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In this paper we consider nonanticommutative field theories in N ¼ 2 superspace formalism on

three-dimensional manifolds with a boundary. We modify the original Lagrangian in such a way that it

preserves half the supersymmetry even in the presence of a boundary. We also analyze the partial breaking

of supersymmetry caused by nonanticommutativity between fermionic coordinates. Unlike in four

dimensions, in three dimensions a theory with N ¼ 1=2 supersymmetry cannot be obtained by a

nonanticommutative deformation of an N ¼ 1 theory. However, in this paper we construct a three-

dimensional theory with N ¼ 1=2 supersymmetry by studying a combination of nonanticommutativity

and boundary effects, starting from N ¼ 2 supersymmetry.
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I. INTRODUCTION

There are many interesting deformations of field theo-
ries which can be realized on the world volume of
D-branes in various string theory backgrounds. The pres-
ence of a constant NS� NS B-field background gives rise
to noncommutativity [1–6]. The concept of noncommuta-
tive coordinates can be extended to superspace [7–10].
This concept of spacetime noncommutativity can be
extended to include more general deformations of the
(super-)Poincaré algebra [11–13], and for Grassmann coor-
dinates this leads to nonanticommutativity [7,8,14–21].
Such deformations are realized on the world volume of
D-branes in RR backgrounds [22–26], and the gravity dual
of such a field theory has been constructed in Ref. [27].
Also, a graviphoton background gives rise to a noncom-
mutativity between spacetime and superspace coordinates
[23,28–31]. Noncommutative deformations generated by
the NS� NS and graviphoton backgrounds do not break
any supersymmetry. However, the nonanticommutative
deformation breaks the supersymmetry corresponding to
the deformed superspace coordinate. In four dimensions it
is possible to break the supersymmetry generated by one
Weyl supercharge while leaving the supersymmetry gen-
erated by the other intact. Thus, if we start from a theory
with N ¼ 1 supersymmetry in four dimensions and per-
form a nonanticommutative deformation, we can arrive at a
theory withN ¼ 1=2 supersymmetry. Now, a theory with
N ¼ 1 supersymmetry in four dimensions has the same
amount of supersymmetry as a theory with N ¼ 2 super-
symmetry in three dimensions. Thus, from a three-
dimensional perspective this corresponds to breaking the
supersymmetry from N ¼ ð1; 1Þ to N ¼ ð0; 1Þ or N ¼
ð1; 0Þ supersymmetry [32]. Furthermore, a theory with
N ¼ 1 supersymmetry in three dimensions has the same
amount of supersymmetry as a theory with N ¼ 2 super-
symmetry in two dimensions. However, we cannot carry
this argument further, as there are not enough degrees of

freedom to perform this nonanticommutative deformation
in two dimensions without breaking all supersymmetry.
So, we cannot partially break supersymmetry to N ¼
1=2 supersymmetry in three dimensions by nonanticom-
mutative deformations alone. However, we will show in
this paper that we can obtain a theory with N ¼ 1=2
supersymmetry in three dimensions by combining the non-
anticommutative deformations with boundary effects.
In determining the Euler-Lagrange equations of a

Lagrangian field theory one encounters terms which can
be written as a surface integral. In theories that are at most
quadratic in derivatives this is the only contribution that
remains when an action is varied and its Euler- Lagrange
equations are used. Thus, in the presence of a boundary one
must specify boundary conditions that ensure the above
surface term vanishes. The boundary breaks translation
invariance and so it also breaks supersymmetry. In fact,
the supersymmetric transformation of most theories trans-
forms into a surface term and this generates a boundary
term in the presence of a boundary. This problem can be
eliminated by imposing boundary conditions under which
this boundary term vanishes. However, the bulk theory can
also be modified by introducing a boundary action such
that its supersymmetry transformations exactly cancel the
boundary term generated by the supersymmetry transfor-
mations of the original bulk action. This way half of the
original supersymmetry is preserved. This has been done
for three-dimensional theories in N ¼ 1 superspace
[33,34]. Such boundary effects for M2-branes have also
been analyzed inN ¼ 1 superspace [35–37]. In this paper
we will first generalize these results to a three-dimensional
theory in N ¼ 2 superspace and then analyze the
nonanticommutative deformation of this theory. We will
thus be able to arrive at a theory with N ¼ 1=2 super-
symmetry in three dimensions. As nonanticommutativity
occurs due to the coupling of D-branes to RR fields, it
would be interesting to study a non-Abelian Born-Infeld
Lagrangian in this nonanticommutative superspace. In this
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context the boundary effects analyzed in this paper could
be used to study a system of D2-branes ending on
D4-branes in the presence of RR fields. With this motiva-
tion we consider the example of a flat-space Born-Infeld
Lagrangian [38–41] coupled to scalar matter in three-
dimensionalN ¼ 2 superspace. See Ref. [42] for a useful
review of three-dimensional superspace.

