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1 Introduction

The dominant hard scattering process at the LHC is the production of hadronic jets. Their
ubiquity in the collider environment allows for high precision studies of jets to be performed
by the ATLAS [1, 2] and CMS [3-6] experiments. Jet cross sections are theoretically
interesting as they are sensitive to the value of the strong coupling constant [7—10], as
well as the parton distribution functions [11] and to new physics beyond the Standard
Model [12, 13].

In order to fully utilise these precisely measured observables, we need a comparably
precise understanding of the theoretical prediction for the cross section. The jet cross
section can be calculated using a combination of perturbative techniques for the hard
scattering subprocesses and non-perturbative parton distribution functions,

Z/ d&d& Fal&1,12) (2, 1) d6apla(p?), 12), (1.1)

where the sum runs over parton species in the colliding hadrons. The parton distribution
function (PDF), f.(¢1,1%)dé; describes the probability to find the parton of species a
with momentum fraction &; in the hadron, which is defined by the choice of factorization
scale, p, which in this paper is set equal to the renormalization scale. The partonic cross



section, dd,p, describes the probability for the initial-state partons to interact and produce
a final-state, X, normalised to the hadron-hadron flux.

The partonic cross section is calculable within perturbative QCD and has a series
expansion in the strong coupling constant,

“ ~ g 2 N Qg 2 2 “
doep = doay, Lo + < 2(;: ))dO'ab,NLo + ( 2(:: )> déapnnro + O(as(1?)?), (1.2)

where the series has been truncated at next-to-next-to leading order (NNLO). For dijet
production the leading order cross section carries an overall factor of a? such that the
NLO and NNLO corrections carry overall factors of o and a? respectively. The most
accurate theoretical predictions for dijet observables are currently those calculated at NLO
accuracy [14-21]. Further improvements include the inclusion of LO [22] and NLO [23, 24]
electroweak corrections and the study of QCD threshold corrections [25, 26].

As the LHC experiments continue to record and analyse jet data, the experimental pre-
cision on the single inclusive and exclusive dijet cross sections demand better precision from
our theory predictions. This has led to a drive to provide the NNLO corrections to the jet
cross section in order to bring theory uncertainties in line with the experimental precision
attainable at the LHC. Many techniques have been developed in recent years to calculate
NNLO corrections with hadronic initial states. The antenna subtraction method [27] was
developed for eTe™ annihilation, where it was successfully applied to the calculation of
the three-jet cross section at NNLO [28-36]. The method has subsequently been gener-
alised to hadronic initial-states [37—41], and applied to the leading colour contributions
to gluonic dijet production in gluon fusion [42-45] and quark-antiquark annihilation [46].
Recent years have also seen the development of the sector improved subtraction technique,
STRIPPER [47] which has subsequently been applied to several phenomenological studies
for top pair production [48-52] and Higgs plus jet production [53]. The NNLO correc-
tions for a wide range of processes involving the production of colourless particles are also
known, either for single particle production, Higgs [54-59], Drell-Yan [60-65], and di-boson
production [66-70].

The NNLO mass factorised partonic cross section is composed of three contributions:
the double real, real-virtual and double virtual corrections,

. _ ~RR ~RV ~MF,1
doap,NNLO = , dogp vNLo + / ) [dgab,NNLO +do,, Nvro
n+ n-+

~VV ~MF2
+/ |:d0-ab,NNLO+d0—ab,NNLO:|’ (13)
n

where each contribution is defined to contain the relevant phase space integration measure
and so fn simply keeps track of the number of final-state particles involved in the phase
space integral. It is well known that each of these terms is separately divergent, either
containing singularities in regions of single or double unresolved phase space or explicit IR
poles in ¢, yet the sum of all three contributions can be arranged such that all singularities
cancel to yield a finite result. In order to perform this reorganisation we construct three



subtraction terms such that the partonic cross section can be re-expressed in the form,

doap,NNLO = /

~RR ~S
[dU ab,NNLO — do, ab,NNLO}
n+2

~RV AT
+ / ) [d%b,NNLO - dUab,NNLO}
n+

VYV U
+/ [d%b,NNLo - dUab,NNLo} . (1.4)
n

The double real subtraction term is constructed to remove all single and double unresolved
divergences and renders the double real channel IR finite. The real-virtual subtraction term
is a combination of double real subtraction terms integrated over a single unresolved phase
space, mass factorization contributions and new subtraction terms introduced to remove
the remaining singularities of the real-virtual contribution. The double virtual subtraction
term is constructed from mass factorization terms and the remaining subtraction terms
from the double real and real-virtual, integrated over the double and single unresolved
phase spaces respectively,

~T 1A VS ~MF,1 ~ S

d6ap nnro = 404 NNro — 04 NNLO — /1 dogy NNLO (1.5)
U . ~MF2 V.S - S

dUab,NNLO = _daab,NNLO - /1d%b,NNLo - /2d0ab,NNLo- (1.6)

In this paper we are concerned with the NNLO correction to the dijet cross section
in the all-gluon approximation. To help organise the calculation it is useful to define
the operators £C and SLC, which project out the leading colour and sub-leading colour
corrections such that,

d6ggnn10 = LC (dagg,NNLo) +SLC (da—gg,NNLo), (1.7)

where LC <d&gg7 NN LO> was discussed in refs. [42-45] while SLC (dﬁgg, NN Lo) constitutes

the remaining contribution to the cross section discussed in this paper.!

It can be seen by simple power counting in N that the NNLO mass factorization terms
for this process only contribute to the leading colour cross section, i.e.,

sce(doy o) = 0. (1.8)
sce(doy o) = 0. (1.9)

The significance of egs. (1.8) and (1.9) for this calculation is that there is no mass factor-
ization contribution at sub-leading colour.

The sub-leading colour contribution poses an interesting theoretical challenge for the
antenna subtraction scheme previously employed to compute the leading colour contribu-
tion [42—45]. This method is well suited to leading colour calculations and those where

'Note that the definition of the leading colour contribution contains an overall factor of (N? — 1), as
does the subleading colour contribution. The two are separated by a relative factor of N2 and so strictly
expanding as a series in N leads to a mixing of the two contributions. In this paper we define the £C and
SLC operators to both contain this overall factor of (N2 — 1) so as to avoid such mixing of terms.



the cross section can be written as a sum of colour ordered squared partial amplitudes
with simple factorization behaviour in unresolved limits. However, the sub-leading colour
contribution, is constructed from the incoherent interference of partial amplitudes and it is
an interesting question to see whether the method is sufficiently general to systematically
remove all of the IR singularities. As we will show, this can be achieved in a straightforward
manner without the need to derive new antennae or to perform new analytic integrals.

The phenomenology of this process is also interesting as it gives a concrete example of
the size of sub-leading colour corrections to the leading colour process at NNLO. Naively
we expect sub-leading colour contributions to be numerically small because in the all-gluon
channel they are suppressed by a factor of 1/N? relative to the leading colour contribu-
tion. In addition to this power counting, QCD displays colour coherence and so sub-leading
colour contributions can contain incoherent interferences of partial amplitudes. These inco-
herent interferences will generically contain contributions which are suppressed by quantum
mechanical destructive interference effects, and so the colour incoherent sub-leading colour
contributions may be suppressed even further than the naive 1/N? suppression. These
heuristic arguments are appealing but it is also desirable to make firm quantitative state-
ments about the relevance of sub-leading colour contributions. In this paper we do so by
explicitly calculating the sub-leading colour contribution to dijet production at NNLO in
the all-gluon approximation and comparing it with the leading colour contribution.

