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Abstract We describe a framework to develop, imple-
ment and validate any perturbative Lagrangian-based par-
ticle physics model for further theoretical, phenomeno-
logical and experimental studies. The starting point is
FEYNRULES, a MATHEMATICA package that allows to gen-
erate Feynman rules for any Lagrangian and then, through
dedicated interfaces, automatically pass the corresponding
relevant information to any supported Monte Carlo event
generator. We prove the power, robustness and flexibil-
ity of this approach by presenting a few examples of new
physics models (the Hidden Abelian Higgs Model, the gen-
eral Two-Higgs-Doublet Model, the most general Mini-
mal Supersymmetric Standard Model, the Minimal Hig-
gsless Model, Universal and Large Extra Dimensions, and
QCD-inspired effective Lagrangians) and their implemen-
tation/validation in FEYNARTS/FORMCALC, CALCHEP,
MADGRAPH/MADEVENT, and SHERPA.

1 Introduction

At the Large Hadron Collider (LHC) discoveries most prob-
ably will not be an easy task. The typical final states pro-
duced at this proton-proton collider running at very high
energies will involve a large number of jets, heavy-flavor
quarks, as well as leptons and missing energy, providing an
overwhelming background to many new physics searches.
Complex signal final state signatures will then need a very
careful understanding of the detector and an accurate mod-
eling of the data themselves. In this process, Monte Carlo
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(MC) simulations will play a key role in describing control
data sets and devising robust search strategies.

Already the first step, i.e., establishing “an excess over
the Standard Model (SM) background”, might be very diffi-
cult, depending on the type of signature involved [1]. At this
stage, matrix-element-based MC (which give reliable pre-
dictions for shapes and can still be tuned to some extent to
the data) will be used to describe backgrounds and possi-
bly candidates signals. For some specific signals, an accu-
rate prediction of the background normalization and shapes,
validated via control samples, could be also needed. At the
same time, accurate measurements and comparisons with
the best theoretical predictions (e.g., at the next-to-next-
to-leading order, resummation calculations, . . . ) of a set of
standard-candle observables will also be mandatory to claim
a good understanding and control of physics and detector
effects. Very accurate predictions, possibly including even
weak corrections, and a reliable estimate of errors (such as
those introduced by the parton distribution functions) will
then be needed.

Once the presence of excess(es) is confirmed, model
building activities will be triggered, following both top-
down and bottom-up approaches. In each case, tools that
are able to make predictions for wide classes of Beyond the
Standard Model (BSM) physics, as well as those that help in
building up an effective field theory from the data (such as
the so called OSET method [2]), could be employed. Finally,
as a theoretically consistent picture arises, measurements of
the parameters (masses, spin, charges) will be carried out. In
this case it will be necessary to have at least next-to-leading
order (NLO) predictions (i.e., a reliable normalization) for
the signal processes. As our knowledge about the detector
and the newly discovered physics scenario gets stronger,
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more accurate determinations will be possible and sophis-
ticated analyses tools could be employed, on the very same
lines as current top quark analyses at the Tevatron collider,
e.g., see [3].

As schematically outlined above, Monte Carlo simula-
tions will play a key, though different role at each stage
of the exploration of the TeV scale, i.e., the discovery and
identification of BSM Physics, and the measurement of its
properties. The realization of the need for better simulation
tools for the LHC has spurred an intense activity over the
last years, that has resulted in several important advances in
the field.

At the matrix-element level, these include the develop-
ment of general purpose event generators, such as COMP-
HEP/CALCHEP [4–6], MADGRAPH/MADEVENT [7–10],
SHERPA [11, 12], as well as high efficiency multiparton gen-
erators which go beyond the usual Feynman diagram tech-
niques, such as WHIZARD [13], ALPGEN [14], HELAC [15]
and COMIX [16]. As a result, the problem of generating au-
tomatically leading-order matrix elements (and then cross
sections and events) for a very large class of renormaliz-
able processes has been solved. Quite amazingly, enormous
progress has also been achieved very recently in the autom-
atization of NLO computations. First the generation of the
real corrections with the appropriate subtractions has been
achieved in an automatic way [17–22]. Then several new al-
gorithms for calculating loop amplitudes numerically have
been proposed (see, e.g., [23] for a review) and some of them
successfully applied to the computation of SM processes of
physical interest [24–26].

An accurate simulation of a hadronic collision requires
a careful integration of the matrix-element hard process,
with the full parton showering and hadronization infrastruc-
ture, as efficiently provided by PYTHIA [27, 28], HER-
WIG [29, 30] and SHERPA. Here also, significant progress
has been made in the development of matching algorithms
such as that by Catani, Krauss, Kuhn and Webber (CKKW)
[31–33], Mangano (MLM) [34] and others [35–37], in their
comparison [38, 39] and application to SM [34, 40] and
BSM [41] processes. A breakthrough in merging fixed order
calculations and parton showers was achieved by Frixione,
Webber and Nason [42, 43], who showed how to correctly
interface an NLO computation with a parton shower to avoid
double counting and delivered the first event generator at
NLO, MC@NLO. More recently, a new method along the
same lines, dubbed POWHEG, has been proposed [44] and
applied to Drell-Yan and Higgs production [45–48].

The progress in the field of Monte Carlo tools outlined
above shows that we are, or will be soon, able to simulate
all the relevant SM processes at the LHC with a very high
level of accuracy. It is therefore worth considering the status
of the predictions for physics Beyond the Standard Model.
Quite interestingly, the challenges in this case are of a quite

different nature. The main reason is that presently there is
not a leading candidate for BSM, but instead a plethora of
models have been suggested, based on very different ideas
in continuous evolution. The implementation of complex
BSM models in existing general purpose event generators
like those enumerated above remains a long, often painstak-
ing and error-prone, process. The derivation of the numer-
ous Feynman rules to describe the new interactions, and
their implementation in codes following conventions is a
very uninteresting and time consuming activity. In addition,
the validation of a given implementation often relies on a
comparison of the obtained analytical and numerical results
with those available in the literature. Again, due to presence
of various conventions, the restricted number of public re-
sults and the lack of a dedicated framework, such a compar-
ison is often done manually, in a partial and not systematic
way. Finally, besides a handful of officially endorsed and
publicly distributed BSM models (e.g., the Minimal Super-
symmetric Standard Model), many implementations remain
private or only used by a restricted set of theorists and/or
phenomenologists, and never get integrated into the official
chain of simulation tools used by experimental collabora-
tions. Instead, various “home-made” or “hacked” versions
of existing MC softwares are commonly used for specific
BSM process studies, leading to problems in the validation,
traceability and maintenance procedures.

In this work we address the problem of having an effi-
cient framework where any new physics model can be de-
veloped and its phenomenology can be tested against data.
A first step in the direction of deriving Feynman rules auto-
matically starting from a model Lagrangian has been made
in the context of the COMPHEP/CALCHEP event generator
with the LANHEP package [49]. Our aim is to go beyond
this scheme and create a general and flexible environment
where communication between theorists and experimental-
ists in both directions is fast and robust. The desiderata for
the new physics phenomenological framework linking the-
ory to experiment and vice versa which we provide a solu-
tion for are:

1. General and flexible environment, where any perturba-
tive Lagrangian-based model can be developed and im-
plemented.

2. Modular structure with interfaces to several multi-pur-
pose MC’s and computational tools.

3. Robust, easy-to-validate and easy-to-maintain.
4. Integrable in the experimental software frameworks.
5. Full traceability of event samples.
6. Both top-down and bottom-up approaches are natural.

This paper is organized in five main sections and various
appendices. In Sect. 2, by discussing a simple example, we
expose the strategy which we propose to address the chal-
lenges that model builders, phenomenologists and experi-
mentalists have to face to study the phenomenology of a new
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physics model. This strategy is based on the FEYNRULES

package, and in Sect. 3 we briefly recall how the package
works and present some of the new features recently imple-
mented. Section 4 contains a brief description of the various
interfaces already available. Section 5 contains the informa-
tion about the models that have already been implemented.
In Sect. 6 we present our strategy to validate BSM model
implementations, and illustrate our procedure on the already
implemented models. Finally, in Sect. 7, we discuss the out-
look of our work. In the appendices we collect some tech-
nical information as well as a few representative validation
tables, which constitute the quantitative results of this paper.

2 A simple example: from the standard model to the
Hidden Abelian Higgs model

From the phenomenological point of view, we can distin-
guish two classes of BSM models. The first class of models
consists of straightforward extensions of the SM, obtained
by adding one (or more) new particles and interactions to the
SM Lagrangian. In this bottom-up approach, one generally
starts from the SM, and adds a set of new operators accord-
ing to some (new) symmetry. The second class of models
are obtained in a top-down approach, where the fundamental
Lagrangian is determined by the underlying global and local
symmetries, and the SM is only recovered in some specific
limit.

In this section we describe in detail our framework
to develop, test, implement and validate any perturbative
Lagrangian-based particle physics model. We concentrate
on the case of the bottom-up models, and show how our
framework allows to easily extend the SM and to go in a
straightforward way from the model building to the study
of the phenomenology. We will comment on the top-down
models in subsequent sections.

2.1 The model

As an illustration, we use the Hidden Abelian Higgs (HAH)
Model, described in [50]. This model can be seen as the sim-
plest way to consistently add a new gauge interaction to the
SM. More specifically, we consider an SU(3)C × SU(2)L ×
U(1)Y ×U(1)X gauge theory where all SM particles are sin-
glets under the new gauge group U(1)X . A new Higgs field
φ is added that is a singlet under the SM gauge group and
breaks the U(1)X symmetry when it acquires its vacuum
expectation value (vev), 〈φ〉 = ξ/

√
2. The most general La-

grangian describing this model is given by

LHAH = LHAH,Gauge + LHAH,Fermions + LHAH,Higgs

+ LHAH,Yukawa, (1)

with

LHAH,Gauge = −1

4
Ga

μνG
μν
a − 1

4
Wi

μνW
μν
i − 1

4
BμνB

μν

− 1

4
XμνX

μν + χ

2
BμνX

μν,

LHAH,Higgs = DμΦ†DμΦ + Dμφ†Dμφ + μ2
ΦΦ†Φ

+ μ2
φφ†φ − λ(Φ†Φ)2 − ρ(φ†φ)2

− κ(Φ†Φ)(φ†φ),

(2)

where Φ denotes the SM Higgs field. The covariant deriva-
tive reads

Dμ = ∂μ − igsT
aGa

μ − ig
�σ
2

· �Wμ − ig′YBμ − igXXXμ, (3)

and we define the field strength tensors,

Xμν = ∂μXν − ∂νXμ,

Bμν = ∂μBν − ∂νBμ,

Wi
μν = ∂μWi

ν − ∂νW
i
μ + g′εijkWj

μWk
ν ,

Ga
μν = ∂μGa

ν − ∂νG
a
μ + gsf

abcGb
μGc

ν.

(4)

gs , g, g′ and gX denote the four coupling constants associ-
ated with the SU(3)C × SU(2)L × U(1)Y × U(1)X gauge
groups while T , σ i , Y and X are the corresponding gener-
ators and f abc and εijk represent the totally antisymmetric
tensors of SU(3)C × SU(2)L, respectively. We do not write
explicitly the terms in the Lagrangian describing the matter
sector of the theory as they are identical to those of the SM
described in detail in Sect. 5.1,

LHAH,Fermions = LSM,Fermions and

LHAH,Yukawa = LSM,Yukawa.
(5)

The kinetic mixing term in LHAH,Gauge induces a mixing be-
tween the two U(1) gauge fields and thus a coupling be-
tween the matter fermions and the new gauge boson. The
kinetic terms for the U(1) fields can be diagonalized via a
GL(2,R) rotation,

(
X̃μ

B̃μ

)
=
(√

1 − χ2 0
−χ 1

)(
Xμ

Bμ

)
. (6)

After this field redefinition, the gauge sector takes the diag-
onal form

LHAH,Gauge = −1

4
Ga

μνG
μν
a − 1

4
Wi

μνW
μν
i − 1

4
B̃μνB̃

μν

− 1

4
X̃μνX̃

μν, (7)
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but the covariant derivative now contains an additional term
coupling the field X̃μ to the hypercharge,

Dμ = ∂μ − igsT
aGa

μ − ig
�σ
2

· �Wμ − ig′Y B̃μ

− i(gXX + g′ηY )X̃μ, (8)

with η = χ/
√

1 − χ2. When the Higgs fields acquire their
vev,1

Φ = 1√
2

(
0

H + v

)
and φ = 1√

2
(h + ξ), (9)

the gauge symmetry gets broken to SU(3)C × U(1)EM , and
we obtain a non-diagonal mass matrix for the neutral weak
gauge bosons, which can be diagonalized by an O(3) rota-
tion,

⎛
⎝ B̃

W 3

X̃

⎞
⎠=

⎛
⎝cw −swcα swsα

sw cwcα −cwsα
0 sα cα

⎞
⎠
⎛
⎝ A

Z

Z′

⎞
⎠ , (10)

where the mixing angles are given by

sw ≡ sin θw = g′√
g2 + g′2 and

tan 2θα = −2swη

1 − s2
wη2 − ΔZ

,

(11)

with ΔZ = M2
X/M2

Z0
, where MX and MZ0 denote the

masses of the gauge bosons before the kinetic mixing,

M2
X = ξ2q2

Xg2
X and M2

Z0
= (

g2 + g′2)v2/4, (12)

and qX denotes the U(1)X charge carried by φ. The photon
remains massless while the two other states acquire a mass
given by

M2
Z,Z′ = M2

Z0

2

[(
1 + s2

wη2 + ΔZ

)

±
√(

1 − s2
wη2 − ΔZ

)2 + 4s2
wη2

]
. (13)

As a result of electroweak symmetry breaking, non-
diagonal mass terms for the Higgs fields appear that can be
diagonalized via an orthogonal transformation,

(
H

h

)
=
(

ch sh
−sh ch

)(
h1

h2

)
, (14)

1We work in unitary gauge.

Table 1 Input parameters for the Hidden Abelian Higgs model, corre-
sponding to the benchmark point 1 of [51]. Other SM input parameters
are not shown

Parameter Symbol Value

U(1)X coupling constant αX 1/127.9

Kinetic mixing parameter η 0.01

Z pole mass MZ 91.188 GeV

Z′ pole mass MZ′ 400.0 GeV

SM Higgs quartic coupling λ 0.42568

Abelian Higgs quartic coupling ρ 0.010142

Abelian/SM Higgs interaction κ 0.0977392

where the mixing angles and mass eigenvalues are given by

tan 2θh = κvξ

ρξ2 − λv2
,

M2
1,2 = λv2 + ρξ2 ∓

√(
λv2 + ρξ2

)2 + κ2v2ξ2.

(15)

Once the Lagrangian is written down and diagonalized in
terms of mass eigenstates, one can easily identify a minimal
set of parameters the model depends on. Not all the para-
meters introduced above are independent, as most of them
are related by some algebraic relations, e.g., the relation be-
tween the mass eigenvalues of the gauge bosons, (13), and
the fundamental parameters appearing in the Lagrangian.
Our choice of independent input parameters is given in Ta-
ble 1. All other parameters appearing in LHAH,Gauge and
LHAH,Higgs can be reexpressed in terms of these parame-
ters. Let us note, however, that there are strong experimental
constraints from LEP on the masses and the couplings of
additional neutral gauge bosons to fermions, which need to
be taken into account when building the model. In [50] it
was pointed out that η = 0.01 is still allowed. In general,
in order to determine a benchmark point that takes into ac-
count the direct and indirect experimental constraints, it is
required to perform (loop) computations for several physi-
cal observables. We will comment more on this in the next
subsection.

Let us note that, although (2) is a very simple extension
of the SM, from a more technical point of view an imple-
mentation of the HAH model in a matrix-element gener-
ator is already not trivial. In this case, it is not sufficient
to start from the existing SM implementation and just add
the vertices contained in LHAH,Higgs, because mixing in the
gauge and scalar sectors implies that all SM vertices involv-
ing a Higgs boson and/or a Z boson need to be modified.
For example, although there is no direct coupling between
the Abelian Higgs field φ and the matter fermions, all the
Yukawa couplings receive contributions from the two mass
eigenstates h1 and h2, weighted by the mixing angle θh, re-
sulting in an almost complete rewriting of the SM imple-
mentation. In the next subsection we will describe how this
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Table 2 Dominant decay
channels of the new particles in
the HAH model

Branching ratios for h1

h1 → bb̄ 87.7%

h1 → cc̄ 8.1%

h1 → τ+τ− 4.2%

Branching ratios for h2

h2 → h1h1 14.2%

h2 → bb̄ 0.1%

h2 → ZZ 26.4%

h2 → W+W− 59.3%

Branching ratios for h1

Z′ → jj 44.1%

Z′ → h1h1 0.9%

Z′ → h2h2 0.5%

Z′ → t t̄ 12.5%

Z′ → bb̄ 5.2%

Z′ → τ+τ− 14.9%

Z′ → �+�− 29.7%

Z′ → νν̄ 9.5%

Z′ → W+W− 2.0%

difficulty can be easily overcome and the phenomenology of
the Hidden Abelian Higgs model studied.

2.2 From model building to phenomenology

The starting point of our approach is FEYNRULES (see
Sect. 3). Since in this case we are interested in a simple ex-
tension of the SM, it is very easy to start from the FEYN-
RULES implementation of the SM which is included in the
distribution of the package and to extend the model file by
including the new particles and parameters, as well as the
HAH model Lagrangian of (2). Note that, at variance with
the direct implementation into a matrix-element generator
where we need to implement the vertices one at a time, we
can work in FEYNRULES with a Lagrangian written in terms
of the gauge eigenstates and only perform the rotation to the
mass eigenbasis as a second step. This implies that it is not
necessary to modify LHAH,Fermions since the new fields only
enter through LHAH,Gauge and LHAH,Higgs.

Several functions are included in FEYNRULES to per-
form sanity checks on the Lagrangian (e.g., hermiticity).
The diagonalization of the mass matrices can be easily per-
formed directly in MATHEMATICA®2 and FEYNRULES al-
lows us to easily obtain the Feynman rules for the model. As
already mentioned, not only the Feynman rules of the Higgs
and gauge sectors are modified with respect to the Standard
Model, but also the interaction vertices in the fermionic sec-
tor change due to the mixing of the scalars and the neu-
tral weak bosons. The vertices obtained in this way can al-
ready be used for pen & paper work during the model build-
ing, and to compute simple decay rates and cross sections.
Since FEYNRULES stores the vertices in MATHEMATICA, it
is easy to use them directly for such computations.

After this preliminary study of our model where the mass
spectrum of the theory was obtained and basic sanity checks
have been performed, typically the model is confronted with

2MATHEMATICA is a registered trademark of Wolfram Research, Inc.

all relevant direct and indirect constraints coming from ex-
periment. This is a necessary step to find areas of parame-
ters space which are still viable. Once interesting regions in
parameter space are identified, the study of the collider phe-
nomenology of the model, e.g., at the LHC, can start with the
calculation of cross sections and decay branching ratios. Let
us consider first the calculation of the decay widths of both
SM and new particles. Using the FEYNARTS implementa-
tion of the new model obtained via the FEYNRULES inter-
face, it becomes a trivial exercise to compute analytically all
tree-level two-body decays for the Higgs bosons and the Z′
boson (alternatively, one could calculate them numerically
via e.g., CALCHEP or MADGRAPH/MADEVENT). The re-
sults for the branching ratios of the dominant decay modes
are shown, for the benchmark scenario considered here, in
Table 2. Once decay widths are known, cross sections can
be calculated. However, in many cases it is insufficient to
have only predictions for total cross sections, as a study of
differential distributions, with possibly complicated multi-
particle final states, is necessary to dig the signal out of the
backgrounds. Furthermore, even a parton-level description
of the events might be too simplified and additional radia-
tion coming from the colored initial and final-state particles,
as well as effects coming from hadronization and underlying
events need to be accounted for. For this reason, phenom-
enological studies are in general performed using genera-
tors which include (or are interfaced to) parton shower and
hadronization Monte Carlo codes. The parton level events
for the hard scattering can be generated by the general pur-
pose matrix-element (ME) program, and those events are
then passed on to the parton shower codes evolving the
parton-level events into physical hadronic final states. How-
ever, similar to FEYNARTS/FORMCALC, for new models
the ME generators require the form of the new vertices, and
different programs use different conventions for the vertices,
making it difficult to export the implementation from one
ME generator to another. To solve this issue, FEYNRULES

includes interfaces to several ME generators that allow to
output the interaction vertices obtained by FEYNRULES di-
rectly in a format that can be read by the external codes. For
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Fig. 1 Invariant mass distribution for the four particle final state
γ γ bb, both for the gg → h2 → h1h1 → γ γ bb signal (plain) and the
main SM backgrounds (dashed) events at the LHC. All simulation pa-
rameters and analysis cuts are identical to those listed in [51]

the moment, such interfaces exist for CALCHEP/COMPHEP,
MADGRAPH/MADEVENT and SHERPA.3 It should be em-
phasized that some of these codes have the Lorentz and/or
color structures hardcoded, something that limits the range
of models that can be handled by a given MC. In this re-
spect (and others) each of MC tools has its own strengths
and weaknesses: having several possibilities available max-
imizes the chances that at least one generator is able to effi-
ciently deal with a given model and the case in which several
MC tools can be used, as most of the examples discussed in
this paper, allows for a detailed comparison and robust vali-
dation of the implementation.

For the sake of illustration, we used the MADGRAPH/
MADEVENT implementation of the HAH model to gener-
ate signal events for the gg → h2 → h1h1 → γ γ bb signal
proposed in [51] as a signature of this model at the LHC.
Using the same set of cuts, and the same smearing method
as in [51], we have been able to easily generate final state
invariant mass distributions for both signal and background
events. The result can be seen in Fig. 1, which compares
well to Fig. 5 of [51].

2.3 Validation of new physics models

In the previous subsection we discussed how the implemen-
tation of the model in FEYNRULES allows to go all the
way from model building to phenomenology without hav-
ing to deal with the technicalities of the various ME gener-
ators. In this section we argue that our approach does not
only allow to exploit the strength of each ME generator,

3An interface to WHIZARD will be available with the next major re-
lease of FEYNRULES.

but it also has a new power in the validation of BSM mod-
els. Since the various ME generators use different conven-
tions for the interaction vertices it becomes hence possible
to compare the implementations of the same model into var-
ious different matrix-element generators, and thus the dif-
ferent tools, among themselves. Furthermore, in many cases
generator specific implementations of BSM models already
exist, at least for restricted classes of models, in which case
the FEYNRULES model can be directly validated against the
existing tool A, and then exported to any other tool B for
which an interface exists. In the same spirit, any BSM model
should be able to reproduce the SM results for observables
which are independent of the new physics.

Let us illustrate this procedure through the example of
the HAH model. We start by implementing our model
into CALCHEP, MADGRAPH/MADEVENT and SHERPA by
means of the corresponding interfaces. We then compute
the cross sections for all interesting two-to-two processes
for this model, and check that we obtain the same numbers
from every ME generator. Note that, since in this case we
have modified the scalar sector of the SM, we pay particular
attention to the unitarity cancellations inherent to the SM in
weak boson scattering, showing in this way that our imple-
mentation does not spoil these cancellations. Since the dif-
ferent codes used for the computation of the cross-sections
all rely on different conventions for the interaction vertices,
we hence demonstrated that our model is consistent not only
by checking that the cancellations indeed take place in all
the implementations, but we also get the same results for the
total cross section after the cancellation, a strong check very
rarely performed for a general BSM model implementation.
We will comment on the validation of more general models
in subsequent sections.

Finally, let us comment on the fact that a robust imple-
mentation of a BSM model into a code does not only re-
quire the model to be validated to a very high-level, but the
implementation should also be clearly documented in order
to assure its portability and reproducibility. For this reason
FEYNRULES includes an output to TEX which allows to out-
put the content of the FEYNRULES model files in a human-
readable format, including the particle content and the pa-
rameters which define the model, as well as the Lagrangian
and the Feynman rules.

2.4 From phenomenology to experiment

Our approach does not only apply to phenomenological
studies at the theory level, but it allows to continue and
pass the model to an experimental collaboration for full ex-
perimental studies. In general, the experimental softwares
used to simulate the detector effects have very strict require-
ments regarding sanity checks for new modules (e.g., pri-
vate Monte Carlo programs) to be included in the software,
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and a very long and tedious validation procedure is needed.
However, will we be at the point where we have to discrimi-
nate between various competing models at the LHC, this ap-
proach would become extremely inefficient due to the large
number of tools to be validated. In our approach this vali-
dation can be avoided, streamlining in this way the whole
chain all the way from model building to the experimental
studies and vice versa.

Let us again illustrate this statement through the example
of the HAH model. Since this model is now implemented in
FEYNRULES, we can easily pass it into various ME gener-
ators using the translation interfaces, and we demonstrated
the validation power inherent to this approach in the previ-
ous section. These models can then be used in a ME genera-
tor in the same way as any other built-in model, without any
modification to the original code, i.e., without creating a pri-
vate version of the ME generator. If the model is validated
it can easily be passed on to the experimental community,
which can then read the FEYNRULES output and use it in
their favorite ME generator already embedded in their soft-
ware framework.

By following this procedure tedious validations for each
model implementation in a given MC are avoided. In ad-
dition, the portability and the reproducibility of the exper-
imentally tested models is guaranteed. As at the origin of
the chain is solely the FEYNRULES model file, all the in-
formation is concentrated in one place, and thus everybody
can reproduce all the results at any stage, from the model
building to the collider signatures, by starting from the very
same file. In addition, since the FEYNRULES model file con-
tains the Lagrangian of the model, it is very easy to go back
to the model file and understand its physical content, a step
which might be very difficult working with manually created
model files for the ME generators, written in an often rather
cryptic programming language hiding the essential physics.
In our approach it becomes very easy to use later the very
same model information, and to reproduce analyses by just
changing benchmark points or by adding a single new parti-
cle/interaction to the same model.

3 FEYNRULES in a nutshell

FEYNRULES is a MATHEMATICA package which allows
to derive Feynman rules directly from a Lagrangian [52].
The user provides the Lagrangian for the model (writ-
ten in MATHEMATICA) as well as all the information
about the particle and parameter content of the model.
This information uniquely defines the model, and hence is
enough to derive all the interaction vertices from the La-
grangian. FEYNRULES can in principle be used with any
model which fulfills basic quantum field theoretical require-
ments (e.g., Lorentz and gauge invariance), the only cur-
rent limitation coming from the kinds of fields supported

by FEYNRULES (see below). In particular it can also be
used to obtain Feynman rules for effective theories involv-
ing higher-dimensional operators. In a second step, the
interaction vertices obtained by FEYNRULES can be ex-
ported by the user to various matrix-element generators
by means of a set of translation interfaces included in the
package. In this way the user can directly obtain an imple-
mentation of his/her model into these various tools, mak-
ing it straightforward to go from model building to phe-
nomenology. Presently, interfaces to CALCHEP /COMP-
HEP, FEYNARTS/FORMCALC, MADGRAPH/MADEVENT

and SHERPA are available. In the following we briefly de-
scribe the basic features of the package and the model files,
the interfaces to the matrix-element generators being de-
scribed in Sect. 4. For more details on both the FEYNRULES

package as well as the interfaces, we refer the reader to
the FEYNRULES manual and to the FEYNRULES website
[52, 53].