II. BOUNDARY SUPERSYMMETRY

In this section we review the method of introducing a
boundary action in order to preserve half the supersymme-
try without explicit boundary conditions. We also define
our notation. This was originally carried out forN ¼ 1 in
Ref. [33] and extended to N ¼ 2 in Ref. [35].

We start from an N ¼ 1 superfield �ð�Þ, where � is a
two component Grassmann parameter. It transforms under
supersymmetric transformations as

��ð�Þ ¼ �aQa�ð�Þ; where Qa ¼ @a � ð���Þa@�;
is the generator of N ¼ 1 supersymmetry. If in compo-
nent form the field has the following form

�ð�Þ ¼ pþ q�þ r�2;

then the supersymmetric transformation can be written as

�p ¼ �aqa;

�qa ¼ ��arþ ð���Þa@ap;
�r ¼ �að��@�Þbaqb:

(1)

Now the Lagrangian for an N ¼ 1 theory can be written
in terms of such a superfield as

L ¼ D2½�ð�Þ��¼0; (2)

where D2 ¼ DaDa=2 and Da ¼ @a þ ð���Þa@�. This

Lagrangian is invariant under these supersymmetric trans-
formations on a manifold without boundaries. However, if
there is a boundary, say at x3 ¼ 0, then the supersymmetric
transformations of the Lagrangian are given by �L ¼
�@3ð��3qÞ. This breaks the supersymmetry of the result-
ant theory. However, if we add or subtract the following
term Lb ¼ @3½�ð�Þ��¼0, to the original Lagrangian, then
the supersymmetric transformation of the total Lagrangian
is given by

�½L�Lb� ¼ �2@3��q�; (3)

where q� ¼ P�q � ð1� �3Þq=2. Hence, we can preserve
the supersymmetry generated by either ��Qþ or �þQ� by
adding or subtracting Lb to L. However, we cannot pre-
serve all the supersymmetry. Thus, the Lagrangian which
preserves the supersymmetry corresponding to ��Qþ is
Lþ, and to �þQ� is L� where

L� ¼ L�Lb ¼ ðD2 � @3Þ½���¼0: (4)

After reviewing boundary supersymmetric theories in
N ¼ 1 superspace formalism, we present the straightfor-
ward generalization of these results to theories with N ¼
2 supersymmetry. Thus, we will analyze a Lagrangian with
N ¼ 2 supersymmetry,

L ¼ D2
1D

2
2½�ð�1; �2Þ��1¼�2¼0; (5)

where D1a ¼ @1a þ ð���1Þa@�, and D2a ¼ @2a þ
ð���2Þa@�, are the standard covariant derivatives which

commute with Q1a and Q2a, and � is an N ¼ 2 scalar
superfield. We can decompose a superfield with N ¼ 2
supersymmetry, into two copies ofN ¼ 1 superfields. So,
we can write �ð�1; �2Þ as

�ð�1; �2Þ ¼ p1ð�1Þ þ q1ð�1Þ�2 þ r1ð�1Þ�22
¼ p2ð�2Þ þ q2ð�2Þ�1 þ r2ð�2Þ�21; (6)

where p1ð�1Þ, p2ð�2Þ, q1ð�1Þ, q2ð�2Þ, r1ð�1Þ, r2ð�2Þ are
N ¼ 1 superfields in there own right. So, we can write
the Lagrangian as

