MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM OF SCHLICKEWEI

KLAUS SCHMIDT AND TOM WARD

ABSTRACT. We prove that every mixing \mathbb{Z}^d -action by automorphisms of a compact, connected, abelian group is mixing of all orders.

1. INTRODUCTION

If α is a mixing automorphism of a compact, abelian group X, then α is Bernoulli and hence mixing of all orders ([6], [8]). However, if d > 1, and if α is a mixing \mathbb{Z}^d -action by automorphisms of a compact, abelian group X, then α need not be mixing of every order ([5]), and the intricate way in which higher order mixing can break down may be used to construct measurable isomorphism invariants for α ([3]). In [11] the question was raised whether higher order mixing can fail only if X is disconnected, and a partial result in this direction was obtained (the absence of nonmixing shapes for \mathbb{Z}^d -actions on connected groups). In this paper we answer this question by proving that every mixing \mathbb{Z}^d -action α by automorphisms of a compact, connected, abelian group is mixing of all orders. Even for commuting toral automorphisms this statement is far from obvious, and its proof depends on a highly nontrivial estimate by H.P. Schlickewei ([9]) of the maximal number of solutions (v_1, \ldots, v_r) of equations of the form $a_1v_1 + \cdots + a_rv_r = 1$, subject to certain constraints, where the a_i and v_i lie in an algebraic number field \mathbb{K} .

2. Multiple mixing and prime ideals

Let (X, \mathfrak{S}, μ) be a standard (or Lebesgue) probability space, $d \geq 1$, and let $T : \mathbf{n} \to T_{\mathbf{n}}$ be a measure preserving \mathbb{Z}^{d} -action on (X, \mathfrak{S}, μ) . The action T is mixing of order r (or r-mixing, or mixing on r sets) if,

¹⁹⁹¹ Mathematics Subject Classification. 22D40, 28C10, 11D61.

The second author gratefully acknowledges support from NSF grant DMS-91-03056 at the Ohio State University.

for all sets B_1, \ldots, B_r in \mathfrak{S} ,

(1)
$$\lim_{\mathbf{n}_l \in \mathbb{Z}^d \text{ and } \mathbf{n}_l - \mathbf{n}_{l'} \to \infty \text{ for } 1 \le l' < l \le r} \mu\left(\bigcap_{l=1}^r T_{-\mathbf{n}_l}(B_l)\right) = \prod_{l=1}^r \mu(B_l).$$

In (1) we may obviously assume that $\mathbf{n}_1 = \mathbf{0}$. Now assume that X is a compact, abelian group (always assumed to be metrizable), $\mathfrak{S} = \mathfrak{B}_X$ is the Borel field of X, and that $\mu = \lambda_X$ is the normalized Haar measure of X. We write \hat{X} for the dual group of X, denote by $\langle x, \chi \rangle = \chi(x)$ the value at $x \in X$ of a character $\chi \in \hat{X}$, and write $\hat{\eta}$ for the automorphism $\hat{\eta}(\chi) = \chi \cdot \eta, \chi \in \hat{X}$, of \hat{X} dual to a continuous automorphism η of X. A homomorphism $\alpha : \mathbf{n} \to \alpha_{\mathbf{n}}$ from \mathbb{Z}^d into the group Aut(X) of continuous automorphisms of X is a \mathbb{Z}^d -action by automorphisms of X. From (2.1) it is clear that a \mathbb{Z}^d -action α by automorphisms of a compact, abelian group X is r-mixing if and only if, for all characters χ_1, \ldots, χ_r in \hat{X} with $\chi_i \neq 1$ for some $i \in \{1, \ldots, r\}$,

(2)
$$\lim_{\mathbf{n}_l \in \mathbb{Z}^d \text{ and } \mathbf{n}_l - \mathbf{n}_{l'} \to \infty \text{ for } 1 \le l' < l \le r} \int (\chi_1 \cdot \alpha_{\mathbf{n}_1}) \cdots (\chi_r \cdot \alpha_{\mathbf{n}_r}) d\lambda_X = 0.$$

Again we may assume that $\mathbf{n}_1 = \mathbf{0}$ in (2). The equivalence of (1) and (2) is seen by expanding the indicator functions of the sets B_i as Fourier series.

Before we discuss the higher order mixing properties of \mathbb{Z}^d -actions by automorphisms of compact, abelian groups we recall the algebraic description of such actions in [2] and [10]. Let $\mathfrak{R}_d = \mathbb{Z}[u_1^{\pm 1}, \ldots, u_d^{\pm 1}]$ be the ring of Laurent polynomials with integral coefficients in the commuting variables u_1, \ldots, u_d . If α is a \mathbb{Z}^d -action by automorphisms of a compact, abelian group X, then the dual group $\mathfrak{M} = \hat{X}$ of Xbecomes an \mathfrak{R}_d -module under the \mathfrak{R}_d -action defined by