The paper is organised in the following way. In section 2, we define the notation used
throughout the paper and introduce also the notions of colour space that help organise the
sub-leading colour contributions. In sections 3, 4 and 5 we systematically step through
the double real, real-virtual and double virtual contributions, first defining the relevant
matrix element and then deriving the appropriate subtraction terms. We show that the
antenna subtraction technique requires no significant alterations or new ingredients in order
to deal with the incoherent interferences of partial amplitudes. In particular, in section
3 we show that the single and double unresolved limits of the double real matrix element
at sub-leading colour can be fully described using just three-parton tree-level antennae,
without the need for four-parton antenna functions. In section 4, we give a more compact
form for the real-virtual matrix element than that present in the literature [71]. As in
the double unresolved case, we show that the single unresolved limits of the real-virtual
matrix element do not require the one-loop three-parton antenna and can be described
with only tree-level three-parton antennae to remove all explicit and implicit singularities.
We derive the double virtual subtraction term by integrating the remaining double real
and real-virtual subtraction terms, and show that it analytically cancels the explicit poles
in the formula for the two-loop matrix elements [72, 73]. We have implemented these
terms into a parton-level event generator, which can compute the all-gluon contribution
to any infrared-safe observable related to dijet final states at hadron colliders. Section 5
is devoted to a first numerical study of the size of the full colour NNLO cross section for
some experimentally relevant observables; the single jet inclusive distribution for a range of
rapidity intervals and the dijet invariant mass distribution. Finally, our findings are briefly
summarized in section 6.



2 Notation and colour space

Throughout this paper, complex amplitudes are denoted by calligraphic letters, whereas
real squared amplitudes, summed over helicities are denoted by Roman letters. Generic
amplitudes, independent of the scattering process, are written using the letter M, whereas
for the specific process of gluon scattering the we use the letter A. Amplitudes and squared
amplitudes containing colour information are written in boldface whereas colour stripped
amplitudes are not. Thus, the full n-point /-loop amplitude is denoted by Mf;, whereas the
same quantity for gluon scattering is denoted by Af;. The corresponding colour stripped
partial amplitudes and their squares are denoted by ./\/lfb, Aﬁ and be, Afl respectively.
The squared full amplitudes, containing all colour information, for generic and gluonic
scattering process are denoted by MY, and A%,

Specific combinations of integrated antennae and mass factorisation kernels can be used
to express the explicit IR poles of one- and two-loop contributions to the cross section. This
approach is of particular use in the antenna subtraction process where writing the poles of
the virtual and double virtual cross sections in terms of integrated dipoles allows the pole
cancellation to be carried out in a transparent fashion.

The poles of the integrated dipoles correspond to those of the one- and two-loop in-
sertion operators, and so they can be dressed with colour charge operators and inserted
into the matrix element sandwiches to obtain the pole structure of the cross section by
working in colour space. For n-parton scattering, the amplitudes carry colour indices
{c} ={c1,--,cn} wherec; = 1,--- ,N?>—1for gluons and ¢; = 1,--- , N for quarks and an-
tiquarks. A set of basis vectors for the colour space can be constructed, {|c)} = {|c1 - ¢cn)},
the projection of an arbitrary vector into which defines a scalar in colour space. In this
space we define a vector which represents a scattering process, such that its projection onto
the colour basis vectors produces the coloured scattering amplitude,

M {p}) = (Ma({p})). (2.1)

The full squared amplitude, summed over colours is then given by,

M, ({p}) = > _(Mn({p})le)(c| Mu({p}))
{c}
= Mu({p}H)IMn({p}))- (2.2)

The emission of a gluon from parton ¢ is associated with the colour charge operator, T'; =
TF|c), which carries the vector colour index of the emitted gluon, ¢, and is a matrix in the
colour indices of the emitting parton i, i.e.,

<a"z_;c|b> = 6a1b1 e chz e 5anbn' (23)

a;i
The colour charges form an algebra, the elements of which satisfy the following properties,

T:,-T; =T, T
T? = C;1, (2.4)



where T; - T = . TZ-CTJ-C and 1 is the identity matrix in colour space. C; is the Casimir
coefficient associated with a parton of type i, i.e., for partons in the fundamental represen-
2
tation, Cq = C3 = Cf = 2N ,
The product of two colour charges, T'; - T';, is a matrix acting on the colour indices of

for partons in the adjoint representation, Cy = C4 = N.

the partons 7 and j in the scattering process and so when sandwiched between two state
vectors, produces a scalar in colour space called a colour correlated matrix element,

(Ma|T - T\ M) = Tg), Ts , MES ({pHMP (). (2.5)

At NNLO we also encounter the colour correlated double operator insertion sandwich,
defined by,

(Mal(Ti - T3)(Th - T)Mu) = Ty Tity T2, Tey ME {ph MPH{p}).  (2.6)

a;b; = ajb; T apb; T agd

To write down the pole structure of the one- and two-loop cross sections encountered in
this paper we must evaluate the following colour charge sandwiches,

(AD|T; - Tj| A7), n=4,5, (2.7)
(AQT; - T;|Ap),
(AT - T;) (T - Ty)|AY). (2.9)

For gluons the explicit form of the colour charge operators is given by,
Tofb = tfach- (2'10)

We choose to write the amplitudes in a colour ordered basis in terms of colour ordered
partial amplitudes. In such a basis, the tree-amplitudes have the form,

ApD) = D0 Trlaga) e o) An(0(1), - o), (211)

0ESN/Zn

where the symmetry group S,,/Z,, contains all non-cyclic permutations of n elements and
the arguments of the colour stripped partial amplitudes represent external momenta. Each
a; in the trace of eq. (2.11) represents a generator of the SU(NN) algebra in the fundamental
representation carrying the adjoint colour index a; associated with gluon i. The four-gluon
one-loop amplitude, in a colour ordered basis, is given by [74],

A ({py) = Z N Tr(ag(1)s o (2), Go(3)s o(a)) Al (0(1),0(2),0(3),0(4))
0€S4/Z4
+ Z Tr(ap(l)ap(Q))Tr(ap(3)aap(4)) Aig(p(l),p(2),p(3),p(4)), (212)
PESL/ZaX Z>

where o is the set of orderings inequivalent under cyclic permutations and p is the set of or-
derings inequivalent under cyclic permutations of the two subsets of orderings {p(1), p(2)}
and {p(3), p(4)} and the interchange of these sub-sets. The colour indices of these ampli-
tudes are then contracted with those of the colour charge operators, given in eq. (2.10),
and conjugate amplitudes to produce the sandwich, as shown in egs. (2.5) and (2.6).



A result which will prove useful throughout this paper is that the four-parton tree-level
single insertion sandwich in eq. (2.7) only contributes at leading colour such that,

See((AT:  T5AD) = o. (2.13)

Setting Np = 0 (according to the all gluon approximation of this paper), the single unre-
solved integrated dipoles [46], J gl , which dress these colour charges are defined as com-
binations of integrated antenna functions [27, 37-41] and mass factorisation kernels. The
final-final, initial-final and initial-initial gluon-gluon dipoles are given by,

1
TP (1,2y) = gf??(Sw), (2.14)
2 1
T (00,20) = 579, (s512) — 5T (@501 — ), (2.15)
2 1
ng)(lg 29) = Fyg9(s12) — §F§19);gg(w17x2)’ (2.16)

where hatted arguments denote initial-state partons and the mass factorization kernels
used to define the initial-final and initial-initial dipoles are defined as [43],

Pf(l‘%});gg(xl’ r3) = ng)(xl)fs(l —x2) + Pélg)(xQ)é(l — 1), (2.17)
1
Liy (x1) = - Pag(@1)- (2.18)

These integrated dipoles can be stitched together to form an integrated antenna string
which contains the poles of an extended string of gluons including, by definition, a cor-
relation between the endpoints of the string due to the cyclical symmetry of the partial
amplitudes,

ngl)(lgv2gv3gv ey (n—1)g,mng) = ng)(lga 2g) + ng)@g»?’g) +
+I (0= 1)g,mg) + IS (g, 1) (2.19)

The double unresolved integrated dipoles are given by,

I05,2) = (Fom) + 37 ) + 5 2 [ (22 - 1]

4
9 [7:3? ® F3] (s12), (2.20)
I 00,2 = PR+ 3 o) + 327 o) [ (B21) 1)
LR © Fylo12) — ST o1 a2), (2.21)
JP,,2,) = ff;;h(sﬁ) ;E;Qadj( 13) + F3.g9(s13) + b?ofg’gg(sﬁ) [(‘j;l)e B 1]
—[F3 40 © F3 4] (s12) — %féf,);gg(:cl, T2), (2.22)



where the relevant mass factorization kernels are defined by [44],

T8 (o1, 2) = T (21)8(1 — w2) + Too (22)8(1 — 1), (2.23)
=(2) _ 1 1 /80 0
Fgg (.Tl) - _?ﬁ (pgg(xl) + ?pgg(xl))' (224)

Using the integrated dipoles, and evaluating the colour charge sandwiches directly, allows
the pole structure of one- and two-loop contributions to the cross section to be written
in terms of single and double unresolved integrated antenna dipoles. The initial-final and
initial-initial dipoles contain mass factorization kernels, however as stated in egs. (1.8)
and (1.9), the mass factorization contribution is zero at sub-leading colour so all mass
factorization kernels in the integrated dipoles ultimately cancel in the full subtraction
term. The pole cancellation with the relevant subtraction terms can then be achieved in a
clear and simple fashion as we will show in sections 4 and 5.