L ¼ D2
1½r1ð�1Þ��1¼0 ¼ D2

2½r2ð�2Þ��2¼0: (7)

The supersymmetry of this theory will be generated by the
super-charges Q1a ¼ @1a � ð���1Þa@�, and Q2a ¼ @2a �
ð���2Þa@�. In absence of a boundary this theory is invari-

ant under the supersymmetry generated by both Q1a and
Q2a. However, in the presence of a boundary the super-
symmetric transformations generated by both Q1a and Q2a

generate boundary terms. So, on the boundary we can
again preserve only half of the total supersymmetry.
Thus, with a boundary we can only preserve the supersym-
metry generated by either �1þQ� or �1�Qþ, and by either
�2þQ� or �2�Qþ. Now, after adding suitable boundary
terms that preserve half of the supersymmetry, we get the
following four possible Lagrangians:

L 1�2� ¼ d1�d2�½���1¼�2¼0; (8)

where

d1� ¼ ðD2
1 � @3Þ; d2� ¼ ðD2

2 � @3Þ: (9)

Now the Lagrangian corresponding to d1�d2� preserves
the supersymmetry generated by �1�Q1� and �2�Q2�.
It may be noted this Lagrangian preserves only half
the supersymmetry because the supersymmetry generated
by �1�Q1� and �2�Q2� is broken by it.

III. MATTER-BORN-INFELD ACTION

In this paper we will consider the specific example of a
matter-Born-Infeld Lagrangian in N ¼ 2 superspace,
motivated by the potential application toD2-branes ending
onD4-branes in the presence of RR fields. This Lagrangian
will be used for analyzing the partial breaking of super-
symmetry due to a combination of nonanticommutative
deformations and boundary effects. We first define two
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spinor superfields �1a and �2a which we use to construct

covariant derivatives for matter fields � and ��,

r1a� ¼ D1a�� i�1a�; r2a� ¼ D2a�� i�2a�;

r1a
�� ¼ D1a

��þ i ���1a; r2a
�� ¼ D2a

��þ i ���2a:

(10)

We can also construct the following field strengths from
these spinor superfields:

!1a ¼ 1

2
Db

1D1a�1b � i

2
f�b

1 ; D1b�1ag � 1

6
½�b

1 ; f�1b;�1ag�;

!2a ¼ 1

2
Db

2D2a�2b � i

2
f�b

2 ; D2b�2ag � 1

6
½�2

1; f�2b;�2ag�:
(11)

The Born-Infeld Lagrangian can now be written as [38–41]

L bi ¼ D2
1½!a

1!1a��1¼0 þD2
2½!a

2!2a��2¼0
þD2

1D
2
2½!a

1!1a!
b
2!2bBðK1; K2Þ��1¼�2¼0; (12)

where K1 ¼ D2
1½!a

1!1a�, K2 ¼ D2
2½!a

2!2a� and B must
satisfy a constraint equation. For the Abelian Born-Infeld
Lagrangian the constraint can be solved and BðK1; K2Þ can
be written as

BðK1; K2Þ ¼ 1

2

�
1� ðK1 þ K2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� ðK1 þ K2Þ þ ðK1 � K2Þ2

q ��1
:

(13)

Now to write the matter Lagrangian we define �a ¼ ð�1a �
i�2aÞ, ��a ¼ ð�1a þ i�2aÞ, and @a ¼ ð@1a þ i@2aÞ=2, �@a ¼
ð@1a � i@2aÞ=2. We similarly define Da ¼ 1

2 ðD1a þ iD2aÞ,
�Da ¼ 1

2 ðD1a � iD2aÞ, and the covariant derivatives ra ¼
ðr1a þ ir2aÞ=2, �ra ¼ ðr1a � ir2aÞ=2. So, we can write
the matter-Born-Infeld Lagrangian on a manifold without
boundaries as

L ¼ D2
1D

2
2½ra� �ra

��þV ½�; �����1¼�2¼0
þD2

1½!a
1!1a��1¼0 þD2

2½!a
2!2a��2¼0

þD2
1D

2
2½!a

1!1a!
b
2!2bBðK1; K2Þ��1¼�2¼0; (14)

where V ½�; ��� is a potential term. This Lagrangian is
invariant under the following gauge transformation,