(3)
$$f \cdot a = \sum_{\mathbf{m} \in \mathbb{Z}^d} c_f(\mathbf{m}) \beta_{\mathbf{m}}(a)$$

for all $a \in \mathfrak{M}$ and $f = \sum_{\mathbf{m} \in \mathbb{Z}^d} c_f(\mathbf{m}) u^{\mathbf{m}} \in \mathfrak{R}_d$, where $u^{\mathbf{n}} = u_1^{n_1} \cdots u_d^{n_d}$ for every $\mathbf{n} = (n_1, \ldots, n_d) \in \mathbb{Z}^d$, and where $\beta_{\mathbf{n}} = \widehat{\alpha_{\mathbf{n}}}$ is the automorphism of $\mathfrak{M} = \hat{X}$ dual to $\alpha_{\mathbf{n}}$. In particular,

(4)
$$\widehat{\alpha_{\mathbf{n}}}(a) = \beta_{\mathbf{n}}(a) = u^{\mathbf{n}} \cdot a$$

for all $\mathbf{n} \in \mathbb{Z}^d$ and $a \in \mathfrak{M}$. Conversely, if \mathfrak{M} is an \mathfrak{R}_d -module, and if (5) $\beta_{\mathbf{n}}^{\mathfrak{M}}(a) = u^{\mathbf{n}} \cdot a$

for every $\mathbf{n} \in \mathbb{Z}^d$ and $a \in \mathfrak{M}$, then we obtain a \mathbb{Z}^d -action

(6)
$$\alpha^{\mathfrak{M}}: \mathbf{n} \to \alpha^{\mathfrak{M}}_{\mathbf{n}} = \widehat{\beta}^{\mathfrak{M}}_{\mathbf{n}}$$

 $\mathbf{2}$

on the compact, abelian group

(7)
$$X^{\mathfrak{M}} = \widehat{\mathfrak{M}}$$

dual to the \mathbb{Z}^{d} -action $\beta^{\mathfrak{M}} : \mathbf{n} \to \beta^{\mathfrak{M}}_{\mathbf{n}}$ on \mathfrak{M} . In this notation the *r*-mixing condition (2.2) is equivalent to the condition that, for all nonzero elements $(a_1, \ldots, a_r) \in \mathfrak{M}^r$,

(8)
$$u^{\mathbf{m}_1} \cdot a_1 + \dots + u^{\mathbf{m}_r} \cdot a_r \neq 0$$

whenever $\mathbf{m}_l \in \mathbb{Z}^d$ and $\mathbf{m}_l - \mathbf{m}_{l'}$ lies outside some sufficiently large finite subset of \mathbb{Z}^d for all $1 \leq l' < l \leq r$.

If \mathfrak{M} is an \mathfrak{R}_d -module, then a prime ideal $\mathfrak{p} \subset \mathfrak{R}_d$ is associated with \mathfrak{M} if $\mathfrak{p} = \{f \in \mathfrak{R}_d : f \cdot a = 0\}$ for some $a \in \mathfrak{M}$, and \mathfrak{M} is associated with a prime ideal $\mathfrak{p} \subset \mathfrak{R}_d$ if \mathfrak{p} is the only prime ideal in \mathfrak{R}_d which is associated with \mathfrak{M} . A nonzero Laurent polynomial $f \in \mathfrak{R}_d$ is a generalized cyclotomic polynomial if there exist $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^d$ and a cyclotomic polynomial c in a single variable such that $\mathbf{n} \neq \mathbf{0}$ and $f = u^{\mathbf{m}}c(u^{\mathbf{n}})$. The following theorem was proved in [10].

Theorem 2.1. Let α be a \mathbb{Z}^d -action by automorphisms of a compact, abelian group X, and let $\mathfrak{M} = \hat{X}$ be the \mathfrak{R}_d -module arising from α via (2.3)–(2.4). The following conditions are equivalent.

- (1) α is mixing (i.e. 2-mixing);
- (2) $\alpha_{\mathbf{m}}$ is ergodic for every $\mathbf{0} \neq \mathbf{m} \in \mathbb{Z}^d$;
- (3) None of the prime ideals associated with \mathfrak{M} contains a generalized cyclotomic polynomial.

If the \mathbb{Z}^d -action α in Theorem 2.1 is mixing, then the higher order mixing behaviour of α is again determined by the prime ideals associated with $\mathfrak{M} = \hat{X}$.

Theorem 2.2. Let α be a \mathbb{Z}^d -action by automorphisms of a compact, abelian group X, and let $\mathfrak{M} = \hat{X}$ be the \mathfrak{R}_d -module arising from α via (2.3)–(2.4). The following conditions are equivalent for every $r \geq 2$.

- (1) α is r-mixing;
- (2) For every prime ideal $\mathfrak{p} \subset \mathfrak{R}_d$ associated with \mathfrak{M} , the \mathbb{Z}^d -action $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ defined in (2.5)–(2.7) is r-mixing.