3 Double-real contribution

The double real six gluon tree-level amplitude squared is given by,

AY{p}) = NN 1>{ S A1 0(2),0(3), 0(4), 0(5)., o(6))

0€S6/Zs

o A (1,0(2),0(3),0(4),0(5), 0(6)) [ A1, 7(3), 0(5), 0(2),0(6), o (4))
+A3(1,0(3),0(6),0(4),0(2),0(5)) + A1, 0(4),0(2),(6),0(3), 0(5))} }, (3.1)

where the sum Sg/Zg is the group of 5! non-cyclic permutations of the six gluons.
The leading colour contribution and the double real subtraction term has been dis-
cussed in ref. [42]. At sub-leading colour, the double real radiation contribution is given by,
~RR  _ as\2 C(e)? - (4) 2
dGNNLO - NLO (%) 0(6)2(1(1)4(1)37 e 7p67p1ap2) JZ (p37 v 7p6) ’m Z

4!
O'ESG/ZG

x A (1,0(2), 0(3), 0(4),0(5),7(6)) [A§(1,0(3), 7 (5), 7(2), 7(6), o (4))
+ A(1,0(3),0(6),0(4),0(2),0(5)) + A2(1,0(4),0(2),0(6),0(3), 0(5))}, (3.2)

where C(e) = 872C(€) = (4m)¢e™*" and the overall factor is given by,

1 1

Nio = 25 4(N2 — 1)2

(PN)*(N? - 1). (3.3)
In eq. (3.2) we can see that the tree-level six gluon squared matrix element at sub-leading
colour can be written as three incoherent interferences, summed over permutations. The
three orderings,



are the only independent orderings that exist for six gluon scattering which have no common
neighbouring pairs of partons with the conjugate amplitude’s ordering,

APY(1,0(2),0(3),0(4), 0(5),5(6)).

One immediate consequence of this is that the sub-leading colour matrix element does
not contain any single, double or triple collinear collinear divergences. With no collinear
divergences present in the double real cross section, the only divergences to be removed
are those associated with single and double soft gluons.

The double real subtraction term can be divided into five distinct contributions,

.S .S, . S)b .S, . S.d .S,
doxnro = R0 + A0 N0 + d0NN Lo + 0NN Lo + A0 N Lo (3.4)
which will be discussed in the following sections.

3.1 Single unresolved subtraction term

The interferences in eq.(3.2) contain no collinear divergences but do contain soft singular-
ities. In the single soft limit the colour ordered partial amplitudes factorize [75, 76],

—0
M?H—l(‘ -y PiyPjs Pks - - ) J—> So(plapjvpk)Mg( -y Diy Pk - - '), (35)

where
S%(pispj, k) = Sp(pis pjs PR (p)- (3.6)

The tree-level single soft current is given by [77],

P o
P; Fpuo (05D
SijSik
and Fj,,(p) is defined by,
Fp,ua(p) = 9puPo — Ppuc - (3'8)

Summing over polarizations allows the soft limit of the interference to be written in terms

of eikonal factors,

AT ayii by )AL eyiyd, ) Umal
1
5 Said + Sbic - Saic - Sbid AgT( T, a, b7 T )Ag( 6 d7 T )a (39)
where the eikonal factor is,
28,k
Spip = a 3.10
7k Si35k ( )

The eikonal factors have uniquely defined hard radiators and can be immediately promoted
to antenna functions with an appropriate momentum mapping [27, 37] to obtain a candidate



subtraction term for the single soft limit of a generic tree-level interference,

AT ayinb A eyiyd, ) R
3 (X800, d) AT ()b A e i), )
FX§(bd ) AT a, (i), )AL (i) d )
—X9(a,i,c) AYT(-+(ai), b, )AS(-+ , (ic).d, )
—X9(byi,d) AL a, (i), ) AS( e (id), )| (3.11)

For convenience the momentum mapping shown in eq. (3.11) is a final-final type but the
factorization pattern is true for all mappings. It can be easily seen that the collinear limits
of the antennae in this block of terms cancel in eq. (3.11).

The single unresolved subtraction term is given by,

dg3e o = Nio (;‘—;)Qd<1>4(p3,...,p6;p1;p2) % > 2Re]
(-5 kD EP(3,45.6)

—FY(1L L, 2)A31,2,0,5. A (15,2, 8,9)757 (5,05, m)
— 120D AYL,2, (1), 5. AT, 5,2,k (1) J5” (b P p )
90 L) AS(L, 2. (i), (1), KA (L, (15), 2, k, D)5 (o, gy i 5)
—fgu,z,k)A‘;(i,é,iﬁ,<u<:>>A°*< G0, 2, (),1)J5” (s, 35 P )
— 19 LR AY(L, 2,4, (U0)AST (L, 5.2, (1R), ) T3 (pis s Py
+f§<i,z,j>A2<ié,z’,(l?),km%*(iﬁ i) 15 (b, P, m)
A2 1) AS(L, 2.4, (1), k) AST (A, ﬁik i)J5” (pis P p5)
+I92 L R)AYL, 2,6, 5, (1) AT (L, 5, 2. (1K), ) 5" (i, pj,p(,w
+ 190 L R)AY(L, 2, (i), 5, (1) AST (1, 5,2, (1), ) J5” (b Py
191,10 AS(L 2, (1), 4, k) AST (1, 5,2,k (1)) 5 (b v v >}. (3.12)

Once analytically integrated, eq. (3.12) is added back as part of the real-virtual subtraction
term where it cancels the explicit IR poles of the real-virtual matrix element.

3.2 Double unresolved subtraction term

The only double unresolved divergences present are those associated with two simultane-
ously soft gluons. In the double soft gluon limit, the full squared gluonic matrix element
factorizes in the following way [76],

i,j—0
ALY T ST SawnSeja (AY(Ta - Th)(Te - Ta) A
(a,b) (c,d)

—N ) Sap(i, 4) (AYTa - Tl AY), (3.13)
(a,b)

~10 -



where the four parton double soft function, Sg;(i,j) [76] is related to the double soft
function, Sgijp, derived in [78]. The last term in eq. (3.13) is proportional to the sandwich
(AQ|T,, - Ty|AY), which as stated in eq. (2.13), does not contribute to the sub-leading colour
contribution. Accordingly, we find that the double soft factorization pattern involves only
eikonal factors, e.g. in the limit where gluons five and six go simultaneously soft,

5,60
sce(Aj({ph)) "
1 A
1 {(5153 + Sosq — Sis4 — 5254) <5163 + Sa64 — S162 — S364> AY(1,2,3,4)
+<S153 + So54 — S1s4 — 5254> (5162 + S364 — S16a — 5263)142(17 2,4,3)

+<5152 + S354 — S154 — 5253> (5162 + S364 — S163 — 5264)A2(ia 3,2, 4)]