�1a ! ur1au
�1; �2a ! ur2au

�1: (15)

Now, in the presence of a boundary, we can preserveN ¼
1 supersymmetry by modifying this Lagrangian to

L 1�2� ¼ d1�d2�½ra� �ra
��þV ½�; �����1¼�2¼0

þ d1�½!a
1!1a��1¼0 þ d2�½!a

2!2a��2¼0
þ d1�d2�½!a

1!1a!
b
2!2bBðK1; K2Þ��1¼�2¼0;

(16)

where d1�d2� are given by Eq. (9). These Lagrangians
are still invariant under the gauge transformation given
by Eq. (15). It may be noted that if the gauge part included
Chern-Simons terms then this theory would not be gauge
invariant, but gauge invariance could be restored by the
addition of further boundary terms which would cancel the
boundary piece generated by the gauge transformation. This
has been considered in the context of the Aharony-
Bergman-Jafferis-Maldacena model in Refs. [35,36,43] in
component form, in N ¼ 1 superspace, and for the
Abelian case in N ¼ 2 superspace. However, the full
boundary action for the non-Abelian N ¼ 2 case has
not yet been constructed.

IV. BOUNDARY SUPERCHARGES AND
BOUNDARY SUPERFIELDS

In this section we describe the relation between the
bulk and boundary supersymmetry [33,35]. For N ¼ 1
supersymmetry, the bulk supercharge Qa can also
be decomposed as �aQa ¼ �ðPþ þ P�ÞQ ¼ �þQ� þ
��Qþ. These bulk supercharges can be written as Q� ¼
Q0� þ ��@3, and Qþ ¼ Q0þ � �þ@3. where Q0� are the
boundary supercharges given by Q0� ¼ @� � �s��@s.
Here s is the index for the coordinates along the boundary,
i.e., compared to � the case � ¼ 3 is excluded for a
boundary at fixed x3. Now by definition Q� are the gen-
erators of the half supersymmetry of the bulk fields andQ0�
are the standard supersymmetry generators for the bound-
ary fields. We also define Mþ ¼ expðþ���þ@3Þ and
M� ¼ expð��þ��@3Þ and let M�1þ and M�1� be their
inverses. Now we have

Q0� ¼ M�1� Q�M�; Q0þ ¼ M�1þ QþMþ: (17)

If we write

� ¼ Mþ�0þ or � ¼ M��0� (18)

where�0� are given in terms of boundary superfields a0 and
b0 by �0þ ¼ ½a0ð��Þ þ �þb0ð��Þ� or �0� ¼ ½a0ð�þÞ þ
��b0ð�þÞ�, then

�þQ�� ¼ M��þ0Q0��0� or

��Qþ� ¼ Mþ��0Q0þ�0þ;
(19)

where Q0��0� ¼ Q0�a0ð�þÞ � ��Q0�b0ð�þÞ and Q0þ�0þ ¼
Q0þa0ð��Þ � �þQ0þb0ð��Þ. This gives the decomposition
of � into boundary superfields depending on which super-
symmetry is preserved.
Now, forN ¼ 2 supersymmetry, the bulk supercharges

Qna (where n ¼ 1, 2) can also be decomposed as �naQna¼
�nþQn�þ�n�Qnþ, and written as Qn� ¼ Q0n� þ �n�@3
and Qnþ ¼ Q0nþ � �nþ@3, where Q0n� are the
boundary supercharges given by Q0n� ¼ @n� � �s�n�@s.
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We again define Mnþ ¼ expðþ�n��nþ@3Þ and Mn� ¼
expð��þ��@3Þ and let M�1nþ and M�1n� be there
inverses. Then

Q0n� ¼ M�1n�Qn�Mn�;

Q0nþ ¼ M�1nþQnþMnþ:
(20)

As forN ¼ 1, we write, depending on the supersymmetry
preserved,

� ¼ M2�M1��02�1�; (21)

where �02�1� decompose into boundary superfields. Now
we have one of the following:

�1�Q1þ� ¼ M2�M1þ�1�
0
Q01þ�02�1þ;

�1þQ1�� ¼ M2�M1��1þ
0
Q01��02�1�;

�2�Q2þ� ¼ M2þM1��2�
0
Q02þ�02þ1�;

�2þQ2�� ¼ M2�M1��2þ
0
Q02��

0
2�1�;

(22)

describing the (preserved) supersymmetry transformation
of the boundary superfields.
We will now analyze the superalgebra for a bulkN ¼ 2

supersymmetric theory in the presence of a boundary. In
the absence of a boundary

fQna; Qmbg ¼ 2��
ab@��nm; fDna; Dmbg ¼ �2��

ab@��nm;

fQna; Dmbg ¼ 0:
(23)

Now, defining Dn�a ¼ ðP�ÞbaDnb, and similarly for Qn�a, we can write the full superalgebra in a form adapted to the
presence of a boundary as

fQnþa; Qmþbg ¼ 2ð�s
abPþÞ@s�nm; fDnþa; Dmþbg ¼ �2ð�s

abPþÞ@s�nm;

fQn�a; Qm�bg ¼ 2ð�s
abP�Þ@s�nm; fDn�a; Dm�bg ¼ �2ð�s

abP�Þ@s�nm;

fQnþa; Qm�bg ¼ �2ðP�Þab@3�nm; fDnþa; Dm�bg ¼ 2ðP�Þab@3�nm;

fQn�a; Dm�bg ¼ 0:

(24)

Contracting Dn�aDnþb ¼ ðP�Þabð@3 � D2Þ and
DnþaDn�b ¼ �ðP�Þabð@3 þD2Þ with Cab and using
ðP�Þaa ¼ 1, we can also write Eq. (9) as

d1þ ¼ D1þD1�; d2þ ¼ D2þD2�; (25)

d1� ¼ D1�D1þ; d2� ¼ D2�D2þ: (26)

Thus, we can see how the Lagrangian with the measure
d1�d2� preserves the right amount of supersymmetry on
the boundary. This is because the Lagrangian corresponding
to Eq. (16) can be written as

L1�2� ¼D2�D2�D1�D1�½ra� �ra
��þV ½�; �����1¼�2¼0

þD2�D2�D1�D1�
� ½!a

1!1a!
b
2!2bBðK1;K2Þ��1�¼�2�¼0

þD2�D2�½!a
1!1a��2�¼0

þD1�D1�½!b
2!2b��1�¼0: (27)

This Lagrangian is again invariant under the gauge trans-
formation given by Eq. (15). We can write it in terms of
boundary superfields as

L 1�2� ¼ �D02�D01�½�01�2���1�¼�2�¼0
þD02�½�02���2�¼0 þD01�½�01���1�¼0; (28)

where

�01�2� ¼ D02�D01�½ra0�0 �r0a ��0 þV ½�0; ��0���1�¼�2�¼0
þD02�D01�½!a0

1 !
0
1a!

b0
2 !

0
2bB

0ðK01; K02Þ��1�¼�2�¼0;
�02� ¼ D02�½!a0

2 !
0
2a��2�¼0;

�01� ¼ D01�½!a0
1 !

0
1a��1�¼0: (29)

The boundary measure only containsD02�D01�. Thus, on the
boundary only the supersymmetry generated by �1�0Q01�
and �2�0Q02� is preserved. Furthermore, on the boundary
�1�0Q01� and �2�0Q02� act as independent supercharges.
So, we obtain a boundary theory with either (1, 1) supersym-
metry or (2, 0) supersymmetry.

V. NONANTICOMMUTATIVITY

In this section we will consider the effect of imposing
nonanticommutativity between the Grassmann coordinates
[7,8,12–18]. While more general deformations of the
super-Poincaré algebra are possible, we only consider non-
anticommutativity, i.e., we do not consider ½x�; x�� � 0 or
½x�; �� � 0.

