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Phase transition and anisotropic deformations of neutron star matter
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The Skyrme model is a low energy, effective field theory for QCD that when coupled to a gravitational
field provides an ideal semiclassical model to describe neutron stars. We use the Skyrme crystal solution
composed of a lattice of a-like particles as a building block to construct minimum energy neutron star
configurations, allowing the crystal to be strained anisotropically. We find that below 1.49 solar masses the
stars’ crystal deforms isotropically and that above this critical mass, it undergoes anisotropic strain. We
then find that the maximum mass allowed for a neutron star is 1.90 solar masses, in close agreement with a
recent observation of the most massive neutron star yet found. The radii of the computed solutions also
match the experimentally estimated values of approximately 10 km.
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I. INTRODUCTION

Neutron stars are stars that have collapsed under intense
self-gravitational pressure to the point where all electrons
are squeezed into nuclei, hence forming a large cluster of
neutrons with a typical radius of about 10 km. A neutron
star can thus be seen as a gigantic nuclei that is electrically
neutral but is strongly affected by the gravitational field
that it generates. For lack of a unified theory of strong
interactions and gravity one has to resort to finding an
approximate theory that allows us to describe such a
system.

One such theory is the Skyrme model. Originally pro-
posed by Skyrme in 1961 [1,2] as a nonlinear theory of
pions to describe strong interactions, it was later shown by
Witten [3] to be an approximate, low energy, effective field
theory for QCD that becomes more exact as the number of
quark colors becomes large.

Each solution of the Skyrme model is characterized by
an integer valued topological charge that can be identified
with the baryon number B. The simplest solution, B = 1, is
made out of a so-called Skyrmion and corresponds to a
proton or neutron. At the semiclassical level, the Skyrme
model does not distinguish between a neutron and a proton.
Moreover, as the model does not include the electroweak
interaction, all Skyrmions are electrically neutral.

The B = 1 solution of the Skyrme model is the only
exact stable solution that can be computed easily [1].
Solutions with larger values of B can only be computed
numerically [4,5] and these solutions have been shown
to successfully describe various nuclei and their properties
[6].

Moreover, one can also compute crystal-like solutions
made out of an infinite number of Skyrmions. In
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particular, it has been shown that the Skyrme solution
with the lowest energy per Skyrmion corresponds to a
cubic lattice where each lattice unit has a topological
charge B = 4 [7]. These solutions can thus be seen as a
crystal of a particles.

This lattice of Skyrmions looks thus as the best build-
ing block to describe a neutron star as its has the lowest
possible energy per baryon. Yet, one must first estimate
if a star could instead be made out of a liquid or gas of
Skyrmions. The temperature of a neutron star, a few
years after its creation, cools down to an approximate
temperature of about 100 eV =~ 10°K [8]. While this
looks like a very high temperature compared to the
binding energy of an electron around a nucleus, this
energy is quite small from a nuclear point of view.
Indeed, the lowest excited state of an « particle, for
example, is 23.3 MeV [9] and the lowest vibration
mode of a B =4 Skyrmion is of the order of
100 MeV [10,11]. Even under intense gravitational en-
ergy, Walhout [12] showed that the excitation energy of
a lattice of B =1 Skyrmions is also of the order of
100 MeV. This points out that the neutron star will be
in a solid phase rather than a liquid or a gas and that the
thermal energy will only excite acoustic phonon modes.
It is thus natural to model a neutron star as a lattice of
B = 4 Skyrmions.

Before we proceed we must also question the possi-
bility of having an atmosphere around the star, and to
estimate its height if it turns out not to be small. At the
surface of a neutron star twice the mass of the sun, the
gravitational acceleration is g =~ 2.6 X 10> ms™2. It is
then easy to compute that the average height that an «
particle with a thermal energy of 100 eV will be able to
jump is of the order of 1 mm, i.e. much smaller than the
radius of the star. We can thus consider that such an
atmosphere is extremely thin and assume in our model
that the neutron star is fully made out of a solid.
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Having established that we can use a Skyrme crystal as
the building block to describe a neutron star we will
proceed as follows. First of all, we will use the equations
of state computed by Castillejo et al. [7] for the
B = 4 crystal when the lattice is deformed asymmetrically.
Following Walhout [12] we will then use a Tolman-
Oppenheimer-Volkoff (TOV) equation [13,14], generaliz-
ing it to allow for matter to be anisotropic [15]. The TOV
equation describes the static equilibrium between matter
forces within a solid or fluid and the gravitational forces
self-generated by the matter for a spherically symmetric
body.

Combining the TOV equation with the equations of
state of the Skyrme crystal, we will be able to find con-
figurations that are spherically symmetric distributions
of anisotropically deformed matter in static equilibrium
and so are suitable to model neutron stars. Solving these
equations numerically for large stars we will show that
below a critical mass of 1.49 solar masses (Mg =
1.988 92 X 10%° kg) all neutron/Skyrmion stars are made
out of an isotropically strained crystal. We will then show
that at this critical mass there is a phase transition and that
heavier stars are made out of an anisotropically deformed
crystal that is less strained radially than tangentially. We
will also show that these stars can have a mass of up to
1.90M . Finally, we will investigate the impact of adding a
mass term to the Skyrme model and describe what happens
to a star when its mass is increased above its maximum
value.