(3.14)
We can also study the double soft limit of the partial amplitudes directly [75, 76],
MO o(c s Dis Py P DL - - -) s S°(pi, js P OMG (- D0y DL - - ), (3.15)
where
S%(pis pjs P> 21) = Sy (i s i P ()€ (P), (3.16)

and the double soft current can be written as [77],

S;Ll/(piapj7pk7pl) =
png#(pj)Fgw(pk)plT _ pingu(pj)FU”T(pk)plT _ plpr?“(pj)FJW(pk)plT
88 ikSki SijSjk(Sij + Sik) SjkSki(Sji + Ski)

4 ] L (3.17)

When taking the double soft limit of eq. (3.2), we encounter contractions between single
and double soft currents. Summing over all colour orderings, we obtain symmetric sums of
double soft currents which can be rewritten using the identity [75],

S (Dis 0js P, P1) + Sup (i P, P> 1) = Su(pis i 01)Sw (D3, P, D) - (3.18)

Any remaining terms involving the double soft current can be eliminated using,

=S, (i i, Py 1) + Spv(Pis Py P> Pa) + Sup (P15 P> s> Pe) — Svp(Das Pr» s> Pe)
= —Su(Pi, pjs Pk)Sv(Dis Prs 1) + Su(Dis Pj, PR)Sw(Pis Pk Pa)
=S4 (ks s De) S (Pes P> P1) + Su(Pk> Pjs Pe)Su(Pes Pies Pa), (3.19)

so that the double soft limit of the sub-leading colour matrix element can be written purely
in terms of eikonal factors, as described in eq. (3.14). To the best of our knowledge, the
relation in eq. (3.19) does not exist in the literature and can be confirmed analytically
using (3.17). The resulting subtraction terms can be obtained by promoting each eikonal
factor to a three-parton tree-level antenna, as outlined in section 3.1.

At leading colour, the double unresolved subtraction term is partitioned into three
terms depending on the colour connection of the unresolved partons:

- 11 -



e Colour connected, where the unresolved partons, 4, j, are colour connected to each
other and a single pair of neighbouring hard radiators, a,b, corresponding to the
colour ordering (--- ,a,%,7,b,---).

e Almost colour connected, where the unresolved partons, i,j, are not colour con-
nected but are each colour connected to a neighbouring pair of hard radiators, a, ¢
and ¢, b, with one hard radiator in common, corresponding to the colour ordering

( 7aaivcaj7b7”')'

e Colour disconnected, where the unresolved partons, i, j, are not colour connected and
have no hard radiating neighbours in common, corresponding to the colour ordering
( ,(I,i,b,"' ,C,j,d,"')-

This classification is particularly useful for leading colour calculations because, due to
colour coherence, the leading colour cross section is formed from squared partial amplitudes,
each with a definite colour ordering.

For sub-leading colour calculations this distinction is not so apparent. An incoherent
interference generally produces a complicated factorization pattern, particularly in the
soft limits, and does not have a simple connection with the colour ordering inherent to
squared partial amplitudes. For such interferences, what is colour connected, almost colour
connected or colour disconnected is not immediately obvious. We have already established
that the double unresolved subtraction term consists of iterated three-parton antennae.
For the remainder of this paper we consider the slightly looser definitions of terms:

o d5]%?VLO’ the antennae have repeated hard radiators, ~ X3 (a,4,b)X3(A, j, B),
. d&f,’f\,LO, the antennae have one repeated radiator, ~ X3 (a,i,c)X3(C, j,b),
. d&f,’fleO, the antennae have no repeated radiators, ~ X3(a,,b)XJ(c, j,d),

where A, B, C denote the repeated hard radiators which have composite momenta resulting
from the appropriate momentum mapping fixed by the primary antenna, e.g. (a,i,b) —
(A, B). The subtraction terms, d&f}?v o and d&f}f\/ Lo are integrated and added back to
the real-virtual cross section while d&f}?\, o can be simultaneously integrated over both
unresolved partons and so is added back in the double virtual subtraction term.

The sum of the three double unresolved subtraction terms is given by,

4650 465 a6Sd _ar o (Qs 2 é(€)2d® oo 12
ONNLO T 90NN T 0NN =NLo (ﬂ) Tﬁ)z 4(193,---,296,]?1,172)] Z
(Zvjvkvl)ep(3747576)

1 . o = Ly 5 (L1 T
fifé’(l,l,l?)fé)((ll)»kv(lJ))AQ(L((zl)k),Z(k(lJ)))J2 (p(®k),p(k@))
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1,2, ], (k(1i)) + AY(1, 2, (k()), 5) — AY(1, (k(14)), 2,

=
[\]]

—~

X
SRS
= o
[\
o
N—
| |
MK‘,—\
N
)
k]
S
SN—

+5 50 LD (L k, )

< [AY(1,2, (k7). (1) + AY(L,2, (1), (k) — AL, (k). 2, ()| 18 g o )

+%f§)(1, 1,i)F§(1,k,2)

<[AYL2,(@0).3)+ AT (@0).2.5) - 48025, 50 )
AR N N0)

<[44, G, ) + A3 GO, (W) — A3, k9. G 50 — oi5)
+%f§)(2, L) f9(1, k, (10))

o —~— —~—

AYL 2,5, (b(00))) + AY(L 2, (600, ) = AL (R0, 2,9)| 570 )

X

e

5 321012,k )
o [ AR 2. (7). () AL 3, (), (k) — A3 (7). 2. ()] 2 (o )

1 ~ A
+5 32, L) F(1,k,2)

2
(AN @) + ANE (0,59 - AU (@0).9) 4 5.
Y AR (RN

< [ARCEL 2, (6(i0), () + AYCE, (KD, 2 1)) — AY(T 2, ), (RGO 70 = o)

% £90,1, )10, &, (17))
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_ P —~—

< [ASCEL2. (1007, () + AR 0,2, (C5)) = AYCE 2, ). 7)) S5 g )

413G 1.3 130, (D)

A9 2, @), (RG0)) + AL (D), 2, (1)) =AY, (D), ()| 17 (0= vi5)

A1) 0.k, (1)

o [AR0L 2, D). (077 + AYCL ). 2. (K1) = 44002, (6. D) 0 = 2

R, LD G E DAL GRL L, )T 0= w5

— SO, 10) £(2, ke, AL, 2, (17), (kj)) I (p@ap(,:;-))}- (3:20)
S,a,b,c,d

In single soft limits, the single and double unresolved subtraction terms déyj; ) over-
subtract the divergences of the matrix element, and so a large angle soft subtraction term
is introduced to compensate for this over-subtraction, denoted by d&}?;fv LO>

. Se as\2 C(e)? 12
dUJ%NLO = Nwo <*> 7( )gd‘p4(p3, e 7p6;p1;p2)7 Z
2m/ Cle) 4 (i,5,k,1)€P(3,4,5,6)
7‘7]7 b bl "~y

1
(=8, +S ——-5 +5 — -8 ~+5 — -85 ~+5 —
4( @) 1((iD)) (i) 20((il)) (i) * 10((17)) 21(i5) 20((15))

— 28, + 2512 ) FY (1K, 2) A3, (D), 2. (1)) (=~ p—~)
(@) ()

1
—— (S, -9 — -8, +5 — -5 +S5 —+S5, -85 —~—
2( u@ ~ gy A T sy T T ay, A0) 2i(<lj>>>

e~ ——~——

1)
x FY(1,k,2)A%(1, 2, ((@D)), (1)) 5> (0= p—=)

p P 7pr~4/
(@)
1
—— (S~ _ —S45,=—-5 — +95, =
2( (k(@D)Gy WD) k() + 2l<zl))
2 N ES T N 2
X A )AL, 1), (RIS (s p )

1
—(S—~ _ -8~ -~—-85 —~— S ~
+2( k@@puiy) DU 2l(k(z‘l))+ W))
L~ s T — o
x f9(1k, (i) AY(T, (k(iD)), 2, (15))J3 >(p@7),p(ﬁ)>
1

— S — 25 o= +8 —— 28,2 — S,

S— _ = :
2( k@@puiy) DU Uk@)  20(k(L) Li(il)

—_——

A3k GO 2, (D), ()75 5. =)
1

AS—= =S-S5 — +5,75
+2( (kGDN@E) U 1l(k(jl))+ u(ﬂ))
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—_—