Proof. Suppose that α is r-mixing. If $\mathfrak{p} \subset \mathfrak{R}_d$ is a prime ideal associated with \mathfrak{M} , then there exists an element $a \in \mathfrak{M}$ such that $\mathfrak{p} = \{f \in \mathfrak{R}_d : f \cdot a = 0\}$, and we set $\mathfrak{Y} = \mathfrak{R}_d \cdot a \subset \mathfrak{M}$. Then $\mathfrak{Y} \cong \mathfrak{R}_d/\mathfrak{p}$ and $Y = \widehat{\mathfrak{Y}} = X/\mathfrak{Y}^{\perp}$, where $\mathfrak{Y}^{\perp} = \{x \in X : \langle x, a \rangle = 1 \text{ for all } a \in \mathfrak{Y}\}$ is the annihilator of \mathfrak{Y} . Since \mathfrak{Y} is invariant under the \mathbb{Z}^d -action $\beta : \mathbf{n} \to \beta_{\mathbf{n}} = \widehat{\alpha_{\mathbf{n}}}$ dual to $\alpha, \mathfrak{Y}^{\perp}$ is a closed, α -invariant subgroup of X, and the \mathbb{Z}^d -action α^Y induced by α on Y is a factor of α and hence r-mixing. Since the \mathfrak{R}_d -module arising from α^Y is equal to $\hat{Y} = \mathfrak{Y} \cong \mathfrak{R}_d/\mathfrak{p}$ we conclude that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ must be *r*-mixing.

Conversely, if α is not *r*-mixing, then (2.8) shows that there exists a nonzero element $(a_1, \ldots, a_r) \in \mathfrak{M}^r$ and a sequence $(\mathbf{n}^{(m)} = (\mathbf{n}_1^{(m)}, \ldots, \mathbf{n}_r^{(m)}), m \geq 1$) in $(\mathbb{Z}^d)^r$ such that $\lim_{m\to\infty} \mathbf{n}_l^{(m)} - \mathbf{n}_{l'}^{(m)} = \infty$ for $1 \leq l' < l \leq r$ and $u^{\mathbf{n}_1^{(m)}} \cdot a_1 + \cdots + u^{\mathbf{n}_r^{(m)}} \cdot a_r = 0$ for every $m \geq 1$. There exists a Noetherian submodule $\mathfrak{N} \subset \mathfrak{M}$ such that $\{a_1, \ldots, a_r\} \subset \mathfrak{N}$, and (2.8) implies that the \mathbb{Z}^d -action $\alpha^{\mathfrak{N}}$, which is a quotient of α , is not *r*-mixing.

Since \mathfrak{N} is Noetherian, the set of (distinct) prime ideals associated with \mathfrak{N} is finite and equal to $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_m\}$, say. By Theorem VI.5.3 in [4] there exist submodules $\mathfrak{W}_1, \ldots, \mathfrak{W}_m$ of \mathfrak{N} such that $\mathfrak{N}/\mathfrak{W}_i$ is associated with \mathfrak{p}_i for $i = 1, \ldots, m$, $\bigcap_{i=1}^m \mathfrak{W}_i = \{0\}$, and $\bigcap_{i \in S} \mathfrak{W}_i \neq$ $\{0\}$ for every subset $S \subsetneq \{1, \ldots, m\}$. In particular, the map $a \to$ $(a + \mathfrak{W}_1, \ldots, a + \mathfrak{W}_m)$ from \mathfrak{N} into $\mathfrak{K} = \bigoplus_{i=1}^m \mathfrak{N}/\mathfrak{W}_i$ is injective, and the dual homomorphism from $\overline{X} = \widehat{\mathfrak{K}}$ to $\widehat{\mathfrak{N}} = X^{\mathfrak{N}}$ is surjective. Hence $\alpha^{\mathfrak{N}}$ is a factor of $\alpha^{\mathfrak{K}}$, so that $\alpha^{\mathfrak{K}}$ cannot be *r*-mixing. By applying (2.8) to the \mathfrak{R}_d -module \mathfrak{K} we see that there exists a $j \in \{1, \ldots, m\}$ such that $\alpha^{\mathfrak{N}\mathfrak{W}_j}$ is not *r*-mixing.