Using Skyrmions to model neutron stars is not new and
has been performed previously in several ways. First of all,
Walhout used a lattice of B = 1 Skyrmions [12] to describe
a neutron star. He then improved his results by considering
a lattice of B = 4 Skyrmions [16]. In both cases he as-
sumed an isotropic compression of the lattice, assuming a
gaslike phase, and he used numerical solutions of the
model to estimate the stress tensor. The maximum mass
he obtained for the neutron star was 2.57M,. Later,
Jaikumar and Ouyed [17] considered the equation of state
for a neutron star based on a Skyrme fluid and obtained a
maximum mass of 3.6M,. The main difference between
these two approaches and ours is that they assumed an
isotropic fluid of Skyrmions whereas we consider a solid
crystal allowed to deform anisotropically, i.e. be com-
pressed differently in the radial and tangential directions
of the star. In our previous papers [18,19], we computed
minimal energy Skyrmion stars made out of layers of two-
dimensional Skyrme lattices. This allowed us to use the
rational map ansatz [20] to minimize the energy directly
but resulted in relatively small stars with a maximum mass
of 0.574M . This was mainly due to the fact that the field
transition between the different layers in our ansatz over-
estimated the energy of the configuration and that the
energy per baryon in each layer of the ansatz was also
larger than that of the crystal of B = 4 Skyrmions.
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II. SKYRME CRYSTALS
The Skyrme model [1,2] is described by the Lagrangian
2

F
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+ Tr(U — 1), (1)

where here U, the Skyrme field, is an SU(2) matrix and F ,
e, and m_ are the pion decay constant, the Skyrme cou-
pling and the pion mass term, respectively. In the
Lagrangian (1) the V are ordinary partial derivatives in
the absence of a gravitational field and become covarient
derivatives when the Skyrme field is coupled to gravity.
The results summarized in this section all relate to the pure
Skyrme model without gravity.

The Skyrme field is a map from R3 to S3, the group
manifold of SU(2), but finite energy considerations imply
that the field at spatial infinity should map to the same
point, meaning the Skyrme field is a map between two
three-spheres. Such maps fall into homotopy classes in-
dexed by an integer, known as the topological charge,
which is interpreted as the baryon number, B. The topo-
logical soliton solutions, known as Skyrmions, are identi-
fied as baryons with an « particle described by a B = 4
Skyrmion solution.

Here we will be considering the zero pion mass case
where m,. = 0 with Sec. IV C describing the effects of its
inclusion. The two other Skyrme parameters, F',. and e, can
be obtained in different ways. Skyrme first evaluated them
by taking the experimental value of the pion decay constant
F, = 186 MeV and then fitting the mass of a Skyrmion to
that of a proton and obtained e = 4.84. Later Adkins,
Nappi, and Witten [21] quantized the B = 1 Skyrmion to
fit the parameter values to the mass of the nucleon and
the delta excitation and obtained F, = 129 MeV and
e = 5.45. These later values were the ones used by
Castillejo et al. [7] to compute the energy of the deformed
B = 4 crystal and we will thus use them too.

The solution of the Skyrme model with the lowest
energy per baryon has been shown to be a face-centered
cubic lattice of Skyrmions [7,22]. Each unit cell is a cube
of side length a with a baryon number of B = 4 and can
therefore be considered as an « particle. In the context of a
neutron star, we will be able to interpret each B = 4 crystal
component as being four neutrons, as the Skyrme model
does not distinguish between neutrons and protons.

Castillejo et al. [7] also investigated the energy of dense
Skyrmion crystals where the configuration was not a face-
centered cubic lattice but rather a lattice where the aspect
ratio of the unit cell, B = 4 «a particle, of side a was altered
so that it becomes rectangular with aspect ratio 3. This
means that in the x and y directions the lattice size becomes
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ra and in the z direction, a/r?. As in Castillejo et al. we use
the measure p = r — 1/r to describe the deviation away
from the face-centered cubic lattice symmetries that have
p=0.

The numerical solutions found in [7] provide an equa-
tion for the dependence of the energy of a single
Skyrmion, E(L, p), on its size, L = n~'/3, where n is
the Skyrmion number density, and its aspect ratio mea-
sure, p,

E(L, p) = E,—o(L) + Eo[a(L)p* + B(L)p* + y(L)p*
v S(L)pS . 2)

where the coefficients are given by

E,—o(L) = E0|:0.474<£ + %) + 0.0515], 3)

Lo
L L
a(L) = 0.649 — 0.487 — + 0.089-2, 4)
Lo L
L L
B(L) = 0.300 + 0.006— — 0.119=2, (5)
Lo L
L L
y(L) = —1.64 + 0.78— + 0.71=-2, (6)
Lo L
L
S(L) = 0.53 — 0.55—. (7)

Ly

Here E, = 727.4 MeV and L, = 1.666 X 10~!> m. The
equation can be extended to include lower densities [7]
but they are not of interest here where we are only
considering densities higher than the minimal energy
crystal. Notice that for any value of L the minimum
energy occurs at the face-centered cubic lattice configu-
ration, p = 0, and the global minimum is reached for
L= Lo.

III. TOV EQUATION FOR SKYRMION STARS

Using Eq. (2) relating the energy of a Skyrmion to its
size and aspect ratio we will now investigate how one can
describe a neutron star using a Skyrme crystal and how this
crystal is deformed under the high gravitational field it
experiences.

In our numerical work we denote A, as the Skyrmion
length in the radial direction of the star and A, as the
Skyrmion length in the tangential direction. These parame-
ters and the parameters L and p used in (2) are related as
follows:

A\1/3 A\1/3
L=QAA)3 and p= (—f) - (—) . ®)
A, A

To construct a neutron star we consider a spherically
symmetric distribution of matter in static equilibrium
with a stress tensor that is in general locally anisotropic.
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Spherical symmetry demands that the stress tensor, T4,
is diagonal and that all the components are a function of
the radial coordinate only. We denote this stress tensor as

Ty = diag(p(r), p,(r). po(r), p4(r)), ©)

and consider that, again due to spherical symmetry,
po(r) = p4(r), which we will denote by p,(r) = py(r) =
ps(r). The quantities p,.(r) and p,(r) describe the
stresses in the radial and tangential directions, respec-
tively, while the quantity p(r) is the mass density.