X A2 GD)ARL (RGD), 2, ()17 (0 == )
1

- S— _+S5==-5 — +25 — +8S ——-25 —
2( (k(ﬂ))zaz’)+ (GUL) ll(k(jl))+ 2l(k(jl))+ D 2’0”)

—~——

X A2 GD)ARAL 2, (10), (WD) (0 == )
1

—— (S -5 =-95 — S —
2( kGON@) GV () * uul))

02, k, (1)) AY(L, 2, (k(jD)), (1) Js? (s p ——
X f3( ) 7(.7 )) 4( ) 7( (.7 ))7(Z)> 2 (p(hyp(k(jl)))

J& (Su(ﬁ) - Szz((z’”l) k) ~Suy T S ~ Su@f)) * Szz@f)) TS~ 321@7)
< B )AL (@ (N =
*i (Su(ﬁ) B Szz«?l') k) ~Sua S~ Su(kf(’h:)) * Sﬂ(kf(,l]:)) TS~ S2l@7)>
X IR0,k W) ASEL 2, ), (@)L b = b )
J&( ~ G 2@ uGn T agn @~ i g
+ Szl(ﬁ) B Su@ N S2l®)fg(@’ k, @)Ag(i’ ((Tl)k)’ 2, (k@ﬁ))‘]f)(p((?ﬁ);)jp(kﬂ(lﬁ))}'

(3.21)
The large angle soft subtraction term is integrated analytically and added back to the

real-virtual subtraction term.

4 Real-virtual contribution

The real-virtual matrix element is given by the interference of the one-loop amplitude with
the tree,

A;({p}) = (A5|A5) + (A5]A5). (4.1)

In a particular colour ordered basis, the one-loop amplitude can be decomposed into the
partial amplitudes [71, 74],

AV ((p)) = (alAL({p})
D> N Te(o(1)s Go @) Go(3), Go(d): Go(z) Ab1(0(1),(2),0(3),0(4),5(5))

U€S5/Z5
+ Z Tr(ap(l))Tr(ap@)a Ap(3); Ap(4)> (Lp(5)) *A%,Q(p(l)a p(2)’ :0(3)7 10(4)’ P(5))
p€S5/Z4
+ Z Tr(aT(l)aT(Q))Tr(aT(3),a7(4),a7(5)) Aé’g(T(l),T(Q),7(3),7'(4),7'(5))
TES5/ZQ><Z3

(4.2)
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where o is the set of orderings inequivalent under cyclic permutations. p is the
set of orderings inequivalent under cyclic orderings of the subset of four elements,
{p(2),p(3),p(4),p(5)}. 7 is the set of orderings inequivalent under cyclic permutations
of the two subsets of orderings {7(1),7(2)} and {7(3),7(4),7(5)}. The colour factors of
the terms proportional to .A%Q in eq. (4.2) are identically zero.

The sub-leading colour partial amplitude, Aég, can be written in terms of the leading
colour partial amplitude by using the decoupling identities [74],

Ab3(1,2,3,4,5) = —AL5(2,1,3,4,5) — AL 5(2,1,4,5,3) — AL 5(2,1,5,3,4)  (4.3)
Ab5(1,2,3,4,5) = —AL 1(1,2,3,4,5) — AL 1(1,3,4,5,2)
—,4;1(1, 4,5,2,3) — Agvl(l, 5,2,3,4), (4.4)

which leads to an expression for the real-virtual cross section in terms of interferences of
leading colour one-loop partial amplitudes with tree-level amplitudes.

There are many ways to write the one-loop cross section due to the decoupling identities
between partial amplitudes. It was shown in section 3 that the double real cross section can
be written in terms of the three independent interferences with no common neighbouring
partons. In the case of five gluon one-loop scattering there is only one independent ordering
containing no common neighbouring partons such that,

sce(AL{ph)) = 124N (N2 1)

> 2Re(,4§v*(1,0—(2),0(3),0(4),0(5)),4;?1(1,0(4),0—(2),0(5),0(3)))7 (4.5)

0'655/25

and therefore the sub-leading colour one-loop five gluon cross section can be written in the
optimal form,

\2C dzxy1 d o
d6¥NLo = Nro (;;) C((e /mmd% D3 - - D5:D1,D2)
0€85 /75
QRG{Ag’T(i0(2),0(3)70(4)70(5)) Aé,1(i0(4),0(2),0’(5)70’(3)) }
xJ5 (i, pj, p)- (4.6)

This form for the sub-leading colour contribution to the five-gluon one-loop matrix element
is equivalent to the expressions found in eqgs. (9.12) and (9.13) in [74] and greatly simplifies
the construction of the real-virtual subtraction term. We have cross checked our numerical
implementation of the sub-leading colour matrix element in eq. (4.6) against the numerical
package NJET [79] and we find complete agreement between the two. By fixing the position
of the second initial-state parton explicitly, the permutation sum reduces to a sum over
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final-state partons,

ag\2 C(e)? 24 dzi dz o
dofvro = Nio (27r> ) 3 > /1 —2d®s(ps, .. ., psi P1, P2)
(i,5,k)€P(3,4,5)

2Re{Ag’T(T,§,z’,j, k) AL (15,2, k,0) — ADT(1, 5,2, k,0) AL (1,2, 5, k) }

x Iy (pis s PR)- (4.7)

It should be noted that eq. (4.7) is simply a rearrangement of the sum in eq. (4.6) and is
also free from collinear divergences.
The real-virtual subtraction term can be divided into three distinct contributions,

~T,b AT,
dofnro = A6 N0 + doNnro + doNNLo; (4.8)
which will be explained in detail in the following sections.

4.1 Explicit singularity subtraction

The poles of a one-loop interference can be written in terms of integrated dipoles [46],

Poles[2Re<Ag’T(U)Aé’1(p))} - 3 —%ng)(i,j) 2Re(Ag’T(a)Ag(p)>, (4.9)

adj.pairs(i,j)€p

where the choice of dipole (final-final, initial-final or initial-initial) depends of the kinemat-
ics of the radiators in the dipole. Substituting eq. (4.9) into eq. (4.7) gives an expression
for the poles of the full one-loop interference in terms of integrated dipoles,

R 2C dzi dx o
Poles dUﬁYVLO =Nro ( ) ( Sl /12dCI>3 (P35 ---,D5;P1,D2)
C() 3' z]k)€P345

N

2Re{ (Jé”(i,i,z‘,j, k) — I8 (1,5,2,k z)) ANY(A,2,4,4, k) A2<i,j,é,k7z'>}

I3 (ps, pj, pi)- (4.10)

eq. (4.10) can be written in terms of ten integrated dipoles using eq. (2.19). It should be
noted that the mass factorization kernels in eq. (4.10) cancel and so the poles of the one-
loop matrix element are given purely in terms of integrated antennae. These ten dipoles
correspond to the ten antennae in the single unresolved subtraction term in eq. (3.12).

Explicitly carrying out the integration of the single unresolved subtraction term we
find that,

~T,a ~S,a
donNLo = — /1 doNNLo»

as\2 C(e)? 12 dzy dx _
= Nro (*ﬂ) © /120@3 P3, - -, D5:D1,D2)
(i,5,k)= 345

Cle) 3!

><2Re{ (]:0( 5) + .7:0( i)+ gfg(sij) + gfg?(sjk) + %J-";?(sm)
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1 1 1 1
~5F3ons) = 378 em) — 5P Hoa) — 3 Fsu) ~ 57w )
x AST(1,2,i,j,k) Agﬁ,j,ik,z')}Jég)(pi,pj,pk). (4.11)

eq. (4.11) clearly matches the form for the poles of the 1-loop matrix element in eq. (4.10)
and so that,

Poles (d&ﬁYVLO - dé’f,’]o(,LO> = 0. (4.12)

4.2 Implicit singularity subtraction

In single unresolved regions of phase space the jet function allows the real-virtual matrix
element to develop implicit divergences. In order to be able to integrate the real-virtual
cross section numerically, a single unresolved subtraction term is constructed to remove
any implicit singularities of the real-virtual cross section.