Put $\mathfrak{V} = \mathfrak{N}/\mathfrak{W}_j$, $\mathfrak{p} = \mathfrak{p}_j$, and use Lemma 3.4 in [3] to find integers $1 \leq t \leq s$ and submodules $\mathfrak{V} = \mathfrak{N}_s \supset \cdots \supset \mathfrak{N}_0 = \{0\}$ such that, for every $k = 1, \ldots, s, \ \mathfrak{N}_k/\mathfrak{N}_{k-1} \cong \mathfrak{R}_d/\mathfrak{q}_k$ for some prime ideal $\mathfrak{p} \subset \mathfrak{q}_k \subset \mathfrak{R}_d, \ \mathfrak{q}_k = \mathfrak{p} \text{ for } k = 1, \dots, t, \text{ and } \mathfrak{q}_k \supseteq \mathfrak{p} \text{ for } i = t + 1, \dots, s.$ We choose Laurent polynomials $g_k \in \mathbf{q}_k \setminus \mathbf{p}, k = t + 1, \dots, s$, and set $g = g_{t+1} \cdots g_s$. Since $\alpha^{\mathfrak{V}}$ is not r-mixing, (2.8) implies the existence of a nonzero element $(a_1, \ldots, a_r) \in \mathfrak{V}^r$ and a sequence $(\mathbf{n}^{(m)} =$ $(\mathbf{n}_1^{(m)}, \dots, \mathbf{n}_r^{(m)}), m \ge 1)$ in $(\mathbb{Z}^d)^r$ such that $\lim_{m\to\infty} \mathbf{n}_l^{(m)} - \mathbf{n}_{l'}^{(m)} = \infty$ whenever $1 \le l' < l \le r$, and $u^{\mathbf{n}_1^{(m)}} \cdot a_1 + \dots + u^{\mathbf{n}_r^{(m)}} \cdot a_r = 0$ for every $m \geq 1$. Put $b_i = g \cdot a_i$, and note that $0 \neq (b_1, \ldots, b_r) \in (\mathfrak{N}_t)^r$, since $q \cdot a \neq 0$ for every nonzero element $a \in \mathfrak{V}$. There exists a unique integer $p \in \{1, \ldots, t\}$ such that $(b_1, \ldots, b_r) \in (\mathfrak{N}_p)^r \smallsetminus (\mathfrak{N}_{p-1})^r$, and by setting $b'_i = b_i + \mathfrak{N}_{p-1} \in \mathfrak{N}_p/\mathfrak{N}_{p-1} \cong \mathfrak{R}_d/\mathfrak{p}$ we obtain that $0 \neq (b'_1, \dots, b'_r) \in \mathfrak{N}_d/\mathfrak{p}$ $(\mathfrak{N}_p/\mathfrak{N}_{p-1})^r \cong (\mathfrak{R}_d/\mathfrak{p})^r$ and $u^{\mathbf{n}_1^{(m)}} \cdot b_1' + \cdots + u^{\mathbf{n}_r^{(m)}} \cdot b_r' = 0$ for every m > 1, so that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is not r-mixing by (2.8). Since the prime ideal \mathfrak{p} is associated with the submodule $\mathfrak{N} \subset \mathfrak{M}$, \mathfrak{p} is also associated with \mathfrak{M} , and the theorem is proved.

3. Schlickewei's theorem and mixing

Theorem 2.2 shows that a \mathbb{Z}^d -action α by automorphisms of a compact, abelian group X is mixing of order $r \geq 2$ if and only if the

 \mathbb{Z}^{d} -actions $\alpha^{\mathfrak{R}_{d}/\mathfrak{p}}$ are *r*-mixing for all prime ideals $\mathfrak{p} \subset \mathfrak{R}_{d}$ associated with the \mathfrak{R}_{d} -module $\mathfrak{M} = \hat{X}$ defined by α (cf. (2.3)–(2.8)). In order to be able to apply this result we shall characterize those prime ideals $\mathfrak{p} \subset \mathfrak{R}_{d}$ for which $\alpha^{\mathfrak{R}_{d}/\mathfrak{p}}$ is *r*-mixing for every $r \geq 2$.

We identify \mathbb{Z} with the set of constant polynomials in \mathfrak{R}_d and note that, for every prime ideal $\mathfrak{p} \subset \mathfrak{R}_d$, $\mathfrak{p} \cap \mathbb{Z}$ is either equal to $p\mathbb{Z}$ for some rational prime $p = p(\mathfrak{p})$, or to $\{0\}$, in which case we set $p(\mathfrak{p}) = 0$.

Theorem 3.1. Let $d \ge 1$, and let $\mathfrak{p} \subset \mathfrak{R}_d$ be a prime ideal such that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is mixing (cf. Theorem 2.1).

- (1) If $p(\mathfrak{p}) > 0$ then $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is r-mixing for every $r \geq 2$ if and only if $\mathfrak{p} = (p(\mathfrak{p})) = p(\mathfrak{p})\mathfrak{R}_d$;
- (2) If $p(\mathbf{p}) = 0$ then $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is r-mixing for every $r \geq 2$.

Theorem 3.1 (1) follows from Theorem 3.3 (2) of [Sc2]. We postpone the proof of Theorem 3.1 (2) for the moment and look instead at some of the consequences of that theorem. If α is a \mathbb{Z}^d -action by automorphisms of a compact, abelian group X with completely positive entropy, then it is mixing of all orders by Theorem 6.5 and Corollary 6.7 in [7]. If the group X is zero-dimensional, the reverse implication is also true.

Corollary 3.2. Let α be a \mathbb{Z}^d -action by automorphisms of a compact, abelian, zero-dimensional group X. The following conditions are equivalent.

- (1) α has completely positive entropy;
- (2) α is r-mixing for every $r \geq 2$.

Proof. Since X is zero-dimensional, every prime ideal \mathfrak{p} associated with the \mathfrak{R}_d -module $\mathfrak{M} = \hat{X}$ arising from α via (2.3)–(2.4) contains a nonzero constant, so that $p(\mathfrak{p}) > 0$. According to Theorem 6.5 in [7], this implies that α has completely positive entropy if and only if $\mathfrak{p} = p(\mathfrak{p}) \cdot \mathfrak{R}_d$ for every prime ideal \mathfrak{p} associated with \mathfrak{M} , and the equivalence of (1) and (2) follows from Theorem 2.2 and Theorem 3.1 (1).