A generalized TOV equation [13,14] to describe a
spherically symmetric star composed of anisotropically
deformed matter in static equilibrium has been studied
previously [15] and we summarize it now.

The metric for the static spherically symmetric distribu-
tion of matter can be written in Schwarzschild coordinates
as

ds® = e"di* — *Vdr? — r2d6” — r’sin*0d¢?,  (10)

where ¢”") and e*") are functions of the radial coordinate
that need to be determined. The combination of this metric
and the matter distribution, described by the stress tensor
(9), must be a solution of Einstein’s equations

Gab = Rah - %Rgab = 877Tahr (11)

where we have set G = ¢ = 1. After calculating the Ricci
tensor and Ricci scalar from the metric we find

V2| 1
v 1 1
67}\(—"‘—2)_—2: 87Tpr, (13)
roor r
_.(1 1 1 (v =)
e ’\(5 v — ZA/V' + Z(V’)Q + 5 ) = 8wp, (14)
Equation (12) can be rewritten as
(re ") =1—8mpr? (15)
and integrated to give
2
eh=1-2 (16)
r

where m = m(r) is defined as the gravitational mass con-
tained within the radius r and can be calculated by

m= fr477'r2pdr. 17
0

We can now substitute Eq. (16) for e~ * into Eq. (13) to find

3
1, m+4nmrp,

2V T T r—am) (18)

The generalized TOV equation that we will use to find
suitable neutron star configurations can now be obtained by

123004-3



SUSAN NELMES AND BERNARD M. A.G. PIETTE

differentiating Eq. (13) with respect to r and adding it to
Eq. (14) to find

dp,
dr

Now, substituting (18) into (19), we get

v 2
4+ Z
2 r

=—(p+p) (p: — Py (19)

dp,
dr

m+4mrip, 2

=—(p+p,) (p:—p)- (20

r(r — 2m) r

For this generalized TOV equation to be solvable two
equations of state need to be specified, p, = p,(p) and
p: = p:(p), where, as argued above, we are able to use a
zero temperature assumption.

We also need to specify appropriate boundary condi-
tions. First, we must require that the solution is regular at
the origin and impose that m(r) — 0 as r — 0. Then p,
must be finite at the center of the star implying that »' — 0
as r — 0. Moreover, the gradient dp,/dr must be finite at
the origin too and so (p, — p,) must vanish at least as
rapidly as r when r — 0. This implies that we need to
impose the boundary condition p, = p, at the center of the
star.

The radius of the star, R, is determined by the condition
p,(R) = 0, as the radial stress for the Skyrmions on the
surface of the star will be negligibly small. The equations,
however, do not impose that p,(R) vanishes at the surface.
One should also point out that physically relevant solutions
will all have p,, p, = 0 for r = R. We note that an exterior
vacuum Schwarzschild metric can always be matched to
our metric for the interior of the star across the boundary
r = R as long as p,(R) = 0, even though p,(R) and p,(R)
may be discontinuous, implying that the star can have a
sharp edge, as expected from a solid rather than gaseous
star.

As we are considering Skyrmion matter at zero tempera-
ture the equations of state that will be used in finding
suitable neutron star configurations can be calculated
from Eq. (2), which depends on the lattice scale L, and
aspect ratio, p, which are both functions of the radial
distance form the center of the star, r. From the theory of
elasticity we then find that the radial and the tangential
stresses are related to the energy per Skryrmion, Eq. (2), as
follows:

1 oE

-——. (2D
A 0A?

pr= and  p, =

AZ 9,

Using the generalized TOV Eq. (20) and the two equa-
tions of state (21), a minimum energy configuration for
various values of the total baryon number can be calculated
numerically. The minimum energy configuration is defined
as the minimum value of the gravitational mass, M,

R
Mg = m(R) = m(o0) = ,[0 47mr’pdr, (22)

where R is the total radius of the star and
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E

= ——. 23
A A2 2 23)

p

We now need to minimize M as a function of A, and A,,
which both depend on r. To achieve this, we will first
assume a profile for A,(r) and compute M; for this profile
as described below. We will then determine the configura-
tion of the neutron star, with a specific baryon charge, by
minimizing Mg over the field A,. This can be easily done
using the simulated annealing algorithm.

To compute M; we notice that at the origin, one can use
(21) to determine p,(0) and p,(0) from the initial values of
A,(0) and A,(0). Then the integration steps can be per-
formed as follows. Knowing A,.(r) and A,(r) one computes
p(r) using (23) and m(r) using (17). Then, knowing p,(r),
p,(r), p(r), and m(r) one can integrate (20) by one step to
determine p,(r + dr). One can then use (21) to determine
A.(r + dr) and as the profile for A,(r) is fixed, one can
proceed with the next integration step.

One then integrates (20) up to the radius R for which
p,(R) = 0; this sets the radius of the star. In our integra-
tion, we used a radial step of 50 m.

One must then evaluate the total baryon charge of the
star using

(R 47rin(r)
B—fo Gy (24)
where
1
WYV 29

and rescale A, to restore the baryon number to the desired
value. One then repeats the integration procedure until the
baryon charge reaches the correct value without needing
any rescaling.

IV. RESULTS

A. Stars made of isotropically deformed Skyrme crystal

We found that up to a baryon number of 2.61 X 10°7,
equivalent to 1.49M, the minimum energy configurations
are all composed of Skyrme crystals that are isotropically
deformed, with A,(r) = A,(r) across the whole radius of
the star. It can be shown that this indeed has to be the case
as we can prove that if it is possible to find an isotropic
Skyrme crystal solution then that solution will be the
minimum energy configuration. Such isotropic solutions
can only be found up to a baryon number of 2.61 X 107,
Corchero [23] used a similar proof for a quantum model of
neutron stars and we adapt this here for our Skyrme crystal
model:

If there is a locally isotropic, stable solution to the gen-
eralized TOV equation (19) with mass M and total baryon
number N, then all locally anisotropic solutions that have
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the same total baryon number N, in the neighborhood of that
stable solution, will have a mass not smaller than M.