The form of the cross section in eq. (4.6) makes it particularly clear that the total
cross section contains no divergent collinear limits at sub-leading colour; this leaves only
soft limits to consider. In the single soft limit, the one-loop colour ordered amplitudes
factorize in the following way,

. i—0
AS (e, b ) 25 SO (Daypi ) AL (oL asb, )
+Sl(pa7piapb)"42('” y @, bv'”)’ (413)

where the colour stripped one-loop soft function [80-82] can be written in the form,

Sl(pa7piapb) = _So(ptupiapb) 'SSing(a7i>b)7 (414)

and the singular function, S*8, is given by,

2 €
S8 (q, 7, b) = c’*(e)l2 ( K S“”) . (4.15)
€ SaiSib

Substituting eqs. (4.13) and (4.14) into the sub-leading colour contribution shown in
eq. (4.7), yields an expression where each term containing a one-loop soft current is purely
imaginary and so does not contribute to the matrix element. This shows that the one-
loop soft gluon current does not contribute to the single unresolved limit of the sub-leading
colour one-loop matrix element and so no one-loop antennae are required in the real-virtual
subtraction term. Similarly in the colour space approach, the one-loop soft gluon current
is proportional to the sandwich (AY|T; - T';|.A9), which vanishes at sub-leading colour, as
stated in eq. (2.13).

Promoting the eikonal factors of the soft limit to three-parton antennae leads us to
the following subtraction term for a generic one-loop interference,

AT ayi b, )AL iy dy ) 20
+X%a,i,c) AZ’T('” a@,ba"')Ai,1("' ,(70/)7617...)
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X0b,i,d) AVT(--. ,a,ﬁ AL ¢, (id), )
_X??(aaiad) AEVT( (az) )A4 1( H 6 (Zd)7)
_Xg(b7ivc) AZ’T( 7a7( Z)v"')AzL,l("' ,(ZC),d,---),

where once again, the explicit form of Xg depends on the kinematics of the hard radiators.
Applying eq. (4.16) to the real-virtual cross section in eq. (4.7) and simplifying the result

(4.16)

yields the single unresolved subtraction term,

C dz; dz
(971 > /lqu’a (3, - - -+ p5;D1,D2) ZRG{

T
doNNLo = NLO(%) () 3! |
(4,9,k)€P(3,4,5)

+f3(Z k,j
AN,

l\3|> — DI

_'AZT(ia (Ii/—\k/)7 §7 (k])) Aéll<i7 §7 @7 @)5152 + 7J4(Ll)<i7 §7 (k])7 (Zk))Ag(
><J2(2)(p(7,5,p(’,7j))}, (4.17)

where 612 = 6(1 — z12). The integrated antenna strings, J
to remove the explicit IR poles of the reduced four gluon one-loop amplitudes. Once again,
any mass factorization kernels in the integrated dipoles cancel. For ease of exposition in

il), in eq. (4.17) are introduced
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later sections, we will refer to those terms in eq. (4.17) that are proportional to the one—
loop amplitudes as daN ~ro and those proportional to the integrated dipoles as dét N N Lo
Both of these terms have to be integrated analytically and added to the double virtual
subtraction term.

4.3 Spurious singularity subtraction

There are additional double real subtraction terms, ds%; N N 1O dO’N ~NLo and d&]SV’]eV o> that
are added to the real-virtual cross section after analytic integration. It is useful to consider
the spurious singularity subtraction term as a sum of two contributions,

T, AT,
doynro = dUNNLo +do NN Lo (4.18)

where d&f,’]c\}LO consists of the terms inherited directly from the double real subtraction
terms after analytic integration,

T, .Sb
donNLo = _/1 [dUNNLO + dUNNLO + dGNNLO} (4.19)

The subtraction term in eq. (4.19) produces explicit poles and implicit divergences in
the real-virtual contribution. Since all explicit poles and soft divergences in the real-
virtual cross section have already been removed by d&lj\;ﬁ,LO and d&f,’?v 10> the € poles
and soft divergences introduced by eq. (4.19) must be explicitly cancelled by an additional
subtraction term, d(}]j\;’]C\?LO. The remaining collinear divergences associated with the full
d&f,’]cv 1o are added to those of d&fff&o to remove the leftover collinear divergences of
donNLo-
Following [43] we find that the spurious singularity subtraction term is given by,

~T.c C dz; dz o
déyio =Nro ( ) O T /12d‘1)3 p3, - - ,p5;p1,p2){
le) 3 (irj.k) ep(345)

1 1 1
) [ F3(s13) — Fg(sT(M)) + §f§(3ij) - 57:??(31;') + if??(si(ki)) - 57:3?(351‘) + F3 (575)

1
~F(s12) + 3 P S(rig) — 378 (513) + 28 (81555 8i7) — 28(s33, 845) + S(si5, 515)
1,2

3 3
=S (8550 510) + S (5205 845) = S5y Sm)} £, ki) AY(1,2, (ki), )Jz@(pjap(,:;))

—_

2
*f:?(SizHgfs?(Si(kj)) ]:0(51]) + 28 (55057 515) — 28 (5355 545) + S(si5, 545)

=S 50) + S(s1z0563) — Sy sia)| k) AL, 2,0, (k) I i)

+% [ .7'—;?(82]-) — .7'—0( §(k])) + ]:3 (Sl(k] ) — *}—0( ) + %‘Fg(siz) - %‘Fg(sgl) + ‘Fg(sﬁ)

1 1 1 1 1
5}—5?(51@‘) - §f§(si;) + 57:29(32;') - 5}—:9(553) + 5}?(3@) ]:g(sm) + ]:0(321)

1
—§f§(5§i) + S(s17,853) — S(s1i, 5i5) + S(s35,535) — S(s35, 845

_%[ 2
) —

(SE7 3;5)
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A

111, 1, 1, 1, 1, 1
1 [ 573 (s1:) — §~7:3 (s1(ik)) + §f3 (s35) — §f3(5§(kj)) + 5]:3 (51(k5)) — QIQ(SU)
1 1
+§f§(s§(ik)) = 575 (s20) + S5, 913) = S(s10,815) + S35, 515)

S(s—-,su‘)—S( 1) Si3) T+ S (520 535) — S8y 515)

J
2, (ik), (kj)) IS )(P@;ypu?j’))

171 1 1 1 1 1
+-— [ 5}—3(811) — 5]‘—:?(81(%)) + §f§)(5§j) - ifg(si(kj)) + ifg(si(kj)) - Qfg(sij)
1 1
+§f§(52(zk)) — Efg(sgl) + S(Si(i’\k/)’ Sz‘j) — S(s14, Sz]) + S( 3(kj)’ Sz])

S(s15:863) = S(s10598i5) + (821, 85) = S5, 515)

J
1,2, (kj), (i) S (0 )

1 1 1
gfg(su) fo( S(ki)j) — §f§3(51j) + §f??(8ij)

1 1
+5 | A1) = Filsrs) + 578 s) - f3< itki)) — f3< i+ f°< 1(k5))
1 1
D) 3 (82;) + §f§)(5§i) + S(si@, sij) — S(sij, 8i5) + S(s14, 8i5) — 5(51@, Sij)]

X f51(2. k. ) A§(L2, (k). 8) I3 (pis pg)

J& [ 273 (s12) — 273 (s75) — fo( P+ 1JTO(S:*) - %Fg(sz) + %IQ(SE;) - %FQ(SR)
1
+§F§)(812) %Ig(SQJ) + f0(82])+28< ii ) 23(8127‘91]) S(Slj7 z])+8(81]781])

_S(Sifv SZ}) + 8(822‘7 Sij) - S( 515 ’Lj) + 8(3127 SZ]) 8(853’ Szj) + S(S§j7 Sij)
x FY(1,k,2) AY(1,3,2,5) 15 (0 ;)