The next corollary shows that the higher order mixing behaviour of \mathbb{Z}^d -actions by automorphisms of compact, connected, abelian groups is quite different from the zero-dimensional case, and requires no assumptions concerning entropy.

Corollary 3.3. Let $d \ge 1$, and let α be a mixing \mathbb{Z}^d -action on a compact, connected, abelian group X. Then α is r-mixing for every $r \ge 2$.

Proof. The group X is connected if and only if the dual group \hat{X} is torsion-free, i.e. if and only if $na \neq 0$ whenever $0 \neq a \in \hat{X}$ and $0 \neq n \in \mathbb{Z}$. We write $\mathfrak{M} = \hat{X}$ for the \mathfrak{R}_d -module defined by α via (2.3)–(2.4), note that the connectedness of X implies that $p(\mathfrak{p}) = 0$ for every prime ideal $\mathfrak{p} \subset \mathfrak{R}_d$ associated with \mathfrak{M} , and apply Theorems 2.2 and 3.1 (2).

Corollary 3.4. Let A_1, \ldots, A_d be commuting automorphism of the *n*torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ with the property that the \mathbb{Z}^d -action $\alpha : (m_1, \ldots, m_d) \to \alpha_{(m_1, \ldots, m_d)} = A_1^{m_1} \cdots A_d^{m_d}$ is mixing. Then α is *r*-mixing for every $r \geq 2$.

The proof of Theorem 3.1 (2) depends on a result by Schlickewei [9]. Let \mathbb{K} be an algebraic number field of degree D, and let $P(\mathbb{K})$ be the set of places and $P_{\infty}(\mathbb{K})$ the set of infinite (or archimedean) places of \mathbb{K} . For every $v \in P(\mathbb{K})$, $|\cdot|_v$ denotes the associated absolute value, normalized so that $|a|_v$ is equal to the standard absolute value |a| if $v \in P_{\infty}(\mathbb{K})$ and $a \in \mathbb{Q}$, and $|p|_v = p^{-1}$ if v lies above the rational prime p. Let S, $P_{\infty}(\mathbb{K}) \subset S \subset P(\mathbb{K})$, be a finite set of cardinality s. An element $a \in \mathbb{K}$ is an S-unit if $|a|_v = 1$ for every $v \in P(\mathbb{K}) \setminus S$.

Theorem 3.5. (SCHLICKEWEI) Let a_1, \ldots, a_n be nonzero elements of \mathbb{K} . Then the equation

$$(9) a_1v_1 + \dots + a_nv_n = 1$$

has not more than

$$(4sD!)^{2^{36nD!}s^6}$$

solutions (v_1, \ldots, v_n) in S-units such that no proper subsum $a_{i_1}v_{i_1} + \cdots + a_{i_k}v_{i_k}$ vanishes.

Proof. Proof of Theorem 3.1 (2) For every field \mathbb{F} we set $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the algebraic closure of \mathbb{Q} , and let $V(\mathfrak{p}) = \{\mathbf{c} = (c_1, \ldots, c_d) \in (\overline{\mathbb{Q}}^{\times})^d : f(\mathbf{c}) = 0$ for every $f \in \mathfrak{p}\}$ and $V_{\mathbb{C}}(\mathfrak{p}) = \{\mathbf{c} = (c_1, \ldots, c_d) \in (\mathbb{C}^{\times})^d : f(\mathbf{c}) = 0$ for every $f \in \mathfrak{p}\}$.

Suppose that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is not *r*-mixing for some $r \geq 3$, and that *r* is the smallest integer with this property. According to (2.8) there exists a nonzero element $(a_1, \ldots, a_r) \in (\mathfrak{R}_d/\mathfrak{p})^r$ and a sequence $(\mathbf{n}^{(m)} = (\mathbf{n}_1^{(m)}, \ldots, \mathbf{n}_r^{(m)}), m \geq 1)$ in $(\mathbb{Z}^d)^r$ such that $\lim_{m\to\infty} \mathbf{n}_l^{(m)} - \mathbf{n}_{l'}^{(m)} = \infty$ whenever $1 \leq l' < l \leq r$, and $u^{\mathbf{n}_1^{(m)}} \cdot a_1 + \cdots + u^{\mathbf{n}_r^{(m)}} \cdot a_r = 0$ for every $m \geq 1$. For simplicity we assume that $\mathbf{n}^{(m)} \neq \mathbf{n}^{(n)}$ whenever $1 \leq m < n$, and that $\mathbf{n}_1^{(m)} = \mathbf{0}$ for all $m \geq 1$. The minimality of *r* is easily seen to imply that $a_i \neq 0$ for $i = 1, \ldots, r$. Choose $f_i \in \mathfrak{R}_d$ such that $a_i = f_i + \mathfrak{p}, i = 1, \ldots, r$, set, for every $\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p})$ and

$$\mathbf{m} = (m_1, \dots, m_d) \in \mathbb{Z}^d, \ \mathbf{c}^{\mathbf{m}} = c_1^{m_1} \cdots c_d^{m_d}, \text{ and note that}$$
(10)
$$f_1(\mathbf{c}) + f_2(\mathbf{c})\mathbf{c}^{\mathbf{n}_2^{(m)}} + \dots + f_r(\mathbf{c})\mathbf{c}^{\mathbf{n}_r^{(m)}} = 0$$

for all $\mathbf{c} \in V_{\mathbb{C}}(\mathbf{p})$ and $m \geq 1$.