To prove this, we first note that stable solutions for a
given baryon number at zero temperature, by definition,
have a mass that is not greater than that which could be
achieved by any variation of the density that preserves the
baryon number [24].

We then consider two changes to a stable solution with
mass M, baryon number N,, density p,(r), and number
density n,(r). The first involves changing the density from
p1(r) to p,(r) while keeping the total baryon number
constant and preserving locally isotropy. This will result
in a configuration that has a mass M, that is greater than or
equal to the mass M of our initial configuration as that was
defined as the minimum mass solution. This new configu-
ration will have a different number density, n,(r), but the
same total baryon number, Ny, by assumption.

The second change involves introducing local anisot-
ropy while the mass, M,, remains the same, as does the
density, p,(r). In order to keep p,(r) constant when we
alter the configuration so that it is now made of anisotropic
Skyrme crystal the number density must also be altered. A
change from an isotropic to an anisotropic Skyrme crystal
involves increasing its energy, and therefore mass, so to
keep its mass density constant we need to reduce the
number of Skyrmions to the new number density n;(r) =
n,(r), meaning the total baryon number is now N3 < N;.

The two changes described have the effect of first in-
creasing M without changing N and then, second, decreas-
ing N without altering M. We know that M is a
monotonically increasing function of N for isotropic
Skyrme crystal stable star configurations, so we have
proved that moving from isotropic to anisotropic Skyrme
crystal configurations increases the energy for a given
baryon number so does not produce a minimum energy
solution.

The above proof, however, does not rule out the exis-
tence of anisotropic Skyrme crystal solutions for those
baryon numbers for which there does not exist an isotropic
Skyrme crystal solution and such configurations will be
discussed in the next section.

To confirm the results obtained for isotropically de-
formed crystals, we will now determine the properties of
these symmetric stars by imposing that symmetry, i.e.
p, = p,. In this case the problem simplifies greatly and
the TOV equation (20) reduces to

m+ 4mrip,
r(r —2m)

dp,
pr=—(p+pr)

(26)

Using this standard TOV equation, a central Skyrmion
length A,(r = 0) = A,(r = 0) = L(r = 0) can be specified
at the center of the star. The equation can then be numeri-
cally integrated over the radius of the star using the
Skyrmion energy Eq. (2) with
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oE

FyEL (27)

pr=

where, as we are only considering isotropic Skyrme crystal
deformations, A, = A, and p = 0 in the energy equation.
This was done using a fourth order Runge Kutta method
over points every 20 m. Notice that this did not require the
explicit minimization of M. Figure 1 shows a plot of the
total baryon number of the star against its Skyrmion length
at the center, L(r = 0), calculated using this method.

We found that isotropic Skyrme crystal solutions can be
found up to a baryon number of 2.61 X 10°7, which is
equivalent to a mass of 1.49M. This agrees with the
results that we found from our minimization procedure
using the generalized TOV equation that allows for aniso-
tropic Skyrme crystal deformations.

Table I shows some of the properties of the minimum
energy solutions for various baryon numbers obtained from
the energy minimization of the generalized TOV equation.
The results are in perfect agreement with the results ob-
tained by solving the isotropic TOV equation (26). The
quantity S,;, is the minimum value, over the radius of the
star, of

S(r)=e A =1 - 2mr(r), (28)

which appears in the static, spherically symmetric metric
(10) that we are considering. The zeros of S(r) correspond
to singularities in the metric, or in other words, to horizons.
Had S,;, been negative, we would have concluded that the
neutron star would have collapsed into a black hole, but
this never occurred.

We note that the solutions are energetically favorable as
the energy per baryon decreases when the total baryon
number increases, indicating that the solutions are stable.
They correspond to the solutions to the right of the maxi-
mum in Fig. 1 with solutions to the left being unstable with
a higher energy per baryon for a given baryon number and
therefore are not found by the energy minimization
procedure.

3x1057

2.5x1057
2x1057 |-
1.5%x1057

1x1057

Total Baryon Number

5x1056

0 . . . . .
0.4 0.6 0.8 1 1.2 1.4 1.6

Skyrmion Length at the Origin, L(r=0) (fm)

FIG. 1. Total baryon number as a function of the size of the
Skyrmions at the center of the star, L(r = 0).
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TABLE I. Properties of the isotropic minimum energy neutron star configurations for various baryon numbers.

B Total energy (J) Energy/B (J) Mass/M, R(m) S min

1.0 X 10% 1.16210 X 10% 1.16210 X 10710 0.00649160 2219.20 0.991503
1.0 X 10°° 1.15114 X 10% 1.15114 X 10710 0.0643083 4714.35 0.959976
2.0 X 10% 2.28551 X 10% 1.14276 X 10710 0.127680 5875.04 0.936375
4.0 X 10% 4.51669 X 10% 1.12917 X 10~10 0.252325 7266.13 0.897929
6.0 X 10°° 6.70497 X 10% 1.11750 X 10710 0.374573 817742 0.865580
8.0 X 10%° 8.85463 X 104 1.10683 X 10710 0.494664 8852.67 0.835232
1.0 X 1057 1.09679 X 10% 1.09679 X 10710 0.612721 9379.47 0.808115
1.2 X 10%7 1.30461 X 10¥ 1.08718 X 10710 0.728823 9798.86 0.781969
1.4 X 1077 1.50899 X 10% 1.07785 X 10710 0.842997 10133.2 0.755523
1.6 X 10°7 1.70994 X 10% 1.06871 X 10710 0.955258 10394.6 0.730148
1.8 X 1057 1.90741 X 10¥ 1.05967 X 10710 1.065578 10588.7 0.704181
2.0 X 10°7 2.10132 X 10¥ 1.05066 X 10710 1.173903 10714.6 0.677181
2.2 X 10°7 2.29147 X 10¥ 1.04158 X 10710 1.280129 10761.8 0.649383
2.4 X 1077 2.47750 X 10¥ 1.032293 x 10710 1.38406 10694.5 0.619124
2.6 X 10°7 2.65860 X 10% 1.022536 X 10710 1.48522 10367.5 0.577658

The neutron star solutions that have masses larger than
the mass of the Sun have radii of about 10 km, which very
much matches the experimental estimates of the radii of
observed neutrons stars. Notice also that the largest neu-
tron star, in our model, has a mass of approximately
1.28M4, and above that value, the radius of the stars
decreases with their mass (see Table I and Fig. 2).