1712 1 1 1 1
T [ g}-o(sij) 3]:0( (k) (k7)) — 5-7:3(5") + §~7:§(31(kj)) - *-7:0(3") + 5-7:3(32(%))
1 1
2]:0(512‘) + 7"1—_?(81(116)) 5]:5?(82]) + ‘FS (SQ(k])) + 28( (zk)( 7)’ Sz]) 2S<3ij7 Sij)
8(31 , 5ij) +8(51373w) - ( k)vslj) + S(s3, 5i5) — S(s 1(ik)asij) + S(s14: 8ij)

S8y 5:3) + S(s355)| F5G k) AY(L, (R), 2, (k7)) I8 (0 5P )
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5 [ Fo12) — Foi) + 370s5) — 5P s0ug) — 5F8051) + 5 78s1,)

—_
(=)

3(52) + 575 (52(ka)) + S (8350 517) — S5 515) + S (5235 535) — Sy, Su)}

< (L ki) AYL, (ki),2,5) T3 (0o p )

1 1 1 1 1
—3 [ T3 (s13) — TS (s73) + g}_g(sz‘j) - gf??(si(kj)) - 55’:3?(313') + §f§(31(kj))
1 1
—5 P8 (sn) + 5]—'g(sii) + 88,5770 515) — S(sig si) + S(s15865) = Ss15, sw)]
X 33k AN 8,2, (ki) (i) | (4.20)

In eq. (4.20), the terms corresponding to d&%’f\?Lo are those proportional to integrated
antennae with mapped momentum arguments. These terms are integrated analytically
over the remaining unresolved phase Space and added back into the double virtual cross
section. All other terms constitute dé NN o and terminate in the real-virtual cross section.

At this point we have fully constructed the subtraction terms which are used to remove
all explicit IR poles and implicit IR divergences from d(}]}\%,‘j/v ro- The pattern of singularity
cancellation can be summarised as follows:

e The explicit poles of d&f}‘f\, 1o are cancelled by d&?\;}% LO"

e The implicit divergences of d&ﬁ,‘fv 1o are removed by dc}]j\;’?\} 1O

The explicit poles of d&%’\} .o are cancelled by dﬁ%’\ho-

The soft divergences of d&%’%LO cancel against those of d&f,’z[ 1O

dJN ~NLo is free from poles in € and, in association with d(TN NLO> removes the re-
maining collinear divergences of dO’N NLO

5 Double virtual contribution

The poles of the full colour double virtual matrix element can be expressed in terms of
single and double unresolved integrated dipoles according to the formula [46],

. dz; dz
Poles <da}\/,KLO> *NLO /12 d®3(ps, pa; P1, P2)

5> Jé”(z',j) IRe(AY|T; - T;|AL)
(4,9)
SOST[IG5) @ T (kD] (AT - T) (T - Th) | AY
(4,9) (k1)

LSNP, 5) (AT T\A°>} I (ps, pa). (5.1)
(4,9)
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This expression has been confirmed by comparing to the analytic formulae for the two-loop
interferences in [72, 73]. The task of this section is then to demonstrate that the double
virtual subtraction term matches this form for the double virtual pole structure. The fact
that the poles of the two-loop matrix element are written in terms of integrated antennae
makes this demonstration particularly transparent.

The sub-leading colour double virtual subtraction term has three contributions,

U .U, ~Ub
doynro = doyNLo T doNNLo T dJNNLO (5.2)

The subtraction term d&][\],’x, .o corresponds to the first line of eq. (5.1) containing the sand-
. . . . LUb . ..
wiches involving one-loop amplitudes, do /o corresponds to the second line containing
double colour charge insertions to tree-level sandwiches. The last term, dé}%’]cv o> corre-
sponds to the final line of eq. (5.1) containing the double unresolved integrated dipole,
J 52). This term is proportional to the sandwich (A9|T; - Tj|.A}), which has no contribution

at sub-leading colour according to eq. (2.13), and so,

.U,
doynLo = 0. (5.3)

(2)

The double unresolved integrated dipole, J5’, is the only contribution that contains the
integrated four-parton, X, and one-loop, XJ, antennae. Its absence from the sub-leading
colour double virtual subtraction term implies that neither of these types of antennae
are present, in unintegrated form, in the double real or real-virtual subtraction terms
respectively. This is indeed what was found when explicitly constructing the double real
and real-virtual subtraction terms in sections 3 and 4.

Single operator insertions into one-loop sandwiches. The two-loop contribution
contains a subset of poles which can be written in terms of colour charge insertions to the
one-loop interferences of the type,

T30, ) 2Re(AJ| T - T AL). (5.4)
To evaluate these sandwiches explicitly we perform the colour algebra to yield the expres-
sion,
SLC(ZJ(% 7) 2Re(AT; - T4|A1>) = N%(N2 - 1)12 3
A 2 ’ 41+ JIt 91
(4,9) (i,5)EP(3,4)
2Re { (J)(T,0) + 980 2,5) - 90 5) - 98030 AL 130, ) AL (1,2,5,9)
(I8 00 + I 2g) = I80(1,2) = 700 ) A (1,24, ) AL (1,,2,)

(8702 + 950G,5) = I 00) = 50 (2.5)) AT (1. 2,5) Ak (1. 2,5,9) }.

Once again, the mass factorization kernels used to define the integrated dipoles cancel.
The piece of the double virtual subtraction term proportional to the one-loop four
gluon amplitudes is obtained by the analytic integration of d&%’f\} LO"

~Ua ~T,b1
donNLo = — /1 donnLo
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dzy dz 24
= —NLO /1261‘1)3 (p3,p4; P1,D2) Jz( )(p3, pa)

1 FaRay . FaNra
x2Re { (§f§<sm 5 F(s3y) = 5FR 1) — 58 () )AL (12,4, 7) Ak 1 (1,2,5.9)
1 1 1 Fausa fay ey
+(§]:?(>)( 17,) + 5]:1(5)(‘9?]) - ]:i?(sii) - 5]:??(82])>“42T(1a 2,71,])./4411 1(177”27.])
1 1 1 PN PN
+(Fs12) + 379 (s) = 5F8s10) — 5F8(s5) ) AT (1,1, 2,5) AL (1, 20,) )

The poles of eq. (5.6) match those of eq. (5.5).

Double operator insertions into tree-level sandwiches. The second subset of poles
contained in the two-loop interferences is written in terms of double charge operator inser-
tions carrying poles given by convolutions of integrated dipoles,

SN [5G ) @ I8 (e, 1)) (A (T - T) (T - T0)|AS). (5.7)
(4,9) (k1)

Evaluating the colour sums explicitly and keeping only the sub-leading colour contribution
yields,

see(S 30 [I(,5) © I8 (e, D] (AT - T3)(Ty - Ty AG) ) = N*(N? — 1)
(4.7) (k,0)

12 1 . . . .
a5 2 3 [(Jé”(l,zHJé”(m)—Jé”(l,y)—Jg”(z,z))
" (4,))eP(3,4)

(I 1i) + I8 2g) - I (1.2) - (,9)) 441, 2,,9)

1 N
+5 (T80 + 705 - I

(14712 + 1000.5) - 7Y (1) - 70 (2.5) ) AY L, iy)] (5.8)

The relevant piece of the double virtual subtraction term is constructed from the analytic

integration of the real—v1rtual subtraction terms, dot: N N 10 and dst: Nyzo and the double real
subtraction term d&3; N N LO

~Upb B ~T,ba ~Tco ~S,d
doyNLo = /1 [d NLo +do NNLO} / doNnLo

dz; dz 24
= —NLo /12 d®s(ps, p1; 1, 72) Jy )(P3,P4)§ >

" (i,))eP(3,4)
1 1_,o 1

5{(%f§< D+ P~ 5F8on) - 37806

o (58 sm) + %fg?(szj) Fis1) — 3780s10)) 423,24, 5)
+%(F:§)(312)+%f:§)(3ij) %}-Z?(Sij) —% 3?(822-))
& (F(s12) + 5 Flsi) — 5 F80s1) — 5 P35 ) A3L,.3,5) . (59)

It can be easily seen that the poles of eq. (5.9) match those of eq. (5.8).
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Figure 1. The percentage contribution of the sub-leading colour to full colour NNLO correction,
d, for the single jet inclusive transverse energy distribution as a function of pr.