3.1 Model description

The FEYNRULES model definition is an extension of the
FEYNARTS model file format and consists of the definitions
of the particles, parameters and gauge groups that character-
ize the model and the Lagrangian. This information can be
placed in a text file or in a MATHEMATICA notebook or a
combination of the two as convenient for the user.

Let us start with the particle definitions. Following the
original FEYNARTS convention, particles are grouped into
classes describing “multiplets” having the same quantum
numbers, but possibly different masses. Each particle class
is defined in terms of a set of class properties, given as a
MATHEMATICA replacement list. For example, the up-type
quarks could be written as

F[1] == { ClassName -> q,
ClassMembers -> {u, c, t},
SelfConjugate -> False,
Indices -> {Index[Generation],

Index[Colour]},
FlavorIndex -> Generation,
Mass -> {Mq, 0, 0, {MT, 174.3}},
Width -> {Wq, 0, 0, {WT, 1.508}},
QuantumNumbers -> {Q -> 2/3},
PDG -> {2, 4, 6}}

This defines a Dirac fermion (F) represented by the sym-
bol q. Note that the antiparticles are automatically declared
and represented by the symbol qbar. The class has three
members, u, c, and t (ubar, cbar, and tbar for the an-
tiparticles, respectively), distinguished by a generation in-
dex (whose range is defined at the beginning of the model
definition) and the fields carry an additional index labelled
Colour. The complete set of allowed particle classes is
given in Table 3. Additional information, like the mass and
width of the particles, as well as the U(1) quantum numbers
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Table 3 Particle classes supported by FEYNRULES

S Scalar fields

F Fermion fields (Dirac and Majorana)

V Vector fields

U Ghost fields

T Spin two fields

carried by the fields can also be included. Finally, some more
specific information not directly needed by FEYNRULES but
required by some of the matrix-element generators (e.g., the
Particle Data Group (PDG) codes [54]) can also be defined.
A complete description of the particle classes and properties
can be found in the FEYNRULES manual.

A Lagrangian is not only defined by its particle content,
but also by the local and global symmetries defining the
model. FEYNRULES allows to define gauge group classes
in a way similar to the particle classes. As an example, the
definition of the QCD gauge group can be written

SU3C == { Abelian -> False,
GaugeBoson -> G,
CouplingConstant -> gs,
StructureConstant -> f,
Representations -> {T, Colour}}

where the gluon field G is defined together with the quark
field during the particle declaration. The declaration of
Abelian gauge groups is analogous. FEYNRULES uses this
information to construct the covariant derivative and field
strength tensor which the user can use in the Lagrangian.

The third main ingredient to define a model is the set
of parameters which it depends on. In general, not all the
parameters appearing in a Lagrangian are independent, but
they are related through certain algebraic relations specific
to each model, e.g., the relation cos θw = MW/MZ relating
at tree-level the masses of the weak gauge bosons to the elec-
troweak mixing angle. FEYNRULES therefore distinguishes
between external and internal parameters. External parame-
ters denote independent parameters which are given as nu-
merical inputs to the model. An example of a declaration of
an external parameter reads

aS == {ParameterType -> External,
Value -> 0.118}

defining an external parameter aS with numerical value
0.118. Several other properties representing additional infor-
mation needed by matrix-element generators are also avail-
able, and we refer to the FEYNRULES manual for an exten-
sive list of parameter class properties. Internal parameters
are defined in a similar way, except that the Value is given
by an algebraic expression linking the parameter to other
external and/or internal parameters. For example, the cos θw

parameter definition could read

cw == {ParameterType -> Internal,
Value -> MW/MZ}

Note that it is also possible to define tensors as parameters
in exactly the same way, as described in more detail in the
manual.

At this point, we need to make a comment about the
conventions used for the different particle and parameter
names inside FEYNRULES. In principle, the user is free to
choose the names for the gauge groups, particles and para-
meters at his/her convenience, without any restriction. The
matrix-element generators however have certain information
hardcoded (e.g., reference to the strong coupling constant
or electroweak input parameters). For this reason, conven-
tions regarding the implementation of certain SM parame-
ters have been established to ensure the proper translation
to the matrix-element generator. These are detailed in the
manual and recalled in Appendix A.

In complicated models with a large parameter space, it is
sometimes preferable to restrict the model to certain slices
of that parameter space. This can be done as usual by ad-
justing the parameters to lie at that particular point in pa-
rameter space and doing the desired calculation. However,
sometimes these slices of parameter space are special in that
many vertices become identically zero and including them
in the Feynman diagram calculation can be very inefficient.
In order to allow both the general parameter space and a re-
stricted parameter space, we introduce the model restriction.
A model restriction is a MATHEMATICA list containing re-
placements to the parameters which simplify the model. For
example, in the SM the CKM matrix has non-zero matrix
elements, but it is sometimes useful to restrict a calculation
to a purely diagonal CKM matrix. Rather than creating a
new implementation of the SM with a diagonal CKM ma-
trix, a restriction can be created and used when desired. The
following statement restricts the SM to a diagonal CKM ma-
trix

CKM[i_, i_] :> 1,
CKM[i_, j_] :> 0 /; i != j,

When this restriction is applied, all vertices containing off
diagonal CKM elements vanish identically and are removed
before passing it on to a matrix-element generator. The result
is that these vertices never appear in Feynman diagrams and
the calculation is more efficient. Several restriction files can
be created corresponding to various different slices of pa-
rameter space. The user then selects the restriction file that
they are interested in and applies it to the model before run-
ning the translation interfaces.

3.2 Running FEYNRULES

After having loaded the FEYNRULES package into MATHE-
MATICA, the user can load the model and the model restric-
tions via the commands
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LoadModel[ < model file 1 > ,
< model file 2 > , ... ];

LoadRestriction[ < restriction file > ];

where the model can be implemented in as many files as
convenient or it can be implemented directly in the MATH-
EMATICA notebook in which case the list of files would be
empty. The restriction definitions can also be placed in a file
or directly in the MATHEMATICA notebook. The Lagrangian
can now be entered directly into the notebook4 using stan-
dard MATHEMATICA commands, augmented by some spe-
cial symbols representing specific objects like Dirac matri-
ces. As an example, we show the QCD Lagrangian,

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
+ I qbar . Ga[mu]. DC[q, mu];

where FS[G, mu, nu, a] and DC[q, mu] denote the
SU(3)C field strength tensors and covariant derivatives au-
tomatically defined by FEYNRULES. At this stage, the user
can perform a set of basic checks on the Lagrangian (her-
miticity, normalization of kinetic terms, . . . ), or directly pro-
ceed to the derivation of the Feynman rules via the command

verts = FeynmanRules[ L ];

FEYNRULES then computes all the interaction vertices asso-
ciated with the Lagrangian L and stores them in the variable
verts. The vertices can be used for further computations
within MATHEMATICA, or they can be exported to one of
the various matrix-element generators for further phenom-
enological studies of the model. The translation interfaces
can be directly called from within the notebook, e.g., for the
FEYNARTS interface,

WriteFeynArtsOutput[ L ];

This will produce a file formatted for use in FEYNARTS.
All other interfaces are called in a similar way. As already
mentioned, let us note that, even if FEYNRULES is not re-
stricted and can derive Feynman rules for any Lagrangian,
the matrix-element generators usually have some informa-
tion on the Lorentz and color structures hardcoded, and
therefore they are much more limited in the set of ver-
tices they can handle. Each matrix-element generator has its
own strengths, and in the FEYNRULES approach the same
model can be easily exported to various codes, exploiting
in this way the strength of each individual tool. In practice,
the interfaces check whether all the vertices are compliant
with the structures supported by the corresponding matrix-
element generator. If not, a warning is printed and the vertex
is discarded. Each interface produces at the end a (set of)

4Alternatively, the Lagrangian can also be included in the model file,
in which case it is directly loaded together with the model file.

text file(s), often consistently organized in a single direc-
tory, which can be read into the matrix-element generator at
runtime and allows to use the new model in a way similar
to all other built-in models. For more details on the various
interfaces, we refer to Sect. 4 and to the manual.

4 Interfaces

In this section we provide a concise description of the
FEYNRULES interfaces to several matrix-element gen-
erators and symbolic tools available to perform simu-
lations/calculations from Lagrangian-based theories. The
most important features of the general structure of the new
physics models in the codes and their limitations are empha-
sized. Complete description of the options and more techni-
cal details can be found in the FEYNRULES user’s manual,
available on the FEYNRULES website. Interfaces to other
codes, once available, will be included in the main release
of the package and documented in the user’s manual.

4.1 FEYNARTS/FORMCALC

FEYNARTS is a MATHEMATICA package for generating,
computing and visualizing Feynman diagrams, both at tree-
level and beyond [55]. For a given process in a specific
model, FEYNARTS starts by generating all the possible
topologies, taking into account the number of external legs
and internal loops associated to the considered case, together
with the set of constraints required by the user, such as the
exclusion of one-particle reducible topologies. This stage is
purely topological and does not require any physical input.
Based on a pre-defined library containing topologies with-
out any external leg for tree-level, one-loop, two-loop and
three-loop calculations, the algorithm successively adds the
desired number of external legs. Then, the particles present
in the model must be distributed over the obtained topolo-
gies in such a way that the resulting diagrams contain the
external fields corresponding to the considered process and
only vertices allowed by the model. Finally, a MATHEMAT-
ICA expression for the sum over all Feynman diagrams is
created.

The second step in the perturbative calculation consists in
the evaluation of the amplitudes generated by FEYNARTS.
This can be handled with the help of the MATHEMAT-
ICA package FORMCALC which simplifies the symbolic ex-
pressions previously obtained in such a way that the output
can be directly used in a numerical program [56]. FORM-
CALC first prepares an input file that is read by the program
FORM which performs most of the calculation [57–61]. The
Lorentz indices are contracted, the fermion traces are eval-
uated, the color structures are simplified using the SU(3)
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algebra, and the tensor reduction is performed.5 The results
are expressed in a compact form through abbreviations and
then read back into MATHEMATICA where they can be used
for further processing. This allows to combine the speed of
FORM with the powerful instruction set of MATHEMATICA.

4.1.1 Model framework

The FEYNARTS models have a very simple structure which
can be easily extended to include BSM models. In particu-
lar, the current distribution of FEYNARTS contains already
several models, including a complete implementation of the
Standard Model, as well as a Two-Higgs-Doublet Model and
a completely generic implementation of the Minimal Super-
symmetric Standard Model.

The FEYNARTS models are separated into two files:

• The generic model file: This file is not specific to any
model, but it contains the expressions for the propaga-
tors and the Lorentz structures of the vertices for generic
scalar, fermion and vector fields. Note that since this file
is not specific to any model, different BSM models can be
related to the same generic model file.

• The classes model file: This file is dedicated to a spe-
cific model, and contains the declarations of the parti-
cles and the analytic expressions of the couplings between
the different fields. This information is stored in the two
lists M$ClassesDescription for the particle decla-
rations and M$ClassesCouplings for the couplings.

FEYNARTS requires all the particles to be grouped into
classes, and as a consequence also all the classes couplings
must be given at the level of the particle classes. If this
is the case, the number of Feynman diagrams generated at
runtime is much smaller, which speeds up the code. Since
the FEYNRULES model files are an extension of the FEY-
NARTS classes model files, the explicit structure of the par-
ticle class definitions is very similar to the FEYNRULES par-
ticle classes discussed in Sect. 3.

4.1.2 FEYNRULES interface

FEYNRULES includes an interface that allows to out-
put the interaction vertices derived from the Lagrangian
as a FEYNARTS model file. Note however that at the
present stage only the classes model file is generated by
FEYNRULES, the generic model file is hardcoded. The
generic model file used by FEYNRULES generated models,
feynrules.gen, is included in the FEYNRULES distri-
bution in the Interfaces/FeynArts subdirectory and

5Let us note that, in order to function correctly, FORMCALC requires
the amplitude to be given in Feynman gauge.

needs to be copied once and for all into the Models di-
rectory of FEYNARTS. feynrules.gen is based on the
corresponding Lorentz.gen file included in FEYNARTS,
with some extensions to higher-dimensional scalar cou-
plings as those appearing in non-linear sigma models (see
Sect. 5.6).

The FEYNRULES interface to FEYNARTS can be called
within a MATHEMATICA notebook via the command

WriteFeynArtsOutput[ L ];

FEYNRULES then computes all the vertices associated with
the Lagrangian L, and checks whether they all have Lorentz
structures compatible with the generic couplings in the
generic coupling file, and if so, it extracts the corresponding
classes coupling. If not, a message is printed on the screen
and the vertex is discarded. At this point we should empha-
size that in order to obtain FEYNARTS couplings at the level
of the particle classes, it is necessary that the Lagrangian
is also given completely in terms of particle classes. If the
interface encounters a Lagrangian term which violates this
rule, it stops and redefines all the classes such that all parti-
cles live in their own class. It then starts over and recomputes
all the interaction vertices, this time for a Lagrangian where
all particle classes are expanded out explicitly. In this way a
consistent FEYNARTS model file is obtained which can be
used with FEYNARTS. It should however be noted that the
generation of the diagrams can be considerably slower in
this case, which makes it desirable to write the Lagrangian
in terms of particle classes whenever possible.

The model file produced by FEYNRULES has the usual
FEYNARTS structure. Besides the lists which contain the de-
finitions of the particle classes and the couplings, the FEYN-
RULES generated model files contain some more informa-
tion, which can be useful at various stages during the com-
putation:

-- M$ClassesDescription: This is in general a copy
of the corresponding list in the original FEYNRULES

model file.
-- M$ClassesCouplings: Each entry in the list repre-

sents a given interaction between the particle classes, to-
gether with the associated coupling constant, represented
by an alias gcxx, xx being an integer. Let us note that
currently FEYNRULES does not compute the countert-
erms necessary for loop calculations, and they should be
added by the user by hand.

-- M$FACouplings: A replacement list, containing the
definition of the couplings gcxx in terms of the para-
meters of the model.

Furthermore, several other replacement lists
(M$ExtParams, M$IntParams, M$Masses) are in-
cluded, containing the values of the parameters of the model,
as well as the masses and widths of all the particles.
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4.2 CALCHEP/COMPHEP

The CALCHEP [4, 6] and COMPHEP [4, 5] packages auto-
mate the tree-level Feynman diagram calculation and pro-
duction of partonic level collider events. Models with very
general Lorentz structures are allowed and general color
structures can be incorporated via auxiliary fields. Vertices
with more than four particles are not supported at this time.
In this subsection, we will describe the model file struc-
ture and how the FEYNRULES interface to CALCHEP and
COMPHEP works.

4.2.1 Model framework

Models in CALCHEP and COMPHEP are essentially com-
prised of four files:

• prtclsN.mdl: a list of all the particles in the model
along with information about the particles that is neces-
sary for calculation of Feynman diagrams.

• varsN.mdl: a list of the independent (external) parame-
ters in the model along with their numerical value.

• funcN.mdl: a list of the dependent (internal) parame-
ters of the model along with their functional definition.
These definitions can contain any standard mathematical
functions defined in the C code.

• lgrngN.mdl: a list of all the vertices in the model. It
includes the specification of the particles involved in the
vertex, an overall constant to multiply the vertex with and
the Lorentz form of the vertex.

Note that the letter N in the names of the files is an integer
which refers to the number of the model.

4.2.2 FEYNRULES interface

The CALCHEP/COMPHEP interface can be invoked with the
command

WriteCHOutput[ L ]

where L denotes the Lagrangian.
When invoked, this interface creates the directory

M$ModelName with -CH appended if it does not already
exist and then the files prtclsN.mdl, varsN.mdl,
funcN.mdl and lgrngN.mdl. Feynman rules with four
particles or less are generated and written to lgrngN.mdl.
The vertex list is simplified by renaming the vertex cou-
plings as x1, x2, x3, etc. and the definitions of these cou-
plings written in funcN.mdl along with the other internal
parameters.

Although CALCHEP and COMPHEP can calculate dia-
grams in both Feynman and unitary gauge, they are much
faster in Feynman gauge and it is highly recommended
to implement a new model in Feynman gauge. How-
ever, if a user decides to implement the model in unitary

gauge, he/she should remember that according to the way
CALCHEP/COMPHEP were written, the ghosts of the mass-
less non-Abelian gauge bosons must still be implemented.
In particular, the gluonic ghosts must be implemented in
either gauge for this interface.

One major constraint of the CALCHEP/COMPHEP sys-
tem is that the color structure is implicit. For many vertices
(e.g., quark-quark-gluon), this is not a problem. However,
for more complicated vertices, there may be an ambiguity.
For this reason, the writers of CALCHEP/COMPHEP chose
to split them up using auxiliary fields. Although this can be
done for very general vertices, it is not yet fully automa-
tized in FEYNRULES. Currently, only the gluon four-point
vertex and squark-squark-gluon-gluon vertices are automat-
ically split up in this way.

The model files are ready to be used and can be di-
rectly copied to the CALCHEP/COMPHEP model directo-
ries. The default format for this interface is the CALCHEP

format. A user can direct this interface to write the files in
the COMPHEP format by use of the CompHep option. The
user who writes COMPHEP model files should note one sub-
tlety. If the model is written to the COMPHEP directory and
if the user edits the model inside COMPHEP and tries to save
it, COMPHEP will complain about any C math library func-
tions in the model. Nevertheless, it does understand them.
We have checked that if the model works in CALCHEP, it
will work in COMPHEP and give the same results.

CALCHEP has the ability to calculate the widths of the
particles on the fly. By default, this interface will write
model files configured for automatic widths. This can be
turned off by setting the option CHAutoWidths to False.
This option is set to False if COMPHEP is set to True.

This interface also contains a set of functions that read
and write the external parameters from and to the CALCHEP

variable files (varsN.mdl). After loading the model into
FEYNRULES, the external parameters can be updated by
running

ReadCHExtVars[ Input -> < file > ]

This function accepts all the options of the CALCHEP inter-
face plus the option Input which instructs FEYNRULES

where to find the CALCHEP variable file. The default is
varsN.mdl in the current working directory. If reading a
COMPHEP variable file, then the option CompHep should
be set to true. After reading in the values of the variables in
the CALCHEP file, it will update the values in FEYNRULES

accordingly.
The current values of the external parameters in FEYN-

RULES can also be written to a CALCHEP external variable
file (varsN.mdl) using

WriteCHExtVars[ Output -> < file >]

This can be done to bypass writing out the entire model if
only the model parameters are changed.
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4.3 MADGRAPH/MADEVENT

The MADGRAPH/MADEVENT V4.4 software [7–10] al-
lows users to generate tree-level amplitudes and parton-level
events for any process (with up to nine external particles).
It uses the HELAS library [62, 63] to calculate matrix el-
ements using the helicity formalism in the unitary gauge.
Starting from version 4, users have the possibility to use
several pre-defined BSM models, including the most generic
Two-Higgs-Doublet Model and the Minimal Supersymmet-
ric Standard Model, but can also take advantage of the USR-
MOD interface to implement simple Standard Model exten-
sions.

The existing scheme for new model implementations in
MADGRAPH/MADEVENT has two major drawbacks. First,
users need to explicitly provide algebraic expressions for the
coupling used by MADGRAPH to calculate amplitudes. Sec-
ond, the first version of the USRMOD interface only works
for models extending the existing Standard Model by adding
a limited set of new particles and/or interactions. This ren-
ders difficult any attempt to modify existing BSM models,
or to generalize models previously implemented with this
method.

The current version of MADGRAPH relies on a new
clearly defined structure for all model libraries generated via
the corresponding interface to FEYNRULES, which gener-
ates all the required code files automatically. Finally, a new
version of the USRMOD scripts exists which can be used
complementary to FEYNRULES for simple extensions of
models relying on this structure. All these three new frame-
works are introduced and described in the present section.

4.3.1 Model framework

All model libraries supported in the latest versions of MAD-
GRAPH/MADEVENT now have the same structure. They are
composed of a set of text and FORTRAN files grouped in a
single directory, stored in the Models subdirectory of the
root MADGRAPH/MADEVENT installation:

• particles.dat: a text file containing a list of all par-
ticles entering the model and the corresponding properties
(name, spin, mass, width, color representation, PDG code,
. . . )

• param_card.dat: a text file containing the numerical
values of the necessary external parameters for a specific
model. The parameter card has a format compliant with
the SUSY Les Houches Accord (SLHA) and is depen-
dent on the physics model. One should pay attention to the
fact that some of these parameters are related one to each
other (e.g., the masses and the widths are generally related
to more fundamental Lagrangian parameters). If possible,
this file should also contain (preferably at the end) a list of
Les Houches QNUMBERS blocks describing properties

of non-SM particles to facilitate the interface of matrix-
element and parton-shower based generators, as proposed
in [64].

• intparam_definition.inc: a text file containing
all the algebraic expressions relating internal parameters
to external and/or internal parameters. There are two dif-
ferent kinds of internal parameters. Indeed, most of the
expressions can be computed once and for all, but in some
cases where the parameter depends on the scale of the
process (e.g., the strong coupling constant), it might be
desirable to re-evaluate it at an event-by-event basis.

• interactions.dat: a text file containing a list of all
interactions entering the model. Each interaction is char-
acterized by an ordered list of the involved particles, the
name of the corresponding coupling, the corresponding
type of coupling (for coupling order restrictions) and pos-
sible additional switches to select particular HELAS rou-
tines.

• couplingsXX.f (where XX can be any integer num-
ber): these files contain the algebraic expressions for the
couplings, expressed as FORTRAN formulas. By conven-
tion, the file couplings1.f contains all expressions
which should be re-evaluated when an external parameter
(e.g., the renormalization scale) is modified on an event-
by-event basis. The files couplingsXX.f where XX
is greater than 1 contain all expressions which should be
only re-evaluated if the default external parameter values
are explicitly read from the LHA param_card.dat
parameter card. The actual number of these files may
vary, but a single file should be small enough to be com-
piled using standard FORTRAN compilers. The full list of
these files should be included in the makefile through the
makeinc.inc include file.

• input.inc and coupl.inc: FORTRAN files contain-
ing all the necessary variable declarations. All parameters
and couplings can be printed on screen or written to file
using the routines defined in param_write.inc and
coupl_ write.inc, respectively. If needed, the lat-
ter can also be printed in a stricter format using routines
defined in helas_ couplings.f, so they can be used
by external tools (e.g., BRIDGE [65]).

Additional FORTRAN files, which are not model dependent,
should also be provided in order to build the full library.
Most of them simply include one or more of the above files,
except lha_read.f which contains all the routines re-
quired to read the LHA format. A makefile allows the
user to easily compile the whole package, to produce a li-
brary or a test program called testprog which can be
used to quickly check the library behavior by producing a
standard output.

The USRMOD V2 framework

The USRMOD V2 framework has been designed as
the successor of the widely-used original USRMOD tem-
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plate described in [9]. Taking advantage of the fixed struc-
ture that we have just defined, it provides the user with
two new possibilities. First, any pre-existing model can
be used as a starting point. This of course includes all
models described in the present paper and soon part of
the MADGRAPH/MADEVENT distribution, but also all fu-
ture models. This gives a natural framework for building
simple extensions following a bottom-up approach, i.e.,
by adding successively new particles and new interactions
and testing their implications at each step. Second, the
possible modifications are no longer restricted to the ad-
dition of new particles/interactions, but any alteration of
the model content (including particle removal, modifica-
tion of existing properties, . . . ) allowed in the context of
MADGRAPH/MADEVENT is supported in an user-friendly
way.

The USRMOD V2 approach can advantageously replace
the full FEYNRULES package when only minor modifica-
tions to an existing MADGRAPH/MADEVENT model are
necessary, e.g., in order to study the phenomenology of a
specific new particle and/or interaction, or when the use of
the FEYNRULES machinery is not possible, e.g., if a MATH-
EMATICA license is not available. However, when possible,
we believe the use of FEYNRULES should be favored over
the USRMOD V2 for the consistent implementation of full
new models in MADGRAPH/MADEVENT, especially due to
the extended validation possibilities available in this con-
text.

From the implementation point of view, the USRMOD V2
package consists in various PYTHON scripts (with one single
main script) and works on any platform offering support for
this programming language. The actual implementation of a
new model is decomposed into four distinct phases:

1. Saving: the model directory used as a starting point
should be copied to a new location. The USRMOD script
should be run a first time to create a content archive used
as a reference to identify the forthcoming modifications.

2. Modifying: the particles.dat, interactions.
dat and ident_card.dat files can be modified to
arbitrarily add, remove or modify the particle, interaction
and parameter content.

3. Creating: the USRMOD script should be then run a second
time to actually modify all the model files to consistently
reflect the changes applied in the previous phase.

4. Adjusting: the couplingsXX.f file(s) can finally be
edited, if necessary, to add or modify the relevant cou-
pling expressions. The param_card.dat file can also
be edited to modify default values of external parameters.

At any time, the archive file created during the first phase
can be used to restore the initial content of all model files.
Several archive files can also be simultaneously saved into
the same directory to reflect, for example, the successive ver-
sions of a single model. Finally, the intrinsic structure of the

USRMOD V2 package favors various technical (not phys-
ical) consistency checks in the output files to minimize as
much as possible the compilation and runtime errors.

4.3.2 FEYNRULES interface

The MADGRAPH/MADEVENT interface can be called from
the FEYNRULES package using the

WriteMGOutput[ L ]

routine described in the FEYNRULES documentation, where
L is the name of the model Lagrangian. Since MAD-
GRAPH/MADEVENT currently only supports calculations
in unitary gauge, all the Goldstone and ghost fields are
discarded in the particles.dat output, which is di-
rectly generated from the model description. After ex-
panding all possible field indices (e.g., associated to fla-
vor), an exhaustive list of non-zero vertices is generated
and output as interactions.dat. If possible, the rel-
evant coupling is extracted and, in case it does not al-
ready exist, stored in a new coupling variable of the form
MGVXXX in a couplingsXX.f file. All the other re-
quired model-dependent files are finally generated, in-
cluding the param_card.dat where the default values
(which are also the default values for the reading routines
in param_read.inc) are set as specified in the FEYN-
RULES model file, and where the QNUMBERS blocks cor-
rectly reflect the new particle content. All the produced files,
together with the relevant model independent files are stored
in a local directory model_name_MG, ready to be used
in MADGRAPH/MADEVENT. As mentioned previously, the
testprog test program can be compiled and run to check
the consistency of the created library.