We now consider the structures of these isotropic
Skyrme crystal stars, in particular, we consider the case
of a star with a mass of 1.40M,, a typical mass for a
realistic neutron star, equivalent to a baryon number of
2.44 X 10°7, although all the isotropic Skyrme crystal
minimum energy solutions show the same qualitative be-
havior. Figure 3 shows the size of the Skyrmions, L(r),
over the radius of the star. As expected the Skyrmions are
deformed more towards the center of the star than at the
edge, increasing the Skyrmion mass density by a factor of
4.44. Because of this decrease in the size of the Skyrmions
as we reach the center of the star the stress is higher at the
center and decreases towards zero at the edge of the star as
imposed by the boundary conditions.

11

-
o

Radius (km)

N W OO N 0 ©

0 05 1 15 2
Mass (Mg)
FIG. 2. Radius of the neutron star solutions as a function of

their mass (solid line), and that of the maximum mass solution
(cross).

The isotropic Skyrme crystal solutions have an S;, that
is always greater than zero so the configurations do not
collapse into black holes. Figure 3 also shows how the
value of S(r) varies over the radius of the star.

B. Stars made of anisotropically deformed
Skyrme crystal

Having shown in the previous section that no isotropic
Skyrme crystal solutions exist for baryon numbers larger
than 2.61 X 10°7, we will now show that anisotropic solu-
tions do exist.

Table II shows some of the properties of the anisotropic
minimum energy Skyrme crystal solutions for various
baryon numbers obtained using the generalized TOV equa-
tion. We found solutions in this way up to a baryon number
of 3.25 X 1077, corresponding to 1.81M,, after which
the numerical energy minimization procedure became dif-
ficult to implement. However by using a similar simulated
annealing process to maximize the baryon number, rather
than minimize the energy for a particular baryon number,

E
= 4 0.9
=
£
> =
S 108 =
4
c
Qo
£ 4 0.7
S,
<
(%]
0.6

Radius, r (km)

Skyrmion Length, L(r)

FIG. 3 (color online). Variation of the size of the isotropic
Skyrmions, L(r) (solid line) and of the metric function S(r)
(dotted line) over the radius of a star of mass 1.40M,.
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TABLE II. Properties of the anisotropic minimum energy neutron star configurations for various baryon numbers.

B Total energy (J) Energy/B (J) Mass/M, R(m) S min

2.65 X 10°7 2.70277 X 104 1.01991 X 10710 1.50990 10091.8 0.559060
2.70 X 107 2.74605 X 10¥ 1.01706 X 10710 1.53408 9555.51 0.526465
2.75 X 1077 2.78943 X 10¥ 1.01434 x 10710 1.55832 9460.46 0.514207
2.80 X 10°7 2.83310 X 10¥ 1.01182 X 10710 1.58271 9456.89 0.506402
2.85 X 10°7 2.87706 X 10% 1.00949 x 10710 1.60727 9456.46 0.498735
2.90 X 10%7 2.92133 X 10¥ 1.00735 X 10710 1.63200 9457.92 0.491152
2.95 X 1077 2.96592 X 10¥ 1.00540 X 10710 1.65691 9460.65 0.483633
3.00 X 10°7 3.01087 X 10¥ 1.00362 X 10710 1.68202 9465.06 0.476231
3.05 X 10”7 3.05619 x 10¥ 1.00203 x 10710 1.70734 9469.97 0.468880
3.10 X 1077 3.10191 x 10¥ 1.00062 X 10710 1.73288 9475.76 0.461631
3.15 X 10°7 3.14807 X 10¥ 9.99388 x 10~ ! 1.75867 9481.95 0.454438
3.20 X 1077 3.19472 X 10¥ 9.98351 x 10~ ! 1.78473 9489.04 0.447382
3.25 X 1077 3.24191 x 10¥ 9.97510 X 107! 1.81109 9496.62 0.440435

we found anisotropic Skyrme crystal solutions up to a
baryon number of 3.41 X 10°7, equivalent to 1.90M. At
this maximum baryon number solution there is only one
possible configuration of the Skyrmions, as any modifica-
tion to it results in a decrease in the baryon number, hence
it is the minimum energy solution. Above this baryon
number, solutions do not exist.

As in the case of isotropic Skyrme crystal deformations
we find that the solutions are energetically favorable as the
energy per baryon decreases as the total baryon number
increases, indicating stable solutions. As the baryon num-
ber is increased towards its maximum value of 3.41 X 10’7
the energy per baryon begins to level off, and we find that
the maximum baryon number has the lowest energy per
baryon, as in the isotropic case.

We can see that the configurations we have constructed
do not collapse into a black hole by noticing that the values
of S, are always positive, as shown in Fig. 4.