At this point, we have shown that all explicit poles of the two-loop matrix elements
cancel against dc}%’]g(, o and d&%’fv 1o and there are no further contributions from the ana-
lytic integration from either the double real or real-virtual subtraction terms,

Poles (d&YWVVLO — d&%NL()) = 0. (5.10)

6 Numerical evaluation of the differential cross section

In sections 3, 4 and 5 the double real, real-virtual and double virtual subtraction terms
were constructed and, where appropriate, the explicit pole cancellation against one and
two-loop matrix elements at sub-leading colour was carried out. The remaining task is to
numerically integrate each of these partonic channels over the appropriate phase space to
obtain the physical cross section.

Our numerical studies for proton-proton collisions at centre-of-mass energy /s = 8 TeV
concern the single jet inclusive cross section (where every identified jet in an event that
passes the selection cuts contributes, such that a single event potentially enters the distri-
butions multiple times) and the two-jet exclusive cross section (where events with exactly
two identified jets contribute). We use in our default setup the anti-k; jet algorithm [83]
with resolution parameter R = 0.7 to reconstruct the final state jets where jets are accepted
at central rapidity |y| < 4.4, and ordered in transverse momentum. An event is retained if
the leading jet has ppr; > 80 GeV. For the dijet invariant mass distribution, a second jet
must be observed with pprs > 60 GeV.

All calculations are carried out with the MSTWOSNNLO gluon distribution func-
tion [84], including the evaluation of the LO and NLO contributions.? This choice of param-
eters allows us to quantify the size of the genuine NNLO contributions to the parton-level
subprocess. As default value, we set u equal to the transverse momentum of the leading
jet so that yu = pr.

2Note that the evolution of the gluon distribution within the PDF set together with the value of
intrinsically includes contributions from the light quarks. The NNLO calculation presented here is “gluons-
only” in the sense that only gluonic matrix elements are involved.
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Figure 2. Inclusive jet transverse energy distribution, do/dpr, for jets constructed with the anti-
kr algorithm with R = 0.7 and with pr > 80GeV, |y| < 4.4 and /s = 8 TeV at NNLO (blue),
NLO (red) and LO (dark-green). The lower panel shows the ratios of NNLO, NLO and LO cross

sections.

The cross section can be written as,
do = a?A+ 2B +alcC, (6.1)

where the coefficients A, B and C depend on the PDF, the scale choice and the observable.
The NNLO coefficient C' can be further subdivided into leading and sub-leading colour
contributions,

C =0 4 oSt (6.2)
To quantify the size of the sub-leading colour NNLO corrections, figure 1 shows the ratio,
SLC
0= ¢
C

as a percentage for the single jet inclusive transverse energy distribution. We see that ¢ is
roughly 10% as expected from naive power counting of colours (1/N?), but exhibits a pr
dependence, rising from 8% at low pr to 15% at high pp.

In figure 2 we present the inclusive jet cross section for the anti-kr algorithm with
R = 0.7 and with pr > 80GeV, |y| < 4.4 as a function of the jet pr at LO, NLO and
NNLO, for the central scale choice y = ppy retaining the full dependence of the number of
colours. The NNLO/NLO k-factor shows the ratio of the NNLO and NLO cross sections
in each bin. For this scale choice we see that the NNLO/NLO k-factor across the pr range
corresponds to a 16-26% increase compared to the NLO cross section.

In figure 3 we present the inclusive jet cross section in double differential form. The
inclusive jet cross section is computed in jet pr and rapidity bins over the range 0.0-4.4
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Figure 3. The left panel shows the doubly differential inclusive jet transverse energy distribution,
d*c /dprd|y|, at /s = 8TeV for the anti-kr algorithm with R = 0.7 and for pr > 80GeV and
various |y| slices at NNLO. The right panel shows the ratios of NNLO, NLO and LO cross sections
for three rapidity slices: |y| < 0.3, 0.3 < |y| < 0.8 and 0.8 < |y| < 1.2.
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Figure 4. The left panel shows the doubly differential exclusive dijet invariant mass distribution,
d?c/dm;;dy*, at /s = 8TeV for the anti-kr algorithm with R = 0.7 and for pr1 > 80GeV,
pr2 > 60GeV and various y* = |y; — y2|/2 slices at NNLO. The right panel shows the ratios
of NNLO, NLO and LO cross sections for three rapidity slices: y* < 0.5, 0.5 < y* < 1.0 and
1.0 <y" < 1.5.

covering central and forward jets. To quantify the impact of the NNLO correction we
present the double differential k-factors containing ratios of NNLO, NLO and LO cross
sections in the same figure. We observe that the NNLO correction increases the cross
section between 26% at low pr to 14% at high pr with respect to the NLO calculation.
This behaviour is similar for each of the three rapidity slices presented.
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Figure 5. The percentage contribution of the sub-leading colour to full colour NNLO correction, 4.
The left panels show ¢ for the single jet inclusive transverse energy distribution as a function of pp
in three rapidity slices. The right panels show ¢ for the exclusive dijet invariant mass distribution
in three slices of y*.

As a final observable, we computed the exclusive dijet cross section at NNLO. For this
cross section we require two jets in the final state from which we reconstruct the invariant
mass of the dijet system and compute the double differential dijet cross section in bins of
invariant mass mj; and y* = |y; — y2|/2 slices over the range 0.0-4.5. The results at NNLO
are presented in figure 4. The exclusive dijet events are a subset of the inclusive jet events
and we observe that the NNLO/NLO k-factor is approximately flat across the m;; range
corresponding to a 16-21% increase when compared to the NLO cross section.

In order to see the sub-leading colour effects more clearly, we present the sub-leading
colour contribution to the full NNLO coefficients as a percentage, 4, in figure 5. For the
single jet inclusive cross section we observe similar behaviour across the three rapidity slices
presented; a gradual rise from approximately 8% at low pr to 15% at high pr. In contrast,
the sub-leading colour contribution to the exclusive dijet invariant mass distribution varies
more significantly across different slices of y*. In the y* < 0.5 slice, the sub-leading colour
correction constitutes approximately 10-20% of the full NNLO coefficient; whereas in slices
of larger y* the sub-leading colour contribution is less significant.

7  Summary

In this paper we have computed the full colour contributions to jet production from gluon
scattering at NNLO. Previous work [42-45] focussed on the leading colour contribution.
The new element is the inclusion of the sub-leading colour effects which contribute first
at NNLO. Unlike at leading colour, the double real and real-virtual contributions cannot
be written in terms of squared partial amplitudes, but appear as interferences of different
colour ordered amplitudes.

To isolate the soft singularities we used the antenna subtraction technique which re-
quired no significant alterations or new ingredients in order to deal with the incoherent
interferences of partial amplitudes. We found that the single and double unresolved limits
of the double real matrix element at sub-leading colour could be fully described using just
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three-parton tree-level antennae and soft factors, without the need for four-parton antenna
functions. Similarly, the single unresolved limits of the real-virtual matrix element did
not require the one-loop three-parton antenna and could be described with only tree-level
three-parton antennae to remove all explicit and implicit singularities. In the process, we
found a very compact form for the real-virtual matrix element which we believe to be a new
addition to the literature. The double virtual subtraction term, generated by integrating
the remaining double real and real-virtual subtraction terms, also involves incoherent inter-
ferences of four-parton one-loop and tree-level amplitudes. We showed that it analytically
cancels the explicit poles present in the formula for the two-loop matrix elements [72, 73].
With the double real, real-virtual and double virtual subtraction terms in place, the
matrix elements are free from explicit poles in € and finite in all unresolved regions of phase
space and so can be numerically integrated in four dimensions to produce finite corrections
to the physical distributions. This work provides the first quantitative estimate for the
size of sub-leading colour contributions to jet production relative to the leading-colour
approximation. The corrections are found to be in line with prior expectations, providing
approximately a 10% correction to the NNLO leading colour contribution. This completes
the study of jet production at NNLO in the all-gluon approximation; future work will move
beyond this approximation and include scattering processes involving light quarks.
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