If $V(\mathfrak{p})$ is finite, then $V(\mathfrak{p}) = V_{\mathbb{C}}(\mathfrak{p})$ consists of the orbit of a single point $\mathbf{c} = (c_1, \ldots, c_d)$ under the Galois group $Gal[\overline{\mathbb{Q}} : \mathbb{Q}]$, and the assumption that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is mixing is equivalent to saying that $\mathbf{c}^{\mathbf{m}} \neq 1$ whenever $\mathbf{0} \neq \mathbf{m} \in \mathbb{Z}^d$. The evaluation map $f \to f(\mathbf{c}), f \in \mathfrak{R}_d$, has kernel \mathfrak{p} , and may thus be regarded as an injective homomorphism from $\mathfrak{R}_d/\mathfrak{p}$ into \mathbb{C} ; in particular, $f_1(\mathbf{c}) \cdots f_r(\mathbf{c}) \neq 0$. We denote by \mathbb{K} the algebraic number field $\mathbb{Q}(\mathbf{c}) = \mathbb{Q}(c_1, \ldots, c_d)$ and set $S = P_{\infty}(\mathbb{K}) \cup$ $\{v \in P(\mathbb{K}) : |c_i|_v \neq 1 \text{ for some } i \in \{1, \ldots, d\}\}$. Then S is finite, and Schlickewei's Theorem 3.5 implies that the equation

$$-\frac{f_2(\mathbf{c})}{f_1(\mathbf{c})}v_2 - \dots - \frac{f_r(\mathbf{c})}{f_1(\mathbf{c})}v_r = 1$$

has only finitely many solutions (v_2, \ldots, v_r) in *S*-units such that $f_{i_1}(\mathbf{c})v_{i_1} + \cdots + f_{i_k}(\mathbf{c})v_{i_k} \neq 0$ whenever $1 < i_1 < \cdots < i_k \leq r$. However, the properties of \mathbf{c} and *S* imply that the vectors $(\mathbf{c}^{\mathbf{n}_2^{(m)}}, \ldots, \mathbf{c}^{\mathbf{n}_r^{(m)}})$, $m \geq 1$, are all distinct, and that $\mathbf{c}^{\mathbf{n}_i^{(m)}}$ is an *S*-unit for every $i = 2, \ldots, r$ and $m \geq 1$. From (10) we conclude that, for all but finitely many $m \geq 1$, one of the subsums $f_{i_1}(\mathbf{c})\mathbf{c}^{\mathbf{n}_{i_1}^{(m)}} + \cdots + f_{i_k}(\mathbf{c})\mathbf{c}^{\mathbf{n}_{i_k}^{(m)}}$ vanishes. For some choice of $1 < i_1 < \cdots < i_k \leq r$ we obtain an infinite set *M* of positive integers such that $f_{i_1}(\mathbf{c})\mathbf{c}^{\mathbf{n}_{i_1}^{(m)}} + \cdots + f_{i_k}(\mathbf{c})\mathbf{c}^{\mathbf{n}_{i_k}^{(m)}} = 0$ for every $m \in M$, and this is easily seen to imply that $\alpha^{\Re_d/\mathfrak{p}}$ fails to be *k*-mixing, where k < r, contrary to the minimality of *r*.

A moment's reflection shows that we have now proved enough to obtain Corollary 3.4. For Theorem 3.1 (2) and Corollary 3.3, however, we have to deal with the case where $V(\mathfrak{p})$ is infinite. Since $p(\mathfrak{p}) = 0$, the natural homomorphism $\iota : \mathfrak{N} = \mathfrak{R}_d/\mathfrak{p} \longmapsto \mathcal{N} = \mathbb{Q} \otimes_{\mathbb{Z}} \mathfrak{N}$, defined by $a \to 1 \otimes a$ for every $a \in \mathfrak{N}$, is injective, and we put $z_i = \iota(u_i + \mathfrak{p})$ and $z_{d+i} = \iota(u_i^{-1} + \mathfrak{p})$ for $i = 1, \ldots, d$. Noether's normalization lemma ([1]), applied to the \mathbb{Q} -algebra \mathcal{N} , allows us to find an integer $t \in \{1, \ldots, 2d\}$ and \mathbb{Q} -linear functions w_1, \ldots, w_t of the elements z_1, \ldots, z_{2d} such that $\{w_1, \ldots, w_t\}$ is algebraically independent over \mathbb{Q} and each z_1, \ldots, z_{2d} is integral over $\mathbb{Q}[w_1, \ldots, w_t]$. We choose and fix monic polynomials $Q_i \in \mathbb{Q}[w_1, \ldots, w_t][y] = \mathbb{Q}[w_1, \ldots, w_t, y]$ such that $Q_i(w_1, \ldots, w_t, z_i) =$ 0 for $i = 1, \ldots, 2d$ and regard each Q_i either as a polynomial in y with coefficients in $\mathbb{Q}[w_1, \ldots, w_t]$, or as an element of $\mathbb{Q}[w_1, \ldots, w_t, y]$.