Figure 2 shows a plot of the mass radius curve for both
the isotropic and anisotropic Skyrme crystal cases, with the
mass in units of M. As stated above, large isotropic crystal
neutron stars have a radius that decreases as the mass

0 0.5 1 1.5 2
Mass (Mg)

FIG. 4. S, of the neutron star solutions as a function of their
mass. The maximum mass solution is shown as a cross.

increases. We can clearly see in Fig. 2, that at the critical
mass of 1.49M, the radius keeps decreasing as the mass of
the star increases. Moreover, we also observe a sharp drop
of radius just over 1.5M, followed by a plateau at about
9.5 km.

By considering anisotropic as well as isotropic Skyrme
crystal solutions we have extended the mass range over
which solutions can be found, finding masses up to 28%
above the maximum mass of the isotropic case. This is an
interesting finding because isotropy of matter is often taken
as an assumption when studying neutron star models, in-
cluding the Skyrme crystal case considered in [12,16,17],
and a maximum mass is then derived. We have shown that
by not assuming isotropy and instead allowing anisotropic
matter configurations, the maximum mass can be increased
by a significant amount. In this simple Skyrme crystal
model the maximum mass found is equivalent to
1.90My, and the recent discovery of a 1.97 = 0.04M,
neutron star [25], the highest neutron star mass ever
determined, makes this an encouraging finding, especially
when we consider that including the effects of rotation
into our model will increase the maximum mass found,
by up to 2% for a star with a typical 3.15 ms spin period
[26].

Figure 5 shows a selection of plots of the Skyrmion
lengths A, and A, and the Skyrmion size L, Eq. (8), over
the radius of the star for four special stars: the largest
star, with radius R = 10.8 km and mass M = 1.28M,
[Fig. 5(a)]; the heaviest isotropically deformed star M =
1.49M, [Fig. 5(b)]; the densest neutron star, M = 1.54M
[Fig. 5(c)]; and the heaviest neutron star, M = 1.90M,
[Fig. 5(d)]. The first two are made out of an isotropically
deformed crystal, while the last two are anisotropically
deformed and one notices that the amount of anisotropy
increases as the mass increases (the divergence between A,
and A, increases). Throughout this paper, we will use these
four special stars as examples to illustrate various proper-
ties of the neutron stars.
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FIG. 5 (color online).
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Skyrmion Length (fm)

Skyrmion Length (fm)

0.8 . . . . .
4 6
Radius (km)

(d)

Skyrmion lengths A,(r) (solid line), A,(r) (dashed line), and L(r) (dotted line) for (a) largest neutron star

(R = 10.8 km): M = 1.28M,; (b) heaviest isotropic neutron star: M = 1.49M, (all lengths coincide as they are made of isotropically
deformed crystal); (c) densest neutron star: M = 1.54M; (d) heaviest neutron star: M = 1.90M,.

As the maximum mass is approached the gradient of the
profile of tangential Skyrmion lengths over the radius of
the star becomes smaller, and we note that physically
meaningful stars composed of anisotropically deformed
crystal should have dA,/dr = 0 [27]. This confirms that
the minimum energy solution for the maximum mass
found, 1.90M, for anisotropic Skyrme crystal solutions
is the configuration with a constant tangential Skyrmion
length as illustrated in Fig. 5(d).

The generalized TOV equation imposes that the sizes of
the Skyrmions are equal in all directions at the center of the
star, but away from the center, for all the anisotropic
Skyrme crystal solutions, we find that the amount of
Skyrmion anisotropy increases as we move towards the
edge of the star, reaching the maximum at the edge. The
Skyrmions are deformed to a greater extent in the tangen-
tial direction in agreement with the value of the aspect
ratio, p, being negative over the values where A, # A,.

As expected, the profiles for A, and A; show that the
mass density at the center of the star is higher than at the
edge, decreasing monotonically as the radial distance in-
creases. This is shown by Fig. 6 for the largest, heaviest
isotropic, densest, and maximum mass solutions.

In Fig. 7 one can see how the lengths of the Skyrme
crystal A, and A, vary with the mass of the star both at the
center (r = 0) and the edge of the star (r = R). For iso-
tropically deformed stars, A,(R) = A,(R) is constant and
corresponds to the minimum energy Skyrme crystal in the

3x10"8 |

===
[ININIAD

)
N
o
X
jay
o

3
Il

™
2x10"8 | e i

15x1018L e e 1

Mass density (kg/m

1x10'8

5x10"7 |

Radius (km)

FIG. 6 (color online). Mass density p(r) for (a) largest neutron
star (R = 10.8 km): M = 1.28M,, (solid line); (b) heaviest iso-
tropic neutron star: M = 1.49M (dashed line); (c) densest
neutron star: M = 1.54M (dotted line); (d) heaviest neutron
star: M = 1.90M,, (dashed-dotted line).
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FIG. 7 (color online). Skyrmion lengths at the edge of the star,
A,(R) (solid line) and A,(R) (dashed line), and at the center of the
star, A,(0) = A,(0) (dotted line), as a function of the star mass.

absence of gravity. Not surprisingly, A,.(0) = A,(0) de-
creases steadily as the mass of the star increases, showing
that the density at the center of the star increases. Once the
phase transition has taken place and the star is too heavy to
remain isotropically deformed, we observe that A,.(0) =
A,(0) drops sharply to a local minimum, reached for M =
1.54M . Meanwhile, A.(R) and A,(R) remain nearly iden-
tical. Beyond the minimum of A, ;(0), A,(R) and A,(R) start
to diverge sharply; A,.(R) decreases slightly in value while
A,(R) decreases rapidly. These stars are thus much more
compressed in the tangential direction than in the radial
one. As seen on Fig. 5(d), A,(R) = A,(0) for the maximum
mass neutron star.

Another property of a neutron star worth considering is
the speed of sound. To compute it one needs to know how
the energy of the crystal varies when it is deformed in the
direction of wave propagation. Using (2) we can thus
compute the speed of sound in the z direction. To compute
the speed of sound in the x and y directions when the
crystal is deformed we need to know how the energy of
the crystal varies when the crystal is deformed in all three
directions independently, an expression we do not have.