The two main restrictions of the MADGRAPH/
MADEVENT interface are related to the allowed Lorentz and
color structures of the vertices. As already mentioned, even
though FEYNRULES itself can deal with basically any inter-
action involving scalars, fermions, vectors and spin-two ten-
sors, the HELAS library, used by MADGRAPH/MADEVENT

to build and evaluate amplitudes, is more restricted. In the
case no correspondence is found for a specific interaction,
a warning message is displayed by the interface and the cor-
responding vertex is discarded. If this particular vertex is
required for a given application, the user has still the possi-
bility to implement it manually following the HELAS library
conventions and to slightly modify the interface files to deal
with this addition. When the vertex structure is not present in
MADGRAPH/MADEVENT, a more involved manual modi-
fication of the code is also required. The second limitation
of the present interface comes from the fact that the color
factor calculations are currently hardcoded internally within
MADGRAPH. While FEYNRULES can deal with fields in
any representation of the QCD color group, MADGRAPH
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itself is basically limited to the color representations appear-
ing in the Standard Model and the Minimal Supersymmetric
Standard Model, e.g., a color sextet is not supported.

Let us mention that work to alleviate both limitations is
already in progress. The FEYNRULES package could, for
example, be used to generate automatically missing HELAS

routines, while a more open version of the MADGRAPH

matrix-element generator, e.g., taking advantage of a high-
level programming environment, could advantageously deal
with arbitrary color structures

4.4 SHERPA

SHERPA [11, 12] is a general-purpose Monte Carlo event
generator aiming at the complete simulation of physical
events at lepton and hadron colliders. It is entirely written
in C++ featuring a modular structure where dedicated mod-
ules encapsulate the simulation of certain physical aspects
of the collisions.

The central part is formed by the hard interaction, de-
scribed using perturbative methods. The respective gen-
erator for matrix elements and phase-space integration is
AMEGIC++ [66], which employs the spinor helicity for-
malism [67, 68] in a fully automated approach to gener-
ate processes for a variety of implemented physics models,
see Sec. 4.4.1. Phase-space integration is accomplished us-
ing self-adaptive Monte Carlo integration methods [69–72].
Note that since version SHERPA-1.2 features a second
matrix-element generator called COMIX [16]. However, at
present COMIX is restricted to Standard Model processes
and does not yet support inputs from FEYNRULES.

The QCD evolution of partons originating from the hard
interaction down to the hadronization scale is simulated by
a parton-shower algorithm based on Catani–Seymour di-
pole subtraction [73]. It accounts for parton emissions off
all colored particles present in the Standard Model and the
Minimal Supersymmetric Standard Model. This shower al-
gorithm, replacing SHERPA’s old APACIC++ shower [74],
accounts for QCD coherence and kinematic effects in a
way consistent with NLO subtraction schemes and is well
suited to accomplish the merging of leading and next-to-
leading order matrix-element calculations with parton show-
ers [37, 75, 76].

An important aspect of SHERPA is its implementa-
tion of a generalized version of the CKKW algorithm for
merging higher-order matrix elements and parton showers
[31, 32, 37]. It has been validated in a variety of processes
[40, 77–80] and proved to yield reliable results in compari-
son with other generators [38, 39].

SHERPA features an implementation of the model for
multiple-parton interactions presented in [81], which was
modified to allow for merging with hard processes of
arbitrary final-state multiplicity and eventually including

Fig. 2 Schematic view of the SHERPA’s MODEL module, hosting the
particle and parameter definitions of physics models as well as corre-
sponding interaction vertices

CKKW merging [82]. Furthermore SHERPA provides an
implementation of a cluster-fragmentation model [83],
a hadron and tau decay package including the simulation
of mixing effects for neutral mesons [84], and an implemen-
tation of the YFS formalism to simulate soft-photon radia-
tion [85].

4.4.1 Model framework

Physics model definitions within SHERPA are hosted by the
module MODEL. Here the particle content and the parame-
ters of any model get defined and are made accessible for use
within the SHERPA framework. This task is accomplished
by instances of the basic class Model_Base. Furthermore
the interaction vertices of various models are defined here
that in turn can be used by AMEGIC++ to construct Feyn-
man diagrams and corresponding helicity amplitudes.6 The
corresponding base class from which all interaction models
are derived is called Interaction_Model. A schematic
overview of the MODEL module is given in Fig. 2.

The list of currently implemented physics models reads:
the Standard Model including effective couplings of the
Higgs boson to gluons and photons [86], an extension of
the SM by a general set of anomalous triple- and quartic
gauge couplings [87, 88], the extension of the SM through
a single complex scalar [89], the extension of the Standard
Model by a fourth lepton generation, the SM plus an ax-
igluon [90], the Two-Higgs-Doublet Model, the Minimal
Supersymmetric Standard Model, and the Arkani-Hamed-
Dimopoulos-Dvali (ADD) model of large extra dimensions
[91, 92], for details see [12]. Besides routines to set up the
spectra and Feynman rules of the models listed above cor-
responding helicity-amplitude building blocks are provided
within AMEGIC++ that enable the evaluation of production
and decay processes within the supported models. In partic-
ular this includes all the generic three- and four-point inter-
actions of scalar, fermionic and vector particles present in

6Note that within SHERPA Feynman rules are always considered in
unitary gauge.
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the SM and Minimal Supersymmetric Standard Model plus
the effective operators for the loop-induced Higgs couplings
and the anomalous gauge couplings. The implementation of
the ADD model necessitated the extension of the helicity
formalism to interaction vertices involving spin-two parti-
cles [93].

A necessary ingredient when dealing with the Minimal
Supersymmetric Standard Model are specific Feynman rules
for Majorana fermions or fermion number violating inter-
actions. To unambiguously fix the relative signs amongst
Feynman diagrams involving Majorana spinors the algo-
rithm described in [94] is used. Accordingly, the explicit
occurrence of charge-conjugation matrices in the Feyn-
man rules is avoided and instead a generalized fermion
flow is employed that assigns an orientation to complete
fermion chains. This uniquely determines the external
spinors, fermion propagators and interaction vertices involv-
ing fermions.

The implementation of new models in SHERPA in the tra-
ditional way is rather straight-forward and besides the public
model implementations shipped with the SHERPA code there
exist further private implementations that were used for phe-
nomenological studies, cf. [95–97]. From version SHERPA-
1.2 onwards SHERPA supports model implementations from
FEYNRULES outputs—facilitating the incorporation of new
models in SHERPA further.

4.4.2 FEYNRULES interface

To generate FEYNRULES output to be read by SHERPA, the
tailor-made FEYNRULES routine

WriteSHOutput[ L ]

has to be called, resulting in a set of ASCII files that rep-
resent the considered model through its particle data, model
parameters and interaction vertices.7

To allow for an on-the-flight model implementation from
the FEYNRULES outputs, instances of the two basic classes
Model_Base and Interaction_Model_Base are
provided dealing with the proper initialization of all the par-
ticles and parameters, and the interaction vertices of the new
model, respectively. The actual C++ classes for these tasks
are called FeynRules_Model and Interaction_
Model_FeynRules, see Fig. 2.

The master switch to use a FEYNRULES generated model
within SHERPA is

MODEL = FeynRules

to be set either in the (model) section of the SHERPA run
card or on the command line once the SHERPA executable
is called. Furthermore the keywords FR_PARTICLES,

7Note again that Feynman rules have to be considered in unitary gauge.

FR_IDENTFILE, FR_PARAMCARD, FR_PARAMDEF and
FR_INTERACTIONS, specifying the names of correspond-
ing input files, need to be set. The actual format and assumed
default names of these input cards will be discussed in the
following:

• FR_PARTICLES specifies the name of the input file list-
ing all the particles of the theory including their SM
quantum numbers and default values for their masses and
widths, default name is Particle.dat. An actual par-
ticle definition, e.g., for the gluon, looks like

kf Mass Width 3*e Y SU(3) 2*Spin
21 0. .0 0 0 8 2

maj on stbl m_on IDName TeXName
-1 1 1 0 G G

Hereby kf defines the code the particle is referred to in-
ternally and externally, typically its PDG number [54].
The values for Mass and Width need to be given in units
of GeV. The columns 3*e and Y specify three times the
electric charge and twice the weak-isospin. SU(3) de-
fines if the particle acts as a singlet (0), triplet (3) or
octet (8) under SU(3)C . 2*Spin gives twice the parti-
cle’s spin and maj indicates if the particle is charged (0),
self-adjoint (-1) or a Majorana fermion (1). The flags
on, stbl and m_on are internal basically and define
if a particle is considered/excluded, considered stable,
and if its kinematical mass is taken into account in the
matrix-element evaluation. IDName and TeXName indi-
cate names used for screen outputs and potential LATEX
outputs, respectively.

• In FR_IDENTFILE all the external parameters of the
model get defined, default file name is ident_card.
dat. Names and counters of corresponding parameter
blocks to be read from FR_PARAMCARD are listed and
completed by the actual variable names and their numer-
ical types, i.e., real R or complex C. Besides, variable
names for all particle masses and widths are defined here.
To give an example, the section defining the electroweak
inputs of the SM may look like

SMINPUTS 1 aEWM1 R
SMINPUTS 2 Gf R
SMINPUTS 3 aS R
CKMBLOCK 1 cabi R

• In the file specified through FR_PARAMCARD the numer-
ical values of all elementary parameters, particle masses
and decay widths are given, default file is param_card.
dat. Following the example above the electroweak inputs
of the SM can be set through:
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Block SMINPUTS
1 1.2790000000000E+02 # aEWM1
2 1.1663900000000E-05 # Gf
3 1.1800000000000E-01 # aS

Block CKMBLOCK
1 2.2773600000000E-01 # cabi

• FR_PARAMDEF gives the file name where all sorts
of internal parameters are defined, default param_
definition.dat. Such variables can be functions of
the external parameters and subsequently other derived
quantities. A few examples for the case of the SM again
might read:

aEW = pow(aEWM1,-1.) R
! Electroweak coupling constant

G = 2.*sqrt(aS)*sqrt(M_PI) R
! Strong coupling constant

CKM11 = cos(cabi) C
! CKM-Matrix ( CKM11 )

The parameter definitions get interpreted using an in-
ternal algebra interpreter, no additional compilation is
needed for this task. All standard C++ mathematical func-
tions are supported, e.g., sqr, log, exp, abs. For
complex valued parameters, e.g., CKM11, the real and
imaginary part can be accessed through Real(CKM11)
and Imag(CKM11), the complex conjugate is obtained
through Conjugate(CKM11).

• The keyword FR_INTERACTIONS (Interactions.
dat) specifies the input file containing all the vertices of
the considered model in a very simple format:

VERTEX 21 21 21 # G G G
1 G # right-handed coupling
2 G # left-handed coupling
3 F[1,2,3] # colour structure
4 Gauge3 # Lorentz structure

The keyword VERTEX signals the start of a new Feyn-
man rule followed by the PDG codes of the involved parti-
cles. Note, the first particle is always considered incoming
the others outgoing. Counters number 1 and 2 indicate the
right and left-handed coupling of the vertex rule, the right
and left-hand projector being given by PR/L = 1

2 (1±γ5),
respectively. Couplings are given in terms of the elemen-
tary and derived parameters. Counter number 3 explic-
itly gives the color structure of the interaction in terms
of the SU(3)C structure constants or generators. The spin
structure of the vertex is given under 4, identified through
a keyword used by SHERPA to relate a corresponding
sub-amplitude to the correct helicity-amplitude building
block.

SHERPA’s interface to FEYNRULES is designed to be as
general as possible, it is, however, by construction restricted

in two ways. First, the functional form of the model pa-
rameters, and respectively the couplings, is limited by the
capabilities of the algebra interpreter that has to construct
them. This limitation, however, might be overcome by using
an external code to calculate the needed variables and re-
defining them as external giving their numerical values in
FR_PARAMCARD. Second, a more severe limitation orig-
inates from the restricted ability of SHERPA/AMEGIC++
to handle new types of interactions. Only three and four-
point functions can be incorporated. For the color structures
only the SU(3)C objects 1, δij , δab, T

a
ij , f

abc and products

of those, e.g., f abcf cde , are supported. Lorentz structures
not present in the SM or the Minimal Supersymmetric Stan-
dard Model are currently not supported by the interface. Fur-
thermore, SHERPA cannot handle spin-3/2 particles. QCD
parton showers are only invoked for the colored particles
present in the SM and the Minimal Supersymmetric Stan-
dard Model. Hadronization of new colored states is not ac-
complished, they have to be decayed before entering the
stage of primary hadron generation.

5 Models

In this section we briefly present the implementation of the
Standard Model and several other important New Physics
models in FEYNRULES. Our aim is to show that very
complete and sophisticated implementations are possible
and that FEYNRULES offers a very natural and conve-
nient framework where models can be first developed (from
the theoretical point of view) and then tested/constrained
against experimental data. Since the main focus is the imple-
mentation procedure, the actual model descriptions, as well
as the information about values of parameters, are kept to
a minimum. More exhaustive information about each of the
following models, all of which are publicly available, can be
found on the FEYNRULES website.

5.1 The standard model

5.1.1 Model description

As it serves as basis to any new bottom-up implementa-
tion, we briefly describe here the Standard Model imple-
mentation. The SM of particle physics is described by an
SU(3)C × SU(2)L × U(1)Y gauge theory, where the elec-
troweak symmetry is spontaneously broken so that the fun-
damental fermions and the weak gauge bosons acquire a
mass. The particle content of the SM is summarized in Ta-
ble 4. The Lagrangian can be written as a sum of four parts,

LSM = LSM,Gauge + LSM,Fermions + LSM,Higgs + LSM,Yukawa.

(16)
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Table 4 The SM fields and their representations under the Standard
Model gauge groups SU(3)C × SU(2)L × U(1)Y

Particle Spin Representations

L0
i = (ν0

iL, l0
iL)T 1/2 (1,2,−1/2)

Q0
i = (u0

iL, d0
iL)T 1/2 (3,2,1/6)

l0
iR 1/2 (1,1,−1)

u0
iR 1/2 (3,1,2/3)

d0
iR 1/2 (3,1,−1/3)

Φ 0 (1,2,1/2)

Bμ 1 (1,1,0)

Wi
μ 1 (1,3,0)

Ga
μ 1 (8,1,0)

The pure gauge sector of the theory reads

LSM,Gauge = −1

4
Ga

μνG
μν
a − 1

4
Wi

μνW
μν
i − 1

4
BμνB

μν, (17)

where the SM field strength tensors are defined following
the conventions introduced in (4). The Lagrangian describ-
ing the matter fermions can be written as

LSM,Fermions = Q̄0
i i /DQ0

i + L̄0
i i /DL0

i + ū0
Rii /Du0

Ri

+ d̄0
Rii /Dd0

Ri + l̄0
Rii /Dl0

Ri, (18)

where Dμ denotes the SU(3)C ×SU(2)L ×U(1)Y covariant
derivative, and we use the conventions of (3). The super-
script 0 refers to the gauge eigenstates. Note in particular
that explicit mass terms for the matter fermions are forbid-
den by gauge symmetry. The Higgs field is described by the
Lagrangian

LSM,Higgs = DμΦ†DμΦ − μ2Φ†Φ − λ
(
Φ†Φ

)2
. (19)

If μ2 < 0, then the Higgs field acquires a vacuum expec-
tation value that breaks the electroweak symmetry sponta-
neously. Expanding the Higgs field around its vev,

Φ = 1√
2

( −i
√

2φ+
v + H + iφ0

)
, (20)

we generate mass terms for the Higgs boson H and the elec-
troweak gauge fields. The mass eigenstates for the gauge
bosons are the W and Z bosons, as well as the photon, which
remains massless. The relations between those fields and the
original SU(2)L × U(1)Y gauge fields are

W±
μ = 1√

2

(
W 1

μ ∓ iW 2
μ

)
,

(
Zμ

Aμ

)
=
(

cw −sw
sw cw

)(
W 3

μ

Bμ

)
,

(21)

where we have introduced the weak mixing angle

cw ≡ cos θw = MW

MZ

. (22)

The interactions between the fermions and the Higgs field
are described by the Yukawa interactions

LSM,Yukawa = −ū0
iRyu

ijQ
0
j Φ̃ − d̄0

iRyd
ijQ

0
jΦ

− l̄0
iRyl

ijL
0
jΦ + h.c., (23)

where Φ̃ = iσ 2Φ∗. After electroweak symmetry breaking
the Yukawa interactions generate non-diagonal mass terms
for the fermions that need to be diagonalized by unitary ro-
tations on the left and right-handed fields. Since there is no
right-handed neutrino, we can always rotate the leptons such
that the mass matrix for the charged leptons becomes diago-
nal and lepton flavor is still conserved. For the quarks how-
ever, the diagonalization of the mass matrices introduces fla-
vor mixing in the charged current interactions, described by
the well-known CKM matrix.

5.1.2 FEYNRULES implementation

The SM implementation in FEYNRULES is divided into the
four Lagrangians described in the previous section. In par-
ticular, one can use the dedicated functions for the field
strength tensors and the covariant derivative acting on the
left and right-handed fermions. Matrix-element generators
however need as an input the mass eigenstates of the par-
ticles, and therefore it is mandatory to rotate all the gauge
eigenstates into mass eigenstates according to the prescrip-
tions discussed in the previous section. This can be done
very easily in FEYNRULES by writing the Lagrangian in the
gauge eigenbasis, and then letting FEYNRULES perform the
rotation into the mass eigenstates (note, at this point, that
FEYNRULES does not diagonalize the mass matrices au-
tomatically, but this information has to be provided by the
user). However, as the SM Lagrangian is the starting point
for many bottom up extensions, the actual implementation
was performed directly in terms of the fermion mass eigen-
states. The benefit is a slight speed gain due to the rotations
in the fermion sector. The default values of the external pa-
rameters in the model file are given in Table 7, in Appen-
dix B.1.

Three restriction files for the SM implementation are pro-
vided with the default model distribution:

• Massless.rst: the electron and the muon, as well as
the light quarks (u, d , s) are massless.

• DiagonalCKM.rst: the CKM matrix is diagonal.
• Cabibbo.rst: the CKM matrix only contains Cabibbo

mixing.
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Another particularity of the SM implementation is that
it was performed both in unitary and in Feynman gauge.
The model file contains a switch FeynmanGauge, which,
if turned to False, puts to zero all the terms involving ghost
and Goldstone fields. The default value is False.

Possible extensions The SM is at the basis of almost all
BSM models, and thus the number of possible extensions
of the SM implementation is basically unlimited. A first ex-
tension of this model was presented in Sect. 2 with the HAH
model, based on the simplest possible extension of the gauge
sector of the SM. Other possibilities are the addition of
higher-dimensional operators compatible with the SM sym-
metries (see Sect. 5.6) or the inclusion of right-handed neu-
trinos via see-saw models.

5.2 The general Two-Higgs-Doublet Model

The Two-Higgs-Doublet Model (2HDM) has been exten-
sively studied for more than twenty years, even though
it has often been only considered as the scalar sector
of some larger model, like the Minimal Supersymmetric
Standard Model or some Little Higgs models for exam-
ple. The general 2HDM considered here already displays,
by itself, an interesting phenomenology that justifies its
study. For example, new sources of CP violation in scalar-
scalar interactions, tree-level flavor changing neutral cur-
rents (FCNC’s) due to non-diagonal Yukawa interactions,
or a light pseudoscalar state and unusual Higgs decays
(see [98]).

5.2.1 Model description

The 2HDM considered here is based on two SU(2)L doublet
scalar fields φ1 and φ2 with the same hypercharge Y = + 1

2 .
Imposing only gauge invariance, the most general renormal-
izable Lagrangian is composed of four parts,

L2HDM = L2HDM,Gauge + L2HDM,Fermions + L2HDM,Higgs

+ L2HDM,Yukawa. (24)

The gauge and fermion sectors of the model are identical to
the SM,

L2HDM,Gauge = LSM,Gauge and

L2HDM,Fermions = LSM,Fermions.
(25)

The Lagrangian of the Higgs sector differs from the SM, and
can be written

L2HDM,Higgs = Dμφ
†
1Dμφ1 + Dμφ

†
2Dμφ2 − V (φ1, φ2),

(26)

and the scalar potential reads, in the notation of [99],

V (φ1, φ2) = μ1φ
†
1φ1 + μ2φ

†
2φ2 + (

μ3φ
†
1φ2 + h.c.

)
+ λ1

(
φ

†
1φ1

)2 +λ2
(
φ

†
2φ2

)2 +λ3
(
φ

†
1φ1

)(
φ

†
2φ2

)
+ λ4

(
φ

†
1φ2

)(
φ

†
2φ1

)+ [(
λ5φ

†
1φ2 + λ6φ

†
1φ1

+ λ7φ
†
2φ2

)(
φ

†
1φ2

)+ h.c.
]
, (27)

where μ1,2 and λ1,2,3,4 are real parameters while μ3 and
λ5,6,7 are a priori complex. We assume that the electromag-
netic gauge symmetry is preserved, i.e., that the vevs of φ1

and φ2 are aligned in the SU(2)L space in such a way that a
single SU(2)L gauge transformation suffices to rotate them
both to their neutral components,

〈φ1〉 = 1√
2

(
0
v1

)
and 〈φ2〉 = 1√

2

(
0

v2e
iθ

)
, (28)

with v1 and v2 two real parameters such that v2
1 +v2

2 ≡ v2 =
(
√

2GF )−1 and v2/v1 ≡ tanβ .
The most general form for the Yukawa interactions of the

two doublets reads

L2HDM,Yukawa = −QL

√
2

v

[
(Δdφ1 + Γdφ2)dR

+ (
Δuφ̃1 + Γuφ̃2

)
uR

]

− EL

√
2

v

[
(Δeφ1 + Γeφ2)eR

]
, (29)

with φ̃i ≡ iσ 2φ∗
i and where the 3 × 3 complex Yukawa cou-

pling matrices Δi and Γi are expressed in the fermion phys-
ical basis, i.e., in the basis where the fermion mass matrices
are diagonal. We choose as free parameters the Γi matrices,
while the other Yukawa couplings, the Δi matrices, are de-
duced from the matching with the observed fermion masses.
Conventionally, the two indices a and b of the elements of
the Yukawa matrices (Γi)ab and (Δi)ab refer to the genera-
tions of the SU(2)L doublet and singlet, respectively.

5.2.2 FEYNRULES implementation

The 2HDM Lagrangian implemented in FEYNRULES is
composed of (27) and (29), together with the canonically
normalized kinetic energy terms for the two doublets and
the other SM terms. An important feature of this model is
the freedom to redefine the two scalar fields φ1 and φ2 using
arbitrary U(2) transformations

(
φ1

φ2

)
→

(
H1

H2

)
≡ U

(
φ1

φ2

)
, U ∈ U(2) (30)

since this transformation leaves the gauge-covariant kinetic
energy terms invariant. This notion of basis invariance has
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been emphasized in [99] and considered in great detail more
recently in [100–102]. Since a given set of Lagrangian pa-
rameter values is only meaningful for a given basis, let us
take advantage of this invariance property to select the Higgs
basis (by defining the additional file HiggsBasis.fr)
where only one of the two Higgs fields acquires a non-zero
vev, i.e.,

〈
H 0

1

〉= v√
2

and
〈
H 0

2

〉= 0. (31)

Let us note that the Higgs basis is not defined unambigously
since the reparametrization H2 → eiαH2 leaves the condi-
tion (31) invariant, so that the phase of H2 can be fixed in
such a way that λ5 becomes real. Other basis choices can in
principle be easily implemented as different extension files
for the main Lagrangian file Lag.fr.

The minimization conditions for the potential of (27) read
(in the basis defined in (31))

μ1 = −λ1v
2,

μ3 = −λ6
v2

2
,

(32)

which reduces the number of free parameters in the most
general 2HDM to ten (seven real parameters, three com-
plex ones and three minimization conditions). Besides the
usual three massless would-be Goldstone bosons, the phys-
ical spectrum contains a pair of charged Higgs bosons with
mass

m2
H± = λ3v

2

2
+ μ2, (33)

and three neutral states with the squared mass matrix

M2 =

⎛
⎜⎜⎜⎝

2λ1v
2 Re(λ6)v

2 −Im(λ6)v
2

Re(λ6v
2) m2

H± + (λ4/2 + λ5)v
2 0

−Im(λ6)v
2 0 m2

H± + (λ4/2 − λ5)v
2

⎞
⎟⎟⎟⎠ .

(34)

The symmetric matrix M is diagonalized by an orthogonal
matrix T . The diagonalization yields masses mi for the three
physical neutral scalars Si of the model (where the index i

refers to mass ordering),

M2 ≡ T diag
(
m2

1,m
2
2,m

2
3

)
T T . (35)

The doublet components are related to these physical states
through

⎛
⎜⎝

Re(H 0
1 )

Re(H 0
2 )

Im(H 0
2 )

⎞
⎟⎠= T√

2

⎛
⎜⎝

S1

S2

S3

⎞
⎟⎠ . (36)

The Yukawa couplings of the model are fully determined by
the Γi matrices in (29), since the Δi are, by definition, fixed
to the diagonal fermion mass matrices in the Higgs basis.

In the current implementation of the 2HDM into FEYN-
RULES, the user has to provide numerical values for all the
λi parameters in the basis of (31), together with the charged
Higgs mass mH± . The other parameters of the potential,
such as the μi , are then deduced using (32) and (33). As
a consequence, the orthogonal matrix T must be calculated
externally. This, together with the change of basis required if
the user wants to provide potential parameters and Yukawa
coupling values in bases different from this of (31), can
be done using the TWOHIGGSCALC calculator introduced
in [9] which has been modified to produce a parameter file
compatible with the present implementation. This calcula-
tor can also be used to calculate the required Higgs boson
tree-level decay widths.

5.3 The most general minimal supersymmetric standard
model

Most present supersymmetric models are based on the four-
dimensional supersymmetric field theory of Wess and Zu-
mino [103]. The simplest model is the straightforward su-
persymmetrization of the Standard Model, with the same
gauge interactions, including R-parity conservation, and is
called the MSSM [104, 105]. Its main features are to link
bosons with fermions and unify internal and external sym-
metries. Moreover, it allows for a stabilization of the gap
between the Planck and the electroweak scale and for gauge
coupling unification at high energies, provides the light-
est supersymmetric particle as a dark matter candidate and
appears naturally in string theories. However, since super-
symmetric particles have not yet been discovered, super-
symmetry must be broken at low energies, which makes the
superpartners heavy in comparison to their Standard Model
counterparts.