Put $W_{\mathbb{C}}(\mathfrak{p}) = \{(c_1, \ldots, c_d, c_1^{-1}, \ldots, c_d^{-1}) : (c_1, \ldots, c_d) \in V_{\mathbb{C}}(\mathfrak{p})\} \subset \mathbb{C}^{2d},$ define a surjective map $\omega : W_{\mathbb{C}}(\mathfrak{p}) \longmapsto \mathbb{C}^t$ by $\omega(\mathbf{c}) = (w_1(\mathbf{c}), \ldots, w_t(\mathbf{c}))$ for every $\mathbf{c} \in W_{\mathbb{C}}(\mathfrak{p})$, and note that $V_{\mathbb{C}}(\mathfrak{p}) = \pi(W_{\mathbb{C}}(\mathfrak{p})) \subset (\mathbb{C}^{\times})^d \subset \mathbb{C}^d$, where $\pi : \mathbb{C}^{2d} \longrightarrow \mathbb{C}^d$ is the projection onto the first *d* coordinates. We write $R \subset \mathbb{Q}$ for the set of rational numbers which occur as one of the coefficients of one of the linear maps w_i (regarded as a rational linear map in 2d variables), or of one of the polynomials Q_i (regarded as a polynomial in t+1 variables with rational coefficients), and let \mathcal{P} denote a nonempty, finite set of rational primes which contains every prime divisor appearing in any element of R (either in the numerator or the denominator). Put $\mathbb{K} = \{a + b\sqrt{-1} : a, b \in \mathbb{Q}\}$ and denote by $S' \subset$ $P(\mathbb{K})$ the (finite) set of all places of \mathbb{K} which are either infinite, or which lie above one of the primes in \mathcal{P} . There exists an integer $D \geq 1$ such that, for every $\boldsymbol{\beta} = (\beta_1, \dots, \beta_t) \in \mathbb{K}^t$ and $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_{2d}) \in \omega^{-1}(\boldsymbol{\beta})$, the algebraic number field $\mathbb{K}(\boldsymbol{\gamma})$ generated by \mathbb{K} and $(\gamma_1, \ldots, \gamma_{2d})$ has degree $(\mathbb{K}(\boldsymbol{\gamma}) : \mathbb{K}) \leq D$. Then $\mathbb{K}(\boldsymbol{\gamma})$ has at most D distinct places above every place of K, and it follows that the cardinality $|S(\boldsymbol{\gamma})|$ of the set $S(\boldsymbol{\gamma})$ of places of $\mathbb{K}(\boldsymbol{\gamma})$ which lie above one of the elements of S' is bounded by $D \cdot |S'|$, where |S'| is the cardinality of S'.

Let $\Sigma \subset \mathbb{K}$ be the set of S'-units, and let $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_t) \in \Sigma^t \subset \mathbb{K}^t$. We claim that every coordinate of every $\boldsymbol{\gamma} = (\gamma_1, \ldots, \gamma_{2d}) \in \omega^{-1}(\boldsymbol{\beta})$ is an $S(\boldsymbol{\gamma})$ -unit. Indeed, if $v' \in P(\mathbb{K}) \smallsetminus S'$, and if $v \in P(\mathbb{K}(\boldsymbol{\gamma}))$ lies above v', then γ_i is a root of the monic polynomial $Q_i(\boldsymbol{\beta}, y) \in \mathbb{K}[y]$, and each coefficient ζ of Q_i satisfies that $|\zeta|_{v'} \leq 1$. It follows that $|\gamma_i|_v \leq 1$ for $i = 1, \ldots 2d$. In particular, since $\gamma_i^{-1} = \gamma_{i+d}$ for $i \in \{1, \ldots, d\}$, we obtain that $|\gamma_i^{-1}|_v = (|\gamma_i|_v)^{-1} \leq 1$, so that $|\gamma_i|_v = |\gamma_{i+d}|_v = 1$, as claimed.