We are thus only able to compute the radial speed of
sound inside a neutron star and it is given by

d D, d p —1\1/2
vr (dA, (d/\,) ) : @9
where both p, and p are functions of A, and A, given,
respectively, by (21) and (23). Obviously, when the crystal
inside the star is isotropically deformed, the speed of sound
is the same in all three directions.

First of all it is interesting to notice that the speed of
sound in the minimum energy Skyrme crystal, in the
absence of a gravitational field, is amazingly large: v =
0.57¢. This is the speed of sound at the surface of a neutron
star when it is deformed isotropically. From Fig. 8 one sees
that v, increases as one moves towards the center of the
star. As v, is directly related to the density of the star, it is
not surprising to find that the maximum radial speed,
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FIG. 8 (color online). Radial speed of sound, v,(r) for
(a) largest neutron star (R = 10.8 km): M = 1.28M, (solid
line); (b) heaviest isotropic neutron star: M = 1.49M (dashed
line); (c) densest neutron star: M = 1.54M, (dotted line);
(d) heaviest neutron star: M = 1.90M, (dash dotted line).

v, = 0.78c, is reached at the center of the densest neutron
star, i.e. the one with M = 1.54M. As expected, v, <c¢
everywhere.

Figure 9 shows how the value of S(r) varies over the
radius of the star for, again, the largest, heaviest isotropic,
densest, and maximum mass solutions, showing how the
metric is altered as r varies. The minimum value of S(r) is
always located at the edge of the star, i.e. S;,;, = S(R), and
itis presented in Fig. 4 as a function of the star masses. One
sees that S, decreases monotonically as the mass in-
creases, and exhibits a sharp decrease just over 1.5M,
i.e. just above the critical mass. However S,;, always
remains positive, indicating that no black hole is formed.

Figure 10 shows how the total baryon number and the
mass of all the solutions found are related. As the baryon
number increases the effects of gravitational attraction
increase, resulting in a slightly lower gravitational mass
per baryon than expected from a linear relation.

We note that the minimum value of the aspect ratio, p,
for the minimum energy configurations found is —0.283

<<
NN
[T NN
ohO®

0.4

0 2 4 6 8 10
Radius (km)

FIG. 9 (color online). The function S(r) for (a) largest neutron

star (R = 10.8 km): M = 1.28M,, (solid line); (b) heaviest iso-

tropic neutron star: M = 1.49M, (dashed line); (c) densest

neutron star: M = 1.54M, (dotted line); (d) heaviest neutron
star: M = 1.90M, (dashed-dotted line).
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FIG. 10. Mass of the neutron star solutions as a function of
their baryon number. The maximum mass solution is shown as a
Cross.

and the minimum value of L is 8.11 X 107'%, both of
which are within the valid range of values for Eq. (2) [7].

C. Inclusion of the pion mass

Throughout the work described we have assumed a zero
pion mass. The inclusion of a nonzero pion mass can be
considered by including the pion mass term,

2 2
f mgF T Te(U — 1)dPx, (30)
in the static Skyrme Lagrangian (1), where U is the Skyrme
field, F, is the pion decay constant, and m, is the pion
mass. Using the cubic lattice of a-like Skyrmions that has
been considered above one finds that Tr(U — 1) = —2,
meaning that the energy E arising from the pion mass
term reduces to

E, = m,F;L, (3D

an energy term proportional to the volume of the
Skyrmions.

It can be seen in Fig. 11 that including a pion mass of
m = 138 MeV decreases the maximum mass of the star by
a very small amount from 1.49 to 1.47M, while also
slightly decreasing the central density at which this occurs.

Including a pion mass of m = 138 MeV in the simulated
annealing process used to find the maximum baryon num-
ber for the anisotropic Skyrme crystal solutions results in a
maximum baryon number of 3.34 X 10°7, equivalent to
1.88M, a decrease of 0.02M, from the maximum mass
found in the case without a pion mass.

This gives an indication as to how the pion mass affects
the structures of the neutron star configurations that can be
constructed, and a similar reduction in the maximum mass
is expected for all the anisotropic crystal solutions; how-
ever, when the pion mass is included it also has the effect of
driving the Skyrme crystal lattice away from the half-
Skyrmion symmetry [7]. This will be a small effect for
the dense Skyrme crystals that we are considering because
while the pion mass term is the dominant term in the
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FIG. 11 (color online). Mass of the star as a function of the
size of the Skyrmions at the center, L, for zero pion mass (solid
line) and m = 138 MeV (dashed line).

Lagrangian far away from the centers of the Skyrmions
when they are well separated, in the dense Skyrme crystal
there is no space away from the centers of the Skyrmions
so it becomes less important in affecting the field distribu-
tions. Its effect will be to reduce the pion mass term,
Eq. (31), by a small amount.

D. Stars above the maximum mass

As in other studies of neutron starts based on the Skyrme
model, we found a critical mass above which solutions do
not exist. In other words, when the star is too massive, the
crystal of which it is made is not capable of counterbalanc-
ing the gravitation pull and the star then collapses into a
black hole. This is indeed what we observed when trying to
construct solutions above the critical mass: the energy of
the configuration kept decreasing as the radius of the star
decreased and the S,;, function became negative, indicat-
ing the formation of a horizon, and hence a black hole.