We first promote �n�a to operators �̂n�a and impose the
most general form of nonanticommutativity for anN ¼ 2
supersymmetric theory in three dimensions,

f�̂n�a; �̂m�bg ¼ Cna�mb�; (30)

where Cnaþnbþ ¼ Cna�nb� ¼ 0. It may be noted that if we
had started from a theory with N ¼ 1 supersymmetric in
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three dimensions, it would not be possible to partially
break the supersymmetry. This is because in that case the
only nonanticommutative deformation that could take

place would be f�̂þa; �̂�bg ¼ Caþb� which would break
all the supersymmetry of the theory. Hence, it is not
possible to obtain in this way a theory with N ¼ 1=2
supersymmetry in three dimensions. However, we will
show in the next section we can obtain a theory with
N ¼ 1=2 supersymmetry in three dimensions by combin-
ing nonanticommutativity with boundary effects.

We can write the Fourier transformation of a scalar
superfield on the undeformed superspace as

�ð�n�Þ ¼
Z

d4� expð��n�a�n�aÞ�ð�n�Þ; (31)

where expð��n�a�n�aÞ¼ exp�ð�1þa�1þaþ�1�a�1�aþ
�2þa�2þaþ�2�a�2�aÞ. Now, we can use Weyl ordering
and also express the Fourier transformation of a scalar
superfield on the deformed superspace as

�̂ð�̂n�Þ ¼
Z

d4� expð��n�a�̂n�aÞ�ð�n�Þ: (32)

Here we have considered the most general form for non-
anticommutativity and it breaks all the supersymmetry.
Nonanticommutative deformations which partially break
the supersymmetry can be obtained from this general case
by setting some of the Cna�mb� to zero. We can express the
product of two fields on this deformed superspace as

�̂1ð�̂n�Þ�̂2ð�̂n�Þ ¼
Z

d4�d4 ~� expð�ð�þ ~�Þn�a�̂n�aÞ
� expð�Þ�̂1ð�n�Þ�̂2ð ~�n�Þ; (33)

where � ¼ �Cna�mb��n�a ~�n�b=2. This motivates the
definition of the star product between ordinary functions.
Thus, the nonanticommutativity replaces all the product of
fields by star products as follows [7,8,14]:

�1ð�n�Þ?�2ð�n�Þ¼�1ð�n�Þexp
�
1

2
Cna�mb�@

 
n�a ~@

!
n�b

�

��2ð~�n�Þ~�n�¼�n� (34)

with @
!
a�

b ¼ �b
a while �b@

 
a ¼ ��b

a, etc.
Now the nonanticommutative bulk supercharges Qna

can again be written as �naQna ¼ �nþQn� þ �n�Qnþ.
We now define Mnþ? ¼ expðþ�n��nþ@3Þ? and Mn�? ¼
expð��þ��@3Þ? and letM�1nþ? andM�1n�? be their inverses.
Here all the products are understood as star products. Now
we can write the relation between the bulk and boundary
supercharges in this deformed superspace as

Q0n� ¼ M�1n�? ? Qn�Mn�?;

Q0nþ ¼ M�1nþ? ? QnþMnþ?:
(35)

Thus, we can also write a relation between the bulk and
boundary superfields in this deformed superspace as

� ¼ M2�? ? M1�? ?�02�1�; (36)

where �02�1� are boundary superfields.
We have obtained boundary projections of the nonanti-

commutative superfields. Now we define nonanticommu-
tative field strengths as

!1a? ¼ 1

2
Db

1D1a�1b � i

2
f�b

1 ; D1b�1ag?

� 1

6
½�b

1 ; f�1b;�1ag?�?;

!2a? ¼ 1

2
Db

2D2a�2b � i

2
f�b

2 ; D2b�2ag?

� 1

6
½�2

1; f�2b;�2ag?�?: (37)

The Born-Infeld Lagrangian can now be written as

Lbi ¼ D2
1½!a

1? ? !1a?��1¼0 þD2
2½!a

2? ? !2a?��2¼0
þD2

1D
2
2½!a

1? ? !1a? ? !b
2? ? !2b?