Supersymmetric phenomenology at colliders has been
extensively investigated for basic processes at leading order
[106–117] and next-to-leading order [118–124] of perturba-
tive QCD. More recently, for some processes, soft-gluon
radiation has been resummed to all orders in the strong
coupling constant and the results have been matched with
the next-to-leading order calculations [125–130]. However,
even if those calculations are useful for inclusive enough
analyses, they are not suitable if we are interested in a proper
description of the full collider environment, for which
Monte Carlo event generators are needed. For a couple of
years, all the multi-purpose generators already mentioned
contain a built-in version of the MSSM. The model files
for FEYNARTS/FORMCALC are described in [131, 132],
for CALCHEP in [133], for MADGRAPH/MADEVENT in
[134], and for SHERPA in [135]. The SHERPA and FEYN-
ARTS/FORMCALC implementations keep generic mixing in
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Table 5 The MSSM fields and
their representations under the
Standard Model gauge groups
SU(3)C × SU(2)L × U(1)Y .
The quarks and leptons are
denoted in terms of
two-component Weyl spinors

Name Particle spin Superpartner spin Representations

(s)quarks (χuiχdi)
T 1/2 (ũ0

Li d̃
0
Li)

T 0 (3,2,1/6)

χūi 1/2 ũ
0i†
R 0 (3̄,1,−2/3)

χd̄i 1/2 d̃
0i†
R 0 (3̄,1,1/3)

(s)leptons (χνiχli )
T 1/2 (ν̃0

i l̃0
Li)

T 0 (1,2,−1/2)

χl̄i 1/2 l̃
0i†
R 0 (1,1,1)

Higgs(inos) (H+
u H 0

u )T 0 (ψH+
u

ψH 0
u
)T 1/2 (1,2,1/2)

(H 0
d H−

d )T 0 (ψH 0
d
ψH−

d
)T 1/2 (1,2,−1/2)

B-boson, bino B0 1 ψB 1/2 (1,1,0)

W -bosons, winos (W 1W 2W 3)T 1 (ψW 1ψW 2ψW 3 )T 1/2 (1,3,0)

gluon, gluino g 1 ψg 1/2 (8,1,0)

the scalar sector while the other generators rely on a sim-
plified model with only helicity mixing for third generation
sfermions.

Our MSSM implementation in FEYNRULES is the most
general one in a sense that it is keeping all the flavor-
violating and helicity-mixing terms in the Lagrangian and
also all the possible additional CP-violating phases. This
yields thus 105 new free parameters [136], and in order to
deal in a transparent way with all of those, our implementa-
tion will follow the commonly used universal set of conven-
tions provided by the Supersymmetry Les Houches Accord
(SLHA) [137, 138], except for some minor points. We will
dedicate a complementary paper to a complete description
of the model [139].

5.3.1 Model description

Field content Each of the Standard Model quarks and lep-
tons is represented by a four-component Dirac spinor f 0

i ,
where i stands for the generation index and the super-
script 0 denotes interaction eigenstates. It has two associated
scalar superpartners, the sfermion f̃ 0

Li and the antisfermion

f̃
0i†
R , being related to the two-component holomorphic Weyl

fermion χf i and antifermion χf̄ i , respectively. Let us recall
that we relate the Dirac fermion representations to the Weyl
ones by

f 0
i =

(
χf i

χ̄f̄ i

)
. (37)

For clarity, we will use in the following the left-handed com-
ponent f 0

Li and the right-handed component f 0
Ri of the Dirac

fermion f 0
i and not the Weyl fermions χf i and χf̄ i . To pre-

serve the electroweak symmetry from gauge anomaly and in
order to give masses to both up-type and down-type fermi-
ons, the MSSM contains two Higgs doublets Hi , together

with their fermionic partners, the higgsinos ψHi
,

Hu =
(

H+
u

H 0
u

)
, Hd =

(
H 0

d

H−
d

)
,

ψHu =
(

ψH+
u

ψH 0
u

)
and ψHd

=
(

ψH 0
d

ψH−
d

)
.

(38)

Finally, the spin-one vector bosons of the Standard Model
will be associated to Majorana fermions, the gauginos ψB ,
ψWk and ψg . The names and representations under the Stan-
dard Model gauge groups SU(3)C ×SU(2)L ×U(1)Y of the
various fields are summarized in Table 5.

The full MSSM Lagrangian can we written as

LMSSM = LMSSM,Gauge + LMSSM,Fermions + LMSSM,Yukawa

+ LMSSM,Scalar kinetic + LMSSM,Scalar FDW

+ LMSSM,Ino kinetic + LMSSM,Ino Yukawa

+ LMSSM,Ino mix + LMSSM,Soft. (39)

Starting from the expression of the Lagrangian in the gauge-
eigenstate basis of fields given above, we diagonalize the
non-diagonal mass matrices arising after electroweak sym-
metry breaking and provide transformation rules allowing to
re-express the Lagrangian in the physical basis.

Supersymmetry-conserving Lagrangian In order to have
more compact notations, we introduce the SU(2)L-doublets
of left-handed fermions and sfermions,

Q0
i =

(
u0

Li

d0
Li

)
, L0

i =
(

ν0
i

l0
Li

)
,

Q̃0
i =

(
ũ0

Li

d̃0
Li

)
and L̃0

i =
(

ν̃0
i

l̃0
Li

)
.

(40)
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The pure gauge sector and the matter fermion sector of the
MSSM are identical to the Standard Model,

LMSSM,Gauge = LSM,Gauge and

LMSSM,Fermions = LSM,Fermions.
(41)

The Lagrangian for the scalar sector can be divided into one
purely kinetic part,

LMSSM,Scalar kinetic = DμH †
uDμHu + DμH

†
d DμHd

+ DμL̃0i†DμL̃0
i + Dμl̃

0i†
R Dμl̃ 0

Ri

+ DμQ̃0i†DμQ̃0
i + Dμũ

0i†
R Dμũ0

Ri

+ Dμd̃
0i†
R Dμd̃0

Ri, (42)

and one part derived from the D-terms, the F -terms and the
superpotential W . Indeed, auxiliary F - and D-fields must
be added to the theory in order to preserve supersymme-
try when considering off-shell states, thereby keeping the
total number of fermionic and bosonic degrees of freedom
equal. Solving their equations of motion leads, for a set of
n Dirac fermions {ψn} and 2n associated supersymmetric
scalar partners {φLn,φ

n†
R }, to

LMSSM,Scalar FDW

= −Wi
LW

†
Li − Wi

RW
†
Ri − 1

2

[
W

ij
LLψ̄c

i PLψj

+ 2W
ij
RLψ̄iPLψj + W

ij
RRψ̄iPLψc

j + h.c.
]

− 1

2

[
g(φ

i†
L T aφLi) − g(φ

i†
R T aφRi)

][−g(φ
j†
L T aφLj )

+ g(φ
j†
R T aφRj )

]
, (43)

where ψc is the field charge-conjugated to ψ and the deriv-
atives of the superpotential W are given by

Wi
L = ∂W

∂φLi

and Wi
R = ∂W

∂φRi

,

W
ij
LL = ∂2W

∂φLi∂φLj

, W
ij
LR = ∂2W

∂φLi∂φRj

and

W
ij
RR = ∂2W

∂φRi∂φRj

.

(44)

Let us note that in the case of Majorana fermions, there is
only one associated scalar field. In the framework of the
MSSM, the superpotential reads

WMSSM = ũ
0i†
R (yu)

j
i (Q̃0

j εHu) − d̃
0i†
R (yd)

j
i (Q̃0

j εHd)

− l̃
0i†

R (yl)
j
i (L̃0

j εHd) + μHuεHd, (45)

where yu, yd and yl denote the 3×3 Yukawa matrices, μ the
Higgs off-diagonal mass-mixing, and ε the SU(2)L invari-

ant tensor. We could add to this superpotential other gauge-
invariant and renormalizable terms,

W/R = 1

2
λ

ij
kL̃

0
i εL̃

0
j l̃

0k†
R + λ

′ij
kL̃

0
i εQ̃

0
j d̃

0k†
R

+ 1

2
λ′′

ijkũ
0i†
R d̃

0j†
R d̃

0k†
R − κiL̃0

i εHu, (46)

with the Yukawa-like couplings λ, λ′ and λ′′, and a slepton-
Higgs off-diagonal mass term κ . Those couplings would
however violate either the lepton number L or the baryon
number B , as well as the individual lepton flavors. More-
over, they allow for various B-violating or L-violating
processes which have never been seen experimentally. We
could just forbid these terms by postulating B and L con-
servation, but neither B nor L are fundamental symmetries
of nature since they are violated by non-perturbative elec-
troweak effects [140]. Therefore, an alternative symmetry is
rather imposed, the R-parity [141], defined by

R = (−1)3B+L+2S, (47)

S being the spin of the particle, forbidding any term dif-
ferent from those in (45). All the Standard Model particles
have thus a positive R-parity while the superpartners have
a negative one. In this paper, we will only describe the im-
plementation of the R-parity conserving MSSM. However,
the R-parity violating extension of our implementation is
straightforward, available and will be described in [139]. We
can now write the remaining part of the scalar Lagrangian,

LMSSM,Scalar FDW

= −|μ|2(|Hu|2 + |Hd |2)+ (
μ∗H †

u

[
d̃

0i†
R

(
yd) j

i
Q̃0

j

+ l̃
0i†

R

(
yl) j

i
L̃0

j

]+ μ∗H †
d

[
ũ

0i†
R

(
yu) j

i
Q̃0

j

]+ h.c.
)

+ [
H †

u εQ̃0i†][yu†yu] j

i

[
Q̃0

j εHu

]

+ [
H

†
d εQ̃0i†][yd†

yd] j

i

[
Q̃0

j εHd

]

− ũ
0i†
R

[
yuyu†] j

i
ũ0

Rj |Hu|2 − d̃
0i†
R

[
ydyd†] j

i
d̃0
Rj |Hd |2

+ ũ
0i†
R

[
yuyd†] j

i
d̃0
RjH

†
d Hu + d̃

0i†
R

[
ydyu†] j

i
ũ0

RjH
†
uHd

+ [
H

†
d εL̃0i†][yl†yl] j

i

[
L̃0

j εHd

]− l̃
0i†

R

[
ylyl†] j

i
l̃0
Rj |Hd |2

− [
Q̃0j†(yu†) i

j
ũ0

Ri

][
ũ

0k†
R

(
yu) l

k
Q̃0

l

]

− [
Q̃0j†(yd†) i

j
d̃0
Ri

][
d̃

0k†
R

(
yd) l

k
Q̃0

l

]

− [
L̃0j†(yl†) i

j
l̃ 0
Ri

][
l̃

0k†
R

(
yl) l

k
L̃0

l

]

− [
Q̃0j†(yd†) i

j
d̃0
Ri

][
l̃

0k†
R

(
yl) l

k
L̃0

l

]

− [
L̃0j†(yl†) i

j
l̃ 0
Ri

][
d̃

0k†
R

(
yd) l

k
Q̃0

l

]
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− 1

2

[
−g′

6
Q̃0i†Q̃0

i + g′

2
L̃0i†L̃0

i + g′

2
H̃

†
d H̃d

− g′

2
H̃ †

u H̃u + 2g′

3
ũ

0i†
R ũ0

Ri − g′

3
d̃

0i†
R d̃0

Ri − g′ l̃ 0i†
R l̃ 0

Ri

]2

− 1

2

[
−g

2
Q̃0i†σkQ̃0

i − g

2
L̃0i†σkL̃0

i − g

2
H̃

†
d σ kH̃d

− g

2
H̃ †

uσ kH̃u

]2

− 1

2

[−gsQ̃
0i†T aQ̃0

i + gsũ
0i†
R T aũ0

Ri

+ gsd̃
0i†
R T ad̃0

Ri

]2
. (48)

From the Wij terms of the superpotential, bilinear in the
fermionic fields, we can also generate the Yukawa couplings
between the matter fermions and the Higgs fields,

LMSSM,Yukawa = −ū0i
R

(
yu) j

i
Q0

j εHu + d̄0i
R

(
yd) j

i
Q0

j εHd

+ l̄ 0i
R

(
yl) j

i
L0

j εHd + h.c. (49)

The terms of the MSSM Lagrangian containing higgsino
and gaugino fields can be divided into three parts; pure ki-
netic terms,

LMSSM,Ino kinetic = 1

2
ψ̄Bi /∂ψB + 1

2
¯ψWk i /DψWk

+ 1

2
¯ψga i /Dψga + 1

2
¯ψHui /DψHu

+ 1

2
¯ψHd

i /DψHd
, (50)

Yukawa interactions obtained from the superpotential
terms Wij ,

LinoYukawa = −[ū0i
R εψHu

](
yu) j

i
Q̃0

j + [
d̄0i
R εψHd

](
yd) j

i
Q̃0

j

+ [
l̄ 0i
R εψHd

](
yl) j

i
L̃0

j −ũ
0i†
R

(
yu) j

i

[
Q̄c0

j εψHu

]

+ d̃
0i†
R

(
yd) j

i

[
Q̄c0

j εψHd

]

+ l̃
0i†

R

(
yl) j

i

[
L̄c0

j εψHd

]− 1

2
μ
(
ψ̄HuεPLψHd

+ ψ̄Hd
εPLψHu

)+ h.c., (51)

and additional supersymmetry-conserving gauge-like inter-
actions which have no counterpart in the Standard Model
and which are not taken into account through the covariant
derivatives,

LMSSM,Ino mix

= √
2g′

[
−1

6
Q̃0i†(Q̄c0

i ψB

)+ 1

2
L̃0i†(L̄c0

i ψB

)]

+ √
2g′

[
2

3
ũ0

Ri

(
uc0i

R ψB

)− 1

3
d̃0
Ri

(
dc0i
R ψB

)

− l̃ 0
Ri

(
lc0i
R ψB

)]+ √
2g′

[
−1

2
H †

u

(
ψ̄c

Hu
ψB

)

+ 1

2
H

†
d

(
ψ̄c

Hd
ψB

)]− g√
2

[
Q̃0i†σk

(
Q̄c0

i ψWk

)

+ L̃0i†σk
(
L̄c0

i ψWk

)]− g√
2

[
H †

uσ k
(
ψ̄c

Hu
ψWk

)

+ H
†
d σ k

(
ψ̄c

Hd
ψWk

)]+ √
2gs

[−Q̃0i†T a
(
Q̄c0

i ψga

)
+ (

ψ̄gauc0i
R

)
T aũ0

Ri + (
ψ̄gadc0i

R

)
T ad̃0

Ri

]+ h.c. (52)

Supersymmetry-breaking Lagrangian As stated above, the
masses of the superpartners must be considerably larger than
those of the Standard Model particles. Realistic supersym-
metric models must hence include supersymmetry break-
ing, which is expected to occur spontaneously at some high
scale. The Lagrangian density then respects supersymmetry
invariance, but the vacuum state does not. Moreover, in order
not to introduce quadratic divergences in loop-calculations,
supersymmetry has to be broken softly. In practice, since
we do not know the supersymmetry-breaking mechanism
and the corresponding scale, we will add all possible terms
breaking supersymmetry explicitly at low-energy [142],

LMSSM,Soft = −1

2

[
M1ψ̄BψB + M2ψ̄WkψWk + M3ψ̄gaψga

]

− Q̃0i†(m2
Q̃

) j

i
Q̃0

j − ũ
0i†
R

(
m2

Ũ

) j

i
ũ0

Rj

− d̃
0i†
R

(
m2

D̃

) j

i
d̃0
Rj − L̃0i†(m2

L̃

) j

i
L̃0

j

− l̃
0i†

R

(
m2

Ẽ

) j

i
l̃ 0
Rj − m2

Hu
H †

uHu − m2
Hd

H
†
d Hd

− bHuεHd − b∗H †
u εH

†
d

+ [−ũ
0i†
R (Tu)

j
i Q̃0

j εHu + d̃
0i†
R (Td)

j
i Q̃0

j εHd

+ l̃
0i†

R (Tl)
j
i L̃0

j εHd + h.c.
]
. (53)

The first line of (53) contains gaugino mass terms, the sec-
ond and third lines the sfermion mass terms, where m2

Q̃
,

m2
L̃

, m2
ũ, m2

d̃
, m2

ẽ are 3 × 3 hermitian matrices in generation

space, the fourth line mass terms for the Higgs fields, and
the fifth line the trilinear scalar interactions, Tu, Td, and Te
being also 3 × 3 matrices in generation space. Let us note
that the additional Higgs mass terms are required in order to
break electroweak symmetry spontaneously. We remind the
reader that for the R-parity violating MSSM, additional soft
supersymmetry-breaking terms must also be included,

LMSSM, /RSoft = [−DiL̃0
i εHu + m2

LiH
L̃0i†Hd + h.c.

]

+
[

1

2
T

ij
kL̃

0
i εL̃

0
j l̃

0k†
R + T

′ij
k L̃0

i εQ̃
0
j d̃

0k†
R

+ 1

2
T ′′

ijkũ
0i†
R d̃

0j†
R d̃

0k†
R + h.c.

]
. (54)
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Particle mixing In order to break the electroweak symme-
try to electromagnetism, the classical Higgs potential, i.e.,
all the Lagrangian terms quadratic or quartic in the Higgs
fields, must have a non-trivial minimum. Due to gauge in-
variance, one of the charged Higgs vevs can be rotated away,
which yields a zero vev for the other charged Higgs. Again,
we can use gauge-invariance to choose the remaining vevs
real and positive, so that we can replace the neutral Higgs
fields in LMSSM by

H 0
u → vu + h0

u√
2

and H 0
d → vd + h0

d√
2

, (55)

where vu and vd are the two vacuum expectation values of
the neutral Higgses and h0

u and h0
d are complex scalar fields.

Let us note that those relations are only valid in unitary
gauge, which is the case we are dealing with here. We can
then extract mass matrices for the gauge bosons B0 and Wk ,
diagonalize them, and derive the physical mass-eigenstates,
the photon A, the W and Z boson. The transformation rules
relating the mass and interaction bases are given by (21).
The weak mixing angle θw and the physical masses MZ and
MW are defined by

cos2 θw = g2

g2 + g′2 , MZ = g

2cos θw

√
v2
u + v2

d and

MW = g

2

√
v2
u + v2

d .

(56)

In the Higgs sector, three out of the eight real degrees
of freedom of the two doublets are the pseudo-Goldstone
bosons becoming the longitudinal modes of the weak
bosons, while the five others mix to the physical Higgses,
h0, H 0, A0 and H±. The diagonalization of several mass
matrices leads to the transformation rules

h0
u = cosαh0 + sinαH 0 + icosβA0 and

h0
d = −sinαh0 + cosαH 0 + isinβA0,

H+
u = cosβH+ and H−

d = sinβH−,

(57)

where tanβ is the ratio of the two vevs vu and vd .
Collecting the terms of LMSSM bilinear in the Majorana

fermions ψB , ψW 3 , ψH 0
u

and ψH 0
d

, we can extract the neutral
gaugino-higgsino mass matrix Y which can be diagonalized
through a unitary matrix N ,

N∗YN−1 = diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
. (58)

This matrix relates the four physical neutralinos χ̃0
i to the

interaction-eigenstates,

(
χ̃0

1 χ̃0
2 χ̃0

3 χ̃0
4

)T = N
(
ψBψW 3ψH 0

d
ψH 0

u

)T
. (59)

Similarly, we can collect the terms yielding the charged
gaugino-higgsino mass matrix X and diagonalize it through
the two unitary matrices U and V ,

U∗XV −1 = diag
(
mχ̃±

1
,mχ̃±

2

)
. (60)

Those matrices relate the interaction-eigenstates to the phys-
ical charginos χ̃±

i according to

(
χ̃+

1 χ̃+
2

)T = V
(
ψW+ψH+

u

)T and

(
χ̃−

1 χ̃−
2

)T = U
(
ψW−ψH−

d

)T
.

(61)

Let us note that the fields ψW± are obtained after rotating
ψW 1 and ψW 2 as in (21) for the W boson.

In the sfermion sector, we define the super-CKM ba-
sis [143] as the basis in which the sfermion interaction-
eigenstates undergo the same rotations as their fermionic
counterparts. As a consequence, the squark charged-current
interactions are also proportional to the CKM matrix. How-
ever, the fermion and sfermion fields can be misaligned due
to possible off-diagonal mass terms in the supersymmetry-
breaking Lagrangian LMSSM,Soft. The diagonalization of the
four mass matrices M2

ũ
, M2

d̃
, M2

l̃
and M2

ν̃
requires thus the

introduction of three 6 × 6 matrices Ru, Rd and Rl and one
3 × 3 matrix Rν ,

diag
(
m2

ũ1
, . . . ,m2

ũ6

)= RuM2
ũRu†,

diag
(
m2

d̃1
, . . . ,m2

d̃6

)= RdM2
d̃
Rd†,

(62)

diag
(
m2

ν̃1
, . . . ,m2

ν̃3

)= RνM2
ν̃ Rν†,

diag
(
m2

l̃1
, . . . ,m2

l̃6

)= RlM2
l̃
Rl†.

(63)

These matrices relate the physical mass-eigenstates to the
interaction-eigenstates through

(ũ1, ũ2, ũ3, ũ4, ũ5, ũ6)
T = Ru(ũL, c̃L, t̃L, ũR, c̃R, t̃R)T ,

(d̃1, d̃2, d̃3, d̃4, d̃5, d̃6)
T = Rd(d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)T ,

(ν̃1, ν̃2, ν̃3)
T = Rν(ν̃e, ν̃μ, ν̃τ )

T ,

(l̃1, l̃2, l̃3, l̃4, l̃5, l̃6)
T = Rl(ẽL, μ̃L, τ̃L, ẽR, μ̃R, τ̃R)T .

(64)

The less general built-in implementation of the MSSM in
MADGRAPH/MADEVENT and CALCHEP can easily be re-
covered by setting all the off-diagonal elements of these gen-
eral mixing matrices to zero, except for the third generation
flavor-conserving and helicity-mixing elements. In a frame-
work of R-parity violating scenarios, additional mixings be-
tween charged leptons and charginos, neutrinos and neutrali-
nos, Higgses, sleptons and sneutrinos can arise. Moreover,
the sneutrino fields can acquire vevs, since they are not pro-
tected by lepton number conservation, unlike in the R-parity
conserving MSSM where it is a conserved quantum number.
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5.3.2 FEYNRULES implementation

Current implementation We describe here the implemen-
tation of the most general R-parity conserving MSSM in
FEYNRULES. We divide the complete Lagrangian in six
pieces,

LMSSM = LMSSM,Gauge + LMSSM,Fermions + LMSSM,Scalars

+ LMSSM,FD + LMSSM,Inos + LMSSM,Soft, (65)

related to (39) through

LMSSM,Scalars = LMSSM,scalar kinetic,

LMSSM,Inos = LMSSM,Ino kinetic + LMSSM,Ino mix,

LMSSM,FD = LMSSM,Scalar FDW + LMSSM,Yukawa

+ LMSSM,Ino Yukawa.

(66)

LMSSM,Scalars contains the scalar kinetic terms and gauge
interactions, all the F -terms and D-terms are embedded in
LMSSM,FD, and we have grouped all the non-Yukawa terms
involving neutralinos and charginos LMSSM,Inos. The scalar
sector is implemented in terms of gauge-eigenstates while
the fermion and gaugino/higgsino sectors are directly im-
plemented in terms of mass eigenstates. For clarity and for
generalization purposes, the FEYNRULES implementation is
splitted into 18 files,

• Gauge.fr: the definition of the gauge groups and the
indices,

• PrmExt.fr: the external parameters, following the
SLHA conventions,

• PrmInt.fr: all the internal parameters, derived from
the external ones,

• PrmAux.fr: auxiliary parameters, such as identity ma-
trices,

• FldFer.fr: physical fermionic states (quarks, leptons,
charginos, neutralinos, gluino),

• FldVec.fr: physical gauge bosons (gluon, photon, W

and Z bosons),
• FldSca.fr: physical scalar fields (sfermions and Hig-

gses),
• FldAux.fr: gauge-eigenstates (sfermions, Higgses,

SU(2)L × U(1)Y bosons),
• FldGst.fr: gluonic ghost (required in order to have

CALCHEP running properly),
• LagGau.fr: LGauge, defined in (17),
• LagFer.fr: LFermions, defined in (18),
• LagSca.fr: LScalars, defined in (42),
• LagFer.fr: LInos, defined in (50) and (5.3.1),
• LagFD.fr: the definition of the superpotential,
• LagFDgen.fr: the D-terms and a generic routine de-

riving automatically the F -terms from the superpotential,
allowing for the calculation of LFD,

• LagBrk.fr: the soft supersymmetry-breaking Lagrang-
ian LSoft, from (53),

• LagGst.fr: the ghost Lagrangian (only QCD ghosts
are supported so far),

• MSSM.fr: the main file collecting all the different pieces.

Before running the model, the user has to provide val-
ues for the four switches FeynmanGauge, $CKMDiag,
$sWScale and $svevScale.

• The switch FeynmanGauge is not used in the present
implementation and has to be set to False, since the
whole model is implemented in unitary gauge. However,
further developments will allow for various gauges.

• The switch $CKMDiag allows for a CKM matrix differ-
ent from the identity or not, depending on its True or
False value. The CKM matrix could also be forced to
the identity through a restriction file.

• The two switches $sWScale and $svevScale can be
set to the values "weak" or "susy", regarding the scale
at which the electroweak parameters and the vevs of the
Higgs fields will be evaluated.

Possible extensions A large number of supersymmetric
models can be built from the most general MSSM. As stated
above, we can take the proper limit in the various mixing
matrices and get back to the commonly studied constrained
MSSM scenarios. Moreover, other gauges are planned to be
implemented (e.g., Feynman gauge or non-linear gauges).
Other possible extensions consist in the addition of new par-
ticles, such as an additional singlet (the Next-to-Minimal
Supersymmetric Standard Model) or right-handed neutrinos
(and the corresponding sneutrinos).

5.4 The minimal Higgsless model

To date, we have not detected a single fundamental scalar
field and we do not know if we ever will. Electroweak sym-
metry breaking may instead occur as the result of the con-
densation of a strongly coupled bound state as in technicolor
theories [144, 145] or it may occur as the result of boundary
conditions in a compactified extra dimension as in so-called
Higgsless theories [146, 147]. These theories are closely re-
lated [148] and each contains a tower of vector resonances
which are responsible for unitarizing WW and WZ scat-
tering in the absence of a fundamental scalar field (such as
the Higgs) [149–151]. Unitarity constrains the mass of the
lowest of these resonances to be below ∼1.2 TeV, making it
discoverable (or excludable) at the LHC [152, 153].

Although, it is impossible to implement the entire tower
of resonances, it is also unnecessary as the low energy phe-
nomenology is dominated by the lowest modes. Deconstruc-
tion [154, 155] gives a consistent, gauge invariant way of
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Fig. 3 A schematic “moose” diagram of the Three-Site model. The
circles represent gauge groups. The two circles on the left are SU(2)

gauge groups while the one on the right is a U(1) gauge group

implementing only a subset of the resonances in a low en-
ergy effective theory. The minimal deconstructed Higgs-
less model contains all the non-scalar fields of the Stan-
dard Model plus the first new resonances, the W ′, Z′ and
heavy partners of the fermions and is called the Minimal
Higgsless Model or Three-Site Model [156]. A schematic
“moose” diagram of the Minimal Higgsless Model is pre-
sented in Fig. 3.

Precision electroweak constraints [157–160] are satisfied
in Higgsless models by allowing the fermions to delocalize
into the bulk in a certain “ideal” way [161–163]. The conse-
quence of this is that the heavy partners of the W and Z, the
W ′ and Z′, are fermiophobic and have very small or vanish-
ing couplings to the light SM fermions. Nevertheless, these
heavy vector resonances can be discovered (or excluded) at
the LHC [152, 153].