Throughout this work we have assumed a spherically
symmetric metric and stress tensor; however, these as-
sumptions could be removed and it may be that higher
mass solutions could be found. We could instead consider
an axially symmetric metric, the most general form [28]
being

ds® = a2(dp? + dz%) + B*d¢* — y2dr,  (32)
when written in cylindrical coordinates. The stress tensor,

T# = dlag(p; P, P2 p3)) (33)

could then be completely anisotropic with p; # p, # ps.
Minimum energy solutions to Einstein’s equations for such
a metric and stress tensor could be found by direct mini-
mization of the action of the Skyrme model coupled to
gravity or by using an, as yet undetermined, axisymmetric
form of the TOV equation. Another approach to investigate
such solutions would be to perturb the spherically
symmetric solutions that we have found. Following
the procedure for doing so described in [28] the exterior
metric for an axially symmetric solution can be written in
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Schwarzschild coordinates and, after comparing the exte-
rior spherically symmetric Schwarzschild solution to our
solutions for the interior metric of the star and finding the
substitutions necessary to move from one to the other, we
can make the same substitutions to the axially symmetric
exterior metric. This allows us to then describe approxi-
mately both the metric and the stress energy tensor of the
axially symmetric solution. To carry out such investiga-
tions into axially symmetric static configurations, an equa-
tion analogous to (2) which would relate the energy of the
Skyrme crystal to its size and deformation in all three
directions independently would need to be considered.

We have also assumed that the stress tensor, 75 =
diag(p, p,, pe, Py). is diagonal; however, if shear strains
are included in our model off diagonal components would
have to be introduced. This would also remove the assump-
tion of spherical symmetry altering the configurations
found.

Spherical symmetry also needs to be removed to con-
sider rotating stars. This will result in configurations above
the maximum mass found in this work, by up to 2% for a
star with a typical 3.15 ms spin period [26], and as neutron
stars are known to be rotating, this is an important effect to
consider.

E. Stability and oscillations of anisotropic stars

Having found the minimum energy solutions to a
Skyrme crystal neutron star model, we now briefly con-
sider their stability. First, as our procedure to determine the
solution minimized the energy for a fixed baryon number,
we know that our solutions are stable under small pertur-
bations, i.e. they correspond to local minima. We must also
consider the effect that a nonzero temperature could have
on the solutions. In our case, as we are considering a solid,
thermal excitations correspond to the excitation of phonon
modes which, from an energy point of view, is, in our
model, equivalent to increasing the mass term discussed
above. We thus see that the effect of raising the star
temperature will be to lower the value of the maximum
mass marginally and so stars that are not close to the
maximum mass will remain stable when their temperature
increases.

It is now relevant to consider the oscillations of aniso-
tropic neutron stars as these oscillations are expected to
generate gravitational waves which, once they have been
experimentally observed, might help determine the struc-
ture of neutron stars. To compute the small amplitude
fluctuations of our solutions we would need to know a
generalization of (2) for the energy of the Skyrme crystal
when it is deformed and sheared in all three directions
independently. The determination of such vibrations is thus
well beyond the scope of this article, but using the results
of Doneva et al. [29], we can hint at what properties the
vibrations of the neutron stars considered in this paper
would have. Doneva et al. have computed the spectrum
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of an anisotropic neutron star using an equation of state
where the anisotropy was put in by hand and controlled by
a parameter they called A. The isotropic star corresponds to
the case A = O while stars with a radial stress smaller than
the tangential one correspond to A < 0. We would like to
stress here that the anisotropy in our model comes from the
energy of the Skyrme lattice, which has cubic symmetry at
rest, and is fully determined by the minimization of the
neutron star energy; there is no anisotropy parameter to
tune in. To compare our model with that of [29] we have
computed A = r(p, — p,)/(p,2m), which is a function of r
in our model, for our solutions. We found that, except near
the origin and the edge of the star, its value is nearly
constant, A = —2, for the maximum mass neutron star
and for less massive stars A is larger but always negative.
Moreover it is O for the isotropic stars. From the spectrum
computed by Doneva et al. we see that the anisotropy of the
star will affect its oscillation spectrum and that the fre-
quencies will be a few percent larger than for an isotropic
star of the same mass.

V. CONCLUSIONS

Neutron stars are large bodies of matter where the
electrons, instead of circling atoms, are forced to merge
with the nuclei, resulting in extremely dense stars made
entirely of neutrons. Their temperature, from a nuclear
point of view, is very low and this means nuclear matter
must be considered as a solid rather than a fluid. Moreover,
the gravitational pull of the star is so strong that the
“atmospheric” fluid one might expect at the surface is of
negligible height.

In this context, the Skyrme model, known to be a low
energy effective field theory for QCD [3], is an ideal
candidate to describe neutron stars once the model is
coupled to gravity. The minimum energy configuration of
large numbers of Skyrmions is a cubic crystal made of
B = 4 Skyrmions that correspond to a crystal of a-like
particles. We have thus used these solutions as a building
block to describe the neutron star by combining the defor-
mation energy computed in [7] and a generalized version
of the TOV equation [13-15], which describes the static
equilibrium between matter forces, within a solid or fluid,
and the gravitational forces self-generated by the matter for
a spherically symmetric body.

The key feature of our approach to the problem was to
consider the star as a solid that could potentially deform
itself anisotropically. We then found that below 1.49M,
all stars were made of a crystal deformed isotropically, i.e.
the radial strain was identical to the tangential one. Above
that critical value, the neutron star undergoes a critical
phase transition and the lattice of Skyrmions compresses
anisotropically: the Skyrmions are more compressed tan-
gentially than radially. Stars were shown to exist up to a
critical mass of 1.90M, a result that closely matches the
recent discovery of Demorest ef al.. [25] who measured the
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mass of the heaviest neutron star found to date, PSR J1614-
2230, to be 1.97M,. We also observed that the maximum
radius for a Skyrmion star was approximately 11 km, a
figure that matches well the experimental estimations.

In our model we did not consider the rotational energy of
the star that is approximated at about 2% of its total energy.
If we included that extra energy, our upper bound would
thus just fit above the mass of PSR J1614-2230.
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(71

(8]
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Finally we have also shown that if the mass of a neutron
star was to be raised to cross the critical mass threshold, it
would collapse into a black hole.
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