? B?ðK1?; K2?Þ��1¼�2¼0; (38)

where K1? ¼ D2
1½!a

1? ? !1a?� and K2 ¼ D2
2½!a

2? ? !2a?�.
Now the Lagrangian for this nonanticommutative theory
will be obtained by replacing all products of fields in the
Lagrangian given by Eq. (16) with star products,

L ¼ d1�d2�½ra ?� ? �ra ? ��þV ½�; ���?��1¼�2¼0
þ d1�d2�½!a

1? ? !1a? ? !b
2? ? !2b?

? B?ðK1?; K2?Þ��1¼�2¼0d1�½!a
1? ? !1a?��1¼0

þ d2�½!2a? ? !2a?��2¼0: (39)

Here the nonanticommutative potential term V ½�; ���? is
again obtained by replacing the product of superfields in
the original potential term by star products. We can again
write it in terms of boundary superfields as

L 1�2� ¼ �D02�D01�½�01�2�?��1�¼�2�¼0
þD02�½�02�?��2�¼0 þD01�½�01�?��1�¼0; (40)

where

�01�2�? ¼ D02�D01�½ra0 ?�0 ? �r0a ? ��0 þV ½�0; ��0�?
þ!a0

1? ? !01a? ? !b0
2? ? !02b?

? B0?ðK01?; K02?Þ��1�¼�2�¼0;
�02�? ¼ D02�½!a0

2? ? !02a?��2�¼0;
�01�? ¼ D01�½!a0

1? ? !01a?��1�¼0: (41)

This Lagrangian is invariant under the nonanticommuta-
tive gauge transformation given by

NONANTICOMMUTATIVITY IN THE PRESENCE OF A . . . PHYSICAL REVIEW D 87, 025019 (2013)

025019-5



�1a ! u ?r1a ? u�1; �2a ! u ?r2a ? u�1: (42)

The boundary measure corresponding to d1�d2� contains
only D02�D01� and so the boundary effects again break half
the supersymmetry. However, now the nonanticommuta-
tivity also partially breaks supersymmetry. By combining
the boundary effects with nonanticommutativity, it is pos-
sible to obtain theories with N ¼ 1 supersymmetry or
N ¼ 1=2 supersymmetry in the bulk. In the next session
we will analyze various combinations of these boundary
effects with nonanticommutativity.

VI. PARTIALLY BREAKING SUPERSYMMETRY

Various amount of supersymmetry can be broken by a
combination of boundary effects with nonanticommutativ-
ity. The projection of the generators of bulk supersymme-
try again reproduces the correct generators of the boundary
supersymmetry. Thus, we have one of

�1�Q1þ� ¼ M2�? ? M1þ? ? �1�0Q01þ�02�1þ;

�1þQ1�� ¼ M2�? ? M1�? ? �1þ0Q01��
0
2�1�;

�2�Q2þ� ¼ M2þ? ? M1�? ? �2�0Q02þ�
0
2þ1�;

�2þQ2�� ¼ M2�? ? M1�? ? �2þ0Q02��
0
2�1�;

(43)

with the combination of supersymmetry generators
which are left unbroken depending both on the choice of
the boundary projection and the nonanticommutative
deformation.

If all the remaining components of Cna�mb� are nonzero
then all supersymmetry is broken. In fact, all supersym-
metry will also be broken if the nonzero components of
Cna�mb� break the supersymmetry that is preserved by the
boundary action. For example, after introducing the bound-
ary, if the measure is changed to d1þd2þ then the super-
symmetry corresponding to Q1� and Q2� is left unbroken,
but if the nonanticommutativity is then imposed in such a
way that C1a�2b� is nonzero then all the supersymmetry
will be broken.

It is also possible to impose nonanticommutativity in
such a way that it breaks the same supersymmetry that
would be broken by the boundary. In this case half the
supersymmetry of the original theory survives. Thus, if the
measure changes to d1þd2þ and C1aþ2bþ is nonzero, then
the supersymmetry corresponding toQ1� andQ2� remains
unbroken. So, we get an N ¼ 1 theory in the bulk which
corresponds to N ¼ ð0; 2Þ supersymmetry on the bound-
ary, with the star product defined with only C1aþ2bþ being
nonzero. Similarly, if the measure changes to d1�d2� and
C1a�2b� is nonzero, we preserve N ¼ ð2; 0Þ supersym-
metry on the boundary. However, if the measure changes to
d1þd2� andC1a1þ2b� is nonzero, or if the measure changes
to d1�d2þ and C1a�2bþ is nonzero, then in both these cases
we get N ¼ ð1; 1Þ supersymmetry on the boundary.