5.4.1 Model description

Gauge sector

The gauge group of the Three-Site Model is

G = SU(3)C × SU(2)0 × SU(2)1 × U(1)2, (67)

where SU(2)0 is represented by the leftmost circle in Fig. 3
and has coupling g, SU(2)1 is represented by the center cir-
cle in Fig. 3 and has coupling g̃ and U(1)2 is represented
by the rightmost dashed circle in Fig. 3 and has coupling g′.
We define

x = g

g̃
and t = g′

g
= s

c
, (68)

where s2 + c2 = 1.
The Lagrangian for the Minimal Higgsless Model can be

written as a sum of six parts,

LMHM = LMHM, Gauge + LMHM, DΣ + LMHM, GF

+ LMHM, Ghost + LMHM, ψ + LMHM, ψΣ . (69)

The kinetic and self interaction terms for the gauge bosons
is given by the usual gauge invariant terms:

LMHM, Gauge = −1

4
Ga

μνG
μν
a − 1

4
F i

0,μνF
μν
0,i − 1

4
F i

1,μνF
μν
1,i

− 1

4
F i

2,μνF
μν
2 . (70)

The horizontal bars in Fig. 3 represent non-linear sigma
models Σj which come from unspecified physics at a higher
scale and which give mass to the six gauge bosons other than
the photon. This is encoded in the leading order effective
Lagrangian term

LMHM,DΣ = f 2

4
Tr
[
(DμΣ0)

†DμΣ0 + (DμΣ1)
†DμΣ1

]
,

(71)

where

DμΣ0 = ∂μΣ0 + igW0μΣ0 − ig̃Σ0W1,μ,

DμΣ1 = ∂μΣ1 + ig̃W1μΣ1 − ig′Σ1W2,μ.
(72)

The non-linear sigma models can be written in exponential
form

Σj = ei2πj /f , (73)

which exposes the Goldstone bosons, where f is the Gold-
stone boson decay constant, that become the longitudinal
components of the massive gauge bosons. πj and Wj are
written in matrix form and are

πj =
( 1

2π0
j

1√
2
π+

j

1√
2
π−

j − 1
2π0

j

)
,

Wj =
( 1

2W 0
j

1√
2
W+

j

1√
2
W−

j − 1
2W 0

j

)
and

W2 =
(

1
2W 0

2 0

0 − 1
2W 0

2

)
,

(74)

where j is 0 or 1.
The mass matrices of the gauge bosons can be obtained

by going to unitary gauge (Σj → 1) and are,

M2± = M2
G

2

(
x2 −x

−x 2

)
and

M2
n = M2

G

2

⎛
⎝ x2 −x 0

−x 2 −xt

0 −xt x2t2

⎞
⎠ ,

(75)

for the charged and neutral gauge bosons respectively where

M2
G = g̃2f 2

2
, (76)
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and the photon is massless. The parameters x and t have
been defined in (68). After diagonalizing the gauge boson
mass matrices, we find that the other masses are given by

MW = MG

2

√
2 + x2 −

√
4 + x4,

MW ′ = MG

2

√
2 + x2 +

√
4 + x4,

(77)

for the charged gauge bosons and

MZ = MG

2

√
2 + x2

(
1 + t2

)− A,

MZ′ = MG

2

√
2 + x2

(
1 + t2

)+ A,

(78)

where

A =
√

4 + x4
(
1 − t2

)2
, (79)

for the neutral gauge bosons. The couplings can be deter-
mined in terms of the electric charge e, x and t .

1

e2
= 1

g2
+ 1

g̃2
+ 1

g′2 ,

g2 = e2
(

1 + x2 + 1

t2

)
,

g̃2 = e2
(

1 + 1

x2
+ 1

x2t2

)
,

(g′)2 = e2(1 + t2 + x2t2).

(80)

Gauge fixing sector

As we mentioned previously, the horizontal lines in Fig. 3
represent non-linear sigma fields. Although tree level calcu-
lations can be done in unitary gauge, there are times when
a different gauge is useful. Many calculations with gauge
bosons in the external states can be computed more sim-
ply using the equivalence theorem and replacing the massive
gauge bosons with the Goldstone bosons that they eat. An-
other case where a gauge different from unitary gauge is ad-
vantageous is in CALCHEP, where the time of computation
of processes is dramatically decreased when using Feynman
gauge. For this reason, we have implemented this model in
both Feynman and unitary gauges.

The gauge fixing function is constructed to fix the gauge
and cancel the mixing of the Goldstone bosons and gauge
bosons. For each site, the gauge-fixing term is

G0 = ∂ · W0 − ξ

2
gf (π0),

G1 = ∂ · W1 − ξ

2
g̃f (π1 − π0),

G2 = ∂ · W2 − ξ

2
g′f

(−πns
1

)
,

(81)

where ξ denotes the gauge parameter for the Rξ gauge and
where by πns

1 we mean just the neutral sector of π1, namely

πns
1 = 1

2
π0

1

(
1 0
0 −1

)
. (82)

With this definition, the gauge fixing Lagrangian is

LMHM,GF = −1

ξ
Tr
(
G2

0 + G2
1 + G2

2

)
. (83)

Ghost sector

The ghost Lagrangian terms are obtained by multiplying the
BRST transformation of the gauge fixing term on the left
with the antighost. To do this, we must find the BRST trans-
formations of the gauge fixing terms. We begin by writing
the infinitesimal BRST transformation of the fields in the
gauge fixing term.

δBRSTWμj = −(∂μcj + igj [Wμj , cj ]
)
, (84)

for the gauge bosons where cj is the ghost for site j in ma-
trix notation

cj =
( 1

2c0
j

1√
2
c+
j

1√
2
c−
j − 1

2c0
j

)
and

c2 =
(

1
2c0

2 0

0 − 1
2c0

2

)
,

(85)

where j is 0 or 1. The BRST transformation to quadratic
order in the Goldstone bosons is

δBRSTπj = +1

2
f (gj cj − gj+1cj+1)

+ i

2
[gj cj + gj+1cj+1,πj ]

− 1

6f

[
πj , [πj , gj cj − gj+1cj+1]

]
, (86)

so that

δBRSTG0 = ∂ · δBRSTW0 − ξ

2
gf (δBRSTπ0),

δBRSTG1 = ∂ · δBRSTW1 − ξ

2
g̃f (δBRSTπ1 − δBRSTπ0),

δBRSTG2 = ∂ · δBRSTW2 − ξ

2
g′f

(−δBRSTπns
1

)
.

(87)

The ghost Lagrangian is

LMHM,Ghost = −Tr(c̄0δBRSTG0 + c̄1δBRSTG1

+ c̄2δBRSTG2) + h.c. (88)
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Fermion sector

The vertical lines in Fig. 3 represent the fermionic fields in
the theory. The vertical lines on the bottom of the circles rep-
resent the left-handed chiral fermions while the vertical lines
attached to the tops of the circles are the right-handed chiral
fermions. Each fermion is a fundamental representation of
the gauge group to which it is attached and a singlet under
all the other gauge groups except U(1)2. The charges under
U(1)2 are as follows: If the fermion is attached to an SU(2)

then its charge is 1/6 for quarks and −1/2 for leptons. If
the fermion is attached to U(1)2 its charge is the same as its
electromagnetic charge: 0 for neutrinos, −1 for charged lep-
tons, 2/3 for up type quarks and −1/3 for down type quarks.
The usual gauge invariant kinetic terms are used,

LMHM,ψ = iψ̄L0 /DψL0 + iψ̄L1 /DψL1 + iψ̄R1 /DψR1

+ iψ̄R2 /DψR2. (89)

The fermions attached to the internal site (SU(2)1) are
vectorially coupled and Dirac masses are thus allowed. We
have taken these masses to be MF . The symmetries also al-
low various linkings of fermions via the non-linear sigma
fields. We have assumed a very simple form, inspired by
an extra dimension and represented by the diagonal lines in
Fig. 3. The left chiral field at site j is linked to the right chi-
ral field at site j + 1 through the non-linear sigma field at
link j . The mass parameter for these diagonal links is taken
to be εLMF and εRMF for the left and right links respec-
tively. All together, the masses of the fermions and the lead-
ing order interactions of the fermions and non-linear sigma
fields are given by

LMHM,ψΣ = −MF

[
εLψ̄L0Σ0ψR1 + ψ̄L1ψR1

+ ψ̄L1εRΣ1ψR2
]
, (90)

where εL is the same for all fermions but εR is a diagonal
matrix which distinguishes flavors. For example, for the top
and bottom quarks we have

εR =
(

εRt 0
0 εRb

)
. (91)

The mass matrix can be obtained by going to unitary
gauge and diagonalized by a biunitary transformation. By
doing this, we find the following masses,

Mf 0 = MF√
2

√
1 + ε2

L + ε2
R − C,

Mf 1 = MF√
2

√
1 + ε2

L + ε2
R + C,

(92)

where

C =
√(

1 + ε2
L + ε2

R

)2 − 4ε2
Lε2

R. (93)

5.4.2 FEYNRULES implementation

The FEYNRULES implementation was initially based on a
LANHEP implementation [152]. It was translated to FEYN-
RULES syntax and slightly modified to fit the requirements
of the FEYNRULES package and interfaces. All symmetries,
fields and parameters were implemented according to the
definitions of the last subsection. The independent variables
that the user can adjust are the electromagnetic and strong
couplings, the masses of the Z, W , W ′ and SM fermions
(where not set explicitly to zero) and the scale of the heavy
fermions MF . The scale of the Z pole mass and Fermi con-
stant are also implemented as required by some Monte Carlo
codes, but they are not used directly in this model. A change
in these last two parameters will not affect the value of the
other parameters.

Two gauges were implemented in this model file. A vari-
able FeynmanGauge, similar to the SM case, was created
to switch between the two. When the switch is set to True,
Feynman gauge is chosen and the Lagrangians contain the
Goldstone bosons eaten by the gauge bosons and the ghosts.
If, on the other hand, it is set to False, all Goldstone and
ghost terms are set to zero.

5.5 Extra dimensional models

One popular approach to solve the hierarchy problem of
the Standard Model is to extend space-time to higher di-
mensions [91, 164, 165]. In this framework, the usual four-
dimensional space is contained in a four-dimensional brane
embedded in a larger structure with N additional dimen-
sions, the bulk. Moreover, gravitational and gauge interac-
tions unify close to the only fundamental scale of the the-
ory, the weak scale. In theories with Large Extra Dimen-
sions (LED) [91, 92, 166], the gravitational interactions are
the only ones propagating into the bulk, which dilutes their
coupling strength and make it appear weaker inside the four-
dimensional branes. As a consequence, the graviton field is
accompanied by a tower of massive Kaluza-Klein states. In
scenarios with Universal Extra Dimensions [164], each field
of the Standard Model possesses a tower of excitations with
the same quantum numbers, but different masses. Even if
none of these states has been observed so far, TeV-range ex-
citations could be detected at the present Tevatron or the fu-
ture Large Hadron Collider. In a minimal Universal Extra
Dimension scenario (MUED) [167], one has one single flat
additional dimension, y, which is spatial and compactified
on a S1/Z2 orbifold of radius R. Momentum conservation
in the extended space-time generates a conserved quantum
number, the Kaluza-Klein parity, which implies that differ-
ent Kaluza-Klein modes cannot mix and that the lightest ex-
citation could be a candidate for dark matter [168–170].
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5.5.1 Model description

Large extra dimension model In a LED theory with one
compact and space-like additional dimension, all the Stan-
dard Model fields are confined into a four-dimensional brane
and there are only Kaluza-Klein excited states for the gravi-
ton. The Kaluza-Klein states have higher masses than the
standard graviton but both behave the same, i.e., they cou-
ple gravitationally to the Standard Model fields. We start by
specifying the generic effective Lagrangian of an unbroken
gauge theory [171],

LLED = LLED, Gauge + LLED, Fermions + LLED, Scalars. (94)

The Lagrangian of each sector can be expressed as

LLED, i = −κ

2

∑
n

(
hμν(n)T i

μν

+
√

2

3(n + 2)
φ(n)T iμ

μ

)
. (95)

κ = √
16πGN with GN being the four-dimensional New-

ton constant, hμν(n) the nth graviton Kaluza-Klein mode in
four dimensions and φ(n) its scalar component in the fifth
dimension. The graviton couples to the energy momentum
tensor,

Tμν =
(

−ημν L + 2
δL

δgμν

)∣∣∣∣
gμν=ημν

. (96)

For a generic unbroken gauge theory, the various energy-
momentum tensors T i

μν for an unbroken gauge theory read,8

T Scalars
μν = −ημν

[
DρΦ†DρΦ − m2

ΦΦ†Φ
]

+ [
DμΦ†DνΦ + (μ ↔ ν)

]
,

T Fermions
μν = −ημν

[
Ψ̄ iγ ρDρΨ − mΨ Ψ̄ Ψ − 1

2
∂ρ(Ψ̄ iγρΨ )

]

+
[

1

2
Ψ̄ iγμDνΨ − 1

4
∂μ(Ψ̄ iγνΨ ) + (μ ↔ ν)

]
,

T
Gauge
μν = −ημν

[
−1

4
Fρσ Fρσ + m2

A

2
AρAρ

]

+ [−Fρ
μFνρ + m2

AAμAν

]
,

(97)

where Φ is a (complex) scalar, Ψ a fermion, and Aμ a vec-
tor field. Dμ and Fμν denote the usual covariant derivatives
and field strength tensors. From this general model, we can

8We work in unitary gauge.

derive a realistic Large Extra Dimensional theory containing
all the Standard Model fields. We choose to work in unitary
gauge also for the gravitational part, which eliminates the
non-physical degrees of freedom absorbed by the massive
fields, and we re-write the Lagrangian as,

LLED, j = −κ

2

∑
n

(
Gμν(n)T j

μν

)
, (98)

where Gμν(n) is the n-th Kaluza-Klein mode of the phys-
ical graviton and j now denotes explicitly the Standard
Model sectors. The energy-momentum tensor of the Stan-
dard Model can be written as a sum of four parts,

Tμν = T Fermions
μν + T

Higgs
μν + T

Gauge
μν + T Yukawa

μν . (99)

The energy-momentum tensor of the fermionic sector reads,

T Fermions
μν = −ημν

[(
Q̄i iγ

ρDρQi + L̄i iγ
ρDρLi

+ ūRi iγ
ρDρuRi + d̄Ri iγ

ρDρdRi

+ l̄Ri iγ
ρDρlRi

)− 1

2
∂ρ

(
Q̄iiγ

ρQi + L̄i iγ
ρLi

+ ūRi iγ
ρuRi + d̄Ri iγ

ρdRi + l̄Ri iγ
ρlRi

)]

+
[

1

2

(
Q̄i iγμDνQi + L̄i iγμDνLi

+ ūRi iγμDνuRi + d̄Ri iγμDνdRi

+ l̄Ri iγμDνlRi

)− 1

4
∂μ

(
Q̄i iγνQi + L̄i iγνLi

+ ūRi iγνuRi + d̄Ri iγνdRi + l̄Ri iγνlRi

)

+ (μ → ν)

]
, (100)

where Dμ denotes the SU(3)C ×SU(2)L ×U(1)Y covariant
derivative. Similarly, the energy-momentum tensor for the
gauge sector reads,

T
Gauge
μν = −ημν

[
−1

4
Bρσ Bρσ − 1

4
W

ρσ
k Wk

ρσ

− 1

4
Gρσ

a Ga
ρσ

]
− Bρ

μBνρ − Wkρ
μ Wk

νρ

− Gaρ
μ Ga

νρ. (101)
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Finally, the energy-momentum tensors for the sectors in-
volving a Higgs boson read,

T
Higgs
μν = −ημν

[
DρΦ†DρΦ + μ2Φ†Φ − λ

(
Φ†Φ

)2]

+ [
DμΦ†DνΦ + (μ → ν)

]
,

T Yukawa
μν = −ημν

[−ūiRyu
ijQj Φ̃ − d̄iRyd

ijQjΦ

− l̄iRyl
ijLjΦ + h.c.

]
,

(102)

with Φ̃ = iσ 2Φ∗.

Minimal universal extra dimension model We consider a
theory in five dimensions, the fifth one being spatial and
compactified on a S1/Z2 orbifold of radius R, i.e., the points
y and −y are identified, where y is the extra coordinate. This
symmetry is essential to define chiral fermions. Unlike LED
models, in UED models all fields have access to the extra
dimension and depend on the fifth coordinate y. We split the
most general Lagrangian in four pieces [164, 172],

LMUED = LMUED, Gauge + LMUED, Fermions + LMUED, Higgs

+ LMUED, Yukawa. (103)

The gauge sector is described by the field strength tensor
terms

LMUED, Gauge = −1

4
BMNBMN − 1

4
Wk

MNWMN
k

− 1

4
Ga

MNGMN
a , (104)

where all fields are understood to be defined in five dimen-
sions with coordinates xM = (xμ, y). We define the sub-
script M = (μ,5), where μ is the usual four-dimensional
Lorentz index and 5 the fifth dimension index. The fermi-
onic sector is decomposed into its leptonic and quark part,

LMUED, Fermions = LMUED, Leptons + LMUED, Quarks, (105)

with

LMUED, Leptons = iL̄Γ MDML + iĒΓ MDME,

LMUED, Quarks = iQ̄Γ MDMQ + iŪΓ MDMU

+ iD̄Γ MDMD.

(106)

Q and L denote SU(2)L fermion doublets and U , D, E are
the up-type quark, down-type quark and charged lepton sin-
glet fields. The gamma matrices in five dimensions are de-
fined as

Γ M = {
γ μ, iγ 5}, (107)

while the five-dimensional covariant derivative DM is

DM = ∂M − iYg
(5)
1 BM − 1

2
ig(5)

w σ kWk
M

− ig(5)
s T aGa

M. (108)

The hypercharge Y , the Pauli matrices σk and the color ma-
trices T a are the generators of the gauge groups, while the
five-dimensional coupling constants are related to the four-
dimensional ones through

g
(5)
i = √

πRgi. (109)

Finally, the Higgs Lagrangian is given by

LMUED, Higgs = DMΦ†DMΦ + μ2Φ†Φ

− λ
(
Φ†Φ

)2
, (110)

and the Yukawa sector describing the interactions between
the fermions and the Higgs field by

LMUED, Yukawa = −yu
ij Q̄iUj Φ̃ − yd

ij Q̄iDjΦ

− ye
ij Q̄iEjH, (111)

where Φ̃ = iσ 2Φ∗, and yk
ij are the usual Yukawa matrices.

5.5.2 FEYNRULES implementation

Large extra dimension model The FEYNRULES imple-
mentation for the LED model described is based on the La-
grangian defined in (94). The theory contains, besides the
graviton, the full set of SM fields, together with their respec-
tive coupling to the graviton field via the stress tensors. For
the graviton we restricted the implementation to the lowest
mode, i.e., only the massless graviton is taken into account.
An extension of this model to include Kaluza-Klein excita-
tions of the graviton, as well as to any BSM extension of the
SM, e.g., the HAH model described in Sect. 2, is straight-
forward.

Minimal universal extra dimension model To implement
the MUED model in FEYNRULES, we start with the most
general five-dimensional Lagrangian described above. Then,
FEYNRULES derives the effective four-dimensional La-
grangian and the corresponding Feynman rules automati-
cally. This is achieved by expanding the five-dimensional
fields and imposing the dimensional reduction by integrat-
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ing out the extra coordinate y [173],

Aμ

(
xμ, y

)= 1√
πR

{
A(0)

μ (x) + √
2

∞∑
n=1

A(n)
μ (x) cos

(
ny

R

)}
,

A5
(
xμ, y

)=
√

2

πR

∞∑
n=1

A
(n)
5 (x) sin

(
ny

R

)
,

Φ
(
xμ, y

)= 1√
πR

{
Φ(0)(x) + √

2
∞∑

n=1

Φ(n)(x) cos

(
ny

R

)}
,

Ψ
(
xμ, y

)= 1√
πR

{
Ψ

(0)
L (x) + √

2
∞∑

n=1

[
PLΨ

(n)
L (x) cos

(
ny

R

)

+ PRΨ
(n)
R (x) sin

(
ny

R

)]}
,

ψ
(
xμ, y

)= 1√
πR

{
ψ

(0)
R (x) + √

2
∞∑

n=1

[
PRψ

(n)
R (x) cos

(
ny

R

)

+ PLψ
(n)
L (x) sin

(
ny

R

)]}
,

(112)

where (Aμ(xμ, y),A5(x
μ, y)), Φ(xμ,y), Ψ (xμ, y) and

ψ(xμ,y) denote a five-dimensional gauge field, a Higgs
field, a fermionic doublet and a fermionic singlet field,
respectively. To integrate out the extra dimensional coor-
dinate, we follow the integration procedure described in
[164, 172, 173], using orthogonality relations. Let us note
that if one would like to add other pieces to the Lagrangian,
it is sufficient to deal with five-dimensional expressions, to-
gether with the appropriate definitions of the field expan-
sions.

In our implementation we are considering Kaluza-Klein
excitations only up to the first mode. The inclusion of the
next Kaluza-Klein states is of course straightforward, each
considered Kaluza-Klein mode has to be defined in the
model file. For a given field, we identify the zeroth mode
as the Standard Model particle and define as new particles
the Kaluza-Klein excitations. The zeroth mode particle con-
tent is thus identical to the SM one, see Table 4, while the
particle content of the first modes is summarized in Table 6.

As for the SM particles, the new gauge-eigenstates mix
to physical states

W(1)±
μ = W

1(1)
μ ∓ iW

2(1)
μ√

2
,

Z(1)
μ ≈ W 3(1)

μ ,

A(1) ≈ B(1)
μ .

(113)

Table 6 A summary of the first mode Kaluza-Klein particles

Particle description Spin Representations

Lepton doublet L
(1)
i = (ν

(1)
iL ,L

(1)
i )T 1/2 (1,2,−1/2)

Lepton singlet �
(1)
i 1/2 (1,1,−1)

Quark doublet Q
(1)
i = (U

(1)
i ,D

(1)
i )T 1/2 (3,2,1/6)

Up-quark singlet u
(1)
i 1/2 (3,1,2/3)

Down-quark singlet d
(1)
i 1/2 (3,1,−1/3)

Gauge bosons B
(1)
μ 1 (1,1,0)

W
i(1)
μ 1 (1,3,0)

G
(1)a
μ 1 (8,1,0)

Higgs doublet Φ(1) 0 (1,2,1/2)

The first mode analog of the electroweak mixing angle is
assumed to be very small. Therefore the first modes of the Z

boson and the photon are simply W
3(1)
μ and B

(1)
μ . The tree-

level mass M(1) of the first gauge boson excitations are,

M(1) =
√

1

R2
+ (

m(0)
)2

, (114)

where m(0) is the zeroth mode mass. In the fermion sec-
tor, there might be a mixing between SU(2)L doublets and
singlets. However, this mixing is expected to be highly sup-
pressed and we therefore ignore it in the current implemen-
tation. As in the SM, the zeroth mode fermions get their
mass from the Yukawa couplings after the Higgs get its vev.
For the Kaluza-Klein first modes, the tree-level mass terms
follow the structure

(
F̄ (n) f̄ (n)

)( n
R

mf

mf
n
R

)(
F (n)

f (n)

)

where F (n) and f (n) denote the doublet and the singlet
fields, respectively. The diagonal contributions come from
the kinetic terms in the fifth dimension and the off-diagonal
ones are induced by the Higgs vev. After the diagonalization
of the mass matrices, the masses of the physical eigenstates
are obtained,

M
(n)
f =

√(
n

R

)2

+ (
m

(0)
f

)2
. (115)

Possible extensions As we have mentioned before, we are
only considering expansions of the fields up to the first
Kaluza-Klein excited states. However one could easily in-
corporate the next modes by expanding the fields up to the
nth component. It is straightforward to incorporate the sec-
ond mode Kaluza-Klein excitations, by following the exam-
ple of the first modes.
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5.6 An access to the low energy world

Effective theories allow us to have predictions about the
masses and the interactions at low energy without having
to know everything about the fundamental theory. We only
need to know the (exact or approximate) symmetries of the
fundamental theory. One of the most successful examples
is Chiral Perturbation Theory (χPT), the effective theory
of the strong interactions. Most of the processes involving
pseudoscalar mesons happen at scales at which pertubative
QCD cannot be trusted anymore. Despite our resulting in-
capacity to compute their properties directly from the fun-
damental Lagrangian, the shape of the effective Lagrangian
can be inferred using the global approximate chiral symme-
try of QCD. The other famous example, especially in this
pre-LHC era, are all the effective models developed to solve
the hierarchy problem where the Higgs boson is a pseudo-
Goldstone boson of a new strong sector. These models were
built on the fundamentals laid down by QCD. However, in
this case, much less is known, neither the fundamental nor
all the low energy degrees of freedom. However, the low
energy effects of many of them, called Strongly Interacting
Light Higgs (SILH) Models, can be described by the same
effective Lagrangian up to some coefficients [174].

5.6.1 Model description

χPT at the lowest order The effective Lagrangian invari-
ant under the SU(nF )L × SU(nF )R × U(1)V , where nF is
the number of massless quark flavors, is [175]

LχPT = L(p0,1/Nc) + L(p2,0),

L(p0,1/Nc) = f 2

8

m2
0

4Nc

〈
lnU − lnU†〉2,

L(p2,0) = f 2

8

[〈
∂μU∂μU†〉+ r

〈
mU† + Um†〉],

(116)

where m is the mass matrix of the light quarks, f , r and
m0 are free coefficients whose value should be extracted
from experiment, and U transforms as U → gLUg

†
R and the

brackets indicate a trace. The first part of the Lagrangian
is due to the axial U(1) breaking required by the η′ mass
[140] and is at the source of the strong CP problem. The
second term is the usual non-linear sigma Lagrangian and
the last one takes into account the quark masses. Only the
first three flavors are sufficiently light compared to the con-
finement scale of QCD of about 1 GeV to consider the chiral
symmetry as approximate, so we set nF = 3 in the SM. At
low energy, the symmetry of the strong interactions has to
be broken spontaneously to its vectorial subgroup U(nF )V
in the limit where the number of colors (Nc) is large. The

unitary matrix U can thus be developed as a function of the
pseudo-Goldstone bosons around its vacuum [176],

U = 1 +
∞∑

k=1

ak

(
i
√

2
π

f

)k

, (117)

with

π =

⎛
⎜⎜⎜⎝

π3 + 1√
3
η8 +

√
2
3 η0

√
2π+ √

2K+
√

2π− −π3 + 1√
3
η8 +

√
2
3 η0

√
2K0

√
2K− √

2K0 − 2√
3
η8 +

√
2
3 η0

⎞
⎟⎟⎟⎠ .

(118)

The coefficients ak are partially fixed by unitarity,

a1 = 1,

a2 = 1

2
,

a3 = b,

a4 = b − 1

8
,

a5 = c,

a6 = c + b2

2
− b

2
+ 1

16
,

...

(119)

The remaining free parameters, b, c, . . . , can be used to
check the computation of any physical quantity which has
to be independent of these quantities [177, 178], or they can
be fixed to obtain the most suited form for U . For exam-

ple, the common form U = exp( i
√

2π
f

) requires b = 1
6 and

c = 1
120 . The mass matrix of the three neutral states, π3, η8

and η0 is not diagonal. Consequently, the mass eigenstates
are obtained by a rotation.