Since Σ is dense in \mathbb{C} , the set $\Omega = \pi(\omega^{-1}(\Sigma^t)) \subset V(\mathfrak{p})$ is dense in $V_{\mathbb{C}}(\mathfrak{p})$, and for every $\mathbf{c} = (c_1, \ldots, c_d) \in \Omega$ we either have that $f_1(\mathbf{c}) = 0$ and $f_2(\mathbf{c})\mathbf{c}^{\mathbf{n}_2^{(m)}} + \cdots + f_r(\mathbf{c})c^{\mathbf{n}_r^{(m)}} = 0$ for every $m \geq 1$, or that $f_1(\mathbf{c}) \neq 0$, in which case case Schlickewei's theorem implies that the equation

$$-\frac{f_2(\mathbf{c})}{f_1(\mathbf{c})}v_2 - \dots - \frac{f_r(\mathbf{c})}{f_1(\mathbf{c})}v_r = 1$$

has at most $C = (4D|S'|D!)^{2^{36(r-1)D!}(D|S'|)^6}$ distinct solutions (v_2, \ldots, v_r) in S-units for which no subsum $f_{i_1}(\mathbf{c})v_{i_1} + \cdots + f_{i_k}(\mathbf{c})v_{i_k}$ vanishes. For all $1 \le m < n, k < r$, and $\{i_1, \ldots, i_k\} \subsetneq \{1, \ldots, r\}$ with $1 \le i_1 < \cdots < i_k \le r$, we set $\Phi^{(m,n)} = \{\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p}) : \mathbf{c}^{\mathbf{n}_i^{(m)}} = \mathbf{c}^{\mathbf{n}_i^{(m)}}$ for $i = 2, \ldots, r\}$ and $\Psi(i_1, \ldots, i_k)^{(m)} = \{\mathbf{c} \in V_{\mathbb{C}}(\mathfrak{p}) : f_{i_1}(\mathbf{c})\mathbf{c}^{\mathbf{n}_{i_1}^{(m)}} + \cdots + f_{i_k}(\mathbf{c})\mathbf{c}^{\mathbf{n}_{i_k}^{(m)}} = 0\}$. As we have just seen,

(11)
$$\Omega \subset \bigcup_{s \le m < n \le C + s + 2} \bigcup_{\{i_1, \dots, i_k\} \subsetneq \{1, \dots, r\}} \Psi(i_1, \dots, i_k)^{(m)} \cup \Phi^{(m, n)}$$

for every $s \geq 1$. Since the sets appearing in the right hand side of (11) are all closed subsets of the perfect set $V_{\mathbb{C}}(\mathfrak{p})$, we obtain that

$$V_{\mathbb{C}}(\mathfrak{p}) = \bigcup_{s \le m < n \le C + s + 2} \bigcup_{\{i_1, \dots, i_k\} \subsetneq \{1, \dots, r\}} \Psi(i_1, \dots, i_k)^{(m)} \cup \Phi^{(m, n)}$$

for every $s \geq 1$. As the ideal $\mathfrak{p} \subset \mathfrak{R}_d$ is prime, the variety $V_{\mathbb{C}}(\mathfrak{p})$ must, for every $s \geq 1$, be contained in one of the sets $\Psi(i_1, \ldots, i_k)^{(m)}$ or $\Phi^{(m,n)}$ with $s \leq m < n \leq C + s + 2$ and $\{i_1, \ldots, i_k\} \subsetneq \{1, \ldots, r\}$. The second possibility is excluded by our assumption that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is mixing, and we conclude that there exists, for infinitely many $m \geq 1$, a subset $\{i_1, \ldots, i_k\} \subsetneq \{1, \ldots, r\}$ (depending on m) such that $V_{\mathbb{C}}(\mathfrak{p}) \subset$ $\Psi(i_1, \ldots, i_k)^{(m)}$. Since there are only finitely many such subsets we obtain that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ fails to be k-mixing for some k < r, contrary to the minimality of r, exactly as in the case where $V(\mathfrak{p})$ is finite. This contradiction implies that $\alpha^{\mathfrak{R}_d/\mathfrak{p}}$ is r-mixing for every $r \geq 2$.

References

- M. Atiyah and I. G. MacDonald: Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass. (1969).
- B. Kitchens and K. Schmidt: Automorphisms of compact groups, Ergod. Th. & Dynam. Sys. 9 (1989), 691–735.
- B. Kitchens and K. Schmidt: Mixing Sets and Relative Entropies for Higher Dimensional Markov Shifts, Preprint (1991).
- [4] S. Lang: Algebra (2nd Ed.), Addison–Wesley, Reading, Mass. (1984).
- [5] F. Ledrappier: Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Ser. A. 287 (1978), 561–562.
- [6] D. Lind: The structure of skew products with ergodic group automorphisms, Israel J. Math. 28 (1977), 205–248.
- [7] D. Lind, K. Schmidt, and T. Ward: Mahler measure and entropy for commuting automorphisms of compact groups, Invent. math. 101 (1990), 593–629.
- [8] G. Miles and R.K. Thomas: The breakdown of automorphisms of compact topological groups. In: Studies in Probability and Ergodic Theory, Advances in Mathematics Supplementary Studies Vol. 2, Academic Press: New York– London, 1987, pp. 207–218.
- [9] H.P. Schlickewei: S-unit equations over number fields, Invent. math. 102 (1990), 95–107.
- [10] K. Schmidt: Automorphisms of compact abelian groups and affine varieties, Proc. London Math. Soc. 61 (1990), 480–496.
- [11] K. Schmidt: Mixing automorphisms of compact groups and a theorem by Kurt Mahler, Pacific J. Math. 137 (1989), 371–384.

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS OH 43210, USA