The most interesting case is when half the supersymme-
try left over after introducing the boundary is broken. For
example, if the measure is changed to d1þd2þ and Ca1þb2�
is nonzero, only the supersymmetry corresponding to Q1�
is left unbroken. This corresponds to N ¼ ð0; 1Þ on the
boundary and thusN ¼ 1=2 in the bulk. Now for the same
measure, if instead C1a�2bþ is nonzero, then the supersym-
metry corresponding to Q2� is left unbroken which again
corresponds toN ¼ ð0; 1Þ on the boundary andN ¼ 1=2
in the bulk. Similarly, if we change the measure to d1�d2�
and let either C1aþ2b� or C1a�2bþ be nonzero, then N ¼
ð1; 0Þ supersymmetry is preserved on the boundary. Further
possibilities correspond to d1�d2þ or d1þd2� with
C1aþ2bþ or C1a�2b� nonzero. Again the bulk theory
preserves N ¼ 1=2 supersymmetry corresponding to
N ¼ ð0; 1Þ or N ¼ ð1; 0Þ on the boundary.

VII. CONCLUSION

In this paper we have shown how a three-dimensional
N ¼ 1=2 theory can be realized by starting with an
N ¼ 2 theory and breaking supersymmetry through a
nonanticommutative deformation together with the inclu-
sion of a boundary. Most of the analysis is general but we
also discussed a Born-Infeld Lagrangian coupled to a
matter field using N ¼ 2 superspace, motivated by the
potential application to D2-branes.
In summary, the supersymmetry of the N ¼ 2 theory

was broken by the presence of a boundary. However, we
modified the original theory by adding a boundary action to
it such that the supersymmetric transformation of this
boundary piece exactly cancels the boundary term gener-
ated from the supersymmetric transformation of the bulk
theory. This way we were able to preserve half the super-
symmetry of the original theory, i.e., N ¼ 1 in three
dimensions. Depending on the choice of boundary action,
this corresponds to a two-dimensional theory with N ¼
ð1; 1Þ orN ¼ ð2; 0Þ supersymmetry. We then analyzed the
breaking of supersymmetry due to nonanticommutative
deformations, including the correct boundary projections
of the bulk superfields in this general nonanticommutative
superspace. We showed that, depending on the precise anti-
commutative deformation, it is possible to construct theo-
ries with N ¼ 1 or N ¼ 1=2 supersymmetry in three
dimensions. This was done by combining the breaking of
supersymmetry by the boundary with the breaking of
supersymmetry by the nonanticommutativity. The reason
both effects are required is that, unlike what happens in
four dimensions, it is not possible to obtain a theory with
N ¼ 1=2 supersymmetry in three dimensions by only
imposing nonanticommutativity.
One interesting application of the methods in this paper

would be to a nonanticommutative deformation of a system
of M2-branes with boundary on an M5-brane. The low
energy Lagrangian for multiple M2-branes is thought to
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be described by the Aharony-Bergman-Jafferis-Maldacena
Chern-Simons matter theory [44–47] which can be studied
in N ¼ 2 superspace. The formalism developed in the
present paper could be directly applied to this system.
However, there is an additional complication that the gauge
transformation of the Chern-Simons Lagrangian generates
a surface term. Thus, we would need to add another bound-
ary term (or choose some suitable boundary conditions)
such that the combined gauge variation of the original

theory along with this boundary piece will be gauge in-
variant. This has been done in the bosonic case [43] and in
N ¼ 1 superspace [35–37] where it was shown that, not
unexpectedly, the Lagrangian on the boundary is (a gauged
version of) a Wess-Zumino-Witten model. It is expected
that a similar result will hold inN ¼ 2 superspace but the
non-Abelian Chern-Simons action is more complicated in
this case, and the detailed construction of the boundary
action has not yet been performed.
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