The SILH model The Strongly-Interacting Light Higgs
Model is an effective theory of a possible strong sector re-
sponsible for the electroweak symmetry breaking (EWSB).
The aim of this model is to disentangle if the EWSB is due
to a strong sector or not by testing the interactions of the
Higgs and the gauge bosons.

The SILH requirements are that the new strong sector has
a spontaneously broken symmetry at low energy and that the
Higgs boson is an exact Goldstone boson when the SM in-
teractions are switched off. As for the mass matrix of the
light quarks in QCD, the SM interactions are included order
by order as small breaking parameters and induce a mass
term for the Higgs boson. The little Higgs models and holo-
graphic composite Higgs models are examples of such the-
ories.
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At scales lower than the resonances, the effects of the
model are described by a set of dimension-six operators in-
volving the Higgs boson,

LSILH = cH

2f 2
∂μ
(
Φ†Φ

)
∂μ

(
Φ†Φ

)

+ cT

2f 2

(
Φ†←→DμΦ

)(
Φ†←→D μΦ

)

− c6λ

f 2

(
Φ†Φ

)3

+
(

cyyf

f 2
Φ†Φf̄LΦfR + h.c.

)

+ icWg

2M2
ρ

(
Φ†σ i←→DμΦ

)(
DνWμν

)i

+ icBg′

2M2
ρ

(
Φ†←→DμΦ

)(
∂νBμν

)

+ icHWg

16π2f 2

(
DμΦ

)†
σ i
(
DνΦ

)
Wi

μν

+ icHBg′

16π2f 2

(
DμΦ

)†(
DνΦ

)
Bμν

+ cγ g′2

16π2f 2

g2

g2
ρ

Φ†ΦBμνB
μν

+ cgg
2
S

16π2f 2

y2
t

g2
ρ

Φ†ΦGa
μνG

aμν (120)

where Φ†←→D μΦ ≡ Φ†DμΦ − (DμΦ†)Φ , gρ is the cou-
pling of the new strong sector, Mρ is the mass of the new
heavy states and f = Mρ/gρ . For completeness, the model
also contains the dimension-six Lagrangian for the SM vec-
tors,

Lvect = − c2Wg2

2g2
ρM2

ρ

(
DμWμν

)i(
DρWρν

)i

− c2Bg′2

2g2
ρM2

ρ

(
∂μBμν

)(
∂ρBρν

)

− c2gg
2
3

2g2
ρM2

ρ

(
DμGμν

)a(
DρGρν

)a

+ c3Wg3

16π2M2
ρ

εijkW
i
μ

ν
Wj

νρWkρμ

+ c3gg
3
3

16π2M2
ρ

fabcG
a
μ

ν
Gb

νρGcρμ. (121)

The ci are free parameters of the model and can thus be
fixed to reproduce the low energy behavior of a more spe-
cific model.

5.6.2 FEYNRULES implementation

χPT in FEYNRULES χPT is implemented in FEYNRULES

at the lowest order as in (116), namely at the order p2. In the
implemented model, the Lagrangian is developed up to the
O(π6)9 with arbitrary coefficients b and c. Consequently,
vertices depend linearly on scalar products of the momenta
and contain up to six scalars. The Lorentz structure of these
vertices are not included in the default generic FEYNARTS

file which contains only renormalizable structures. Let us
note that at present this implementation only works with the
FEYNARTS interface.

Since the isospin limit mu = md = m̃ is taken in the
FEYNRULES model file, only η8 and η0 mix. The mass
eigenstates are given by

(
η

η′
)

=
(

cos θ − sin θ

sin θ cos θ

)(
η8

η0

)
;

θ ∈
[
−π

4
,+π

4

]
.

(122)

The isospin breaking can be easily added. The major modifi-
cation is to extend the 2×2 matrix in (122) to a 3×3 mixing
matrix since the three neutral states mix in this case. How-
ever, the effects are small and thus usually neglected. For the
same reason, the mass matrix of the quarks is assumed to be
real, but the phase allowed by the U(1)A breaking can easily
be added in the definition of the quark mass matrix.

The lowest order Lagrangian, (116), can reproduce the
experimental data within 20%. These discrepancies can be
solved with next order corrections. The inclusion of the
next order operators either O(p4,0) [179] or O(p2,1/Nc)

[180, 181] in the Lagrangian is also straightforward since U

is already defined in the model file. In the same way, the
weak and electromagnetic interactions could also be added.
However, the Lorentz structure of the vertices is hardcoded
in the FEYNARTS interface, so the new structures generated
by these new operators need to be added in the interface and
in an associated FEYNARTS generic file, as it was already
done for the lowest order Lagrangian.

SILH in FEYNRULES The SILH implementation is based
on the SM implementation but restricted to unitary gauge.
The two Lagrangians of (120) and (121) have been added
to the SM one with all the ci considered as free external
parameters. The first one contributes to the kinetic term of
the Higgs and of the gauge bosons, so the physical fields
are renormalized versions of the bare fields appearing in the

9All the higher order terms have been removed from the Lagrangian to
save computation time.
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Lagrangian,10

Φ = Φbare

(
1 + ξ

cH

2

)
,

W
μ
i = W

μ
i,bare

(
1 − cW

M2
W

M2
ρ

)
,

Bμ = B
μ
bare

(
1 − cB tan2 θw

M2
W

M2
ρ

+ ξcγ

g′2

(4π)2

g2

g2
ρ

)
,

Gμ
a = G

μ
a,bare

(
1 − ξcg

g2
S

(4π)2

y2
t

gρ

)
.

(123)

The gauge couplings have also to be redefined to obtain
canonical kinetic terms for the gauge bosons,

g = gbare

(
1 + cW

M2
W

M2
ρ

)
,

g′ = g′
bare

(
1 + cB tan2 θw

M2
W

M2
ρ

− ξcγ

g′2

(4π)2

g2

g2
ρ

)
,

gS = gS,bare

(
1 + ξcg

g2
S

(4π)2

y2
t

gρ

)
.

(124)

Finally, the vev and the masses of the Higgs boson and the
fermions are also corrected compared to their SM values,

v2 = μ2

λ

[
1 − 3

4
ξc6

]
,

m2
H = 2μ2

[
1 − ξ

(
cH + 3

4
c6

)]
,

mf = yf

v√
2

(
1 − ξ

cy

2

)
.

(125)

All of these redefinitions have been done at the first order
in ξ = v2

f 2 . Any result is thus valid only at this order. It
should be noted that all of these non-renormalizable inter-
actions cannot be transferred directly to any other HEP tool
for the moment.

6 Validation of the implemented models

In this section, we first review some generic features of
the various validation procedures used to assess the model
robustness and then move to the results of the validation
process for the Beyond the Standard Model theories pre-
sented in the previous section.

6.1 Strategy for the validation of the implemented models

In order to validate the implementation of a model inside
FEYNRULES, a very first natural check is to compare the

10(cW + cB)M2
W /M2

ρ is supposed to vanish to avoid non-diagonal ki-
netic terms.

obtained Feynman rules, using directly the MATHEMAT-
ICA output, against the ones found in the literature. Subse-
quently, using the existing interfaces to symbolic tools such
as FEYNARTS, we can go further in the validation procedure
with analytical checks of some observables, confronting the
results obtained with the help of the model files generated
by FEYNRULES to the corresponding expressions found in
the literature.

The next step in our validation procedure regards the
model files generated through the different interfaces be-
tween FEYNRULES and matrix-element generators. For a
given model, we calculate predictions using the set of Monte
Carlo tools interfaced to FEYNRULES both with the model
files generated by FEYNRULES and with the built-in (stock)
implementations of the considered model, if they exist of
course. After consistently fixing the set of external para-
meters to the values corresponding to a chosen benchmark
point, results for various quantities, such as decay widths, to-
tal cross sections or (unintegrated) squared matrix elements
at a given phase-space point, are computed and confronted.
For a phase-space integrated observable σ , we evaluate all
the possible quantities

Δab = 2
|σa − σb|
σa + σb

, (126)

where σa,b refers to predictions obtained with two spe-
cific generator and a given model file. The Δab’s quantify
possible discrepancies between different implementations.
For example, ΔMG-FR,CH-ST represents the discrepancies be-
tween predictions obtained with CALCHEP, using the built-
in implementation of the considered model (CH-ST), and
with MADGRAPH, using the FEYNRULES-generated model
files (MG-FR). For unintegrated squared matrix elements
|M|2, we generalize this quantity to

ΔPS = max
a,b

{ ∑
phase space points

[
2
||Ma|2 − |Mb|2|
|Ma|2 + |Mb|2

]}
, (127)

summing over a given number of phase-space points.
For each model presented in the previous section, the in-

put parameters used in the comparison and some numerical
examples are given in Appendix B. The complete list of re-
sults can be found on the FEYNRULES website [53].

6.2 The standard model

All the Feynman rules obtained with FEYNRULES were
checked against the expressions given in the literature, while
the total cross sections for a set of 35 key processes have
been evaluated in CALCHEP, MADGRAPH/MADEVENT

and SHERPA and compared to the existing stock versions.
A selection of processes, together with the set of external pa-
rameters used for this check, is given in Appendix B.1. Note
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in particular that MADGRAPH/MADEVENT and SHERPA

work in unitary gauge, whereas CALCHEP allows for both
unitary and Feynman gauges. We therefore also demon-
strated explicitly the gauge invariance of our implementa-
tion.

6.3 The general two-Higgs-doublet model

The validation of the present implementation is done by
comparing 2 → 2 matrix elements, for 10 different phase-
space points, between the FEYNRULES unitary-gauge im-
plementations in MADGRAPH/MADEVENT, SHERPA and
CALCHEP, and the existing stock implementation in MAD-
GRAPH/MADEVENT described in [9] and distributed with
the code.

The selected benchmark point includes non-trivial values
for all the λi parameters of (27), as well as Yukawa cou-
plings for the second and third generation fermions lead-
ing to FCNC effects. Agreement, claimed if the quantity
ΔPS defined in (127) is smaller than 0.1%, has been found
for all the tested processes involving various combinations
of scalars, fermions and gauge bosons both in the initial
and final states. Furthermore, a selection of 185 2 → 2
cross sections have been computed using CALCHEP, MAD-
GRAPH/MADEVENT and SHERPA, and compared to the
existing MADGRAPH/MADEVENT implementation. In all
cases the results agree within 1% between the different
codes. Some examples are shown in Appendix B.2. In ad-
dition to these checks, the behavior of various cross sections
at high energies for processes involving new scalars has also
been verified. In each case, the cross section behavior is in
agreement with unitarity expectations.

6.4 The most general minimal supersymmetric standard
model

We have compared the Feynman rules computed by FEYN-
RULES to those which can be found in the literature, both for
the general MSSM [182, 183] and for a constrained MSSM
where all the scalar mixings are neglected [105, 184], and
we have found agreement for all the vertices. Then, we have
re-calculated all tree-level squark and gaugino hadropro-
duction helicity amplitudes in the case of general (and
possibly complex) scalar mixing with the help of FEYN-
ARTS/FORMCALC and the model file generated by FEYN-
RULES. The results have been compared to the analytical
formulas given in [115, 116] and we found complete agree-
ment.

To validate the FEYNRULES-generated model files for
the various Monte Carlo generators, we compared the results
obtained in the very particular limit where CP symmetry and
flavor are assumed to be conserved within the whole model,

the CKM matrix appearing in the charged-current interac-
tions being thus neglected as well. In addition, in the scalar
sector, the flavor-conserving helicity mixings are neglected
for first and second generation sfermions. In this scenario,
built-in implementations exist in MADGRAPH/MADEVENT

and CALCHEP. As a benchmark scenario, we choose the
typical minimal supergravity point SPS 1a [185], defined by
the input parameters given in Appendix B.3. Extensions to
other programs that will be interfaced to FEYNRULES in the
future are foreseen. The values of the parameters were set
equal in all the Monte Carlos. For MADGRAPH, this meant
that we used the same SLHA parameter file. For CALCHEP,
we adjusted the parameters by hand to agree with the SPS 1a
point.

We start by evaluating all the 320 two-body decay widths
corresponding to kinematically allowed decays in our sce-
nario in order to check the norm of various three-point
vertices. We find a very good agreement for both SM and
MSSM processes. In particular, we have confronted the MG-
FR implementation to the already validated MG-ST imple-
mentation [135], and the agreement between the two predic-
tions was evaluated through the quantity ΔMG−ST,MG−FR

defined in (126), which has been found to be smaller than
1%. Some examples can be found in Table 15 of Appen-
dix B.3.

Subsequently, we have investigated the total cross section
for 636 key 2 → 2 processes with the help of CALCHEP and
MADGRAPH/MADEVENT, and with both FEYNRULES-
generated and built-in model files. Since the stock model
files MADGRAPH/MADEVENT have been validated in
[135], we will restrict our tests by using only the one of
MADGRAPH/MADEVENT. In order to properly compare
the different implementations and unitary cancellations, we
manually set all the widths of the particles to zero. We
checked that the ten quantities Δab defined in (126) for any
set of two predictions a and b are below the percent level.
This check allows not only to verify the absolute value of
all the three-point vertices and some four-point ones, but
also to start being sensitive to the relative sign of a large
part of those vertices. This is also the very first systematic
comparison between predictions obtained with CALCHEP

and MADGRAPH/MADEVENT for the MSSM. We have
considered the production of either a pair of any Standard
Model particles, or a pair of any supersymmetric particles,
from any Standard Model initial state. Even though most of
these channels are not really phenomenologically relevant
because most of the initial states are impossible to realize
at a collider, they allow for a sensitive check of each three-
point vertex, and a large part of the four-point vertices. Let
us note that the remaining untested vertices, such as the four-
scalar interactions in LScalar FDW in (48), are irrelevant for
2 → 2 leading-order calculations with a Standard Model ini-
tial state. We have considered two different cases, one where
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we have fixed the energies of the initial particles to 600 GeV,
and one to 1 TeV. We have found that the ten possible Δab

quantities are below the percent level comparing any two
of the five implementations, MG-FR, MG-ST, CH-FR and
CH-ST, except for

W+W− → W+W− and bt̄ → ZW− (128)

where the discrepancies are due to the presence of sin-
gularities in the matrix elements, which makes any of
the considered Monte Carlo generators unable to correctly
evaluate the total cross section, and except for about 15
processes where the built-in implementation of the MSSM
in CALCHEP gives results different from those of the other
implementations. For the two processes in (128), we have
evaluated the (unintegrated) squared matrix elements |M|2
at given phase-space points for all CALCHEP and MAD-
GRAPH/MADEVENT model files and computed the quantity
ΔPS of (127). Summing over 100 different random phase-
space points, we have found that ΔPS is below 1%, which is
sufficient to conclude that the four implementations agree.
Some examples of numerical results can be found in Ta-
bles 16, 17 and 18 in Appendix B.3. The complete list of
results is available on the FEYNRULES webpage.

Finally, in order to test every sign of each three-point ver-
tex and a large part of the four-point vertices, we have eval-
uated squared matrix elements for 100 random phase-space
points and calculated the quantity ΔPS defined in (127). We
have investigated 2708 processes, relative to the production
of two supersymmetric particle plus one Standard Model
particle at a center-of-mass energy of 2 TeV. Using MG-
FR and MG-ST, we have found a complete agreement for
each process, i.e., ΔPS was below 0.1%. All the results can
be found on the FEYNRULES website. The comparison with
matrix elements calculated by CALCHEP is devoted to a fu-
ture study.

6.5 The minimal Higgsless model

Our FEYNRULES implementation was compared to the
LANHEP implementation, both in unitary and in Feyn-
man gauge. It was run in Feynman gauge in CALCHEP

and COMPHEP and in unitary gauge in CALCHEP, MAD-
GRAPH/MADEVENT and SHERPA. The parameters used for
this validation and the final particles cuts are given in Ap-
pendix B.4. In all cases, the cross section was calculated,
compared, and agreement to better than 1% was found.

Some examples of the obtained cross sections are given
in the various tables of Appendix B.4. In Table 20, a selec-
tion of strong processes are presented. In Tables 21 and 22,
charged and neutral electroweak processes are presented, re-
spectively.

6.6 Extra dimensional models

Large extra dimension model The Feynman rules for LED
obtained by FEYNRULES were explicitly checked with
those available in the literature. Unlike for the models pre-
sented above, we cannot use any matrix-element generator
to compute cross sections or decay rates, because the inter-
faces linking FEYNRULES to Monte-Carlo generators are
not yet defined to work for a theory with spin-two particles.
Therefore we have chosen to validate our LED model im-
plementation via analytical expressions. We found complete
agreement both for the Feynman rules of the generic LED
theory which can be found in [171, 186] and for those of the
full LED implementation. Let us notice that from the generic
LED model validated above, we can extrapolate the results
of the latter to guess those of the QCD and electromagnetic
part of the full LED model. This check was performed and
agreement was found.

Universal extra dimension model For the MUED model,
we start by confronting the Feynman rules to those avail-
able in the literature. In a second step, we have calculated
cross sections for 2 → 2 processes and compared the re-
sults obtained with the help of MADGRAPH, SHERPA and
CALCHEP, and we have compared our results to those ob-
tained with the help of an existing CALCHEP implementa-
tion [172]. The input parameters for the benchmark point
which we have chosen for our numerical validation are given
in Appendix B.5. Let us note that the only Higgs field
which we have considered is the Standard Model one, even
though its first Kaluza-Klein excitation is also implemented.
The comparison has been carried out for the 118 processes
[168–170, 187]. First, using MADGRAPH and considering
Standard Model processes, we have calculated squared ma-
trix elements at given phase-space points and confronted the
results obtained with the FEYNRULES-generated model file
to those obtained with the built-in Standard Model imple-
mentation. Subsequently, using the FEYNRULES -generated
model file for MADGRAPH, SHERPA and CALCHEP and the
existing CALCHEP implementation of the MUED model,
we have compared total cross sections for the 118 chosen
processes at a center-of-mass energy of 1400 GeV. We have
found agreement for each of them, and some examples are
shown in Tables 24 and 25 in Appendix B.5.

6.7 Low-energy effective theories

χPT at lowest order The χPT model was checked analyti-
cally. The expressions of the amplitudes computed with pen
& paper work of [188] have been compared to the one ob-
tained using FEYNRULES and FEYNARTS. The loop ampli-
tudes have been integrated using cutoff regularization and
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only the terms quadratic in the cutoff Λ have been com-
puted. More precisely, we computed the one-loop correc-
tions to the two-point functions π − π , η − η, η′ − η′ and
η − η′. The momentum independent part of each of these
amplitudes, but the last one, corresponds to mass correc-
tions and is b-independent as it should. For example, the
renormalization of the pion wave function is

Z = 6(1 − 8b)
Λ2

(4πf )2
, where πR ≡ √

1 + Zπ, (129)

while its mass correction vanishes.11 The η′ → ηππ decay
amplitude has also been computed at tree-level and at one-
loop. In this last result, also the c-dependence cancels. Even-
tually, a total of about 60 diagrams were computed with both
methods and perfect agreement was found.

SILH model The check of the SILH model consists in an
analytic comparison between the decay widths computed
in [174] and computations based on the vertices given by
FEYNRULES. We used the same simplifications, i.e., cT = 0
and (cW + cB)M2

W/M2
ρ = 0 and neglect Lvect. For tree-level

decay widths of the Higgs into two fermions, both imple-
mentations leads to exactly the same results. For decays into
a gauge boson pair, the contribution to the Feynman rules
from higher-dimensional operators read, e.g., for the hWW

vertex,
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, (130)

where p1, p2 and p3 denote the momenta of the Higgs boson
and the two W bosons respectively. As a consequence, the
corrections are not just proportional to the SM decay widths
since the vertices have a more complicated kinematic struc-
ture. We find

Γ
(
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= Γ
(
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[
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(131)

11All the other results can be found in [188].

Γ (H → ZZ)

= Γ (H → ZZ)SM

[
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, (132)

in agreement with [189]. In the situation where we have
the hierachy of couplings g < gρ < 4π , the second term in
(131) and (132) is suppressed parametrically with respect to
the first one and could thus be neglected, leading to just a
rescaling of the SM decay widths [174]. Let us note how-
ever that in the case where the ratio g2/(4π)2 is not too
small, this additional term could have a numerical impact
on the decay rates.

7 Outlook

We have described a new framework where BSM physics
scenarios can be developed, studied and automatically im-
plemented in Monte Carlo or symbolic calculation tools for
theoretical and experimental investigations. The main pur-
pose of this work has been to contribute to streamlining the
communication (in both directions) between the theoretical
and the experimental HEP communities.

The cornerstone of our approach is the MATHEMAT-
ICA package FEYNRULES where any perturbative quantum
field theory Lagrangian, renormalizable or not, can be writ-
ten in a straightforward way and the corresponding Feyn-
man rules obtained automatically. All the relevant infor-
mation can then be passed through dedicated interfaces to
matrix-element generators for Feynman diagram calcula-
tions at tree level or at higher orders. The scheme itself
looks very simple and is in fact not a new idea. The nov-
elty, however, lies in several technical and design aspects
which, we believe, constitute a significant improvement over
the past.

First, the use of MATHEMATICA as a working envi-
ronment for the model development gives all the flexibil-
ity that is needed for symbolic manipulations. The many
built-in features of MATHEMATICA, such as matrix di-
agonalization and pattern recognition functions, play an
important role in building not only robust interfaces for
very different codes but also to open up new possibili-
ties. For instance, besides implementing BSM models, new
high-level functionalities/applications can be easily devel-
oped by the users themselves, made public and possibly
included in subsequent official releases. In other words,
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the code is naturally very open to community contribu-
tions. A typical application that could take advantage of
this open structure is the (semi-)automatic development
of model calculators inside the FEYNRULES package it-
self, including mass spectrum and decay width calcula-
tions.

Second, the interfaces to MC codes, all of them quite
different both in philosophy, architecture and aim, offer
the possibility of testing and validating model implemen-
tations at a very high level of accuracy. It also maximizes
the probability that a given model might be dealt with by
at least one matrix element generator. For example, purely
symbolic generators such as FEYNARTS/FORMCALC can
be used for tree-level (or even loop) calculations which
can then be compared or extended to numerical results
from CALCHEP, MADGRAPH/MADEVENT or SHERPA. In
this respect we note that one of the current major and
common limitations of the matrix-element generators (but
not of FEYNRULES) is connected to use of a fixed li-
brary of Lorentz and/or gauge structures for the vertices.
These libraries are in principle extendable, but at present
this is done by hand and it entails a tedious and often
quite long work. The automatization of this part (and possi-
bly the reduction of higher-dimensional operators to renor-
malizable ones) through FEYNRULES would be the final
step towards full automatization of any Lagrangian into
Monte Carlo codes. Work in this direction is already in
progress.

With such a framework in place, we hope that several
of the current problems and drawbacks in new physics sim-
ulations faced by the experimental groups will be allevi-
ated if not completely solved. First the need of dedicated
codes for specific models, which then call for long and
tedious validations both from the physics point of view
as well as in their interplay with collaboration softwares,
will be greatly reduced. General purpose tools, from HER-
WIG and PYTHIA to SHERPA, MADGRAPH/MADEVENT,
WHIZARD, CALCHEP/COMPHEP (and potentially also
HELAC and ALPGEN), several of which have been success-
fully embedded in frameworks such as ATHENA (ATLAS)
and CMSSW (CMS), offer several ready-to-go solutions
for any FEYNRULES based models. Reducing the prolif-
eration of highly dedicated tools will greatly simplify the
maintenance and reliability of the software and more im-
portantly the reproducibility of the MC samples in the mid
and long terms. In addition, we believe an effort towards
making new Lagrangians in FEYNRULES and the corre-
sponding benchmark points publicly available (for exam-
ple by the proponents of the model themselves at the same
time of the release of the corresponding publication) would
certainly be a great advantage for the whole HEP commu-
nity.

It is our hope that FEYNRULES will effectively facilitate
interactions between theorists and experimentalists. Until

now there has not been a preferred way to link the two com-
munities. Various solutions have been proposed and used,
most of them plagued by significant limitations. The best
available proposal so far has been to use parton-level events
in the Les Houches Event File (LHEF) format [190]. This is
a natural place to cut a line given that theorists and phenome-
nologists can generate events through various private or pub-
lic tools, and then pass them for showering and hadroniza-
tion to codes such as PYTHIA or HERWIG. These codes
are not only already embedded in the experimental software
(for the following detector simulations), but also have been
(or will be) tuned carefully to reproduce control data sam-
ples.

While we think this is still a useful approach that should
be certainly left open and supported, we are convinced the
framework we propose is a promising extension. The deep
reason is that, in our approach, there is no definite line be-
tween theory and experiment. On the contrary it creates a
very extended region where the two overlap and work can
be done in the same common framework. This leaves much
more freedom in where exactly the two ends meet and what
kind of checks and information can be exchanged. As a
result there are several practical advantages that come for
free.

As an example, we remind that the LHEF format only
standardizes the information on the events themselves and
some very basic global properties, but any information on
the physical model (i.e., the explicit form of the Lagrangian)
or the parameter choices is in general absent. This is of
course due to implementation differences among various
codes which severely compromise any standardization at-
tempt at this level. It is clear that, in the long run, this
might lead to serious problems of traceability of the MC
samples and various ambiguities in understanding experi-
mental analyses (such as placing of exclusion limits). This
problem is of course completely overcome by the approach
advocated here, since models are now fully and uniquely de-
fined. In this sense FEYNRULES itself offers the sought for
standardization.

Another, and maybe even more striking example is that,
within FEYNRULES, model building and/or refinement can
in principle be done in realtime together with the related ex-
perimental analyses. One could imagine, for example, that
if the TeV world is as rich as we hope and as data start
showing hints for new particles or effects, a large number of
competing Lagrangians (and not only benchmark points as
used in the typical top-down SUSY analyses) could be eas-
ily and quickly implemented and readily confronted to data.
This could be done in a virtuous loop, where theorists and
experimentalists “meet” at a convenient point of the simu-
lation chain. In other words, various top-down and bottom-
up studies can fit naturally in this framework, partially ad-
dressing often reported worries about the actual possibilities
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to extract precise information on BSM physics from LHC
data.

Finally, let us also mention a more long-term advan-
tage of the proposed framework. Automatic NLO calcu-
lations for SM processes are now clearly in sight, and,
in this context, it might be reasonable to ask whether
those developments can be extended to BSM processes.
We believe the answer is yes, and, since this generaliza-
tion will probably rely on the simultaneous implementation
of the model characteristic in different codes (e.g., deal-
ing with different parts of the calculation like real and vir-
tual corrections, or analytic and numerical results) our ap-
proach might also naturally play a crucial role in this con-
text.
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Appendix A: The FEYNRULES convention for standard
model inputs

There are several parameters and particles that have spe-
cial significance in Feynman diagram calculators. Examples
of these are the strong and electromagnetic couplings, the
names of the fundamental representation and the structure
constants of the strong gauge group and so on. For this
reason, the names of these objects are fixed at the FEYN-
RULES level. Adherence to these standards will increase the
chances of successful translation.

