measure and entropy for commuting automorphisms of compact groups, Invent. math. 101 (1990), 593-629.
[8] G. Miles and R.K. Thomas: The breakdown of automorphisms of compact topological groups. In: Studies in Probability and Ergodic Theory, Advances in Mathematics Supplementary Studies Vol. 2, Academic Press: New YorkLondon, 1987, pp. 207-218.
[9] H.P. Schlickewei: S-unit equations over number fields, Invent. math. 102 (1990), 95-107.
[10] K. Schmidt: Automorphisms of compact abelian groups and affine varieties, Proc. London Math. Soc. 61 (1990), 480-496.
[11] K. Schmidt: Mixing automorphisms of compact groups and a theorem by Kurt Mahler, Pacific J. Math. 137 (1989), 371-384.

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Department of Mathematics, Ohio State University, Columbus OH 43210, USA

[^0]: 1991 Mathematics Subject Classification. 22D40, 28C10, 11D61.
 The second author gratefully acknowledges support from NSF grant DMS-9103056 at the Ohio State University.