The strong gauge group has special significance in many
Feynman diagram calculators. A user who implements the

strong gauge group should adhere to the following rules.
The indices for the fundamental and adjoint representations
of this gauge group should be called Colour and Gluon
respectively. Furthermore, the names of the QCD gauge bo-
son, coupling constant, structure constant, totally symmetric
tensor and fundamental representation should be given by G,
gs, f, dSU3 and T as in the following example:

SU3C == {
Abelian -> False,
GaugeBoson -> G,
StructureConstant -> f,
SymmetricTensor -> dSU3,
Representations -> {T, Colour},
CouplingConstant -> gs
}

In addition, the strong coupling constant and its square over
4π should be declared in the parameter section in the fol-
lowing form:

\[Alpha]S == {
ParameterType -> External,
Value -> 0.118,
ParameterName -> aS,
BlockName -> SMINPUTS,
InteractionOrder -> {QCD, 2},
Description -> "Strong coupling

at the Z pole."
},

gs == {
ParameterType -> Internal,
Value -> Sqrt[4 Pi \[Alpha]S],
ParameterName -> G,
InteractionOrder -> {QCD, 1}

}

Note that αS is given as the external parameter and gS as
the internal parameter. The description of αS may be edited,
but it should be remembered that, for the Monte Carlo pro-
grams that run the strong coupling constant, the value of αS

should be set at the Z pole. For calculation programs that do
not run the strong coupling, on the other hand, it should be
set according to the scale of the interaction. A description
may also be added to the parameter gS .

The electromagnetic interaction also has special signif-
icance in many Feynman diagram calculators and we out-
line the following standard definitions. The electric coupling
constant should be called ee, the electric charge should be
called Q. The declaration of the electric charge should follow
the following conventions for naming:

\[Alpha]EWM1 == {
ParameterType -> External,
Value -> 127.9,
ParameterName -> aEWM1,
BlockName -> SMINPUTS,
InteractionOrder -> {QED, -2},



Eur. Phys. J. C (2011) 71: 1541 Page 39 of 57

Description -> "alpha_EM inverse
at the Z pole."

},
\[Alpha]EW == {

ParameterType -> Internal,
Value -> 1/\[Alpha]EWM1,
InteractionOrder -> {QED, 2},

ParameterName -> aEW,
},

ee == {
ParameterType -> Internal,
Value -> Sqrt[4 Pi \[Alpha]EW ],
InteractionOrder -> {QED, 1}
}

As for the strong coupling, the description of α−1
EW may

be edited,12 but it should be remembered that for calcula-
tion programs that run the electric coupling, it should be set
at the Z pole. For programs which do not run it, the electric
coupling should be set at the interaction scale. Again, a de-
scription may be added to the definition of \[Alpha]EW
and ee.

The Fermi constant and the Z pole mass are very pre-
cisely known and are often used in calculators to define cou-
pling constants and the scale where couplings are run from.
They should be included in the SMINPUTS block of the Les
Houches Accord and should be defined by at least the fol-
lowing:

Gf == {
ParameterType -> External,
Value -> 1.16639 * 10^({-}5),
BlockName -> SMINPUTS,
InteractionOrder -> {QED, 2},
Description -> "Fermi constant"
},

MZ == {
ParameterType -> External,
Value -> 91.188,
BlockName -> SMINPUTS,
Description -> "Z pole mass"
}

Moreover, the weak coupling constant name gw and the
hypercharge symbol Y are used by some calculators and
the user is encouraged to use these names where appropri-
ate. The masses and widths of particles should be assigned
whenever possible. If left out, FEYNRULES will assign the
value 1 to each. Finally, particles are also identified by a
PDG number. The user is strongly encouraged to use ex-
isting PDG codes in their model wherever possible. If not
included, a PDG code will be automatically assigned by
FEYNRULES beginning at 9000001.

12The reason for choosing α−1
EW as the external input parameter, and

not αEW itself is only to be compliant with the Les Houches Accord.

Appendix B: Validation tables

In this Appendix we report the main results of our work,
i.e., the validation tables. In general, the tables list quan-
tities (such as decay widths or cross sections) that have
no direct phenomenological interest but they are physical,
easily reproducible and provide an exhaustive check of the
(complex) values of all the couplings of the model. In sev-
eral instances, other powerful checks (such as gauge invari-
ance, unitarity cancellation at high energy, and so on) have
been performed and are not presented here. Whenever possi-
ble, comparisons between the so-called “stock implementa-
tions”, i.e., implementations already available in the Monte
Carlo tools, have been made as well as comparisons between
different Monte Carlo’s also in different gauges. All num-
bers quoted in this section are expressed in picobarns and
correspond to a collision in the center-of-mass frame. Fur-
thermore, in all cases the generators were set up such as to
achieve numerical results within an accuracy below the per-
mille level, and we observe that with this setup the differ-
ences between the different generators as well as between
the FEYNRULES and the “stock implementations” is always
significantly below the 1% level.13

B.1 The standard model

In this section we give the results for the 35 cross sec-
tions tested for the SM between CALCHEP, MADGRAPH/
MADEVENT and SHERPA for a total center of mass energy
of 550 GeV. A pT cut of 20 GeV was applied to each fi-
nal state particle. The set of external parameters used for the
test is given in Table 7. A selection of processes is shown in
Tables 8 and 9.

B.2 The general two-Higgs-doublet model

In this section we give a selection of the results for the
185 cross sections tested for the 2HDM between CALCHEP,
MADGRAPH/MADEVENT and SHERPA for a total center-
of-mass energy of 800 GeV. A pT cut of 20 GeV was ap-
plied to each final state particle. The set of external para-
meters used for the test is given in Table 10. A selection of
processes is shown in Tables 11, 12 and 13.

B.3 The most general minimal supersymmetric standard
model

In order to fully determine the MSSM Lagrangian at low
energy scale, it is sufficient to fix the SM sector and the

13A more accurate validation can be achieved by comparing individ-
ual phase-space points rather than integrated cross sections. CALCHEP

and MADGRAPH/MADEVENT allow for the numerical evaluation of
single points in phase space, and we compared the matrix elements
between the two generators at various randomly chosen points and ob-
serve agreement to a much higher accuracy in all cases.
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Table 7 Input parameters for
the SM Parameter Symbol Value

Inverse of the electromagnetic α−1
EW (MZ) 127.9

coupling

Strong coupling αs(MZ) 0.118

Fermi constant GF 1.16639e−5 GeV−2

Z pole mass MZ 91.188 GeV

c quark mass mc 1.42 GeV

b quark mass mb 4.7 GeV

t quark mass mt 174.3 GeV

τ lepton mass mτ 1.777 GeV

Higgs mass mH 120 GeV

Cabibbo angle θc 0.227736

Table 8 Cross sections for a
selection of SM production
processes. The built-in SM
implementation in MADGRAPH

and CALCHEP and SHERPA are
denoted MG-ST, CH-ST and
SH-ST, respectively, while the
FEYNRULES-generated ones
MG-FR, CH-FR, SH-FR. The
center-of-mass energy is fixed to
550 GeV, and a pT cut of
20 GeV is applied to each final
state particle

Lepton and weak boson processes in the standard model

Process MG-FR MG-ST CH-FR CH-ST SH-FR SH-ST

e+e− → e+e− 7.341e+2 7.343e+2 7.342e+2 7.342e+2 7.343e+2 7.343e+2

e+e− → μ+μ− 3.721e−1 3.720e−1 3.719e−1 3.719e−1 3.720e−1 3.720e−1

e+e− → νeν̄e 4.914e+1 4.913e+1 4.915e+1 4.915e+1 4.915e+1 4.915e+1

τ+τ− → W+W− 5.370e+0 5.360e+0 5.368e+0 5.368e+0 5.368e+0 5.368e+0

τ+τ− → ZZ 3.186e−1 3.180e−1 3.182e−1 3.182e−1 3.183e−1 3.183e−1

τ+τ− → Zγ 2.005e+0 2.007e+0 2.006e+0 2.006e+0 2.006e+0 2.006e+0

τ+τ− → γ γ 2.782e+0 2.780e+0 2.779e+0 2.779e+0 2.779e+0 2.779e+0

ZZ → ZZ 1.960e+0 1.959e+0 1.961e+0 1.961e+0 1.961e+0 1.961e+0

W+W− → ZZ 2.726e+2 2.729e+2 2.726e+2 2.726e+2 2.726e+2 2.726e+2

HH → ZZ 6.268e+1 6.266e+1 6.266e+1 6.266e+1 6.266e+1 6.266e+1

HH → W+W− 9.449e+1 9.450e+1 9.447e+1 9.447e+1 9.448e+1 9.448e+1

Table 9 Cross sections for a
selection of SM production
processes. The built-in SM
implementation in
MADGRAPH, CALCHEP and
SHERPA are denoted MG-ST,
CH-ST and SH-ST, respectively,
while the
FEYNRULES-generated ones for
MADGRAPH/MADEVENT,
CALCHEP and SHERPA are
MG-FR, CH-FR and SH-FR.
The center-of-mass energy is
fixed to 550 GeV, and a pT cut
of 20 GeV is applied to each
final state particle

Quark and gluon processes in the standard model

Process MG-FR MG-ST CH-FR CH-ST SH-FR SH-ST

GG → GG 1.177e+5 1.178e+5 1.177e+5 1.177e+5 1.177e+5 1.177e+5

uū → GG 2.021e+2 2.021e+2 2.021e+2 2.021e+2 2.021e+2 2.021e+2

uū → W+W− 1.772e+0 1.774e+0 1.774e+0 1.774e+0 1.774e+0 1.774e+0

uū → ZZ 1.936e−1 1.933e−1 1.935e−1 1.935e−1 1.935e−1 1.935e−1

uū → Zγ 3.380e−1 3.382e−1 3.381e−1 3.381e−1 3.381e−1 3.381e−1

uū → γ γ 1.833e−1 1.833e−1 1.832e−1 1.832e−1 1.832e−1 1.832e−1

uū → ss̄ 9.864e+0 9.861e+0 9.868e+0 9.868e+0 9.869e+0 9.869e+0

ud̄ → cs̄ 3.531e−1 3.531e−1 3.531e−1 3.531e−1 3.531e−1 3.532e−1

us̄ → cd̄ 1.019e−3 1.019e−3 1.019e−3 1.019e−3 1.019e−3 1.019e−3

t t̄ → GG 6.522e+1 6.527e+1 6.528e+1 6.528e+1 6.528e+1 6.528e+1

t t̄ → Zγ 1.311e+0 1.311e+0 1.312e+0 1.312e+0 1.312e+0 1.312e+0

t t̄ → γ γ 8.844e−2 8.846e−2 8.849e−2 8.849e−2 8.848e−2 8.848e−2

t t̄ → uū 1.621e+1 1.618e+1 1.619e+1 1.619e+1 1.619e+1 1.619e+1

t t̄ → W+W− 1.713e+1 1.713e+1 1.713e+1 1.713e+1 1.714e+1 1.714e+1

t t̄ → ZZ 1.253e+0 1.254e+0 1.253e+0 1.253e+0 1.253e+0 1.253e+0
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Table 10 Input parameters for
the 2HDM. All parameters that
are not quoted have a zero value

Parameter Symbol Value

Inverse of the electromagnetic α−1
EW (MZ) 127.934

coupling

Strong coupling αs(MZ) 0.1172

Fermi constant GF 1.16637e−5 GeV−2

Z pole mass MZ 91.18876 GeV

c quark pole mass mc 1.25 GeV

b quark pole mass mb 4.2 GeV

t quark pole mass mt 174.3 GeV

τ lepton mass mτ 1.777 GeV

Cosine of the Cabibbo angle cos θc 0.974589144

c quark “Yukawa” mass mYuk
c 0.6 GeV

b quark “Yukawa” mass mYuk
b 3.0 GeV

t quark “Yukawa” mass mYuk
t 175 GeV

Potential parameters λ1,2,3 1.0

λ4 0.5

λ5 0.4

Re(λ6) 0.3

Re(λ7) 0.2

Charged Higgs mass mH± 300 GeV

Yukawa parameters (real) (Γd)2,2 0.4 GeV

(Γd)2,3 0.2 GeV

(Γd)3,3 5 GeV

(Γu)2,2 2 GeV

(Γu)2,3 1 GeV

(Γu)3,3 100 GeV

(Γl)2,2 0.1 GeV

(Γl)2,3 0.5 GeV

(Γl)3,3 3 GeV
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Table 11 Cross sections for a
selection of τ+τ− initiated
processes in the 2HDM. The
built-in 2HDM implementation
in MADGRAPH is denoted
MG-ST, while the
FEYNRULES-generated ones for
MADGRAPH/MADEVENT,
CALCHEP and SHERPA are
MG-FR, CH-FR and SH-FR.
The center-of-mass energy is
fixed to 800 GeV, and a pT cut
of 20 GeV is applied to each
final state particle

Lepton processes in the two-Higgs-doublet model

Process MG-FR MG-ST CH-FR SH-FR

τ+τ− → h1h1 1.917e−5 1.916e−5 1.916e−5 1.916e−5

τ+τ− → h1h2 2.043e−3 2.043e−3 2.043e−3 2.043e−3

τ+τ− → h1h3 2.043e−3 2.041e−3 2.042e−3 2.043e−3

τ+τ− → h2h2 2.349e−5 2.349e−5 2.349e−5 2.348e−5

τ+τ− → h2h3 2.260e−4 2.259e−4 2.259e−4 2.259e−4

τ+τ− → h3h3 7.242e−4 7.240e−4 7.241e−4 7.240e−4

τ+τ− → h+h− 1.345e−2 1.345e−2 1.345e−2 1.345e−2

τ+τ− → Zh1 5.818e−4 5.824e−4 5.824e−4 5.821e−4

τ+τ− → Zh2 8.012e−3 8.016e−3 8.012e−3 8.011e−3

τ+τ− → Zh3 4.844e−3 4.842e−3 4.842e−3 4.842e−3

τ+τ− → γ h1 2.915e−3 2.915e−3 2.914e−3 2.913e−3

τ+τ− → γ h2 8.059e−5 8.059e−5 8.060e−5 8.058e−5

τ+τ− → γ h3 4.347e−3 4.348e−3 4.347e−3 4.346e−3

τ+τ− → W−h+ 2.038e−3 2.037e−3 2.037e−3 2.037e−3

τ+τ− → W+h− 2.037e−3 2.039e−3 2.037e−3 2.037e−3

τ+τ− → ZZ 1.782e−1 1.784e−1 1.783e−1 1.784e−1

τ+τ− → W+W− 3.017e+0 3.018e+0 3.018e+0 3.018e+0

τ+τ− → μ+μ− 1.756e−1 1.753e−1 1.755e−1 1.755e−1

τ+τ− → μ+τ− 1.453e−8 1.453e−8 1.453e−8 1.452e−8

τ+τ− → τ+μ− 1.452e−8 1.453e−8 1.453e−8 1.452e−8

τ+τ− → τ+τ− 7.423e+2 7.421e+2 7.421e+2 7.422e+2

τ+τ− → ct̄ 1.189e−7 1.189e−7 1.189e−7 1.189e−7

τ+τ− → t c̄ 1.189e−7 1.189e−7 1.189e−7 1.189e−7

τ+τ− → t t̄ 2.690e−1 2.686e−1 2.687e−1 2.688e−1

τ+τ− → ss̄ 1.431e−1 1.432e−1 1.431e−1 1.433e−1

τ+τ− → sb̄ 5.252e+0 5.252e−9 5.249e−9 5.242e−9

τ+τ− → bs̄ 5.248e+0 5.249e−9 5.249e−9 5.242e−9

τ+τ− → bb̄ 1.431e−1 1.431e−1 1.431e−1 1.431e−1
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Table 12 Cross sections for a
selection of τ+ντ initiated
processes in the 2HDM. The
built-in 2HDM implementation
in MADGRAPH is denoted
MG-ST, while the
FEYNRULES-generated ones for
MADGRAPH/MADEVENT,
CALCHEP and SHERPA are
MG-FR, CH-FR and SH-FR.
The center-of-mass energy is
fixed to 800 GeV, and a pT cut
of 20 GeV is applied to each
final state particle

Neutrino processes in the two-Higgs-doublet model

Process MG-FR MG-ST CH-FR SH-FR

τ+ντ → h+h1 1.440e−2 1.439e−2 1.440e−2 1.441e−2

τ+ντ → h+h2 4.277e−3 4.277e−3 4.278e−3 4.277e−3

τ+ντ → h+h3 4.063e−3 4.066e−3 4.064e−3 4.065e−3

τ+ντ → h+Z 1.731e−3 1.731e−3 1.731e−3 1.731e−3

τ+ντ → h+γ 1.271e−3 1.271e−3 1.271e−3 1.271e−3

τ+ντ → W+h1 9.814e−4 9.803e−4 9.808e−4 9.807e−4

τ+ντ → W+h2 1.802e−2 1.801e−2 1.802e−2 1.802e−2

τ+ντ → W+h3 1.076e−2 1.076e−2 1.077e−2 1.077e−2

τ+ντ → W+Z 2.250e+0 2.251e+0 2.251e+0 2.250e+0

τ+ντ → W+γ 1.439e+0 1.439e+0 1.439e+0 1.440e+0

τ+ντ → e+νe 1.816e−1 1.816e−1 1.816e−1 1.816e−1

τ+ντ → μ+νμ 1.816e−1 1.816e−1 1.816e−1 1.816e−1

τ+ντ → μ+ντ 1.002e−8 1.002e−8 1.002e−8 1.002e−8

τ+ντ → τ+ντ 9.179e+0 9.180e+0 9.180e+0 9.180e+0

τ+ντ → ud̄ 5.174e−1 5.175e−1 5.174e−1 5.175e−1

τ+ντ → us̄ 2.733e−2 2.733e−2 2.733e−2 2.734e−2

τ+ντ → cd̄ 2.733e−2 2.734e−2 2.733e−2 2.734e−2

τ+ντ → cs̄ 5.175e−1 5.174e−1 5.174e−1 5.184e−1

τ+ντ → cb̄ 1.202e−7 1.202e−7 1.202e−7 1.202e−7

τ+ντ → t s̄ 4.363e−9 4.364e−9 4.364e−9 4.364e−9

τ+ντ → t b̄ 5.097e−1 5.097e−1 5.098e−1 5.099e−1
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Table 13 Cross sections for a
selection of processes in the
2HDM with two weak bosons in
the initial state. The built-in
2HDM implementation in
MADGRAPH is denoted
MG-ST, while the
FEYNRULES-generated ones are
MG-FR, CH-FR and SH-FR.
The center-of-mass energy is
fixed to 800 GeV, and a pT cut
of 20 GeV is applied to each
final state particle

Weak boson processes in the two-Higgs-doublet model

Process MG-FR MG-ST CH-FR SH-FR

W+W− → W+W− 1.347e+3 1.346e+3 1.347e+3 1.347e+3

W+W− → ZZ 2.787e+2 2.774e+2 2.782e+2 2.782e+2

W+W− → Zγ 1.510e+2 1.513e+2 1.511e+2 1.509e+2

ZZ → ZZ 1.616e+1 1.615e+1 1.616e+1 1.616e+1

W+W− → W+h− 3.589e−1 3.586e−1 3.588e−1 3.587e−1

W+W− → W−h+ 3.586e−1 3.589e−1 3.588e−1 3.587e−1

W+W− → Zh1 1.788e−1 1.787e−1 1.787e−1 1.788e−1

W+W− → Zh2 3.680e+1 3.685e+1 3.685e+1 3.684e+1

W+W− → Zh3 2.130e+1 2.131e+1 2.130e+1 2.129e+1

ZZ → Zh1 5.934e−1 5.943e−1 5.940e−1 5.939e−1

W+W− → h1h1 6.617e−1 6.620e−1 6.618e−1 6.617e−1

W+W− → h2h2 4.455e−1 4.449e−1 4.453e−1 4.452e−1

W+W− → h2h3 1.077e+0 1.076e+0 1.076e+0 1.076e+0

W+W− → h+h− 2.446e+0 2.444e+0 2.443e+0 2.443e+0

W+Z → h+h1 2.888e−1 2.888e−1 2.887e−1 2.887e−1

W+Z → h+h2 1.485e−2 1.486e−2 1.485e−2 1.485e−2

W+Z → h+h3 3.014e−2 3.013e−2 3.012e−2 3.011e−2

W+γ → h+h1 1.970e−2 1.969e−2 1.969e−2 1.969e−2

W+γ → h+h2 7.925e−3 7.927e−3 7.926e−3 7.925e−3

W+γ → h+h3 1.692e−2 1.693e−2 1.693e−2 1.693e−2

ZZ → h1h1 2.333e+0 2.333e+0 2.335e+0 2.334e+0

ZZ → h2h2 6.636e−1 6.627e−1 6.630e−1 6.629e−1

ZZ → h2h3 1.065e+0 1.066e+0 1.066e+0 1.065e+0

ZZ → h+h− 1.356e+0 1.356e+0 1.356e+0 1.356e+0

Zh1 → h2h3 2.929e+0 2.928e+0 2.930e+0 2.929e+0

W+h1 → h+h2 4.732e+0 4.727e+0 4.731e+0 4.729e+0

W+h2 → h+h2 2.998e+0 2.997e+0 2.999e+0 2.997e+0

W+h− → h2h3 2.294e+0 2.292e+0 2.293e+0 2.292e+0
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Table 14 Input parameters for
the SPS 1a benchmark point for
the MSSM

Parameter Symbol Value

Inverse of the electromagnetic α−1
EW (MZ) 127.934

coupling

Strong coupling αs(MZ) 0.1172

Fermi constant GF 1.16637e−5 GeV−2

Z mass MZ 91.1876 GeV

b quark mass mb(mb) 4.25 GeV

t quark mass mt 175 GeV

τ lepton mass mτ 1.777 GeV

Universal scalar mass m0 100 GeV

Universal gaugino mass m1/2 250 GeV

Universal trilinear coupling A0 −100 GeV

Ratio of the two vevs tanβ 10

Off-diagonal Higgs mixing sign(μ) +
parameter

supersymmetry-breaking scenario. We have chosen the typ-
ical minimal supergravity point SPS 1a [185] which is com-
pletely defined once we fix the values of four parameters at
the gauge coupling unification scale and one sign. The com-
plete set of input parameters is shown in Table 14. We then
use the numerical program SOFTSUSY [191] to solve the
renormalization group equations linking this restricted set
of supersymmetry-breaking parameters at high-energy scale
to the complete set of masses, mixing matrices and parame-
ters appearing in LMSSM at the weak scale. The output is
encoded in a file following the SLHA conventions, readable
by FEYNRULES after the use of an additional translation in-
terface taking into account the small differences between the
SLHA2 format and the one of our implementation. This in-
terface is available on the FEYNRULES website, as well as
the corresponding SLHA2 output file.

In Tables 15, 16, 17 and 18, we give some examples
of the numerical checks which we have performed in or-
der to validate the implementation of the MSSM in FEYN-
RULES. We recall that the built-in MSSM implementation in
MADGRAPH and CALCHEP are denoted MG-ST and CH-
ST, respectively, while the FEYNRULES-generated ones for
CALCHEP, MADGRAPH/MADEVENT are CH-FR and MG-
FR. The full list of results can be found on the FEYNRULES

webpage.

B.4 The minimal Higgsless model

The external parameters used for the validation of the Min-
imal Higgsless Model are shown in Table 19, and all the
widths are set to zero. We employ a center-of-mass energy

of 600 GeV and a pT cut of 20 GeV if only SM particles
are present, a center-of-mass energy of 1200 GeV and a pT

cut of 200 GeV if heavy vector bosons are present but heavy
fermions not, and a center-of-mass energy of 10000 GeV
and a pT cut of 2000 GeV if heavy fermions are present.

B.5 Extra dimensional models

The benchmark point which we have used for our numerical
comparison of the MUED implementation in FEYNRULES

to the existing one in CALCHEP is defined through the var-
ious external parameters shown in Table 23. The masses of
the first Kaluza-Klein excitations are computed via one-loop
calculations [172, 192], and for αs(MZ) = 0.1172, the spec-
trum agrees with the one given in [192, 193]. We obtain for
the excitations of the quarks at

√
s = 1400 GeV,

mu1
D

= md1
D

= mc1
D

= ms1
D

= 573.3793 GeV,

mt1
D

= 560.4622 GeV and

mb1
D

= 558.9203 GeV,

mu1
S
= mc1

S
= 562.0523 GeV, (133)

md1
S

= ms1
S
= 560.2356 GeV,

mt1
S

= 586.2638 GeV and

mb1
S

= 560.2514 GeV,
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Table 15 Widths (in GeV) of
some of the allowed decay
channels in the SPS 1a scenario.
MG-FR amd MG-ST denote the
FEYNRULES-generated and
built-in MADGRAPH

implementations

Decay widths in the MSSM

Process MG-FR MG-ST Process MG-FR MG-ST

t → W+b 1.5608 1.5561 Z → dd̄ 3.6625e−1 3.6712e−1

W+ → cs̄ 6.6807e−1 6.6830e−1 h0 → bb̄ 1.6268e−3 1.6268e−3

A0 → bb̄ 4.5479e−1 4.5479e−1 H+ → t b̄ 4.3833e−1 4.3833e−1

ũ1 → χ̃+
1 b 1.3661 1.3661 ũ2 → χ̃0

1 u 1.1373 1.1373

d̃4 → χ̃0
1 d 2.8196e−1 2.8196e−1 d̃5 → χ̃−

1 u 3.2220 3.2220

ν̃1 → χ̃0
1 ντ 1.4545e−1 1.4545e−1 l̃3 → χ̃0

1 μ− 2.1612e−1 2.1612e−1

g̃ → d̃†
1b 5.5408e−1 5.5370e−1 χ̃0

2 → l̃−1 τ+ 9.1581e−3 9.1507e−3

χ̃0
3 → χ̃+

1 W− 5.6624e−1 5.6460e−1 χ̃0
4 → χ̃+

1 W− 6.4519e−1 6.4576e−1

χ̃+
1 → l̃+1 ντ 1.5768e−2 1.5748e−2 χ̃+

2 → χ̃0
2 W+ 7.2945e−1 7.2998e−1

Table 16 Cross sections for a
selection of Higgs production
processes in the MSSM scenario
SPS 1a. The built-in MSSM
implementation in MADGRAPH

and CALCHEP are denoted
MG-ST and CH-ST,
respectively, while the
FEYNRULES-generated ones for
CALCHEP and
MADGRAPH/MADEVENT are
CH-FR and MG-FR. The
center-of-mass energy is fixed to
1200 GeV

Higgs production in the MSSM

Process MG-FR MG-ST CH-FR SH-FR

e+e− → Zh0 8.787e−3 8.788e−3 8.787e−3 8.787e−3

e+e− → H+H− 8.121e−3 8.121e−3 8.119e−3 8.119e−3

τ+τ− → h0H 0 1.610e−5 1.610e−5 1.610e−5 1.610e−5

τ+τ− → A0h0 1.741e−5 1.741e−5 1.741e−5 1.741e−5

τ−ν̄τ → H−h0 6.245e−6 6.245e−6 6.244e−6 6.243e−6

τ−ν̄τ → W−A0 1.810e−2 1.811e−2 1.810e−2 1.810e−2

τ−ν̄τ → ZH− 3.125e−2 3.123e−2 3.124e−2 3.124e−2

uū → Zh0 3.331e−3 3.331e−3 3.331e−3 3.331e−3

dd̄ → ZH 0 4.213e−7 4.215e−7 4.214e−7 4.214e−7

bb̄ → A0A0 7.221e−5 7.218e−5 7.220e−5 7.214e−5

bb̄ → H+H− 9.240e−4 9.237e−4 9.237e−4 9.237e−4

bt̄ → H−H 0 2.070e−3 2.070e−3 2.069e−3 2.069e−3

bt̄ → ZH− 2.590e−2 2.587e−2 2.592e−2 2.592e−2

W+W− → h0H 0 1.109e−3 1.110e−3 1.110e−3 1.110e−3

W+W− → Zh0 8.217e+1 8.216e+1 8.213e+1 8.213e+1

W+W− → H+H− 3.689e−2 3.686e−2 3.685e−2 3.685e−2

ZZ → h0h0 7.829e+0 7.827e+0 7.827e+0 7.827e+0

Zγ → H+H− 1.126e−2 1.124e−2 1.124e−2 1.124e−2

W−Z → W−A0 4.375e−4 4.387e−4 4.378e−4 4.378e−4

W−γ → W−h0 1.588e+1 1.589e+1 1.589e+1 1.589e+1
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Table 17 Cross sections for a
selection of supersymmetric
particle pair production
processes in the MSSM scenario
SPS 1a. The built-in MSSM
implementation in MADGRAPH

and CALCHEP are denoted
MG-ST and CH-ST,
respectively, while the
FEYNRULES-generated ones for
CALCHEP and
MADGRAPH/MADEVENT are
CH-FR and MG-FR. The
center-of-mass energy is fixed to
1200 GeV

Supersymmetric particle production from fermions

Process MG-FR MG-ST CH-FR SH-FR

e+e− → l̃−2 l̃+2 1.944e−1 1.944e−1 1.944e−1 1.944e−1

e+e− → ν̃3ν̃
∗
3 4.862e−1 4.863e−1 4.862e−1 4.863e−1

e+e− → ũ4ũ
∗
4 1.664e−3 1.662e−3 1.663e−3 1.663e−3

e+e− → d̃1d̃
∗
2 2.858e−4 2.857e−4 2.858e−4 2.858e−4

τ+τ− → l̃+1 l̃−6 4.332e−2 4.326e−2 4.329e−2 4.382e−2

τ−ν̄τ → l̃−6 ν̃∗
1 1.206e−1 1.206e−1 1.206e−1 1.206e−1

e+e− → χ̃0
2 χ̃0

2 4.334e−2 4.334e−2 4.330e−2 4.330e−2

e+e− → χ̃+
1 χ̃−

1 1.023e−1 1.023e−1 1.023e−1 1.023e−1

τ+τ− → χ̃0
3 χ̃0

3 9.280e−5 9.267e−5 9.272e−5 9.271e−5

τ+τ− → χ̃+
1 χ̃−

2 1.169e−2 1.170e−2 1.170e−2 1.170e−2

e−ν̄e → χ̃−
1 χ̃0

1 5.445e−2 5.444e−2 5.446e−2 5.446e−2

τ−ν̄τ → χ̃−
2 χ̃0

4 5.306e−2 5.313e−2 5.306e−2 5.306e−2

uū → l̃−3 l̃+3 2.123e−3 2.123e−3 2.123e−3 2.123e−3

uū → ũ5ũ
∗
2 6.141e−1 6.142e−1 6.141e−1 6.141e−1

dd̄ → ν̃2ν̃
∗
2 3.607e−3 3.606e−3 3.607e−3 3.607e−3

dd̄ → d̃4d̃
∗
4 1.306e−1 1.307e−1 1.307e−1 1.307e−1

bb̄ → d̃1d̃
∗
1 3.403e−1 3.401e−1 3.401e−1 3.401e−1

bb̄ → ũ6ũ
∗
6 5.913e−3 5.915e−3 5.912e−3 5.270e−3

bt̄ → l̃−6 ν̃∗
1 1.114e−2 1.114e−2 1.115e−2 1.115e−2

bt̄ → d̃2ũ
∗
6 4.417e−1 4.419e−1 4.420e−1 4.420e−1

uū → χ̃0
1 χ̃0

4 1.272e−4 1.272e−4 1.272e−4 1.272e−4

uū → χ̃+
2 χ̃−

2 1.321e−2 1.317e−2 1.319e−2 1.320e−2

bb̄ → χ̃0
3 χ̃0

4 1.087e−2 1.087e−2 1.085e−2 1.085e−2

bb̄ → χ̃+
2 χ̃−

2 9.556e−2 9.545e−2 9.556e−2 9.556e−2

bt̄ → χ̃−
1 χ̃0

2 1.556e−2 1.557e−2 1.557e−2 1.557e−2

bt̄ → χ̃−
2 χ̃0

3 3.981e−2 3.971e−2 3.977e−2 3.977e−2
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Table 18 Cross sections for a
selection of supersymmetric
particle pair production
processes in the MSSM scenario
SPS 1a. The built-in MSSM
implementation in MADGRAPH

and CALCHEP are denoted
MG-ST and CH-ST,
respectively, while the
FEYNRULES-generated ones for
CALCHEP and
MADGRAPH/MADEVENT are
CH-FR and MG-FR. The
center-of-mass energy is fixed to
1200 GeV. The differences with
respect to CH-ST are explained
in Sect. 6.4

Supersymmetric particle production from gauge bosons

Process MG-FR MG-ST CH-FR SH-FR

W+W− → l̃−1 l̃+1 2.289e−3 2.290e−3 2.289e−3 1.682e−2

W+W− → ν̃3ν̃
∗
3 5.561e−2 5.564e−2 5.562e−2 5.562e−2

W+W− → ũ1ũ
∗
6 5.338e−2 5.349e−2 5.344e−2 9.183e−1

ZZ → ν̃1ν̃
∗
1 7.678e−2 7.686e−2 7.686e−2 7.686e−2

ZZ → d̃5d̃
∗
5 4.693e−2 4.695e−2 4.693e−2 4.693e−2

Zγ → ũ1ũ
∗
6 3.283e−2 3.285e−2 3.286e−2 3.286e−2

Zγ → l̃−2 l̃+2 1.712e−2 1.711e−2 1.712e−2 1.712e−2

W−Z → l̃−5 ν̃∗
3 3.952e−2 3.941e−2 3.950e−2 3.950e−2

W−Z → d̃6ũ
∗
4 2.690e−2 2.689e−2 2.690e−2 2.690e−2

W−γ → d̃2ũ
∗
6 3.618e−4 3.618e−4 3.618e−4 3.618e−4

gγ → ũ1ũ
∗
1 1.129e−1 1.129e−1 1.129e−1 1.129e−1

gZ → d̃4d̃
∗
4 4.637e−3 4.633e−3 4.634e−3 4.634e−3

gW− → d̃5ũ
∗
5 2.569e−1 2.566e−1 2.566e−1 2.566e−1

gW+ → d̃∗
2 ũ6 2.208e−2 2.206e−2 2.206e−2 2.206e−2

gg → ũ3ũ
∗
3 1.865e−1 1.865e−1 1.866e−1 1.866e−1

W+W− → χ̃0
2 χ̃0

3 6.514e−1 6.515e−1 6.515e−1 6.515e−1

W+W− → χ̃+
1 χ̃−

1 1.836e+0 1.837e+0 1.835e+0 1.835e+0

γ γ → χ̃+
1 χ̃−

1 6.250e−1 6.263e−1 6.257e−1 6.257e−1

W−Z → χ̃0
4 χ̃−

1 4.738e−1 4.751e−1 4.746e−1 4.746e−1

W−γ → χ̃0
2 χ̃−

2 5.235e−2 5.235e−2 5.236e−2 5.236e−2

Table 19 Input parameters for
the MHM Parameter Symbol Value

Inverse of the electromagnetic α−1
EW (MZ) 127.9

coupling

Strong coupling αs(MZ) 0.1172

Fermi constant GF 1.16637e−5 GeV−2

Z mass MZ 91.1876 GeV

W mass MW 80.398 GeV

W ′ mass MW ′ 500 GeV

Heavy fermion mass MF 4 TeV

for those of the leptons

m
e1−
D

= m
μ1−

D
= m

τ 1−
D

= mν1
e
= mν1

μ
= mν1

τ

= 514.9604 GeV, (134)

m
e1−
S

= m
μ1−

S
= m

τ 1−
S

= 505.4502 GeV,

and for those of the gauge bosons

mG1 = 603.3141 GeV,

mZ1 = 535.4923 GeV, mW 1± = 500.8931 GeV and

mB1 = 500.8931 GeV.

(135)
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Table 20 Cross sections for a selection of strong processes in the Min-
imal Higgsless Model. The LANHEP-generated MHM implementation
in CALCHEP is denoted CH-LH, while the FEYNRULES-generated
ones for MADGRAPH/MADEVENT, CALCHEP are MG-FR, CH-FR
and SH-FR. F means the calculation was done in Feynman gauge while
U means it was done in unitary gauge The center-of-mass energy is

fixed to 600 GeV and a pT cut of 20 GeV is applied to each final state
particle, if only SM particles are present. A center-of-mass energy of
1200 GeV and a pT cut of 200 GeV is used if heavy vector bosons
are present but heavy fermions not, and a center-of-mass energy of
10000 GeV and a pT cut of 2000 GeV if heavy fermions are present

Strong processes in the minimal Higgsless model

Process CH-LH-F CH-FR-F CH-FR-U SH-FR-U MG-FR-U

G,G → G,G 1.143e+5 1.143e+5 1.143e+5 1.143e+5 1.143e+5

u, ū → G,G 1.705e+2 1.705e+2 1.705e+2 1.705e+2 1.706e+2

U, ū → G,G 0.000e−1 0.000e−1 0.000e−1 0.000e−1 0.000e−1

U, Ū → G,G 8.696e−2 8.696e−2 8.696e−2 8.696e−2 8.690e−2

u, ū → t, t̄ 8.116e+0 8.116e+0 8.116e+0 8.117e+0 8.100e+0

U, ū → t, t̄ 6.464e−2 6.464e−2 6.464e−2 6.467e−2 6.466e−2

U, ū → T , t̄ 6.592e−1 6.592e−1 6.592e−1 6.594e−1 6.597e−1

U, ū → t, T̄ 6.592e−1 6.592e−1 6.592e−1 6.594e−1 6.596e−1

U, Ū → t, t̄ 5.033e−2 5.033e−2 5.033e−2 5.035e−2 5.044e−2

U, Ū → T , t̄ 1.366e−1 1.366e−1 1.366e−1 1.367e−1 1.365e−1

U, Ū → T , T̄ 1.589e−1 1.589e−1 1.589e−1 1.589e−1 1.589e−1

Table 21 Cross sections for a
selection of charged
electroweak processes in the
Minimal Higgsless Model. The
LANHEP-generated MHM
implementation in CALCHEP is
denoted CH-LH, while the
FEYNRULES-generated ones for
MADGRAPH/MADEVENT,
CALCHEP and SHERPA are
MG-FR, CH-FR and SH-FR.
F means the calculation was
done in Feynman gauge while U
means it was done in unitary
gauge The center-of-mass
energy is fixed to 600 GeV and
a pT cut of 20 GeV is applied to
each final state particle, if only
SM particles are present.
A center-of-mass energy of
1200 GeV and a pT cut of
200 GeV is used if heavy vector
bosons are present but heavy
fermions not, and a
center-of-mass energy of
10000 GeV and a pT cut of
2000 GeV if heavy fermions are
present

Charged electroweak processes in the minimal Higgsless model

Process CH-LH-F CH-FR-F CH-FR-U SH-FR-U MG-FR-U

Z,W+ → W+,Z 3.121e+2 3.121e+2 3.121e+2 3.119e+2 3.118e+2

W ′+,Z → W+,Z 4.084e+0 4.084e+0 4.084e+0 4.077e+0 4.080e+0

Z′,W+ → W+,Z 4.214e+0 4.214e+0 4.214e+0 4.210e+0 4.214e+0

Z′,W ′+ → W+,Z 3.072e+1 3.072e+1 3.072e+1 3.071e+1 3.074e+1

W ′+,Z → W ′+,Z 2.289e+1 2.289e+1 2.289e+1 2.289e+1 2.288e+1

W ′+,Z → W+,Z′ 1.303e+2 1.303e+2 1.303e+2 1.302e+2 1.304e+2

Z′,W ′+ → W ′+,Z 8.098e+0 8.098e+0 8.098e+0 8.095e+0 8.111e+0

Z′,W ′+ → W+,Z′ 1.914e+1 1.914e+1 1.914e+1 1.913e+1 1.915e+1

Z′,W ′+ → W ′+,Z′ 6.967e+2 6.967e+2 6.967e+2 6.963e+2 6.965e+2

u, d̄ → Z,W+ 1.112e+0 1.112e+0 1.112e+0 1.110e+0 1.112e+0

u, d̄ → Z,W ′+ 8.639e−2 8.639e−2 8.639e−2 8.638e−2 8.647e−2

u, d̄ → Z′,W+ 8.463e−2 8.463e−2 8.463e−2 8.460e−2 8.456e−2

U, d̄ → Z,W+ 7.987e−2 7.987e−2 7.987e−2 7.986e−2 7.996e−2

U, D̄ → Z,W+ 1.794e+0 1.794e+0 1.794e+0 1.793e+0 1.793e+0

U, d̄ → Z′,W+ 1.464e−1 1.464e−1 1.464e−1 1.464e−1 1.463e−1

U, d̄ → Z,W ′+ 1.528e−1 1.528e−1 1.528e−1 1.529e−1 1.529e−1

U, D̄ → Z′,W+ 2.499e+0 2.499e+0 2.499e+0 2.499e+0 2.499e+0

U, D̄ → Z,W ′+ 2.564e+0 2.564e+0 2.564e+0 2.563e+0 2.562e+0

U, d̄ → Z′,W ′+ 2.512e−1 2.512e−1 2.512e−1 2.512e−1 2.513e−1

U, D̄ → Z′,W ′+ 2.287e+0 2.287e+0 2.287e+0 2.286e+0 2.286e+0

e, ν̄1 → b, t̄ 9.514e−1 9.514e−1 9.514e−1 9.515e−1 9.514e−1

e, ν̄1 → B, t̄ 5.346e−5 5.346e−5 5.346e−5 5.347e−5 5.339e−5

E−, ν̄1 → B, t̄ 8.287e+0 8.287e+0 8.287e+0 8.289e+0 8.287e+0

e, ν̄1 → B, T̄ 1.106e−3 1.106e−3 1.106e−3 1.106e−3 1.107e−3

E−, N̄1 → b, t̄ 8.071e−2 8.071e−2 8.071e−2 8.075e−2 8.054e−2

E−, ν̄1 → B, T̄ 5.904e−1 5.904e−1 5.904e−1 5.906e−1 5.905e−1

E−, N̄1 → B, t̄ 1.717e+0 1.717e+0 1.717e+0 1.717e+0 1.715e+0

E−, N̄1 → B, T̄ 1.732e+0 1.732e+0 1.732e+0 1.733e+0 1.733e+0
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Table 22 Cross sections for a
selection of neutral electroweak
processes in the Minimal
Higgsless Model. The
LANHEP-generated MHM
implementation in CALCHEP is
denoted CH-LH, while the
FEYNRULES-generated ones for
MADGRAPH/MADEVENT,
CALCHEP and SHERPA are
MG-FR, CH-FR and SH-FR.
F means the calculation was
done in Feynman gauge while
U means it was done in unitary
gauge. The center-of-mass
energy is fixed to 600 GeV and
a pT cut of 20 GeV is applied to
each final state particle, if only
SM particles are present.
A center-of-mass energy of
1200 GeV and a pT cut of
200 GeV is used if heavy vector
bosons are present but heavy
fermions not, and a
center-of-mass energy of
10000 GeV and a pT cut of
2000 GeV if heavy fermions are
present

Neutral electroweak processes in the minimal Higgsless model

Process CH-LH-F CH-FR-F CH-FR-U SH-FR-U MG-FR-U

W+,W− → W+,W− 1.407e+3 1.407e+3 1.407e+3 1.407e+3 1.407e+3

W+,W− → W+,W ′− 2.917e+0 2.917e+0 2.917e+0 2.917e+0 2.918e+0

W+,W ′− → W+,W− 5.313e+0 5.313e+0 5.313e+0 5.313e+0 5.316e+0

W+,W− → W ′+,W ′− 7.078e+0 7.078e+0 7.078e+0 7.074e+0 7.078e+0

W+,W ′− → W+,W ′− 1.406e+2 1.406e+2 1.406e+2 1.405e+2 1.404e+2

W ′+,W ′− → W+,W− 3.123e+1 3.123e+1 3.123e+1 3.123e+1 3.126e+1

W ′+,W ′− → W+,W ′− 1.948e+1 1.948e+1 1.948e+1 1.947e+1 1.944e+1

W+,W ′− → W ′+,W ′− 6.991e+0 6.991e+0 6.991e+0 6.995e+0 6.974e+0

W ′+,W ′− → W ′+,W ′− 7.245e+2 7.245e+2 7.245e+2 7.241e+2 7.256e+2

u, ū → Z,Z 1.957e−1 1.957e−1 1.957e−1 1.958e−1 1.955e−1

u, ū → Z,Z′ 9.367e−5 9.367e−5 9.367e−5 9.362e−5 9.368e−5

U, ū → Z,Z 4.497e+0 4.497e+0 4.497e+0 4.497e+0 4.494e+0

U, Ū → Z,Z 6.302e−1 6.302e−1 6.302e−1 6.302e−1 6.304e−1

U, ū → Z,Z′ 9.733e+0 9.733e+0 9.733e+0 9.732e+0 9.744e+0

u, ū → Z′,Z′ 1.196e−5 1.196e−5 1.196e−5 1.196e−5 1.196e−5

U, Ū → Z,Z′ 1.371e+0 1.371e+0 1.371e+0 1.371e+0 1.371e+0

U, ū → Z′,Z′ 5.268e+0 5.268e+0 5.268e+0 5.268e+0 5.266e+0

U, Ū → Z′,Z′ 8.832e−1 8.832e−1 8.832e−1 8.832e−1 8.828e−1

e, ē → t, t̄ 4.480e−1 4.480e−1 4.480e−1 4.480e−1 4.478e−1

e, ē → T , t̄ 1.388e−5 1.388e−5 1.388e−5 1.388e−5 1.389e−5

E−, ē → T , t̄ 1.978e+0 1.978e+0 1.978e+0 1.978e+0 1.978e+0

e, ē → T , T̄ 4.093e−4 4.093e−4 4.093e−4 4.093e−4 4.093e−4

E−, Ē → t, t̄ 4.155e−2 4.155e−2 4.155e−2 4.157e−2 4.153e−2

E−, ē → T , T̄ 1.359e−1 1.359e−1 1.359e−1 1.359e−1 1.359e−1

E−, Ē → T , t̄ 4.097e−1 4.097e−1 4.097e−1 4.098e−1 4.095e−1

E−, Ē → T , T̄ 4.207e−1 4.207e−1 4.207e−1 4.207e−1 4.202e−1
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Table 23 Input parameters for
our MUED benchmark scenario Parameter Symbol Value

Inverse of the electromagnetic α−1
EW (MZ) 128

coupling

Strong coupling αs(MZ) 0.1172

Fermi constant GF 1.16639e−5 GeV−2

Z pole mass MZ 91.1876 GeV

c quark mass mc 1.42 GeV

b quark mass mb 4.2 GeV

t quark mass mt 175 GeV

τ lepton mass mτ 1.777 GeV

Higgs mass mH 120 GeV

Sine of the electroweak mixing sw 0.48076

angle

Parameter of the CKM matrix s12 0.221

Parameter of the CKM matrix s23 0.041

Parameter of the CKM matrix s13 0.0035

Extra dimensional radius R 0.002 GeV−1

Cutoff scale Λ 10 TeV

Table 24 Cross sections for a
selection of processes in MUED
with two gauge bosons in the
initial state. The existing MUED
implementation in CALCHEP is
denoted CH-ST, while the
FEYNRULES-generated ones in
MADGRAPH, CALCHEP and
SHERPA are denoted MG-FR,
CH-FR and SH-FR. The
center-of-mass energy is fixed to
1400 GeV, and a pT cut of
20 GeV is applied to each final
state particle. Note that the
FEYNRULES interface to
CALCHEP cannot handle the
four-point interaction involving
two gluons and two KK gluons

MUED processes with gauge boson excitations

Process MG-FR CH-FR CH-ST SH-FR

Z1Z1 → W−W+ 2.856e+1 2.854e+1 2.855e+1 2.855e+1

W 1+W 1− → ZZ 8.400e+0 8.408e+0 8.408e+0 8.408e+0

W 1+W 1− → Zγ 5.077e+0 5.074e+0 5.074e+0 5.074e+0

W 1+W 1− → W+W− 8.707e+0 8.714e+0 8.714e+0 8.713e+0

W 1+W 1− → γ γ 7.648e−1 7.656e−1 7.656e−1 7.657e−1

γ 1γ 1 → t t̄ 8.988e−2 8.985e−2 8.985e−2 8.985e−2

Z1Z1 → dd̄ 3.553e−1 3.556e−1 3.556e−1 3.557e−1

W 1+W 1− → e−e+ 1.560e−1 1.557e−1 1.557e−1 1.557e−1

G1G1 → GG 7.890e+1 – 7.858e+1 7.854e+1

G1Z1 → cc̄ 6.890e−1 6.881e−1 6.882e−1 6.882e−1

G1γ 1 → bb̄ 1.096e−1 1.098e−1 1.098e−1 1.098e−1

G1G1 → G1G1 1.459e+5 1.462e+5 1.462e+5 1.462e+5

G1G → G1G 9.534e+4 – 9.539e+4 9.535e+4

Zγ → W 1+W 1− 3.185e+0 3.185e+0 3.185e+0 3.185e+0

W+W 1− → Z1γ 1.279e+2 1.278e+2 1.278e+2 1.280e+2

ZZ1 → W+W 1− 4.944e+2 4.944e+2 4.944e+2 4.952e+2

W+W 1− → ZZ1 4.930e+2 4.926e+2 4.926e+2 4.932e+2

W 1+W 1− → W 1+W 1− 2.199e+3 2.202e+3 2.202e+3 2.203e+3

Z1Z1 → W 1+W 1− 1.905e+3 1.905e+3 1.905e+3 1.904e+3



Page 52 of 57 Eur. Phys. J. C (2011) 71: 1541

Table 25 Cross sections for a
selection of fermionic processes
in MUED. The existing MUED
implementation in CALCHEP is
denoted CH-ST, while the
FEYNRULES-generated ones in
MADGRAPH, CALCHEP and
SHERPA are denoted MG-FR,
CH-FR and SH-FR. The
center-of-mass energy is fixed to
1400 GeV, and a pT cut of
20 GeV is applied to each final
state particle

MUED processes with fermion excitations

Process MG-FR CH-FR CH-ST SH-FR

e1−
S e1+

S → uū 1.109e−1 1.109e−1 1.109e−1 1.110e−1

e1−
S e1−

S → e−e− 1.071e+0 1.071e+0 1.071e+0 1.071e+0

e1−
S μ1+

S → e−μ+ 4.766e−1 4.768e−1 4.768e−1 4.768e−1

e1−
S e1+

S → γ γ 2.078e−1 2.079e−1 2.079e−1 2.079e−1

ν1
e ν1

e → uū 1.635e−1 1.635e−1 1.635e−1 1.636e−1

ν1
e ν1

e → W+W− 5.905e−1 5.901e−1 5.901e−1 5.897e−1

e1−
D e1+

D → uū 2.298e−1 2.298e−1 2.298e−1 2.299e−1

e1−
D e1+

D → e−e+ 2.496e−1 2.498e−1 2.498e−1 2.498e−1

e1−
D νe1 → dū 6.399e−1 6.400e−1 6.400e−1 6.403e−1

e1−
D νe1 → e−νe 1.052e+0 1.052e+0 1.052e+0 1.052e+0

τ 1−
S τ 1+

S → uū 1.110e−1 1.109e−1 1.109e−1 1.110e−1

τ 1−
S τ 1+

S → τ−τ+ 2.553e−1 2.554e−1 2.554e−1 2.553e−1

τ 1−
S μ1−

S → τ−μ− 6.585e−1 6.582e−1 6.582e−1 6.582e−1

e1−
S τ 1+

S → e−τ+ 4.765e−1 4.768e−1 4.768e−1 4.768e−1

ν1
τ ν1

τ → t t̄ 1.502e−1 1.504e−1 1.504e−1 1.504e−1

ν1
μν1

μ → cc̄ 1.634e−1 1.635e−1 1.635e−1 1.636e−1

ν1
τ ν1

τ → ZZ 4.141e−1 4.135e−1 4.135e−1 4.133e−1

τ 1−
D τ 1+

D → bb̄ 1.426e−1 1.427e−1 1.427e−1 1.428e−1

τ 1−
D ν1

τ → bt̄ 6.557e−1 6.560e−1 6.560e−1 6.563e−1

τ 1−
D ν1

τ → τ−ντ 1.053e+0 1.052e+0 1.052e+0 1.052e+0

γ 1τ 1−
S → γ τ− 1.638e−1 1.639e−1 1.639e−1 1.639e−1

u1
DZ1 → Gu 2.065e+0 2.068e+0 2.068e+0 2.072e+0

d1
Dd1

D → dd 9.147e+0 9.136e+0 9.139e+0 9.143e+0

u1
Dū1

D → uū 7.976e+0 7.986e+0 7.989e+0 7.992e+0

u1
Su1

S → uu 7.149e+0 7.147e+0 7.150e+0 7.152e+0

d1
S d̄1

S → dd̄ 9.098e+0 9.100e+0 9.103e+0 9.107e+0

t1
Dt1

D → t t 8.471e+0 8.474e+0 8.477e+0 8.474e+0

t1
Dt̄1

D → t t̄ 7.502e+0 7.492e+0 7.495e+0 7.492e+0

t1
S t1

S → t t 7.672e+0 7.674e+0 7.677e+0 7.674e+0

b1
Sb1

S → bb 5.853e+0 5.858e+0 5.860e+0 5.862e+0

t1
S t̄1

S → t t̄ 9.208e+0 9.211e+0 9.215e+0 9.211e+0

b1
S b̄1

S → bb̄ 9.092e+0 9.100e+0 9.104e+0 9.107e+0

Some examples of the obtained results for the calculation

of cross sections of some 2 → 2 processes relative to the

production of two Standard Model particles or two Kaluza-

Klein excitations are shown in Tables 24 and 25. We set the

center-of-mass energy to 1400 GeV and we applied a pT of

20 GeV on each final state particle.
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